linux-stable/fs/orangefs/file.c

1020 lines
26 KiB
C
Raw Normal View History

/*
* (C) 2001 Clemson University and The University of Chicago
*
* See COPYING in top-level directory.
*/
/*
* Linux VFS file operations.
*/
#include "protocol.h"
#include "pvfs2-kernel.h"
#include "pvfs2-bufmap.h"
#include <linux/fs.h>
#include <linux/pagemap.h>
#define wake_up_daemon_for_return(op) \
do { \
spin_lock(&op->lock); \
op->io_completed = 1; \
spin_unlock(&op->lock); \
wake_up_interruptible(&op->io_completion_waitq);\
} while (0)
/*
* Copy to client-core's address space from the buffers specified
* by the iovec upto total_size bytes.
* NOTE: the iovector can either contain addresses which
* can futher be kernel-space or user-space addresses.
* or it can pointers to struct page's
*/
static int precopy_buffers(struct pvfs2_bufmap *bufmap,
int buffer_index,
const struct iovec *vec,
unsigned long nr_segs,
size_t total_size,
int from_user)
{
int ret = 0;
/*
* copy data from application/kernel by pulling it out
* of the iovec.
*/
/* Are we copying from User Virtual Addresses? */
if (from_user)
ret = pvfs_bufmap_copy_iovec_from_user(
bufmap,
buffer_index,
vec,
nr_segs,
total_size);
/* Are we copying from Kernel Virtual Addresses? */
else
ret = pvfs_bufmap_copy_iovec_from_kernel(
bufmap,
buffer_index,
vec,
nr_segs,
total_size);
if (ret < 0)
gossip_err("%s: Failed to copy-in buffers. Please make sure that the pvfs2-client is running. %ld\n",
__func__,
(long)ret);
return ret;
}
/*
* Copy from client-core's address space to the buffers specified
* by the iovec upto total_size bytes.
* NOTE: the iovector can either contain addresses which
* can futher be kernel-space or user-space addresses.
* or it can pointers to struct page's
*/
static int postcopy_buffers(struct pvfs2_bufmap *bufmap,
int buffer_index,
const struct iovec *vec,
int nr_segs,
size_t total_size,
int to_user)
{
int ret = 0;
/*
* copy data to application/kernel by pushing it out to
* the iovec. NOTE; target buffers can be addresses or
* struct page pointers.
*/
if (total_size) {
/* Are we copying to User Virtual Addresses? */
if (to_user)
ret = pvfs_bufmap_copy_to_user_iovec(
bufmap,
buffer_index,
vec,
nr_segs,
total_size);
/* Are we copying to Kern Virtual Addresses? */
else
ret = pvfs_bufmap_copy_to_kernel_iovec(
bufmap,
buffer_index,
vec,
nr_segs,
total_size);
if (ret < 0)
gossip_err("%s: Failed to copy-out buffers. Please make sure that the pvfs2-client is running (%ld)\n",
__func__,
(long)ret);
}
return ret;
}
/*
* Post and wait for the I/O upcall to finish
*/
static ssize_t wait_for_direct_io(enum PVFS_io_type type, struct inode *inode,
loff_t *offset, struct iovec *vec, unsigned long nr_segs,
size_t total_size, loff_t readahead_size, int to_user)
{
struct pvfs2_inode_s *pvfs2_inode = PVFS2_I(inode);
struct pvfs2_khandle *handle = &pvfs2_inode->refn.khandle;
struct pvfs2_bufmap *bufmap = NULL;
struct pvfs2_kernel_op_s *new_op = NULL;
int buffer_index = -1;
ssize_t ret;
new_op = op_alloc(PVFS2_VFS_OP_FILE_IO);
if (!new_op) {
ret = -ENOMEM;
goto out;
}
/* synchronous I/O */
new_op->upcall.req.io.async_vfs_io = PVFS_VFS_SYNC_IO;
new_op->upcall.req.io.readahead_size = readahead_size;
new_op->upcall.req.io.io_type = type;
new_op->upcall.req.io.refn = pvfs2_inode->refn;
populate_shared_memory:
/* get a shared buffer index */
ret = pvfs_bufmap_get(&bufmap, &buffer_index);
if (ret < 0) {
gossip_debug(GOSSIP_FILE_DEBUG,
"%s: pvfs_bufmap_get failure (%ld)\n",
__func__, (long)ret);
goto out;
}
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): GET op %p -> buffer_index %d\n",
__func__,
handle,
new_op,
buffer_index);
new_op->uses_shared_memory = 1;
new_op->upcall.req.io.buf_index = buffer_index;
new_op->upcall.req.io.count = total_size;
new_op->upcall.req.io.offset = *offset;
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): copy_to_user %d nr_segs %lu, offset: %llu total_size: %zd\n",
__func__,
handle,
to_user,
nr_segs,
llu(*offset),
total_size);
/*
* Stage 1: copy the buffers into client-core's address space
* precopy_buffers only pertains to writes.
