linux-stable/drivers/thermal/intel/intel_hfi.c

387 lines
10 KiB
C
Raw Normal View History

thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Hardware Feedback Interface Driver
*
* Copyright (c) 2021, Intel Corporation.
*
* Authors: Aubrey Li <aubrey.li@linux.intel.com>
* Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
*
*
* The Hardware Feedback Interface provides a performance and energy efficiency
* capability information for each CPU in the system. Depending on the processor
* model, hardware may periodically update these capabilities as a result of
* changes in the operating conditions (e.g., power limits or thermal
* constraints). On other processor models, there is a single HFI update
* at boot.
*
* This file provides functionality to process HFI updates and relay these
* updates to userspace.
*/
#define pr_fmt(fmt) "intel-hfi: " fmt
#include <linux/bitops.h>
#include <linux/cpufeature.h>
#include <linux/cpumask.h>
#include <linux/gfp.h>
#include <linux/io.h>
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
#include <linux/math.h>
#include <linux/mutex.h>
#include <linux/percpu-defs.h>
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
#include <linux/printk.h>
#include <linux/processor.h>
#include <linux/slab.h>
#include <linux/topology.h>
#include <asm/msr.h>
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
#include "intel_hfi.h"
/* Hardware Feedback Interface MSR configuration bits */
#define HW_FEEDBACK_PTR_VALID_BIT BIT(0)
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
/* CPUID detection and enumeration definitions for HFI */
#define CPUID_HFI_LEAF 6
union hfi_capabilities {
struct {
u8 performance:1;
u8 energy_efficiency:1;
u8 __reserved:6;
} split;
u8 bits;
};
union cpuid6_edx {
struct {
union hfi_capabilities capabilities;
u32 table_pages:4;
u32 __reserved:4;
s32 index:16;
} split;
u32 full;
};
/**
* struct hfi_cpu_data - HFI capabilities per CPU
* @perf_cap: Performance capability
* @ee_cap: Energy efficiency capability
*
* Capabilities of a logical processor in the HFI table. These capabilities are
* unitless.
*/
struct hfi_cpu_data {
u8 perf_cap;
u8 ee_cap;
} __packed;
/**
* struct hfi_hdr - Header of the HFI table
* @perf_updated: Hardware updated performance capabilities
* @ee_updated: Hardware updated energy efficiency capabilities
*
* Properties of the data in an HFI table.
*/
struct hfi_hdr {
u8 perf_updated;
u8 ee_updated;
} __packed;
/**
* struct hfi_instance - Representation of an HFI instance (i.e., a table)
* @local_table: Base of the local copy of the HFI table
* @timestamp: Timestamp of the last update of the local table.
* Located at the base of the local table.
* @hdr: Base address of the header of the local table
* @data: Base address of the data of the local table
* @cpus: CPUs represented in this HFI table instance
* @hw_table: Pointer to the HFI table of this instance
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
*
* A set of parameters to parse and navigate a specific HFI table.
*/
struct hfi_instance {
union {
void *local_table;
u64 *timestamp;
};
void *hdr;
void *data;
cpumask_var_t cpus;
void *hw_table;
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
};
/**
* struct hfi_features - Supported HFI features
* @nr_table_pages: Size of the HFI table in 4KB pages
* @cpu_stride: Stride size to locate the capability data of a logical
* processor within the table (i.e., row stride)
* @hdr_size: Size of the table header
*
* Parameters and supported features that are common to all HFI instances
*/
struct hfi_features {
unsigned int nr_table_pages;
unsigned int cpu_stride;
unsigned int hdr_size;
};
/**
* struct hfi_cpu_info - Per-CPU attributes to consume HFI data
* @index: Row of this CPU in its HFI table
* @hfi_instance: Attributes of the HFI table to which this CPU belongs
*
* Parameters to link a logical processor to an HFI table and a row within it.
