linux-stable/arch/sparc/kernel/ldc.c

2429 lines
50 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/* ldc.c: Logical Domain Channel link-layer protocol driver.
*
* Copyright (C) 2007, 2008 David S. Miller <davem@davemloft.net>
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/scatterlist.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/bitmap.h>
#include <asm/iommu-common.h>
#include <asm/hypervisor.h>
#include <asm/iommu.h>
#include <asm/page.h>
#include <asm/ldc.h>
#include <asm/mdesc.h>
#define DRV_MODULE_NAME "ldc"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "1.1"
#define DRV_MODULE_RELDATE "July 22, 2008"
#define COOKIE_PGSZ_CODE 0xf000000000000000ULL
#define COOKIE_PGSZ_CODE_SHIFT 60ULL
static char version[] =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
/* Packet header layout for unreliable and reliable mode frames.
* When in RAW mode, packets are simply straight 64-byte payloads
* with no headers.
*/
struct ldc_packet {
u8 type;
#define LDC_CTRL 0x01
#define LDC_DATA 0x02
#define LDC_ERR 0x10
u8 stype;
#define LDC_INFO 0x01
#define LDC_ACK 0x02
#define LDC_NACK 0x04
u8 ctrl;
#define LDC_VERS 0x01 /* Link Version */
#define LDC_RTS 0x02 /* Request To Send */
#define LDC_RTR 0x03 /* Ready To Receive */
#define LDC_RDX 0x04 /* Ready for Data eXchange */
#define LDC_CTRL_MSK 0x0f
u8 env;
#define LDC_LEN 0x3f
#define LDC_FRAG_MASK 0xc0
#define LDC_START 0x40
#define LDC_STOP 0x80
u32 seqid;
union {
u8 u_data[LDC_PACKET_SIZE - 8];
struct {
u32 pad;
u32 ackid;
u8 r_data[LDC_PACKET_SIZE - 8 - 8];
} r;
} u;
};
struct ldc_version {
u16 major;
u16 minor;
};
/* Ordered from largest major to lowest. */
static struct ldc_version ver_arr[] = {
{ .major = 1, .minor = 0 },
};
#define LDC_DEFAULT_MTU (4 * LDC_PACKET_SIZE)
#define LDC_DEFAULT_NUM_ENTRIES (PAGE_SIZE / LDC_PACKET_SIZE)
struct ldc_channel;
struct ldc_mode_ops {
int (*write)(struct ldc_channel *, const void *, unsigned int);
int (*read)(struct ldc_channel *, void *, unsigned int);
};
static const struct ldc_mode_ops raw_ops;
static const struct ldc_mode_ops nonraw_ops;
static const struct ldc_mode_ops stream_ops;
int ldom_domaining_enabled;
struct ldc_iommu {
/* Protects ldc_unmap. */
spinlock_t lock;
struct ldc_mtable_entry *page_table;
struct iommu_map_table iommu_map_table;
};
struct ldc_channel {
/* Protects all operations that depend upon channel state. */
spinlock_t lock;
unsigned long id;
u8 *mssbuf;
u32 mssbuf_len;
u32 mssbuf_off;
struct ldc_packet *tx_base;
unsigned long tx_head;
unsigned long tx_tail;
unsigned long tx_num_entries;
unsigned long tx_ra;
unsigned long tx_acked;
struct ldc_packet *rx_base;
unsigned long rx_head;
unsigned long rx_tail;
unsigned long rx_num_entries;
unsigned long rx_ra;
u32 rcv_nxt;
u32 snd_nxt;
unsigned long chan_state;
struct ldc_channel_config cfg;
void *event_arg;
const struct ldc_mode_ops *mops;
struct ldc_iommu iommu;
struct ldc_version ver;
u8 hs_state;
#define LDC_HS_CLOSED 0x00
#define LDC_HS_OPEN 0x01
#define LDC_HS_GOTVERS 0x02
#define LDC_HS_SENTRTR 0x03
#define LDC_HS_GOTRTR 0x04
#define LDC_HS_COMPLETE 0x10
u8 flags;
#define LDC_FLAG_ALLOCED_QUEUES 0x01
#define LDC_FLAG_REGISTERED_QUEUES 0x02
#define LDC_FLAG_REGISTERED_IRQS 0x04
#define LDC_FLAG_RESET 0x10
u8 mss;
u8 state;
#define LDC_IRQ_NAME_MAX 32
char rx_irq_name[LDC_IRQ_NAME_MAX];
char tx_irq_name[LDC_IRQ_NAME_MAX];
struct hlist_head mh_list;
struct hlist_node list;
};
#define ldcdbg(TYPE, f, a...) \
do { if (lp->cfg.debug & LDC_DEBUG_##TYPE) \
printk(KERN_INFO PFX "ID[%lu] " f, lp->id, ## a); \
} while (0)
#define LDC_ABORT(lp) ldc_abort((lp), __func__)
static const char *state_to_str(u8 state)
{
switch (state) {
case LDC_STATE_INVALID:
return "INVALID";
case LDC_STATE_INIT:
return "INIT";
case LDC_STATE_BOUND:
return "BOUND";
case LDC_STATE_READY:
return "READY";
case LDC_STATE_CONNECTED:
return "CONNECTED";
default:
return "<UNKNOWN>";
}
}
static unsigned long __advance(unsigned long off, unsigned long num_entries)
{
off += LDC_PACKET_SIZE;
if (off == (num_entries * LDC_PACKET_SIZE))
off = 0;
return off;
}
static unsigned long rx_advance(struct ldc_channel *lp, unsigned long off)
{
return __advance(off, lp->rx_num_entries);
}
static unsigned long tx_advance(struct ldc_channel *lp, unsigned long off)
{
return __advance(off, lp->tx_num_entries);
}
static struct ldc_packet *handshake_get_tx_packet(struct ldc_channel *lp,
unsigned long *new_tail)
{
struct ldc_packet *p;
unsigned long t;
t = tx_advance(lp, lp->tx_tail);
if (t == lp->tx_head)
return NULL;
*new_tail = t;
p = lp->tx_base;
return p + (lp->tx_tail / LDC_PACKET_SIZE);
}
/* When we are in reliable or stream mode, have to track the next packet
* we haven't gotten an ACK for in the TX queue using tx_acked. We have
* to be careful not to stomp over the queue past that point. During
* the handshake, we don't have TX data packets pending in the queue
* and that's why handshake_get_tx_packet() need not be mindful of
* lp->tx_acked.
*/
static unsigned long head_for_data(struct ldc_channel *lp)
{
if (lp->cfg.mode == LDC_MODE_STREAM)
return lp->tx_acked;
return lp->tx_head;
}
static int tx_has_space_for(struct ldc_channel *lp, unsigned int size)
{
unsigned long limit, tail, new_tail, diff;
unsigned int mss;
limit = head_for_data(lp);
tail = lp->tx_tail;
new_tail = tx_advance(lp, tail);
if (new_tail == limit)
return 0;
if (limit > new_tail)
diff = limit - new_tail;
else
diff = (limit +
((lp->tx_num_entries * LDC_PACKET_SIZE) - new_tail));
diff /= LDC_PACKET_SIZE;
mss = lp->mss;
if (diff * mss < size)
return 0;
return 1;
}
static struct ldc_packet *data_get_tx_packet(struct ldc_channel *lp,
unsigned long *new_tail)
{
struct ldc_packet *p;
unsigned long h, t;
h = head_for_data(lp);
t = tx_advance(lp, lp->tx_tail);
if (t == h)
return NULL;
*new_tail = t;
p = lp->tx_base;
return p + (lp->tx_tail / LDC_PACKET_SIZE);
}
static int set_tx_tail(struct ldc_channel *lp, unsigned long tail)
{
unsigned long orig_tail = lp->tx_tail;
int limit = 1000;
lp->tx_tail = tail;
while (limit-- > 0) {
unsigned long err;
err = sun4v_ldc_tx_set_qtail(lp->id, tail);
if (!err)
return 0;
if (err != HV_EWOULDBLOCK) {
lp->tx_tail = orig_tail;
return -EINVAL;
}
udelay(1);
}
lp->tx_tail = orig_tail;
return -EBUSY;
}
/* This just updates the head value in the hypervisor using
* a polling loop with a timeout. The caller takes care of
* upating software state representing the head change, if any.
