linux-stable/include/trace/events/pagemap.h

84 lines
2.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
#undef TRACE_SYSTEM
#define TRACE_SYSTEM pagemap
#if !defined(_TRACE_PAGEMAP_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_PAGEMAP_H
#include <linux/tracepoint.h>
#include <linux/mm.h>
#define PAGEMAP_MAPPED 0x0001u
#define PAGEMAP_ANONYMOUS 0x0002u
#define PAGEMAP_FILE 0x0004u
#define PAGEMAP_SWAPCACHE 0x0008u
#define PAGEMAP_SWAPBACKED 0x0010u
#define PAGEMAP_MAPPEDDISK 0x0020u
#define PAGEMAP_BUFFERS 0x0040u
#define trace_pagemap_flags(folio) ( \
(folio_test_anon(folio) ? PAGEMAP_ANONYMOUS : PAGEMAP_FILE) | \
(folio_mapped(folio) ? PAGEMAP_MAPPED : 0) | \
(folio_test_swapcache(folio) ? PAGEMAP_SWAPCACHE : 0) | \
(folio_test_swapbacked(folio) ? PAGEMAP_SWAPBACKED : 0) | \
(folio_test_mappedtodisk(folio) ? PAGEMAP_MAPPEDDISK : 0) | \
(folio_test_private(folio) ? PAGEMAP_BUFFERS : 0) \
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
)
TRACE_EVENT(mm_lru_insertion,
TP_PROTO(struct folio *folio),
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
TP_ARGS(folio),
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
TP_STRUCT__entry(
__field(struct folio *, folio )
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
__field(unsigned long, pfn )
__field(enum lru_list, lru )
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
__field(unsigned long, flags )
),
TP_fast_assign(
__entry->folio = folio;
__entry->pfn = folio_pfn(folio);
__entry->lru = folio_lru_list(folio);
__entry->flags = trace_pagemap_flags(folio);
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
),
/* Flag format is based on page-types.c formatting for pagemap */
TP_printk("folio=%p pfn=0x%lx lru=%d flags=%s%s%s%s%s%s",
__entry->folio,
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
__entry->pfn,
__entry->lru,
__entry->flags & PAGEMAP_MAPPED ? "M" : " ",
__entry->flags & PAGEMAP_ANONYMOUS ? "a" : "f",
__entry->flags & PAGEMAP_SWAPCACHE ? "s" : " ",
__entry->flags & PAGEMAP_SWAPBACKED ? "b" : " ",
__entry->flags & PAGEMAP_MAPPEDDISK ? "d" : " ",
__entry->flags & PAGEMAP_BUFFERS ? "B" : " ")
);
TRACE_EVENT(mm_lru_activate,
TP_PROTO(struct folio *folio),
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
TP_ARGS(folio),
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
TP_STRUCT__entry(
__field(struct folio *, folio )
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
__field(unsigned long, pfn )
),
TP_fast_assign(
__entry->folio = folio;
__entry->pfn = folio_pfn(folio);
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
),
TP_printk("folio=%p pfn=0x%lx", __entry->folio, __entry->pfn)
mm: add tracepoints for LRU activation and insertions Andrew Perepechko reported a problem whereby pages are being prematurely evicted as the mark_page_accessed() hint is ignored for pages that are currently on a pagevec -- http://www.spinics.net/lists/linux-ext4/msg37340.html . Alexey Lyahkov and Robin Dong have also reported problems recently that could be due to hot pages reaching the end of the inactive list too quickly and be reclaimed. Rather than addressing this on a per-filesystem basis, this series aims to fix the mark_page_accessed() interface by deferring what LRU a page is added to pagevec drain time and allowing mark_page_accessed() to call SetPageActive on a pagevec page. Patch 1 adds two tracepoints for LRU page activation and insertion. Using these processes it's possible to build a model of pages in the LRU that can be processed offline. Patch 2 defers making the decision on what LRU to add a page to until when the pagevec is drained. Patch 3 searches the local pagevec for pages to mark PageActive on mark_page_accessed. The changelog explains why only the local pagevec is examined. Patches 4 and 5 tidy up the API. postmark, a dd-based test and fs-mark both single and threaded mode were run but none of them showed any performance degradation or gain as a result of the patch. Using patch 1, I built a *very* basic model of the LRU to examine offline what the average age of different page types on the LRU were in milliseconds. Of course, capturing the trace distorts the test as it's written to local disk but it does not matter for the purposes of this test. The average age of pages in milliseconds were vanilla deferdrain Average age mapped anon: 1454 1250 Average age mapped file: 127841 155552 Average age unmapped anon: 85 235 Average age unmapped file: 73633 38884 Average age unmapped buffers: 74054 116155 The LRU activity was mostly files which you'd expect for a dd-based workload. Note that the average age of buffer pages is increased by the series and it is expected this is due to the fact that the buffer pages are now getting added to the active list when drained from the pagevecs. Note that the average age of the unmapped file data is decreased as they are still added to the inactive list and are reclaimed before the buffers. There is no guarantee this is a universal win for all workloads and it would be nice if the filesystem people gave some thought as to whether this decision is generally a win or a loss. This patch: Using these tracepoints it is possible to model LRU activity and the average residency of pages of different types. This can be used to debug problems related to premature reclaim of pages of particular types. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Lyahkov <alexey.lyashkov@gmail.com> Cc: Andrew Perepechko <anserper@ya.ru> Cc: Robin Dong <sanbai@taobao.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:26 +00:00
);
#endif /* _TRACE_PAGEMAP_H */
/* This part must be outside protection */
#include <trace/define_trace.h>