linux-stable/arch/x86/include/uapi/asm/vmx.h

166 lines
7.2 KiB
C
Raw Normal View History

License cleanup: add SPDX license identifier to uapi header files with a license Many user space API headers have licensing information, which is either incomplete, badly formatted or just a shorthand for referring to the license under which the file is supposed to be. This makes it hard for compliance tools to determine the correct license. Update these files with an SPDX license identifier. The identifier was chosen based on the license information in the file. GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license identifier with the added 'WITH Linux-syscall-note' exception, which is the officially assigned exception identifier for the kernel syscall exception: NOTE! This copyright does *not* cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does *not* fall under the heading of "derived work". This exception makes it possible to include GPL headers into non GPL code, without confusing license compliance tools. Headers which have either explicit dual licensing or are just licensed under a non GPL license are updated with the corresponding SPDX identifier and the GPLv2 with syscall exception identifier. The format is: ((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE) SPDX license identifiers are a legally binding shorthand, which can be used instead of the full boiler plate text. The update does not remove existing license information as this has to be done on a case by case basis and the copyright holders might have to be consulted. This will happen in a separate step. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. See the previous patch in this series for the methodology of how this patch was researched. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:09:13 +00:00
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
* vmx.h: VMX Architecture related definitions
* Copyright (c) 2004, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
* A few random additions are:
* Copyright (C) 2006 Qumranet
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
*/
#ifndef _UAPIVMX_H
#define _UAPIVMX_H
#define VMX_EXIT_REASONS_FAILED_VMENTRY 0x80000000
KVM: VMX: Add basic handling of VM-Exit from SGX enclave Add support for handling VM-Exits that originate from a guest SGX enclave. In SGX, an "enclave" is a new CPL3-only execution environment, wherein the CPU and memory state is protected by hardware to make the state inaccesible to code running outside of the enclave. When exiting an enclave due to an asynchronous event (from the perspective of the enclave), e.g. exceptions, interrupts, and VM-Exits, the enclave's state is automatically saved and scrubbed (the CPU loads synthetic state), and then reloaded when re-entering the enclave. E.g. after an instruction based VM-Exit from an enclave, vmcs.GUEST_RIP will not contain the RIP of the enclave instruction that trigered VM-Exit, but will instead point to a RIP in the enclave's untrusted runtime (the guest userspace code that coordinates entry/exit to/from the enclave). To help a VMM recognize and handle exits from enclaves, SGX adds bits to existing VMCS fields, VM_EXIT_REASON.VMX_EXIT_REASON_FROM_ENCLAVE and GUEST_INTERRUPTIBILITY_INFO.GUEST_INTR_STATE_ENCLAVE_INTR. Define the new architectural bits, and add a boolean to struct vcpu_vmx to cache VMX_EXIT_REASON_FROM_ENCLAVE. Clear the bit in exit_reason so that checks against exit_reason do not need to account for SGX, e.g. "if (exit_reason == EXIT_REASON_EXCEPTION_NMI)" continues to work. KVM is a largely a passive observer of the new bits, e.g. KVM needs to account for the bits when propagating information to a nested VMM, but otherwise doesn't need to act differently for the