*/
if (type == PVFS_IO_WRITE) {
ret = precopy_buffers(bufmap,
buffer_index,
vec,
nr_segs,
total_size,
to_user);
if (ret < 0)
goto out;
}
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): Calling post_io_request with tag (%llu)\n",
__func__,
handle,
llu(new_op->tag));
/* Stage 2: Service the I/O operation */
ret = service_operation(new_op,
type == PVFS_IO_WRITE ?
"file_write" :
"file_read",
get_interruptible_flag(inode));
/*
* If service_operation() returns -EAGAIN #and# the operation was
* purged from pvfs2_request_list or htable_ops_in_progress, then
* we know that the client was restarted, causing the shared memory
* area to be wiped clean. To restart a write operation in this
* case, we must re-copy the data from the user's iovec to a NEW
* shared memory location. To restart a read operation, we must get
* a new shared memory location.
*/
if (ret == -EAGAIN && op_state_purged(new_op)) {
pvfs_bufmap_put(bufmap, buffer_index);
gossip_debug(GOSSIP_FILE_DEBUG,
"%s:going to repopulate_shared_memory.\n",
__func__);
goto populate_shared_memory;
}
if (ret < 0) {
handle_io_error(); /* defined in pvfs2-kernel.h */
/*
don't write an error to syslog on signaled operation
termination unless we've got debugging turned on, as
this can happen regularly (i.e. ctrl-c)
*/
if (ret == -EINTR)
gossip_debug(GOSSIP_FILE_DEBUG,
"%s: returning error %ld\n", __func__,
(long)ret);
else
gossip_err("%s: error in %s handle %pU, returning %zd\n",
__func__,
type == PVFS_IO_READ ?
"read from" : "write to",
handle, ret);
goto out;
}
/*
* Stage 3: Post copy buffers from client-core's address space
* postcopy_buffers only pertains to reads.
*/
if (type == PVFS_IO_READ) {
ret = postcopy_buffers(bufmap,
buffer_index,
vec,
nr_segs,
new_op->downcall.resp.io.amt_complete,
to_user);
if (ret < 0) {
/*
* put error codes in downcall so that handle_io_error()
* preserves it properly
*/
new_op->downcall.status = ret;
handle_io_error();
goto out;
}
}
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): Amount written as returned by the sys-io call:%d\n",
__func__,
handle,
(int)new_op->downcall.resp.io.amt_complete);
ret = new_op->downcall.resp.io.amt_complete;
/*
tell the device file owner waiting on I/O that this read has
completed and it can return now. in this exact case, on
wakeup the daemon will free the op, so we *cannot* touch it
after this.
*/
wake_up_daemon_for_return(new_op);
new_op = NULL;
out:
if (buffer_index >= 0) {
pvfs_bufmap_put(bufmap, buffer_index);
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): PUT buffer_index %d\n",
__func__, handle, buffer_index);
buffer_index = -1;
}
if (new_op) {
op_release(new_op);
new_op = NULL;
}
return ret;
}
/*
* The reason we need to do this is to be able to support readv and writev
* that are larger than (pvfs_bufmap_size_query()) Default is
* PVFS2_BUFMAP_DEFAULT_DESC_SIZE MB. What that means is that we will
* create a new io vec descriptor for those memory addresses that
* go beyond the limit. Return value for this routine is negative in case
* of errors and 0 in case of success.
*
* Further, the new_nr_segs pointer is updated to hold the new value
* of number of iovecs, the new_vec pointer is updated to hold the pointer
* to the new split iovec, and the size array is an array of integers holding
* the number of iovecs that straddle pvfs_bufmap_size_query().