*/
struct hfi_cpu_info {
s16 index;
struct hfi_instance *hfi_instance;
};
static DEFINE_PER_CPU(struct hfi_cpu_info, hfi_cpu_info) = { .index = -1 };
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
static int max_hfi_instances;
static struct hfi_instance *hfi_instances;
static struct hfi_features hfi_features;
static DEFINE_MUTEX(hfi_instance_lock);
static void init_hfi_cpu_index(struct hfi_cpu_info *info)
{
union cpuid6_edx edx;
/* Do not re-read @cpu's index if it has already been initialized. */
if (info->index > -1)
return;
edx.full = cpuid_edx(CPUID_HFI_LEAF);
info->index = edx.split.index;
}
/*
* The format of the HFI table depends on the number of capabilities that the
* hardware supports. Keep a data structure to navigate the table.
*/
static void init_hfi_instance(struct hfi_instance *hfi_instance)
{
/* The HFI header is below the time-stamp. */
hfi_instance->hdr = hfi_instance->local_table +
sizeof(*hfi_instance->timestamp);
/* The HFI data starts below the header. */
hfi_instance->data = hfi_instance->hdr + hfi_features.hdr_size;
}
/**
* intel_hfi_online() - Enable HFI on @cpu
* @cpu: CPU in which the HFI will be enabled
*
* Enable the HFI to be used in @cpu. The HFI is enabled at the die/package
* level. The first CPU in the die/package to come online does the full HFI
* initialization. Subsequent CPUs will just link themselves to the HFI
* instance of their die/package.
*
* This function is called before enabling the thermal vector in the local APIC
* in order to ensure that @cpu has an associated HFI instance when it receives
* an HFI event.
*/
void intel_hfi_online(unsigned int cpu)
{
struct hfi_instance *hfi_instance;
struct hfi_cpu_info *info;
phys_addr_t hw_table_pa;
u64 msr_val;
u16 die_id;
/* Nothing to do if hfi_instances are missing. */
if (!hfi_instances)
return;
/*
* Link @cpu to the HFI instance of its package/die. It does not
* matter whether the instance has been initialized.
*/
info = &per_cpu(hfi_cpu_info, cpu);
die_id = topology_logical_die_id(cpu);
hfi_instance = info->hfi_instance;
if (!hfi_instance) {
if (die_id < 0 || die_id >= max_hfi_instances)
return;
hfi_instance = &hfi_instances[die_id];
info->hfi_instance = hfi_instance;
}
init_hfi_cpu_index(info);
/*
* Now check if the HFI instance of the package/die of @cpu has been
* initialized (by checking its header). In such case, all we have to
* do is to add @cpu to this instance's cpumask.
*/
mutex_lock(&hfi_instance_lock);
if (hfi_instance->hdr) {
cpumask_set_cpu(cpu, hfi_instance->cpus);
goto unlock;
}
/*
* Hardware is programmed with the physical address of the first page
* frame of the table. Hence, the allocated memory must be page-aligned.
*/
hfi_instance->hw_table = alloc_pages_exact(hfi_features.nr_table_pages,
GFP_KERNEL | __GFP_ZERO);
if (!hfi_instance->hw_table)
goto unlock;
hw_table_pa = virt_to_phys(hfi_instance->hw_table);
/*
* Allocate memory to keep a local copy of the table that
* hardware generates.
*/
hfi_instance->local_table = kzalloc(hfi_features.nr_table_pages << PAGE_SHIFT,
GFP_KERNEL);
if (!hfi_instance->local_table)
goto free_hw_table;
/*
* Program the address of the feedback table of this die/package. On
* some processors, hardware remembers the old address of the HFI table
* even after having been reprogrammed and re-enabled. Thus, do not free
* the pages allocated for the table or reprogram the hardware with a
* new base address. Namely, program the hardware only once.
*/
msr_val = hw_table_pa | HW_FEEDBACK_PTR_VALID_BIT;
wrmsrl(MSR_IA32_HW_FEEDBACK_PTR, msr_val);
init_hfi_instance(hfi_instance);
cpumask_set_cpu(cpu, hfi_instance->cpus);
unlock:
mutex_unlock(&hfi_instance_lock);
return;
free_hw_table:
free_pages_exact(hfi_instance->hw_table, hfi_features.nr_table_pages);
goto unlock;
}
/**
* intel_hfi_offline() - Disable HFI on @cpu
* @cpu: CPU in which the HFI will be disabled
*
* Remove @cpu from those covered by its HFI instance.