*/
static int __set_rx_head(struct ldc_channel *lp, unsigned long head)
{
int limit = 1000;
while (limit-- > 0) {
unsigned long err;
err = sun4v_ldc_rx_set_qhead(lp->id, head);
if (!err)
return 0;
if (err != HV_EWOULDBLOCK)
return -EINVAL;
udelay(1);
}
return -EBUSY;
}
static int send_tx_packet(struct ldc_channel *lp,
struct ldc_packet *p,
unsigned long new_tail)
{
BUG_ON(p != (lp->tx_base + (lp->tx_tail / LDC_PACKET_SIZE)));
return set_tx_tail(lp, new_tail);
}
static struct ldc_packet *handshake_compose_ctrl(struct ldc_channel *lp,
u8 stype, u8 ctrl,
void *data, int dlen,
unsigned long *new_tail)
{
struct ldc_packet *p = handshake_get_tx_packet(lp, new_tail);
if (p) {
memset(p, 0, sizeof(*p));
p->type = LDC_CTRL;
p->stype = stype;
p->ctrl = ctrl;
if (data)
memcpy(p->u.u_data, data, dlen);
}
return p;
}
static int start_handshake(struct ldc_channel *lp)
{
struct ldc_packet *p;
struct ldc_version *ver;
unsigned long new_tail;
ver = &ver_arr[0];
ldcdbg(HS, "SEND VER INFO maj[%u] min[%u]\n",
ver->major, ver->minor);
p = handshake_compose_ctrl(lp, LDC_INFO, LDC_VERS,
ver, sizeof(*ver), &new_tail);
if (p) {
int err = send_tx_packet(lp, p, new_tail);
if (!err)
lp->flags &= ~LDC_FLAG_RESET;
return err;
}
return -EBUSY;
}
static int send_version_nack(struct ldc_channel *lp,
u16 major, u16 minor)
{
struct ldc_packet *p;
struct ldc_version ver;
unsigned long new_tail;
ver.major = major;
ver.minor = minor;
p = handshake_compose_ctrl(lp, LDC_NACK, LDC_VERS,
&ver, sizeof(ver), &new_tail);
if (p) {
ldcdbg(HS, "SEND VER NACK maj[%u] min[%u]\n",
ver.major, ver.minor);
return send_tx_packet(lp, p, new_tail);
}
return -EBUSY;
}
static int send_version_ack(struct ldc_channel *lp,
struct ldc_version *vp)
{
struct ldc_packet *p;
unsigned long new_tail;
p = handshake_compose_ctrl(lp, LDC_ACK, LDC_VERS,
vp, sizeof(*vp), &new_tail);
if (p) {
ldcdbg(HS, "SEND VER ACK maj[%u] min[%u]\n",
vp->major, vp->minor);
return send_tx_packet(lp, p, new_tail);
}
return -EBUSY;
}
static int send_rts(struct ldc_channel *lp)
{
struct ldc_packet *p;
unsigned long new_tail;
p = handshake_compose_ctrl(lp, LDC_INFO, LDC_RTS, NULL, 0,
&new_tail);
if (p) {
p->env = lp->cfg.mode;
p->seqid = 0;
lp->rcv_nxt = 0;
ldcdbg(HS, "SEND RTS env[0x%x] seqid[0x%x]\n",
p->env, p->seqid);
return send_tx_packet(lp, p, new_tail);
}
return -EBUSY;
}
static int send_rtr(struct ldc_channel *lp)
{
struct ldc_packet *p;
unsigned long new_tail;
p = handshake_compose_ctrl(lp, LDC_INFO, LDC_RTR, NULL, 0,
&new_tail);
if (p) {
p->env = lp->cfg.mode;
p->seqid = 0;
ldcdbg(HS, "SEND RTR env[0x%x] seqid[0x%x]\n",
p->env, p->seqid);
return send_tx_packet(lp, p, new_tail);
}
return -EBUSY;
}
static int send_rdx(struct ldc_channel *lp)
{
struct ldc_packet *p;
unsigned long new_tail;
p = handshake_compose_ctrl(lp, LDC_INFO, LDC_RDX, NULL, 0,
&new_tail);
if (p) {
p->env = 0;
p->seqid = ++lp->snd_nxt;
p->u.r.ackid = lp->rcv_nxt;
ldcdbg(HS, "SEND RDX env[0x%x] seqid[0x%x] ackid[0x%x]\n",
p->env, p->seqid, p->u.r.ackid);
return send_tx_packet(lp, p, new_tail);
}
return -EBUSY;
}
static int send_data_nack(struct ldc_channel *lp, struct ldc_packet *data_pkt)
{
struct ldc_packet *p;
unsigned long new_tail;
int err;
p = data_get_tx_packet(lp, &new_tail);
if (!p)
return -EBUSY;
memset(p, 0, sizeof(*p));
p->type = data_pkt->type;
p->stype = LDC_NACK;
p->ctrl = data_pkt->ctrl & LDC_CTRL_MSK;
p->seqid = lp->snd_nxt + 1;
p->u.r.ackid = lp->rcv_nxt;
ldcdbg(HS, "SEND DATA NACK type[0x%x] ctl[0x%x] seq[0x%x] ack[0x%x]\n",
p->type, p->ctrl, p->seqid, p->u.r.ackid);
err = send_tx_packet(lp, p, new_tail);
if (!err)
lp->snd_nxt++;
return err;
}
static int ldc_abort(struct ldc_channel *lp, const char *msg)
{
unsigned long hv_err;
ldcdbg(STATE, "ABORT[%s]\n", msg);
ldc_print(lp);
/* We report but do not act upon the hypervisor errors because
* there really isn't much we can do if they fail at this point.
*/
hv_err = sun4v_ldc_tx_qconf(lp->id, lp->tx_ra, lp->tx_num_entries);
if (hv_err)
printk(KERN_ERR PFX "ldc_abort: "
"sun4v_ldc_tx_qconf(%lx,%lx,%lx) failed, err=%lu\n",
lp->id, lp->tx_ra, lp->tx_num_entries, hv_err);
hv_err = sun4v_ldc_tx_get_state(lp->id,
&lp->tx_head,
&lp->tx_tail,
&lp->chan_state);
if (hv_err)
printk(KERN_ERR PFX "ldc_abort: "
"sun4v_ldc_tx_get_state(%lx,...) failed, err=%lu\n",
lp->id, hv_err);
hv_err = sun4v_ldc_rx_qconf(lp->id, lp->rx_ra, lp->rx_num_entries);
if (hv_err)
printk(KERN_ERR PFX "ldc_abort: "
"sun4v_ldc_rx_qconf(%lx,%lx,%lx) failed, err=%lu\n",
lp->id, lp->rx_ra, lp->rx_num_entries, hv_err);
/* Refetch the RX queue state as well, because we could be invoked
* here in the queue processing context.