* The max_new_nr_segs value is computed by the caller and returned.
* (It will be (count of all iov_len/ block_size) + 1).
*/
static int split_iovecs(unsigned long max_new_nr_segs, /* IN */
unsigned long nr_segs, /* IN */
const struct iovec *original_iovec, /* IN */
unsigned long *new_nr_segs, /* OUT */
struct iovec **new_vec, /* OUT */
unsigned long *seg_count, /* OUT */
unsigned long **seg_array) /* OUT */
{
unsigned long seg;
unsigned long count = 0;
unsigned long begin_seg;
unsigned long tmpnew_nr_segs = 0;
struct iovec *new_iovec = NULL;
struct iovec *orig_iovec;
unsigned long *sizes = NULL;
unsigned long sizes_count = 0;
if (nr_segs <= 0 ||
original_iovec == NULL ||
new_nr_segs == NULL ||
new_vec == NULL ||
seg_count == NULL ||
seg_array == NULL ||
max_new_nr_segs <= 0) {
gossip_err("Invalid parameters to split_iovecs\n");
return -EINVAL;
}
*new_nr_segs = 0;
*new_vec = NULL;
*seg_count = 0;
*seg_array = NULL;
/* copy the passed in iovec descriptor to a temp structure */
orig_iovec = kmalloc_array(nr_segs,
sizeof(*orig_iovec),
PVFS2_BUFMAP_GFP_FLAGS);
if (orig_iovec == NULL) {
gossip_err(
"split_iovecs: Could not allocate memory for %lu bytes!\n",
(unsigned long)(nr_segs * sizeof(*orig_iovec)));
return -ENOMEM;
}
new_iovec = kcalloc(max_new_nr_segs,
sizeof(*new_iovec),
PVFS2_BUFMAP_GFP_FLAGS);
if (new_iovec == NULL) {
kfree(orig_iovec);
gossip_err(
"split_iovecs: Could not allocate memory for %lu bytes!\n",
(unsigned long)(max_new_nr_segs * sizeof(*new_iovec)));
return -ENOMEM;
}
sizes = kcalloc(max_new_nr_segs,
sizeof(*sizes),
PVFS2_BUFMAP_GFP_FLAGS);
if (sizes == NULL) {
kfree(new_iovec);
kfree(orig_iovec);
gossip_err(
"split_iovecs: Could not allocate memory for %lu bytes!\n",
(unsigned long)(max_new_nr_segs * sizeof(*sizes)));
return -ENOMEM;
}
/* copy the passed in iovec to a temp structure */
memcpy(orig_iovec, original_iovec, nr_segs * sizeof(*orig_iovec));
begin_seg = 0;
repeat:
for (seg = begin_seg; seg < nr_segs; seg++) {
if (tmpnew_nr_segs >= max_new_nr_segs ||
sizes_count >= max_new_nr_segs) {
kfree(sizes);
kfree(orig_iovec);
kfree(new_iovec);
gossip_err
("split_iovecs: exceeded the index limit (%lu)\n",
tmpnew_nr_segs);
return -EINVAL;
}
if (count + orig_iovec[seg].iov_len <
pvfs_bufmap_size_query()) {
count += orig_iovec[seg].iov_len;
memcpy(&new_iovec[tmpnew_nr_segs],
&orig_iovec[seg],
sizeof(*new_iovec));
tmpnew_nr_segs++;
sizes[sizes_count]++;
} else {
new_iovec[tmpnew_nr_segs].iov_base =
orig_iovec[seg].iov_base;
new_iovec[tmpnew_nr_segs].iov_len =
(pvfs_bufmap_size_query() - count);
tmpnew_nr_segs++;
sizes[sizes_count]++;
sizes_count++;
begin_seg = seg;
orig_iovec[seg].iov_base +=
(pvfs_bufmap_size_query() - count);
orig_iovec[seg].iov_len -=
(pvfs_bufmap_size_query() - count);
count = 0;
break;
}
}
if (seg != nr_segs)
goto repeat;
else
sizes_count++;
*new_nr_segs = tmpnew_nr_segs;
/* new_iovec is freed by the caller */
*new_vec = new_iovec;
*seg_count = sizes_count;
/* seg_array is also freed by the caller */
*seg_array = sizes;
kfree(orig_iovec);
return 0;
}
static long bound_max_iovecs(const struct iovec *curr, unsigned long nr_segs,
ssize_t *total_count)
{
unsigned long i;
long max_nr_iovecs;
ssize_t total;
ssize_t count;
total = 0;
count = 0;
max_nr_iovecs = 0;
for (i = 0; i < nr_segs; i++) {
const struct iovec *iv = &curr[i];
count += iv->iov_len;
if (unlikely((ssize_t) (count | iv->iov_len) < 0))
return -EINVAL;
if (total + iv->iov_len < pvfs_bufmap_size_query()) {
total += iv->iov_len;
max_nr_iovecs++;
} else {
total =
(total + iv->iov_len - pvfs_bufmap_size_query());
max_nr_iovecs += (total / pvfs_bufmap_size_query() + 2);
}
}
*total_count = count;
return max_nr_iovecs;
}
/*
* Common entry point for read/write/readv/writev
* This function will dispatch it to either the direct I/O
* or buffered I/O path depending on the mount options and/or
* augmented/extended metadata attached to the file.