majority of VM-Exits from enclaves. The one scenario that is directly impacted is emulation, which is for all intents and purposes impossible[1] since KVM does not have access to the RIP or instruction stream that triggered the VM-Exit. The inability to emulate is a non-issue for KVM, as most instructions that might trigger VM-Exit unconditionally #UD in an enclave (before the VM-Exit check. For the few instruction that conditionally #UD, KVM either never sets the exiting control, e.g. PAUSE_EXITING[2], or sets it if and only if the feature is not exposed to the guest in order to inject a #UD, e.g. RDRAND_EXITING. But, because it is still possible for a guest to trigger emulation, e.g. MMIO, inject a #UD if KVM ever attempts emulation after a VM-Exit from an enclave. This is architecturally accurate for instruction VM-Exits, and for MMIO it's the least bad choice, e.g. it's preferable to killing the VM. In practice, only broken or particularly stupid guests should ever encounter this behavior. Add a WARN in skip_emulated_instruction to detect any attempt to modify the guest's RIP during an SGX enclave VM-Exit as all such flows should either be unreachable or must handle exits from enclaves before getting to skip_emulated_instruction. [1] Impossible for all practical purposes. Not truly impossible since KVM could implement some form of para-virtualization scheme. [2] PAUSE_LOOP_EXITING only affects CPL0 and enclaves exist only at CPL3, so we also don't need to worry about that interaction. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Message-Id: <315f54a8507d09c292463ef29104e1d4c62e9090.1618196135.git.kai.huang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-12 04:21:37 +00:00
#define VMX_EXIT_REASONS_SGX_ENCLAVE_MODE 0x08000000
#define EXIT_REASON_EXCEPTION_NMI 0
#define EXIT_REASON_EXTERNAL_INTERRUPT 1
#define EXIT_REASON_TRIPLE_FAULT 2
#define EXIT_REASON_INIT_SIGNAL 3
KVM: x86: emulate wait-for-SIPI and SIPI-VMExit Background: We have a lightweight HV, it needs INIT-VMExit and SIPI-VMExit to wake-up APs for guests since it do not monitor the Local APIC. But currently virtual wait-for-SIPI(WFS) state is not supported in nVMX, so when running on top of KVM, the L1 HV cannot receive the INIT-VMExit and SIPI-VMExit which cause the L2 guest cannot wake up the APs. According to Intel SDM Chapter 25.2 Other Causes of VM Exits, SIPIs cause VM exits when a logical processor is in wait-for-SIPI state. In this patch: 1. introduce SIPI exit reason, 2. introduce wait-for-SIPI state for nVMX, 3. advertise wait-for-SIPI support to guest. When L1 hypervisor is not monitoring Local APIC, L0 need to emulate INIT-VMExit and SIPI-VMExit to L1 to emulate INIT-SIPI-SIPI for L2. L2 LAPIC write would be traped by L0 Hypervisor(KVM), L0 should emulate the INIT/SIPI vmexit to L1 hypervisor to set proper state for L2's vcpu state. Handle procdure: Source vCPU: L2 write LAPIC.ICR(INIT). L0 trap LAPIC.ICR write(INIT): inject a latched INIT event to target vCPU. Target vCPU: L0 emulate an INIT VMExit to L1 if is guest mode. L1 set guest VMCS, guest_activity_state=WAIT_SIPI, vmresume. L0 set vcpu.mp_state to INIT_RECEIVED if (vmcs12.guest_activity_state == WAIT_SIPI). Source vCPU: L2 write LAPIC.ICR(SIPI). L0 trap LAPIC.ICR write(INIT): inject a latched SIPI event to traget vCPU. Target vCPU: L0 emulate an SIPI VMExit to L1 if (vcpu.mp_state == INIT_RECEIVED). L1 set CS:IP, guest_activity_state=ACTIVE, vmresume. L0 resume to L2. L2 start-up. Signed-off-by: Yadong Qi <yadong.qi@intel.com> Message-Id: <20200922052343.84388-1-yadong.qi@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20201106065122.403183-1-yadong.qi@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-06 06:51:22 +00:00