*
* On some processors, hardware remembers previous programming settings even
* after being reprogrammed. Thus, keep HFI enabled even if all CPUs in the
* die/package of @cpu are offline. See note in intel_hfi_online().
*/
void intel_hfi_offline(unsigned int cpu)
{
struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, cpu);
struct hfi_instance *hfi_instance;
/*
* Check if @cpu as an associated, initialized (i.e., with a non-NULL
* header). Also, HFI instances are only initialized if X86_FEATURE_HFI
* is present.
*/
hfi_instance = info->hfi_instance;
if (!hfi_instance)
return;
if (!hfi_instance->hdr)
return;
mutex_lock(&hfi_instance_lock);
cpumask_clear_cpu(cpu, hfi_instance->cpus);
mutex_unlock(&hfi_instance_lock);
}
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
static __init int hfi_parse_features(void)
{
unsigned int nr_capabilities;
union cpuid6_edx edx;
if (!boot_cpu_has(X86_FEATURE_HFI))
return -ENODEV;
/*
* If we are here we know that CPUID_HFI_LEAF exists. Parse the
* supported capabilities and the size of the HFI table.
*/
edx.full = cpuid_edx(CPUID_HFI_LEAF);
if (!edx.split.capabilities.split.performance) {
pr_debug("Performance reporting not supported! Not using HFI\n");
return -ENODEV;
}
/*
* The number of supported capabilities determines the number of
* columns in the HFI table. Exclude the reserved bits.
*/
edx.split.capabilities.split.__reserved = 0;
nr_capabilities = hweight8(edx.split.capabilities.bits);
/* The number of 4KB pages required by the table */
hfi_features.nr_table_pages = edx.split.table_pages + 1;
/*
* The header contains change indications for each supported feature.
* The size of the table header is rounded up to be a multiple of 8
* bytes.
*/
hfi_features.hdr_size = DIV_ROUND_UP(nr_capabilities, 8) * 8;
/*
* Data of each logical processor is also rounded up to be a multiple
* of 8 bytes.
*/
hfi_features.cpu_stride = DIV_ROUND_UP(nr_capabilities, 8) * 8;
return 0;
}
void __init intel_hfi_init(void)
{
struct hfi_instance *hfi_instance;
int i, j;
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
if (hfi_parse_features())
return;
/* There is one HFI instance per die/package. */
max_hfi_instances = topology_max_packages() *
topology_max_die_per_package();
/*
* This allocation may fail. CPU hotplug callbacks must check
* for a null pointer.
*/
hfi_instances = kcalloc(max_hfi_instances, sizeof(*hfi_instances),
GFP_KERNEL);
if (!hfi_instances)
return;
for (i = 0; i < max_hfi_instances; i++) {
hfi_instance = &hfi_instances[i];
if (!zalloc_cpumask_var(&hfi_instance->cpus, GFP_KERNEL))
goto err_nomem;
}
return;
err_nomem:
for (j = 0; j < i; ++j) {
hfi_instance = &hfi_instances[j];
free_cpumask_var(hfi_instance->cpus);
}
kfree(hfi_instances);
hfi_instances = NULL;
thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface The Intel Hardware Feedback Interface provides guidance to the operating system about the performance and energy efficiency capabilities of each CPU in the system. Capabilities are numbers between 0 and 255 where a higher number represents a higher capability. For each CPU, energy efficiency and performance are reported as separate capabilities. Hardware computes these capabilities based on the operating conditions of the system such as power and thermal limits. These capabilities are shared with the operating system in a table resident in memory. Each package in the system has its own HFI instance. Every logical CPU in the package is represented in the table. More than one logical CPUs may be represented in a single table entry. When the hardware updates the table, it generates a package-level thermal interrupt. The size and format of the HFI table depend on the supported features and can only be determined at runtime. To minimally initialize the HFI, parse its features and allocate one instance per package of a data structure with the necessary parameters to read and navigate a local copy (i.e., owned by the driver) of individual HFI tables. A subsequent changeset will provide per-CPU initialization and interrupt handling. Reviewed-by: Len Brown <len.brown@intel.com> Co-developed by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-01-27 19:34:50 +00:00
}