* Note: File extended attributes override any mount options.
*/
static ssize_t do_readv_writev(enum PVFS_io_type type, struct file *file,
loff_t *offset, const struct iovec *iov, unsigned long nr_segs)
{
struct inode *inode = file->f_mapping->host;
struct pvfs2_inode_s *pvfs2_inode = PVFS2_I(inode);
struct pvfs2_khandle *handle = &pvfs2_inode->refn.khandle;
ssize_t ret;
ssize_t total_count;
unsigned int to_free;
size_t count;
unsigned long seg;
unsigned long new_nr_segs = 0;
unsigned long max_new_nr_segs = 0;
unsigned long seg_count = 0;
unsigned long *seg_array = NULL;
struct iovec *iovecptr = NULL;
struct iovec *ptr = NULL;
total_count = 0;
ret = -EINVAL;
count = 0;
to_free = 0;
/* Compute total and max number of segments after split */
max_new_nr_segs = bound_max_iovecs(iov, nr_segs, &count);
if (max_new_nr_segs < 0) {
gossip_lerr("%s: could not bound iovec %lu\n",
__func__,
max_new_nr_segs);
goto out;
}
gossip_debug(GOSSIP_FILE_DEBUG,
"%s-BEGIN(%pU): count(%d) after estimate_max_iovecs.\n",
__func__,
handle,
(int)count);
if (type == PVFS_IO_WRITE) {
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): proceeding with offset : %llu, "
"size %d\n",
__func__,
handle,
llu(*offset),
(int)count);
}
if (count == 0) {
ret = 0;
goto out;
}
/*
* if the total size of data transfer requested is greater than
* the kernel-set blocksize of PVFS2, then we split the iovecs
* such that no iovec description straddles a block size limit
*/
gossip_debug(GOSSIP_FILE_DEBUG,
"%s: pvfs_bufmap_size:%d\n",
__func__,
pvfs_bufmap_size_query());
if (count > pvfs_bufmap_size_query()) {
/*
* Split up the given iovec description such that
* no iovec descriptor straddles over the block-size limitation.
* This makes us our job easier to stage the I/O.
* In addition, this function will also compute an array
* with seg_count entries that will store the number of
* segments that straddle the block-size boundaries.