#define EXIT_REASON_SIPI_SIGNAL 4
#define EXIT_REASON_INTERRUPT_WINDOW 7
#define EXIT_REASON_NMI_WINDOW 8
#define EXIT_REASON_TASK_SWITCH 9
#define EXIT_REASON_CPUID 10
#define EXIT_REASON_HLT 12
#define EXIT_REASON_INVD 13
#define EXIT_REASON_INVLPG 14
#define EXIT_REASON_RDPMC 15
#define EXIT_REASON_RDTSC 16
#define EXIT_REASON_VMCALL 18
#define EXIT_REASON_VMCLEAR 19
#define EXIT_REASON_VMLAUNCH 20
#define EXIT_REASON_VMPTRLD 21
#define EXIT_REASON_VMPTRST 22
#define EXIT_REASON_VMREAD 23
#define EXIT_REASON_VMRESUME 24
#define EXIT_REASON_VMWRITE 25
#define EXIT_REASON_VMOFF 26
#define EXIT_REASON_VMON 27
#define EXIT_REASON_CR_ACCESS 28
#define EXIT_REASON_DR_ACCESS 29
#define EXIT_REASON_IO_INSTRUCTION 30
#define EXIT_REASON_MSR_READ 31
#define EXIT_REASON_MSR_WRITE 32
#define EXIT_REASON_INVALID_STATE 33
#define EXIT_REASON_MSR_LOAD_FAIL 34
#define EXIT_REASON_MWAIT_INSTRUCTION 36
#define EXIT_REASON_MONITOR_TRAP_FLAG 37
#define EXIT_REASON_MONITOR_INSTRUCTION 39
#define EXIT_REASON_PAUSE_INSTRUCTION 40
#define EXIT_REASON_MCE_DURING_VMENTRY 41
#define EXIT_REASON_TPR_BELOW_THRESHOLD 43
#define EXIT_REASON_APIC_ACCESS 44
#define EXIT_REASON_EOI_INDUCED 45
#define EXIT_REASON_GDTR_IDTR 46
#define EXIT_REASON_LDTR_TR 47
#define EXIT_REASON_EPT_VIOLATION 48
#define EXIT_REASON_EPT_MISCONFIG 49
#define EXIT_REASON_INVEPT 50
#define EXIT_REASON_RDTSCP 51
#define EXIT_REASON_PREEMPTION_TIMER 52
#define EXIT_REASON_INVVPID 53
#define EXIT_REASON_WBINVD 54
#define EXIT_REASON_XSETBV 55
#define EXIT_REASON_APIC_WRITE 56
#define EXIT_REASON_RDRAND 57
#define EXIT_REASON_INVPCID 58
#define EXIT_REASON_VMFUNC 59
#define EXIT_REASON_ENCLS 60
#define EXIT_REASON_RDSEED 61
#define EXIT_REASON_PML_FULL 62
#define EXIT_REASON_XSAVES 63
#define EXIT_REASON_XRSTORS 64
#define EXIT_REASON_UMWAIT 67
#define EXIT_REASON_TPAUSE 68
KVM: VMX: Enable bus lock VM exit Virtual Machine can exploit bus locks to degrade the performance of system. Bus lock can be caused by split locked access to writeback(WB) memory or by using locks on uncacheable(UC) memory. The bus lock is typically >1000 cycles slower than an atomic operation within a cache line. It also disrupts performance on other cores (which must wait for the bus lock to be released before their memory operations can complete). To address the threat, bus lock VM exit is introduced to notify the VMM when a bus lock was acquired, allowing it to enforce throttling or other policy based mitigations. A VMM can enable VM exit due to bus locks by setting a new "Bus Lock Detection" VM-execution control(bit 30 of Secondary Processor-based VM execution controls). If delivery of this VM exit was preempted by a higher priority VM exit (e.g. EPT misconfiguration, EPT violation, APIC access VM exit, APIC write VM exit, exception bitmap exiting), bit 26 of exit reason in vmcs field is set to 1. In current implementation, the KVM exposes this capability through KVM_CAP_X86_BUS_LOCK_EXIT. The user can get the supported mode bitmap (i.e. off and exit) and enable it explicitly (disabled by default). If bus locks in guest are detected by KVM, exit to user space even when current exit reason is handled by KVM internally. Set a new field KVM_RUN_BUS_LOCK in vcpu->run->flags to inform the user space that there is a bus lock detected in guest. Document for Bus Lock VM exit is now available at the latest "Intel Architecture Instruction Set Extensions Programming Reference". Document Link: https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com> Message-Id: <20201106090315.18606-4-chenyi.qiang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-06 09:03:14 +00:00
#define EXIT_REASON_BUS_LOCK 74
#define VMX_EXIT_REASONS \
{ EXIT_REASON_EXCEPTION_NMI, "EXCEPTION_NMI" }, \
