linux-stable/drivers/staging/wfx/main.h

48 lines
1.3 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Device probe and register.
*
* Copyright (c) 2017-2019, Silicon Laboratories, Inc.
* Copyright (c) 2010, ST-Ericsson
* Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
* Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
*/
#ifndef WFX_MAIN_H
#define WFX_MAIN_H
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include "bus.h"
#include "hif_api_general.h"
struct wfx_dev;
struct wfx_platform_data {
/* Keyset and ".sec" extention will appended to this string */
const char *file_fw;
const char *file_pds;
staging: wfx: add IRQ handling bh_work() is in charge to schedule all HIF message from/to chip. On normal operation, when an IRQ is received, driver can get size of next message in control register. In order to save control register access, when chip send a message, it also appends a copy of control register after the message (this register is not accounted in message length declared in message header, but must accounted in bus request). This copy of control register is called "piggyback". It also handles a power saving mechanism specific to WFxxx series. This mechanism is based on a GPIO called "wakeup" GPIO. Obviously, this gpio is not part of SPI/SDIO standard buses and must be declared independently (this is the main reason for why SDIO mode try to get parameters from DT). When wakeup is enabled, host can communicate with chip only if it is awake. To wake up chip, there are two cases: - host receive an IRQ from chip (chip initiate communication): host just have to set wakeup GPIO before reading data - host want to send data to chip: host set wakeup GPIO, then wait for an IRQ (in fact, wait for an empty message) and finally send data bh_work() is also in charge to track usage of chip buffers. Normally each request expect a confirmation. However, you can notice that special "multi tx" confirmation can acknowledge multiple requests at time. Finally, note that wfx_bh_request_rx() is not atomic (because of control_reg_read()). So, in SPI mode, hard-irq handler only postpone all processing to wfx_spi_request_rx(). Signed-off-by: Jérôme Pouiller <jerome.pouiller@silabs.com> Link: https://lore.kernel.org/r/20190919142527.31797-8-Jerome.Pouiller@silabs.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 14:25:40 +00:00
struct gpio_desc *gpio_wakeup;
/*
* if true HIF D_out is sampled on the rising edge of the clock
* (intended to be used in 50Mhz SDIO)
*/
bool use_rising_clk;
};
struct wfx_dev *wfx_init_common(struct device *dev,
const struct wfx_platform_data *pdata,
const struct hwbus_ops *hwbus_ops,
void *hwbus_priv);
void wfx_free_common(struct wfx_dev *wdev);
int wfx_probe(struct wfx_dev *wdev);
void wfx_release(struct wfx_dev *wdev);
struct gpio_desc *wfx_get_gpio(struct device *dev, int override,
const char *label);
staging: wfx: add IRQ handling bh_work() is in charge to schedule all HIF message from/to chip. On normal operation, when an IRQ is received, driver can get size of next message in control register. In order to save control register access, when chip send a message, it also appends a copy of control register after the message (this register is not accounted in message length declared in message header, but must accounted in bus request). This copy of control register is called "piggyback". It also handles a power saving mechanism specific to WFxxx series. This mechanism is based on a GPIO called "wakeup" GPIO. Obviously, this gpio is not part of SPI/SDIO standard buses and must be declared independently (this is the main reason for why SDIO mode try to get parameters from DT). When wakeup is enabled, host can communicate with chip only if it is awake. To wake up chip, there are two cases: - host receive an IRQ from chip (chip initiate communication): host just have to set wakeup GPIO before reading data - host want to send data to chip: host set wakeup GPIO, then wait for an IRQ (in fact, wait for an empty message) and finally send data bh_work() is also in charge to track usage of chip buffers. Normally each request expect a confirmation. However, you can notice that special "multi tx" confirmation can acknowledge multiple requests at time. Finally, note that wfx_bh_request_rx() is not atomic (because of control_reg_read()). So, in SPI mode, hard-irq handler only postpone all processing to wfx_spi_request_rx(). Signed-off-by: Jérôme Pouiller <jerome.pouiller@silabs.com> Link: https://lore.kernel.org/r/20190919142527.31797-8-Jerome.Pouiller@silabs.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 14:25:40 +00:00
bool wfx_api_older_than(struct wfx_dev *wdev, int major, int minor);
int wfx_send_pds(struct wfx_dev *wdev, unsigned char *buf, size_t len);
#endif