*/
ret = split_iovecs(max_new_nr_segs, /* IN */
nr_segs, /* IN */
iov, /* IN */
&new_nr_segs, /* OUT */
&iovecptr, /* OUT */
&seg_count, /* OUT */
&seg_array); /* OUT */
if (ret < 0) {
gossip_err("%s: Failed to split iovecs to satisfy larger than blocksize readv/writev request %zd\n",
__func__,
ret);
goto out;
}
gossip_debug(GOSSIP_FILE_DEBUG,
"%s: Splitting iovecs from %lu to %lu"
" [max_new %lu]\n",
__func__,
nr_segs,
new_nr_segs,
max_new_nr_segs);
/* We must free seg_array and iovecptr */
to_free = 1;
} else {
new_nr_segs = nr_segs;
/* use the given iovec description */
iovecptr = (struct iovec *)iov;
/* There is only 1 element in the seg_array */
seg_count = 1;
/* and its value is the number of segments passed in */
seg_array = &nr_segs;
/* We dont have to free up anything */
to_free = 0;
}
ptr = iovecptr;
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU) %zd@%llu\n",
__func__,
handle,
count,
llu(*offset));
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): new_nr_segs: %lu, seg_count: %lu\n",
__func__,
handle,
new_nr_segs, seg_count);
/* PVFS2_KERNEL_DEBUG is a CFLAGS define. */
#ifdef PVFS2_KERNEL_DEBUG
for (seg = 0; seg < new_nr_segs; seg++)
gossip_debug(GOSSIP_FILE_DEBUG,
"%s: %d) %p to %p [%d bytes]\n",
__func__,
(int)seg + 1,
iovecptr[seg].iov_base,
iovecptr[seg].iov_base + iovecptr[seg].iov_len,
(int)iovecptr[seg].iov_len);
for (seg = 0; seg < seg_count; seg++)
gossip_debug(GOSSIP_FILE_DEBUG,
"%s: %zd) %lu\n",
__func__,
seg + 1,
seg_array[seg]);
#endif
seg = 0;
while (total_count < count) {
size_t each_count;
size_t amt_complete;
/* how much to transfer in this loop iteration */
each_count =
(((count - total_count) > pvfs_bufmap_size_query()) ?
pvfs_bufmap_size_query() :
(count - total_count));
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): size of each_count(%d)\n",
__func__,
handle,
(int)each_count);
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): BEFORE wait_for_io: offset is %d\n",
__func__,
handle,
(int)*offset);
ret = wait_for_direct_io(type, inode, offset, ptr,
seg_array[seg], each_count, 0, 1);
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): return from wait_for_io:%d\n",
__func__,
handle,
(int)ret);
if (ret < 0)
goto out;
/* advance the iovec pointer */
ptr += seg_array[seg];
seg++;
*offset += ret;
total_count += ret;
amt_complete = ret;
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): AFTER wait_for_io: offset is %d\n",
__func__,
handle,
(int)*offset);
/*
* if we got a short I/O operations,
* fall out and return what we got so far
*/
if (amt_complete < each_count)
break;
} /*end while */
if (total_count > 0)
ret = total_count;
out:
if (to_free) {
kfree(iovecptr);
kfree(seg_array);
}
if (ret > 0) {
if (type == PVFS_IO_READ) {
file_accessed(file);
} else {
SetMtimeFlag(pvfs2_inode);
inode->i_mtime = CURRENT_TIME;
mark_inode_dirty_sync(inode);
}
}
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): Value(%d) returned.\n",
__func__,
handle,
(int)ret);
return ret;
}
/*
* Read data from a specified offset in a file (referenced by inode).
* Data may be placed either in a user or kernel buffer.
*/
ssize_t pvfs2_inode_read(struct inode *inode,
char __user *buf,
size_t count,
loff_t *offset,
loff_t readahead_size)
{
struct pvfs2_inode_s *pvfs2_inode = PVFS2_I(inode);
size_t bufmap_size;
struct iovec vec;
ssize_t ret = -EINVAL;
g_pvfs2_stats.reads++;
vec.iov_base = buf;
vec.iov_len = count;
bufmap_size = pvfs_bufmap_size_query();
if (count > bufmap_size) {
gossip_debug(GOSSIP_FILE_DEBUG,
"%s: count is too large (%zd/%zd)!\n",
__func__, count, bufmap_size);
return -EINVAL;
}
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU) %zd@%llu\n",
__func__,
&pvfs2_inode->refn.khandle,
count,
llu(*offset));
ret = wait_for_direct_io(PVFS_IO_READ, inode, offset, &vec, 1,