*/
hv_err = sun4v_ldc_rx_get_state(lp->id,
&lp->rx_head,
&lp->rx_tail,
&lp->chan_state);
if (hv_err)
printk(KERN_ERR PFX "ldc_abort: "
"sun4v_ldc_rx_get_state(%lx,...) failed, err=%lu\n",
lp->id, hv_err);
return -ECONNRESET;
}
static struct ldc_version *find_by_major(u16 major)
{
struct ldc_version *ret = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(ver_arr); i++) {
struct ldc_version *v = &ver_arr[i];
if (v->major <= major) {
ret = v;
break;
}
}
return ret;
}
static int process_ver_info(struct ldc_channel *lp, struct ldc_version *vp)
{
struct ldc_version *vap;
int err;
ldcdbg(HS, "GOT VERSION INFO major[%x] minor[%x]\n",
vp->major, vp->minor);
if (lp->hs_state == LDC_HS_GOTVERS) {
lp->hs_state = LDC_HS_OPEN;
memset(&lp->ver, 0, sizeof(lp->ver));
}
vap = find_by_major(vp->major);
if (!vap) {
err = send_version_nack(lp, 0, 0);
} else if (vap->major != vp->major) {
err = send_version_nack(lp, vap->major, vap->minor);
} else {
struct ldc_version ver = *vp;
if (ver.minor > vap->minor)
ver.minor = vap->minor;
err = send_version_ack(lp, &ver);
if (!err) {
lp->ver = ver;
lp->hs_state = LDC_HS_GOTVERS;
}
}
if (err)
return LDC_ABORT(lp);
return 0;
}
static int process_ver_ack(struct ldc_channel *lp, struct ldc_version *vp)
{
ldcdbg(HS, "GOT VERSION ACK major[%x] minor[%x]\n",
vp->major, vp->minor);
if (lp->hs_state == LDC_HS_GOTVERS) {
if (lp->ver.major != vp->major ||
lp->ver.minor != vp->minor)
return LDC_ABORT(lp);
} else {
lp->ver = *vp;
lp->hs_state = LDC_HS_GOTVERS;
}
if (send_rts(lp))
return LDC_ABORT(lp);
return 0;
}
static int process_ver_nack(struct ldc_channel *lp, struct ldc_version *vp)
{
struct ldc_version *vap;
struct ldc_packet *p;
unsigned long new_tail;
if (vp->major == 0 && vp->minor == 0)
return LDC_ABORT(lp);
vap = find_by_major(vp->major);
if (!vap)
return LDC_ABORT(lp);
p = handshake_compose_ctrl(lp, LDC_INFO, LDC_VERS,
vap, sizeof(*vap),
&new_tail);
if (!p)
return LDC_ABORT(lp);
return send_tx_packet(lp, p, new_tail);
}
static int process_version(struct ldc_channel *lp,
struct ldc_packet *p)
{
struct ldc_version *vp;
vp = (struct ldc_version *) p->u.u_data;
switch (p->stype) {
case LDC_INFO:
return process_ver_info(lp, vp);
case LDC_ACK:
return process_ver_ack(lp, vp);
case LDC_NACK:
return process_ver_nack(lp, vp);
default:
return LDC_ABORT(lp);
}
}
static int process_rts(struct ldc_channel *lp,
struct ldc_packet *p)
{
ldcdbg(HS, "GOT RTS stype[%x] seqid[%x] env[%x]\n",
p->stype, p->seqid, p->env);
if (p->stype != LDC_INFO ||
lp->hs_state != LDC_HS_GOTVERS ||
p->env != lp->cfg.mode)
return LDC_ABORT(lp);
lp->snd_nxt = p->seqid;
lp->rcv_nxt = p->seqid;
lp->hs_state = LDC_HS_SENTRTR;
if (send_rtr(lp))
return LDC_ABORT(lp);
return 0;
}
static int process_rtr(struct ldc_channel *lp,
struct ldc_packet *p)
{
ldcdbg(HS, "GOT RTR stype[%x] seqid[%x] env[%x]\n",
p->stype, p->seqid, p->env);
if (p->stype != LDC_INFO ||
p->env != lp->cfg.mode)
return LDC_ABORT(lp);
lp->snd_nxt = p->seqid;
lp->hs_state = LDC_HS_COMPLETE;
ldc_set_state(lp, LDC_STATE_CONNECTED);
send_rdx(lp);
return LDC_EVENT_UP;
}
static int rx_seq_ok(struct ldc_channel *lp, u32 seqid)
{
return lp->rcv_nxt + 1 == seqid;
}
static int process_rdx(struct ldc_channel *lp,
struct ldc_packet *p)
{
ldcdbg(HS, "GOT RDX stype[%x] seqid[%x] env[%x] ackid[%x]\n",
p->stype, p->seqid, p->env, p->u.r.ackid);
if (p->stype != LDC_INFO ||
!(rx_seq_ok(lp, p->seqid)))
return LDC_ABORT(lp);
lp->rcv_nxt = p->seqid;
lp->hs_state = LDC_HS_COMPLETE;
ldc_set_state(lp, LDC_STATE_CONNECTED);
return LDC_EVENT_UP;
}
static int process_control_frame(struct ldc_channel *lp,
struct ldc_packet *p)
{
switch (p->ctrl) {
case LDC_VERS:
return process_version(lp, p);
case LDC_RTS:
return process_rts(lp, p);
case LDC_RTR:
return process_rtr(lp, p);
case LDC_RDX:
return process_rdx(lp, p);
default:
return LDC_ABORT(lp);
}
}
static int process_error_frame(struct ldc_channel *lp,
struct ldc_packet *p)
{
return LDC_ABORT(lp);
}
static int process_data_ack(struct ldc_channel *lp,
struct ldc_packet *ack)
{
unsigned long head = lp->tx_acked;
u32 ackid = ack->u.r.ackid;
while (1) {
struct ldc_packet *p = lp->tx_base + (head / LDC_PACKET_SIZE);
head = tx_advance(lp, head);
if (p->seqid == ackid) {
lp->tx_acked = head;
return 0;
}
if (head == lp->tx_tail)
return LDC_ABORT(lp);
}
return 0;
}
static void send_events(struct ldc_channel *lp, unsigned int event_mask)
{
if (event_mask & LDC_EVENT_RESET)
lp->cfg.event(lp->event_arg, LDC_EVENT_RESET);
if (event_mask & LDC_EVENT_UP)
lp->cfg.event(lp->event_arg, LDC_EVENT_UP);
if (event_mask & LDC_EVENT_DATA_READY)
lp->cfg.event(lp->event_arg, LDC_EVENT_DATA_READY);
}
static irqreturn_t ldc_rx(int irq, void *dev_id)
{
struct ldc_channel *lp = dev_id;
unsigned long orig_state, flags;
unsigned int event_mask;
spin_lock_irqsave(&lp->lock, flags);
orig_state = lp->chan_state;
/* We should probably check for hypervisor errors here and
* reset the LDC channel if we get one.
*/
sun4v_ldc_rx_get_state(lp->id,
&lp->rx_head,
&lp->rx_tail,
&lp->chan_state);
ldcdbg(RX, "RX state[0x%02lx:0x%02lx] head[0x%04lx] tail[0x%04lx]\n",
orig_state, lp->chan_state, lp->rx_head, lp->rx_tail);
event_mask = 0;
if (lp->cfg.mode == LDC_MODE_RAW &&
lp->chan_state == LDC_CHANNEL_UP) {
lp->hs_state = LDC_HS_COMPLETE;
ldc_set_state(lp, LDC_STATE_CONNECTED);
/*
* Generate an LDC_EVENT_UP event if the channel
* was not already up.
*/
if (orig_state != LDC_CHANNEL_UP) {
event_mask |= LDC_EVENT_UP;
orig_state = lp->chan_state;
}
}
/* If we are in reset state, flush the RX queue and ignore
* everything.
*/
if (lp->flags & LDC_FLAG_RESET) {
(void) ldc_rx_reset(lp);
goto out;
}
/* Once we finish the handshake, we let the ldc_read()
* paths do all of the control frame and state management.
* Just trigger the callback.
*/
if (lp->hs_state == LDC_HS_COMPLETE) {
handshake_complete:
if (lp->chan_state != orig_state) {
unsigned int event = LDC_EVENT_RESET;
if (lp->chan_state == LDC_CHANNEL_UP)
event = LDC_EVENT_UP;
event_mask |= event;
}
if (lp->rx_head != lp->rx_tail)
event_mask |= LDC_EVENT_DATA_READY;
goto out;
}
if (lp->chan_state != orig_state)
goto out;
while (lp->rx_head != lp->rx_tail) {
struct ldc_packet *p;
unsigned long new;
int err;
p = lp->rx_base + (lp->rx_head / LDC_PACKET_SIZE);
switch (p->type) {
case LDC_CTRL:
err = process_control_frame(lp, p);
if (err > 0)
event_mask |= err;
break;
case LDC_DATA:
event_mask |= LDC_EVENT_DATA_READY;
err = 0;
break;
case LDC_ERR:
err = process_error_frame(lp, p);
break;
default:
err = LDC_ABORT(lp);
break;
}
if (err < 0)
break;
new = lp->rx_head;
new += LDC_PACKET_SIZE;
if (new == (lp->rx_num_entries * LDC_PACKET_SIZE))
new = 0;
lp->rx_head = new;
err = __set_rx_head(lp, new);
if (err < 0) {
(void) LDC_ABORT(lp);
break;
}
if (lp->hs_state == LDC_HS_COMPLETE)
goto handshake_complete;
}
out:
spin_unlock_irqrestore(&lp->lock, flags);
send_events(lp, event_mask);
return IRQ_HANDLED;
}
static irqreturn_t ldc_tx(int irq, void *dev_id)
{
struct ldc_channel *lp = dev_id;
unsigned long flags, orig_state;
unsigned int event_mask = 0;
spin_lock_irqsave(&lp->lock, flags);
orig_state = lp->chan_state;
/* We should probably check for hypervisor errors here and
* reset the LDC channel if we get one.