count, readahead_size, 0);
if (ret > 0)
*offset += ret;
gossip_debug(GOSSIP_FILE_DEBUG,
"%s(%pU): Value(%zd) returned.\n",
__func__,
&pvfs2_inode->refn.khandle,
ret);
return ret;
}
static ssize_t pvfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
loff_t pos = *(&iocb->ki_pos);
ssize_t rc = 0;
unsigned long nr_segs = iter->nr_segs;
BUG_ON(iocb->private);
gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_file_read_iter\n");
g_pvfs2_stats.reads++;
rc = do_readv_writev(PVFS_IO_READ,
file,
&pos,
iter->iov,
nr_segs);
iocb->ki_pos = pos;
return rc;
}
static ssize_t pvfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
loff_t pos = *(&iocb->ki_pos);
unsigned long nr_segs = iter->nr_segs;
ssize_t rc;
BUG_ON(iocb->private);
gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_file_write_iter\n");
mutex_lock(&file->f_mapping->host->i_mutex);
/* Make sure generic_write_checks sees an up to date inode size. */
if (file->f_flags & O_APPEND) {
rc = pvfs2_inode_getattr(file->f_mapping->host,
PVFS_ATTR_SYS_SIZE);
if (rc) {
gossip_err("%s: pvfs2_inode_getattr failed, rc:%zd:.\n",
__func__, rc);
goto out;
}
}
if (file->f_pos > i_size_read(file->f_mapping->host))
pvfs2_i_size_write(file->f_mapping->host, file->f_pos);
rc = generic_write_checks(iocb, iter);
if (rc <= 0) {
gossip_err("%s: generic_write_checks failed, rc:%zd:.\n",
__func__, rc);
goto out;
}
rc = do_readv_writev(PVFS_IO_WRITE,
file,
&pos,
iter->iov,
nr_segs);
if (rc < 0) {
gossip_err("%s: do_readv_writev failed, rc:%zd:.\n",
__func__, rc);
goto out;
}
iocb->ki_pos = pos;
g_pvfs2_stats.writes++;
out:
mutex_unlock(&file->f_mapping->host->i_mutex);
return rc;
}
/*
* Perform a miscellaneous operation on a file.
*/
long pvfs2_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int ret = -ENOTTY;
__u64 val = 0;
unsigned long uval;
gossip_debug(GOSSIP_FILE_DEBUG,
"pvfs2_ioctl: called with cmd %d\n",
cmd);
/*
* we understand some general ioctls on files, such as the immutable
* and append flags
*/
if (cmd == FS_IOC_GETFLAGS) {
val = 0;
ret = pvfs2_xattr_get_default(file->f_path.dentry,
"user.pvfs2.meta_hint",
&val,
sizeof(val),
0);
if (ret < 0 && ret != -ENODATA)
return ret;
else if (ret == -ENODATA)
val = 0;
uval = val;
gossip_debug(GOSSIP_FILE_DEBUG,
"pvfs2_ioctl: FS_IOC_GETFLAGS: %llu\n",
(unsigned long long)uval);
return put_user(uval, (int __user *)arg);
} else if (cmd == FS_IOC_SETFLAGS) {
ret = 0;
if (get_user(uval, (int __user *)arg))
return -EFAULT;
/*
* PVFS_MIRROR_FL is set internally when the mirroring mode
* is turned on for a file. The user is not allowed to turn
* on this bit, but the bit is present if the user first gets
* the flags and then updates the flags with some new
* settings. So, we ignore it in the following edit. bligon.
*/
if ((uval & ~PVFS_MIRROR_FL) &
(~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NOATIME_FL))) {
gossip_err("pvfs2_ioctl: the FS_IOC_SETFLAGS only supports setting one of FS_IMMUTABLE_FL|FS_APPEND_FL|FS_NOATIME_FL\n");
return -EINVAL;
}
val = uval;
gossip_debug(GOSSIP_FILE_DEBUG,
"pvfs2_ioctl: FS_IOC_SETFLAGS: %llu\n",
(unsigned long long)val);
ret = pvfs2_xattr_set_default(file->f_path.dentry,
"user.pvfs2.meta_hint",
&val,
sizeof(val),
0,
0);
}
return ret;
}
/*
* Memory map a region of a file.
*/
static int pvfs2_file_mmap(struct file *file, struct vm_area_struct *vma)
{
gossip_debug(GOSSIP_FILE_DEBUG,
"pvfs2_file_mmap: called on %s\n",
(file ?
(char *)file->f_path.dentry->d_name.name :
(char *)"Unknown"));
/* set the sequential readahead hint */
vma->vm_flags |= VM_SEQ_READ;
vma->vm_flags &= ~VM_RAND_READ;
return generic_file_mmap(file, vma);
}
#define mapping_nrpages(idata) ((idata)->nrpages)
/*
* Called to notify the module that there are no more references to
* this file (i.e. no processes have it open).
*
* \note Not called when each file is closed.
*/
int pvfs2_file_release(struct inode *inode, struct file *file)
{
gossip_debug(GOSSIP_FILE_DEBUG,
"pvfs2_file_release: called on %s\n",
file->f_path.dentry->d_name.name);
pvfs2_flush_inode(inode);
/*
remove all associated inode pages from the page cache and mmap
readahead cache (if any); this forces an expensive refresh of
data for the next caller of mmap (or 'get_block' accesses)
*/
if (file->f_path.dentry->d_inode &&
file->f_path.dentry->d_inode->i_mapping &&
mapping_nrpages(&file->f_path.dentry->d_inode->i_data))
truncate_inode_pages(file->f_path.dentry->d_inode->i_mapping,
0);
return 0;
}
/*
* Push all data for a specific file onto permanent storage.
*/
int pvfs2_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
int ret = -EINVAL;
struct pvfs2_inode_s *pvfs2_inode =
PVFS2_I(file->f_path.dentry->d_inode);
struct pvfs2_kernel_op_s *new_op = NULL;
/* required call */
filemap_write_and_wait_range(file->f_mapping, start, end);
new_op = op_alloc(PVFS2_VFS_OP_FSYNC);
if (!new_op)
return -ENOMEM;
new_op->upcall.req.fsync.refn = pvfs2_inode->refn;
ret = service_operation(new_op,
"pvfs2_fsync",
get_interruptible_flag(file->f_path.dentry->d_inode));
gossip_debug(GOSSIP_FILE_DEBUG,
"pvfs2_fsync got return value of %d\n",
ret);
op_release(new_op);
pvfs2_flush_inode(file->f_path.dentry->d_inode);
return ret;
}
/*
* Change the file pointer position for an instance of an open file.
*
* \note If .llseek is overriden, we must acquire lock as described in
* Documentation/filesystems/Locking.
*
* Future upgrade could support SEEK_DATA and SEEK_HOLE but would
* require much changes to the FS
*/
loff_t pvfs2_file_llseek(struct file *file, loff_t offset, int origin)
{
int ret = -EINVAL;
struct inode *inode = file->f_path.dentry->d_inode;
if (!inode) {
gossip_err("pvfs2_file_llseek: invalid inode (NULL)\n");
return ret;
}
if (origin == PVFS2_SEEK_END) {
/*
* revalidate the inode's file size.
* NOTE: We are only interested in file size here,
* so we set mask accordingly.
*/
ret = pvfs2_inode_getattr(inode, PVFS_ATTR_SYS_SIZE);
if (ret) {
gossip_debug(GOSSIP_FILE_DEBUG,
"%s:%s:%d calling make bad inode\n",
__FILE__,
__func__,
__LINE__);
pvfs2_make_bad_inode(inode);
return ret;
}
}
gossip_debug(GOSSIP_FILE_DEBUG,
"pvfs2_file_llseek: offset is %ld | origin is %d | "
"inode size is %lu\n",
(long)offset,
origin,
(unsigned long)file->f_path.dentry->d_inode->i_size);
return generic_file_llseek(file, offset, origin);
}
/*
* Support local locks (locks that only this kernel knows about)
* if Orangefs was mounted -o local_lock.
*/
int pvfs2_lock(struct file *filp, int cmd, struct file_lock *fl)
{
int rc = -ENOLCK;
if (PVFS2_SB(filp->f_inode->i_sb)->flags & PVFS2_OPT_LOCAL_LOCK) {
if (cmd == F_GETLK) {
rc = 0;
posix_test_lock(filp, fl);
} else {
rc = posix_lock_file(filp, fl, NULL);
}
}
return rc;
}
/** PVFS2 implementation of VFS file operations */
const struct file_operations pvfs2_file_operations = {
.llseek = pvfs2_file_llseek,
.read_iter = pvfs2_file_read_iter,
.write_iter = pvfs2_file_write_iter,
.lock = pvfs2_lock,
.unlocked_ioctl = pvfs2_ioctl,
.mmap = pvfs2_file_mmap,
.open = generic_file_open,
.release = pvfs2_file_release,
.fsync = pvfs2_fsync,
};