*/
sun4v_ldc_tx_get_state(lp->id,
&lp->tx_head,
&lp->tx_tail,
&lp->chan_state);
ldcdbg(TX, " TX state[0x%02lx:0x%02lx] head[0x%04lx] tail[0x%04lx]\n",
orig_state, lp->chan_state, lp->tx_head, lp->tx_tail);
if (lp->cfg.mode == LDC_MODE_RAW &&
lp->chan_state == LDC_CHANNEL_UP) {
lp->hs_state = LDC_HS_COMPLETE;
ldc_set_state(lp, LDC_STATE_CONNECTED);
/*
* Generate an LDC_EVENT_UP event if the channel
* was not already up.
*/
if (orig_state != LDC_CHANNEL_UP) {
event_mask |= LDC_EVENT_UP;
orig_state = lp->chan_state;
}
}
spin_unlock_irqrestore(&lp->lock, flags);
send_events(lp, event_mask);
return IRQ_HANDLED;
}
/* XXX ldc_alloc() and ldc_free() needs to run under a mutex so
* XXX that addition and removal from the ldc_channel_list has
* XXX atomicity, otherwise the __ldc_channel_exists() check is
* XXX totally pointless as another thread can slip into ldc_alloc()
* XXX and add a channel with the same ID. There also needs to be
* XXX a spinlock for ldc_channel_list.
*/
static HLIST_HEAD(ldc_channel_list);
static int __ldc_channel_exists(unsigned long id)
{
struct ldc_channel *lp;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 01:06:00 +00:00
hlist_for_each_entry(lp, &ldc_channel_list, list) {
if (lp->id == id)
return 1;
}
return 0;
}
static int alloc_queue(const char *name, unsigned long num_entries,
struct ldc_packet **base, unsigned long *ra)
{
unsigned long size, order;
void *q;
size = num_entries * LDC_PACKET_SIZE;
order = get_order(size);
q = (void *) __get_free_pages(GFP_KERNEL, order);
if (!q) {
printk(KERN_ERR PFX "Alloc of %s queue failed with "
"size=%lu order=%lu\n", name, size, order);
return -ENOMEM;
}
memset(q, 0, PAGE_SIZE << order);
*base = q;
*ra = __pa(q);
return 0;
}
static void free_queue(unsigned long num_entries, struct ldc_packet *q)
{
unsigned long size, order;
if (!q)
return;
size = num_entries * LDC_PACKET_SIZE;
order = get_order(size);
free_pages((unsigned long)q, order);
}
static unsigned long ldc_cookie_to_index(u64 cookie, void *arg)
{
u64 szcode = cookie >> COOKIE_PGSZ_CODE_SHIFT;
/* struct ldc_iommu *ldc_iommu = (struct ldc_iommu *)arg; */
cookie &= ~COOKIE_PGSZ_CODE;
return (cookie >> (13ULL + (szcode * 3ULL)));
}
static void ldc_demap(struct ldc_iommu *iommu, unsigned long id, u64 cookie,
unsigned long entry, unsigned long npages)
{
struct ldc_mtable_entry *base;
unsigned long i, shift;
shift = (cookie >> COOKIE_PGSZ_CODE_SHIFT) * 3;
base = iommu->page_table + entry;
for (i = 0; i < npages; i++) {
if (base->cookie)
sun4v_ldc_revoke(id, cookie + (i << shift),
base->cookie);
base->mte = 0;
}
}
/* XXX Make this configurable... XXX */
#define LDC_IOTABLE_SIZE (8 * 1024)
static int ldc_iommu_init(const char *name, struct ldc_channel *lp)
{
unsigned long sz, num_tsb_entries, tsbsize, order;
struct ldc_iommu *ldc_iommu = &lp->iommu;
struct iommu_map_table *iommu = &ldc_iommu->iommu_map_table;
struct ldc_mtable_entry *table;
unsigned long hv_err;
int err;
num_tsb_entries = LDC_IOTABLE_SIZE;
tsbsize = num_tsb_entries * sizeof(struct ldc_mtable_entry);
spin_lock_init(&ldc_iommu->lock);
sz = num_tsb_entries / 8;
sz = (sz + 7UL) & ~7UL;
iommu->map = kzalloc(sz, GFP_KERNEL);
if (!iommu->map) {
printk(KERN_ERR PFX "Alloc of arena map failed, sz=%lu\n", sz);
return -ENOMEM;
}
iommu_tbl_pool_init(iommu, num_tsb_entries, PAGE_SHIFT,
NULL, false /* no large pool */,
1 /* npools */,
true /* skip span boundary check */);
order = get_order(tsbsize);
table = (struct ldc_mtable_entry *)
__get_free_pages(GFP_KERNEL, order);
err = -ENOMEM;
if (!table) {
printk(KERN_ERR PFX "Alloc of MTE table failed, "
"size=%lu order=%lu\n", tsbsize, order);
goto out_free_map;
}
memset(table, 0, PAGE_SIZE << order);
ldc_iommu->page_table = table;
hv_err = sun4v_ldc_set_map_table(lp->id, __pa(table),
num_tsb_entries);
err = -EINVAL;
if (hv_err)
goto out_free_table;
return 0;
out_free_table:
free_pages((unsigned long) table, order);
ldc_iommu->page_table = NULL;
out_free_map:
kfree(iommu->map);
iommu->map = NULL;
return err;
}
static void ldc_iommu_release(struct ldc_channel *lp)
{
struct ldc_iommu *ldc_iommu = &lp->iommu;
struct iommu_map_table *iommu = &ldc_iommu->iommu_map_table;
unsigned long num_tsb_entries, tsbsize, order;
(void) sun4v_ldc_set_map_table(lp->id, 0, 0);
num_tsb_entries = iommu->poolsize * iommu->nr_pools;
tsbsize = num_tsb_entries * sizeof(struct ldc_mtable_entry);
order = get_order(tsbsize);
free_pages((unsigned long) ldc_iommu->page_table, order);
ldc_iommu->page_table = NULL;
kfree(iommu->map);
iommu->map = NULL;
}
struct ldc_channel *ldc_alloc(unsigned long id,
const struct ldc_channel_config *cfgp,
void *event_arg,
const char *name)
{
struct ldc_channel *lp;
const struct ldc_mode_ops *mops;
unsigned long dummy1, dummy2, hv_err;
u8 mss, *mssbuf;
int err;
err = -ENODEV;
if (!ldom_domaining_enabled)
goto out_err;
err = -EINVAL;
if (!cfgp)
goto out_err;
if (!name)
goto out_err;
switch (cfgp->mode) {
case LDC_MODE_RAW:
mops = &raw_ops;
mss = LDC_PACKET_SIZE;
break;
case LDC_MODE_UNRELIABLE:
mops = &nonraw_ops;
mss = LDC_PACKET_SIZE - 8;
break;
case LDC_MODE_STREAM:
mops = &stream_ops;
mss = LDC_PACKET_SIZE - 8 - 8;
break;
default:
goto out_err;
}
if (!cfgp->event || !event_arg || !cfgp->rx_irq || !cfgp->tx_irq)
goto out_err;
hv_err = sun4v_ldc_tx_qinfo(id, &dummy1, &dummy2);
err = -ENODEV;
if (hv_err == HV_ECHANNEL)
goto out_err;
err = -EEXIST;
if (__ldc_channel_exists(id))
goto out_err;
mssbuf = NULL;
lp = kzalloc(sizeof(*lp), GFP_KERNEL);
err = -ENOMEM;
if (!lp)
goto out_err;
spin_lock_init(&lp->lock);
lp->id = id;
err = ldc_iommu_init(name, lp);
if (err)
goto out_free_ldc;
lp->mops = mops;
lp->mss = mss;
lp->cfg = *cfgp;
if (!lp->cfg.mtu)
lp->cfg.mtu = LDC_DEFAULT_MTU;
if (lp->cfg.mode == LDC_MODE_STREAM) {
mssbuf = kzalloc(lp->cfg.mtu, GFP_KERNEL);
if (!mssbuf) {
err = -ENOMEM;
goto out_free_iommu;
}
lp->mssbuf = mssbuf;
}
lp->event_arg = event_arg;
/* XXX allow setting via ldc_channel_config to override defaults
* XXX or use some formula based upon mtu
*/
lp->tx_num_entries = LDC_DEFAULT_NUM_ENTRIES;
lp->rx_num_entries = LDC_DEFAULT_NUM_ENTRIES;
err = alloc_queue("TX", lp->tx_num_entries,
&lp->tx_base, &lp->tx_ra);
if (err)
goto out_free_mssbuf;
err = alloc_queue("RX", lp->rx_num_entries,
&lp->rx_base, &lp->rx_ra);
if (err)
goto out_free_txq;
lp->flags |= LDC_FLAG_ALLOCED_QUEUES;
lp->hs_state = LDC_HS_CLOSED;
ldc_set_state(lp, LDC_STATE_INIT);
INIT_HLIST_NODE(&lp->list);
hlist_add_head(&lp->list, &ldc_channel_list);
INIT_HLIST_HEAD(&lp->mh_list);
snprintf(lp->rx_irq_name, LDC_IRQ_NAME_MAX, "%s RX", name);
snprintf(lp->tx_irq_name, LDC_IRQ_NAME_MAX, "%s TX", name);
err = request_irq(lp->cfg.rx_irq, ldc_rx, 0,
lp->rx_irq_name, lp);
if (err)
goto out_free_txq;
err = request_irq(lp->cfg.tx_irq, ldc_tx, 0,
lp->tx_irq_name, lp);
if (err) {
free_irq(lp->cfg.rx_irq, lp);
goto out_free_txq;
}
return lp;
out_free_txq:
free_queue(lp->tx_num_entries, lp->tx_base);
out_free_mssbuf:
kfree(mssbuf);
out_free_iommu:
ldc_iommu_release(lp);
out_free_ldc:
kfree(lp);
out_err:
return ERR_PTR(err);
}
EXPORT_SYMBOL(ldc_alloc);
void ldc_unbind(struct ldc_channel *lp)
{
if (lp->flags & LDC_FLAG_REGISTERED_IRQS) {
free_irq(lp->cfg.rx_irq, lp);
free_irq(lp->cfg.tx_irq, lp);
lp->flags &= ~LDC_FLAG_REGISTERED_IRQS;
}
if (lp->flags & LDC_FLAG_REGISTERED_QUEUES) {
sun4v_ldc_tx_qconf(lp->id, 0, 0);
sun4v_ldc_rx_qconf(lp->id, 0, 0);
lp->flags &= ~LDC_FLAG_REGISTERED_QUEUES;
}
if (lp->flags & LDC_FLAG_ALLOCED_QUEUES) {
free_queue(lp->tx_num_entries, lp->tx_base);
free_queue(lp->rx_num_entries, lp->rx_base);
lp->flags &= ~LDC_FLAG_ALLOCED_QUEUES;
}
ldc_set_state(lp, LDC_STATE_INIT);
}
EXPORT_SYMBOL(ldc_unbind);
void ldc_free(struct ldc_channel *lp)
{
ldc_unbind(lp);
hlist_del(&lp->list);
kfree(lp->mssbuf);
ldc_iommu_release(lp);
kfree(lp);
}
EXPORT_SYMBOL(ldc_free);
/* Bind the channel. This registers the LDC queues with
* the hypervisor and puts the channel into a pseudo-listening
* state. This does not initiate a handshake, ldc_connect() does
* that.
*/
int ldc_bind(struct ldc_channel *lp)
{
unsigned long hv_err, flags;
int err = -EINVAL;
if (lp->state != LDC_STATE_INIT)
return -EINVAL;
spin_lock_irqsave(&lp->lock, flags);
enable_irq(lp->cfg.rx_irq);
enable_irq(lp->cfg.tx_irq);
lp->flags |= LDC_FLAG_REGISTERED_IRQS;
err = -ENODEV;
hv_err = sun4v_ldc_tx_qconf(lp->id, 0, 0);
if (hv_err)
goto out_free_irqs;
hv_err = sun4v_ldc_tx_qconf(lp->id, lp->tx_ra, lp->tx_num_entries);
if (hv_err)
goto out_free_irqs;
hv_err = sun4v_ldc_rx_qconf(lp->id, 0, 0);
if (hv_err)
goto out_unmap_tx;
hv_err = sun4v_ldc_rx_qconf(lp->id, lp->rx_ra, lp->rx_num_entries);
if (hv_err)
goto out_unmap_tx;
lp->flags |= LDC_FLAG_REGISTERED_QUEUES;
hv_err = sun4v_ldc_tx_get_state(lp->id,
&lp->tx_head,
&lp->tx_tail,
&lp->chan_state);
err = -EBUSY;
if (hv_err)
goto out_unmap_rx;
lp->tx_acked = lp->tx_head;
lp->hs_state = LDC_HS_OPEN;
ldc_set_state(lp, LDC_STATE_BOUND);
if (lp->cfg.mode == LDC_MODE_RAW) {
/*
* There is no handshake in RAW mode, so handshake
* is completed.
*/
lp->hs_state = LDC_HS_COMPLETE;
}
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
out_unmap_rx:
lp->flags &= ~LDC_FLAG_REGISTERED_QUEUES;
sun4v_ldc_rx_qconf(lp->id, 0, 0);
out_unmap_tx:
sun4v_ldc_tx_qconf(lp->id, 0, 0);
out_free_irqs:
lp->flags &= ~LDC_FLAG_REGISTERED_IRQS;
free_irq(lp->cfg.tx_irq, lp);
free_irq(lp->cfg.rx_irq, lp);
spin_unlock_irqrestore(&lp->lock, flags);
return err;
}
EXPORT_SYMBOL(ldc_bind);
int ldc_connect(struct ldc_channel *lp)
{
unsigned long flags;
int err;
if (lp->cfg.mode == LDC_MODE_RAW)
return -EINVAL;
spin_lock_irqsave(&lp->lock, flags);
if (!(lp->flags & LDC_FLAG_ALLOCED_QUEUES) ||
!(lp->flags & LDC_FLAG_REGISTERED_QUEUES) ||
lp->hs_state != LDC_HS_OPEN)
err = ((lp->hs_state > LDC_HS_OPEN) ? 0 : -EINVAL);
else
err = start_handshake(lp);
spin_unlock_irqrestore(&lp->lock, flags);
return err;
}
EXPORT_SYMBOL(ldc_connect);
int ldc_disconnect(struct ldc_channel *lp)
{
unsigned long hv_err, flags;
int err;
if (lp->cfg.mode == LDC_MODE_RAW)
return -EINVAL;
if (!(lp->flags & LDC_FLAG_ALLOCED_QUEUES) ||
!(lp->flags & LDC_FLAG_REGISTERED_QUEUES))
return -EINVAL;
spin_lock_irqsave(&lp->lock, flags);
err = -ENODEV;
hv_err = sun4v_ldc_tx_qconf(lp->id, 0, 0);
if (hv_err)
goto out_err;
hv_err = sun4v_ldc_tx_qconf(lp->id, lp->tx_ra, lp->tx_num_entries);
if (hv_err)
goto out_err;
hv_err = sun4v_ldc_rx_qconf(lp->id, 0, 0);
if (hv_err)
goto out_err;
hv_err = sun4v_ldc_rx_qconf(lp->id, lp->rx_ra, lp->rx_num_entries);
if (hv_err)
goto out_err;
ldc_set_state(lp, LDC_STATE_BOUND);
lp->hs_state = LDC_HS_OPEN;
lp->flags |= LDC_FLAG_RESET;
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
out_err:
sun4v_ldc_tx_qconf(lp->id, 0, 0);
sun4v_ldc_rx_qconf(lp->id, 0, 0);
free_irq(lp->cfg.tx_irq, lp);
free_irq(lp->cfg.rx_irq, lp);
lp->flags &= ~(LDC_FLAG_REGISTERED_IRQS |
LDC_FLAG_REGISTERED_QUEUES);
ldc_set_state(lp, LDC_STATE_INIT);
spin_unlock_irqrestore(&lp->lock, flags);
return err;
}
EXPORT_SYMBOL(ldc_disconnect);
int ldc_state(struct ldc_channel *lp)
{
return lp->state;
}
EXPORT_SYMBOL(ldc_state);
void ldc_set_state(struct ldc_channel *lp, u8 state)
{
ldcdbg(STATE, "STATE (%s) --> (%s)\n",
state_to_str(lp->state),
state_to_str(state));
lp->state = state;
}
EXPORT_SYMBOL(ldc_set_state);
int ldc_mode(struct ldc_channel *lp)
{
return lp->cfg.mode;
}
EXPORT_SYMBOL(ldc_mode);
int ldc_rx_reset(struct ldc_channel *lp)
{
return __set_rx_head(lp, lp->rx_tail);
}
EXPORT_SYMBOL(ldc_rx_reset);
void __ldc_print(struct ldc_channel *lp, const char *caller)
{
pr_info("%s: id=0x%lx flags=0x%x state=%s cstate=0x%lx hsstate=0x%x\n"
"\trx_h=0x%lx rx_t=0x%lx rx_n=%ld\n"
"\ttx_h=0x%lx tx_t=0x%lx tx_n=%ld\n"
"\trcv_nxt=%u snd_nxt=%u\n",
caller, lp->id, lp->flags, state_to_str(lp->state),
lp->chan_state, lp->hs_state,
lp->rx_head, lp->rx_tail, lp->rx_num_entries,
lp->tx_head, lp->tx_tail, lp->tx_num_entries,
lp->rcv_nxt, lp->snd_nxt);
}
EXPORT_SYMBOL(__ldc_print);
static int write_raw(struct ldc_channel *lp, const void *buf, unsigned int size)
{
struct ldc_packet *p;
unsigned long new_tail, hv_err;
int err;
hv_err = sun4v_ldc_tx_get_state(lp->id, &lp->tx_head, &lp->tx_tail,
&lp->chan_state);
if (unlikely(hv_err))
return -EBUSY;
if (unlikely(lp->chan_state != LDC_CHANNEL_UP))
return LDC_ABORT(lp);
if (size > LDC_PACKET_SIZE)
return -EMSGSIZE;
p = data_get_tx_packet(lp, &new_tail);
if (!p)
return -EAGAIN;
memcpy(p, buf, size);
err = send_tx_packet(lp, p, new_tail);
if (!err)
err = size;
return err;
}
static int read_raw(struct ldc_channel *lp, void *buf, unsigned int size)
{
struct ldc_packet *p;
unsigned long hv_err, new;
int err;
if (size < LDC_PACKET_SIZE)
return -EINVAL;
hv_err = sun4v_ldc_rx_get_state(lp->id,
&lp->rx_head,
&lp->rx_tail,
&lp->chan_state);
if (hv_err)
return LDC_ABORT(lp);
if (lp->chan_state == LDC_CHANNEL_DOWN ||
lp->chan_state == LDC_CHANNEL_RESETTING)
return -ECONNRESET;
if (lp->rx_head == lp->rx_tail)
return 0;
p = lp->rx_base + (lp->rx_head / LDC_PACKET_SIZE);
memcpy(buf, p, LDC_PACKET_SIZE);
new = rx_advance(lp, lp->rx_head);
lp->rx_head = new;
err = __set_rx_head(lp, new);
if (err < 0)
err = -ECONNRESET;
else
err = LDC_PACKET_SIZE;
return err;
}
static const struct ldc_mode_ops raw_ops = {
.write = write_raw,
.read = read_raw,
};
static int write_nonraw(struct ldc_channel *lp, const void *buf,
unsigned int size)
{
unsigned long hv_err, tail;
unsigned int copied;
u32 seq;
int err;
hv_err = sun4v_ldc_tx_get_state(lp->id, &lp->tx_head, &lp->tx_tail,
&lp->chan_state);
if (unlikely(hv_err))
return -EBUSY;
if (unlikely(lp->chan_state != LDC_CHANNEL_UP))
return LDC_ABORT(lp);
if (!tx_has_space_for(lp, size))
return -EAGAIN;
seq = lp->snd_nxt;
copied = 0;
tail = lp->tx_tail;
while (copied < size) {
struct ldc_packet *p = lp->tx_base + (tail / LDC_PACKET_SIZE);
u8 *data = ((lp->cfg.mode == LDC_MODE_UNRELIABLE) ?
p->u.u_data :
p->u.r.r_data);
int data_len;
p->type = LDC_DATA;
p->stype = LDC_INFO;
p->ctrl = 0;
data_len = size - copied;
if (data_len > lp->mss)
data_len = lp->mss;
BUG_ON(data_len > LDC_LEN);
p->env = (data_len |
(copied == 0 ? LDC_START : 0) |
(data_len == size - copied ? LDC_STOP : 0));
p->seqid = ++seq;
ldcdbg(DATA, "SENT DATA [%02x:%02x:%02x:%02x:%08x]\n",
p->type,
p->stype,
p->ctrl,
p->env,
p->seqid);
memcpy(data, buf, data_len);
buf += data_len;
copied += data_len;
tail = tx_advance(lp, tail);
}
err = set_tx_tail(lp, tail);
if (!err) {
lp->snd_nxt = seq;
err = size;
}
return err;
}
static int rx_bad_seq(struct ldc_channel *lp, struct ldc_packet *p,
struct ldc_packet *first_frag)
{
int err;
if (first_frag)
lp->rcv_nxt = first_frag->seqid - 1;
err = send_data_nack(lp, p);
if (err)
return err;
err = ldc_rx_reset(lp);
if (err < 0)
return LDC_ABORT(lp);
return 0;
}
static int data_ack_nack(struct ldc_channel *lp, struct ldc_packet *p)
{
if (p->stype & LDC_ACK) {
int err = process_data_ack(lp, p);
if (err)
return err;
}
if (p->stype & LDC_NACK)
return LDC_ABORT(lp);
return 0;
}
static int rx_data_wait(struct ldc_channel *lp, unsigned long cur_head)
{
unsigned long dummy;
int limit = 1000;
ldcdbg(DATA, "DATA WAIT cur_head[%lx] rx_head[%lx] rx_tail[%lx]\n",
cur_head, lp->rx_head, lp->rx_tail);
while (limit-- > 0) {
unsigned long hv_err;
hv_err = sun4v_ldc_rx_get_state(lp->id,
&dummy,
&lp->rx_tail,
&lp->chan_state);
if (hv_err)
return LDC_ABORT(lp);
if (lp->chan_state == LDC_CHANNEL_DOWN ||
lp->chan_state == LDC_CHANNEL_RESETTING)
return -ECONNRESET;
if (cur_head != lp->rx_tail) {
ldcdbg(DATA, "DATA WAIT DONE "
"head[%lx] tail[%lx] chan_state[%lx]\n",
dummy, lp->rx_tail, lp->chan_state);
return 0;
}
udelay(1);
}
return -EAGAIN;
}
static int rx_set_head(struct ldc_channel *lp, unsigned long head)
{
int err = __set_rx_head(lp, head);
if (err < 0)
return LDC_ABORT(lp);
lp->rx_head = head;
return 0;
}
static void send_data_ack(struct ldc_channel *lp)
{
unsigned long new_tail;
struct ldc_packet *p;
p = data_get_tx_packet(lp, &new_tail);
if (likely(p)) {
int err;
memset(p, 0, sizeof(*p));
p->type = LDC_DATA;
p->stype = LDC_ACK;
p->ctrl = 0;
p->seqid = lp->snd_nxt + 1;
p->u.r.ackid = lp->rcv_nxt;
err = send_tx_packet(lp, p, new_tail);
if (!err)
lp->snd_nxt++;
}
}
static int read_nonraw(struct ldc_channel *lp, void *buf, unsigned int size)
{
struct ldc_packet *first_frag;
unsigned long hv_err, new;
int err, copied;
hv_err = sun4v_ldc_rx_get_state(lp->id,
&lp->rx_head,
&lp->rx_tail,
&lp->chan_state);
if (hv_err)
return LDC_ABORT(lp);
if (lp->chan_state == LDC_CHANNEL_DOWN ||
lp->chan_state == LDC_CHANNEL_RESETTING)
return -ECONNRESET;
if (lp->rx_head == lp->rx_tail)
return 0;
first_frag = NULL;
copied = err = 0;
new = lp->rx_head;
while (1) {
struct ldc_packet *p;
int pkt_len;
BUG_ON(new == lp->rx_tail);
p = lp->rx_base + (new / LDC_PACKET_SIZE);
ldcdbg(RX, "RX read pkt[%02x:%02x:%02x:%02x:%08x:%08x] "
"rcv_nxt[%08x]\n",
p->type,
p->stype,
p->ctrl,
p->env,
p->seqid,
p->u.r.ackid,
lp->rcv_nxt);
if (unlikely(!rx_seq_ok(lp, p->seqid))) {
err = rx_bad_seq(lp, p, first_frag);
copied = 0;
break;
}
if (p->type & LDC_CTRL) {
err = process_control_frame(lp, p);
if (err < 0)
break;
err = 0;
}
lp->rcv_nxt = p->seqid;
/*
* If this is a control-only packet, there is nothing
* else to do but advance the rx queue since the packet
* was already processed above.
*/
if (!(p->type & LDC_DATA)) {
new = rx_advance(lp, new);
break;
}
if (p->stype & (LDC_ACK | LDC_NACK)) {
err = data_ack_nack(lp, p);
if (err)
break;
}
if (!(p->stype & LDC_INFO)) {
new = rx_advance(lp, new);
err = rx_set_head(lp, new);
if (err)
break;
goto no_data;
}
pkt_len = p->env & LDC_LEN;
/* Every initial packet starts with the START bit set.
*
* Singleton packets will have both START+STOP set.
*
* Fragments will have START set in the first frame, STOP
* set in the last frame, and neither bit set in middle
* frames of the packet.
*
* Therefore if we are at the beginning of a packet and
* we don't see START, or we are in the middle of a fragmented
* packet and do see START, we are unsynchronized and should
* flush the RX queue.
*/
if ((first_frag == NULL && !(p->env & LDC_START)) ||
(first_frag != NULL && (p->env & LDC_START))) {
if (!first_frag)
new = rx_advance(lp, new);
err = rx_set_head(lp, new);
if (err)
break;
if (!first_frag)
goto no_data;
}
if (!first_frag)
first_frag = p;
if (pkt_len > size - copied) {
/* User didn't give us a big enough buffer,
* what to do? This is a pretty serious error.
*
* Since we haven't updated the RX ring head to
* consume any of the packets, signal the error
* to the user and just leave the RX ring alone.
*
* This seems the best behavior because this allows
* a user of the LDC layer to start with a small
* RX buffer for ldc_read() calls and use -EMSGSIZE
* as a cue to enlarge it's read buffer.
*/
err = -EMSGSIZE;
break;
}
/* Ok, we are gonna eat this one. */
new = rx_advance(lp, new);
memcpy(buf,
(lp->cfg.mode == LDC_MODE_UNRELIABLE ?
p->u.u_data : p->u.r.r_data), pkt_len);
buf += pkt_len;
copied += pkt_len;
if (p->env & LDC_STOP)
break;
no_data:
if (new == lp->rx_tail) {
err = rx_data_wait(lp, new);
if (err)
break;
}
}
if (!err)
err = rx_set_head(lp, new);
if (err && first_frag)
lp->rcv_nxt = first_frag->seqid - 1;
if (!err) {
err = copied;
if (err > 0 && lp->cfg.mode != LDC_MODE_UNRELIABLE)
send_data_ack(lp);
}
return err;
}
static const struct ldc_mode_ops nonraw_ops = {
.write = write_nonraw,
.read = read_nonraw,
};
static int write_stream(struct ldc_channel *lp, const void *buf,
unsigned int size)
{
if (size > lp->cfg.mtu)
size = lp->cfg.mtu;
return write_nonraw(lp, buf, size);
}
static int read_stream(struct ldc_channel *lp, void *buf, unsigned int size)
{
if (!lp->mssbuf_len) {
int err = read_nonraw(lp, lp->mssbuf, lp->cfg.mtu);
if (err < 0)
return err;
lp->mssbuf_len = err;
lp->mssbuf_off = 0;
}
if (size > lp->mssbuf_len)
size = lp->mssbuf_len;
memcpy(buf, lp->mssbuf + lp->mssbuf_off, size);
lp->mssbuf_off += size;
lp->mssbuf_len -= size;
return size;
}
static const struct ldc_mode_ops stream_ops = {
.write = write_stream,
.read = read_stream,
};
int ldc_write(struct ldc_channel *lp, const void *buf, unsigned int size)
{
unsigned long flags;
int err;
if (!buf)
return -EINVAL;
if (!size)
return 0;
spin_lock_irqsave(&lp->lock, flags);
if (lp->hs_state != LDC_HS_COMPLETE)
err = -ENOTCONN;
else
err = lp->mops->write(lp, buf, size);
spin_unlock_irqrestore(&lp->lock, flags);
return err;
}
EXPORT_SYMBOL(ldc_write);
int ldc_read(struct ldc_channel *lp, void *buf, unsigned int size)
{
unsigned long flags;
int err;
ldcdbg(RX, "%s: entered size=%d\n", __func__, size);
if (!buf)
return -EINVAL;
if (!size)
return 0;
spin_lock_irqsave(&lp->lock, flags);
if (lp->hs_state != LDC_HS_COMPLETE)
err = -ENOTCONN;
else
err = lp->mops->read(lp, buf, size);
spin_unlock_irqrestore(&lp->lock, flags);
ldcdbg(RX, "%s: mode=%d, head=%lu, tail=%lu rv=%d\n", __func__,
lp->cfg.mode, lp->rx_head, lp->rx_tail, err);
return err;
}
EXPORT_SYMBOL(ldc_read);
static u64 pagesize_code(void)
{
switch (PAGE_SIZE) {
default:
case (8ULL * 1024ULL):
return 0;
case (64ULL * 1024ULL):
return 1;
case (512ULL * 1024ULL):
return 2;
case (4ULL * 1024ULL * 1024ULL):
return 3;
case (32ULL * 1024ULL * 1024ULL):
return 4;
case (256ULL * 1024ULL * 1024ULL):
return 5;
}
}
static u64 make_cookie(u64 index, u64 pgsz_code, u64 page_offset)
{
return ((pgsz_code << COOKIE_PGSZ_CODE_SHIFT) |
(index << PAGE_SHIFT) |
page_offset);
}
static struct ldc_mtable_entry *alloc_npages(struct ldc_iommu *iommu,
unsigned long npages)
{
long entry;
entry = iommu_tbl_range_alloc(NULL, &iommu->iommu_map_table,
npages, NULL, (unsigned long)-1, 0);
if (unlikely(entry == IOMMU_ERROR_CODE))
return NULL;
return iommu->page_table + entry;
}
static u64 perm_to_mte(unsigned int map_perm)
{
u64 mte_base;
mte_base = pagesize_code();
if (map_perm & LDC_MAP_SHADOW) {
if (map_perm & LDC_MAP_R)
mte_base |= LDC_MTE_COPY_R;
if (map_perm & LDC_MAP_W)
mte_base |= LDC_MTE_COPY_W;
}
if (map_perm & LDC_MAP_DIRECT) {
if (map_perm & LDC_MAP_R)
mte_base |= LDC_MTE_READ;
if (map_perm & LDC_MAP_W)
mte_base |= LDC_MTE_WRITE;
if (map_perm & LDC_MAP_X)
mte_base |= LDC_MTE_EXEC;
}
if (map_perm & LDC_MAP_IO) {
if (map_perm & LDC_MAP_R)
mte_base |= LDC_MTE_IOMMU_R;
if (map_perm & LDC_MAP_W)
mte_base |= LDC_MTE_IOMMU_W;
}
return mte_base;
}
static int pages_in_region(unsigned long base, long len)
{
int count = 0;
do {
unsigned long new = (base + PAGE_SIZE) & PAGE_MASK;
len -= (new - base);
base = new;
count++;
} while (len > 0);
return count;
}
struct cookie_state {
struct ldc_mtable_entry *page_table;
struct ldc_trans_cookie *cookies;
u64 mte_base;
u64 prev_cookie;
u32 pte_idx;
u32 nc;
};
static void fill_cookies(struct cookie_state *sp, unsigned long pa,
unsigned long off, unsigned long len)
{
do {
unsigned long tlen, new = pa + PAGE_SIZE;
u64 this_cookie;
sp->page_table[sp->pte_idx].mte = sp->mte_base | pa;
tlen = PAGE_SIZE;
if (off)
tlen = PAGE_SIZE - off;
if (tlen > len)
tlen = len;
this_cookie = make_cookie(sp->pte_idx,
pagesize_code(), off);
off = 0;
if (this_cookie == sp->prev_cookie) {
sp->cookies[sp->nc - 1].cookie_size += tlen;
} else {
sp->cookies[sp->nc].cookie_addr = this_cookie;
sp->cookies[sp->nc].cookie_size = tlen;
sp->nc++;
}
sp->prev_cookie = this_cookie + tlen;
sp->pte_idx++;
len -= tlen;
pa = new;
} while (len > 0);
}
static int sg_count_one(struct scatterlist *sg)
{
unsigned long base = page_to_pfn(sg_page(sg)) << PAGE_SHIFT;
long len = sg->length;
if ((sg->offset | len) & (8UL - 1))
return -EFAULT;
return pages_in_region(base + sg->offset, len);
}
static int sg_count_pages(struct scatterlist *sg, int num_sg)
{
int count;
int i;
count = 0;
for (i = 0; i < num_sg; i++) {
int err = sg_count_one(sg + i);
if (err < 0)
return err;
count += err;
}
return count;
}
int ldc_map_sg(struct ldc_channel *lp,
struct scatterlist *sg, int num_sg,
struct ldc_trans_cookie *cookies, int ncookies,
unsigned int map_perm)
{
unsigned long i, npages;
struct ldc_mtable_entry *base;
struct cookie_state state;
struct ldc_iommu *iommu;
int err;
struct scatterlist *s;
if (map_perm & ~LDC_MAP_ALL)
return -EINVAL;
err = sg_count_pages(sg, num_sg);
if (err < 0)
return err;
npages = err;
if (err > ncookies)
return -EMSGSIZE;
iommu = &lp->iommu;
base = alloc_npages(iommu, npages);
if (!base)
return -ENOMEM;
state.page_table = iommu->page_table;
state.cookies = cookies;
state.mte_base = perm_to_mte(map_perm);
state.prev_cookie = ~(u64)0;
state.pte_idx = (base - iommu->page_table);
state.nc = 0;
for_each_sg(sg, s, num_sg, i) {
fill_cookies(&state, page_to_pfn(sg_page(s)) << PAGE_SHIFT,
s->offset, s->length);
}
return state.nc;
}
EXPORT_SYMBOL(ldc_map_sg);
int ldc_map_single(struct ldc_channel *lp,
void *buf, unsigned int len,
struct ldc_trans_cookie *cookies, int ncookies,
unsigned int map_perm)
{
unsigned long npages, pa;
struct ldc_mtable_entry *base;
struct cookie_state state;
struct ldc_iommu *iommu;
if ((map_perm & ~LDC_MAP_ALL) || (ncookies < 1))
return -EINVAL;
pa = __pa(buf);
if ((pa | len) & (8UL - 1))
return -EFAULT;
npages = pages_in_region(pa, len);
iommu = &lp->iommu;
base = alloc_npages(iommu, npages);
if (!base)
return -ENOMEM;
state.page_table = iommu->page_table;
state.cookies = cookies;
state.mte_base = perm_to_mte(map_perm);
state.prev_cookie = ~(u64)0;
state.pte_idx = (base - iommu->page_table);
state.nc = 0;
fill_cookies(&state, (pa & PAGE_MASK), (pa & ~PAGE_MASK), len);
BUG_ON(state.nc > ncookies);
return state.nc;
}
EXPORT_SYMBOL(ldc_map_single);
static void free_npages(unsigned long id, struct ldc_iommu *iommu,
u64 cookie, u64 size)
{
unsigned long npages, entry;
npages = PAGE_ALIGN(((cookie & ~PAGE_MASK) + size)) >> PAGE_SHIFT;
entry = ldc_cookie_to_index(cookie, iommu);
ldc_demap(iommu, id, cookie, entry, npages);
iommu_tbl_range_free(&iommu->iommu_map_table, cookie, npages, entry);
}
void ldc_unmap(struct ldc_channel *lp, struct ldc_trans_cookie *cookies,
int ncookies)
{
struct ldc_iommu *iommu = &lp->iommu;
int i;
unsigned long flags;
spin_lock_irqsave(&iommu->lock, flags);
for (i = 0; i < ncookies; i++) {
u64 addr = cookies[i].cookie_addr;
u64 size = cookies[i].cookie_size;
free_npages(lp->id, iommu, addr, size);
}
spin_unlock_irqrestore(&iommu->lock, flags);
}
EXPORT_SYMBOL(ldc_unmap);
int ldc_copy(struct ldc_channel *lp, int copy_dir,
void *buf, unsigned int len, unsigned long offset,
struct ldc_trans_cookie *cookies, int ncookies)
{
unsigned int orig_len;
unsigned long ra;
int i;
if (copy_dir != LDC_COPY_IN && copy_dir != LDC_COPY_OUT) {
printk(KERN_ERR PFX "ldc_copy: ID[%lu] Bad copy_dir[%d]\n",
lp->id, copy_dir);
return -EINVAL;
}
ra = __pa(buf);
if ((ra | len | offset) & (8UL - 1)) {
printk(KERN_ERR PFX "ldc_copy: ID[%lu] Unaligned buffer "
"ra[%lx] len[%x] offset[%lx]\n",
lp->id, ra, len, offset);
return -EFAULT;
}
if (lp->hs_state != LDC_HS_COMPLETE ||
(lp->flags & LDC_FLAG_RESET)) {
printk(KERN_ERR PFX "ldc_copy: ID[%lu] Link down hs_state[%x] "
"flags[%x]\n", lp->id, lp->hs_state, lp->flags);
return -ECONNRESET;
}
orig_len = len;
for (i = 0; i < ncookies; i++) {
unsigned long cookie_raddr = cookies[i].cookie_addr;
unsigned long this_len = cookies[i].cookie_size;
unsigned long actual_len;
if (unlikely(offset)) {
unsigned long this_off = offset;
if (this_off > this_len)
this_off = this_len;
offset -= this_off;
this_len -= this_off;
if (!this_len)
continue;
cookie_raddr += this_off;
}
if (this_len > len)
this_len = len;
while (1) {
unsigned long hv_err;
hv_err = sun4v_ldc_copy(lp->id, copy_dir,
cookie_raddr, ra,
this_len, &actual_len);
if (unlikely(hv_err)) {
printk(KERN_ERR PFX "ldc_copy: ID[%lu] "
"HV error %lu\n",
lp->id, hv_err);
if (lp->hs_state != LDC_HS_COMPLETE ||
(lp->flags & LDC_FLAG_RESET))
return -ECONNRESET;
else
return -EFAULT;
}
cookie_raddr += actual_len;
ra += actual_len;
len -= actual_len;
if (actual_len == this_len)
break;
this_len -= actual_len;
}
if (!len)
break;
}
/* It is caller policy what to do about short copies.
* For example, a networking driver can declare the
* packet a runt and drop it.
*/
return orig_len - len;
}
EXPORT_SYMBOL(ldc_copy);
void *ldc_alloc_exp_dring(struct ldc_channel *lp, unsigned int len,
struct ldc_trans_cookie *cookies, int *ncookies,
unsigned int map_perm)
{
void *buf;
int err;
if (len & (8UL - 1))
return ERR_PTR(-EINVAL);
buf = kzalloc(len, GFP_ATOMIC);
if (!buf)
return ERR_PTR(-ENOMEM);
err = ldc_map_single(lp, buf, len, cookies, *ncookies, map_perm);
if (err < 0) {
kfree(buf);
return ERR_PTR(err);
}
*ncookies = err;
return buf;
}
EXPORT_SYMBOL(ldc_alloc_exp_dring);
void ldc_free_exp_dring(struct ldc_channel *lp, void *buf, unsigned int len,
struct ldc_trans_cookie *cookies, int ncookies)
{
ldc_unmap(lp, cookies, ncookies);
kfree(buf);
}
EXPORT_SYMBOL(ldc_free_exp_dring);
static int __init ldc_init(void)
{
unsigned long major, minor;
struct mdesc_handle *hp;
const u64 *v;
int err;
u64 mp;
hp = mdesc_grab();
if (!hp)
return -ENODEV;
mp = mdesc_node_by_name(hp, MDESC_NODE_NULL, "platform");
err = -ENODEV;
if (mp == MDESC_NODE_NULL)
goto out;
v = mdesc_get_property(hp, mp, "domaining-enabled", NULL);
if (!v)
goto out;
major = 1;
minor = 0;
if (sun4v_hvapi_register(HV_GRP_LDOM, major, &minor)) {
printk(KERN_INFO PFX "Could not register LDOM hvapi.\n");
goto out;
}
printk(KERN_INFO "%s", version);
if (!*v) {
printk(KERN_INFO PFX "Domaining disabled.\n");
goto out;
}
ldom_domaining_enabled = 1;
err = 0;
out:
mdesc_release(hp);
return err;
}
core_initcall(ldc_init);