{ EXIT_REASON_EXTERNAL_INTERRUPT, "EXTERNAL_INTERRUPT" }, \
{ EXIT_REASON_TRIPLE_FAULT, "TRIPLE_FAULT" }, \
{ EXIT_REASON_INIT_SIGNAL, "INIT_SIGNAL" }, \
KVM: x86: emulate wait-for-SIPI and SIPI-VMExit Background: We have a lightweight HV, it needs INIT-VMExit and SIPI-VMExit to wake-up APs for guests since it do not monitor the Local APIC. But currently virtual wait-for-SIPI(WFS) state is not supported in nVMX, so when running on top of KVM, the L1 HV cannot receive the INIT-VMExit and SIPI-VMExit which cause the L2 guest cannot wake up the APs. According to Intel SDM Chapter 25.2 Other Causes of VM Exits, SIPIs cause VM exits when a logical processor is in wait-for-SIPI state. In this patch: 1. introduce SIPI exit reason, 2. introduce wait-for-SIPI state for nVMX, 3. advertise wait-for-SIPI support to guest. When L1 hypervisor is not monitoring Local APIC, L0 need to emulate INIT-VMExit and SIPI-VMExit to L1 to emulate INIT-SIPI-SIPI for L2. L2 LAPIC write would be traped by L0 Hypervisor(KVM), L0 should emulate the INIT/SIPI vmexit to L1 hypervisor to set proper state for L2's vcpu state. Handle procdure: Source vCPU: L2 write LAPIC.ICR(INIT). L0 trap LAPIC.ICR write(INIT): inject a latched INIT event to target vCPU. Target vCPU: L0 emulate an INIT VMExit to L1 if is guest mode. L1 set guest VMCS, guest_activity_state=WAIT_SIPI, vmresume. L0 set vcpu.mp_state to INIT_RECEIVED if (vmcs12.guest_activity_state == WAIT_SIPI). Source vCPU: L2 write LAPIC.ICR(SIPI). L0 trap LAPIC.ICR write(INIT): inject a latched SIPI event to traget vCPU. Target vCPU: L0 emulate an SIPI VMExit to L1 if (vcpu.mp_state == INIT_RECEIVED). L1 set CS:IP, guest_activity_state=ACTIVE, vmresume. L0 resume to L2. L2 start-up. Signed-off-by: Yadong Qi <yadong.qi@intel.com> Message-Id: <20200922052343.84388-1-yadong.qi@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20201106065122.403183-1-yadong.qi@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-06 06:51:22 +00:00
{ EXIT_REASON_SIPI_SIGNAL, "SIPI_SIGNAL" }, \
{ EXIT_REASON_INTERRUPT_WINDOW, "INTERRUPT_WINDOW" }, \
{ EXIT_REASON_NMI_WINDOW, "NMI_WINDOW" }, \
{ EXIT_REASON_TASK_SWITCH, "TASK_SWITCH" }, \
{ EXIT_REASON_CPUID, "CPUID" }, \
{ EXIT_REASON_HLT, "HLT" }, \
{ EXIT_REASON_INVD, "INVD" }, \
{ EXIT_REASON_INVLPG, "INVLPG" }, \
{ EXIT_REASON_RDPMC, "RDPMC" }, \
{ EXIT_REASON_RDTSC, "RDTSC" }, \
{ EXIT_REASON_VMCALL, "VMCALL" }, \
{ EXIT_REASON_VMCLEAR, "VMCLEAR" }, \
{ EXIT_REASON_VMLAUNCH, "VMLAUNCH" }, \
{ EXIT_REASON_VMPTRLD, "VMPTRLD" }, \
{ EXIT_REASON_VMPTRST, "VMPTRST" }, \
{ EXIT_REASON_VMREAD, "VMREAD" }, \
{ EXIT_REASON_VMRESUME, "VMRESUME" }, \
{ EXIT_REASON_VMWRITE, "VMWRITE" }, \
{ EXIT_REASON_VMOFF, "VMOFF" }, \
{ EXIT_REASON_VMON, "VMON" }, \
{ EXIT_REASON_CR_ACCESS, "CR_ACCESS" }, \
{ EXIT_REASON_DR_ACCESS, "DR_ACCESS" }, \
{ EXIT_REASON_IO_INSTRUCTION, "IO_INSTRUCTION" }, \
{ EXIT_REASON_MSR_READ, "MSR_READ" }, \
{ EXIT_REASON_MSR_WRITE, "MSR_WRITE" }, \
{ EXIT_REASON_INVALID_STATE, "INVALID_STATE" }, \
{ EXIT_REASON_MSR_LOAD_FAIL, "MSR_LOAD_FAIL" }, \
{ EXIT_REASON_MWAIT_INSTRUCTION, "MWAIT_INSTRUCTION" }, \
{ EXIT_REASON_MONITOR_TRAP_FLAG, "MONITOR_TRAP_FLAG" }, \
{ EXIT_REASON_MONITOR_INSTRUCTION, "MONITOR_INSTRUCTION" }, \
{ EXIT_REASON_PAUSE_INSTRUCTION, "PAUSE_INSTRUCTION" }, \
{ EXIT_REASON_MCE_DURING_VMENTRY, "MCE_DURING_VMENTRY" }, \
{ EXIT_REASON_TPR_BELOW_THRESHOLD, "TPR_BELOW_THRESHOLD" }, \
{ EXIT_REASON_APIC_ACCESS, "APIC_ACCESS" }, \
{ EXIT_REASON_EOI_INDUCED, "EOI_INDUCED" }, \
{ EXIT_REASON_GDTR_IDTR, "GDTR_IDTR" }, \
{ EXIT_REASON_LDTR_TR, "LDTR_TR" }, \
{ EXIT_REASON_EPT_VIOLATION, "EPT_VIOLATION" }, \
{ EXIT_REASON_EPT_MISCONFIG, "EPT_MISCONFIG" }, \
{ EXIT_REASON_INVEPT, "INVEPT" }, \
{ EXIT_REASON_RDTSCP, "RDTSCP" }, \
{ EXIT_REASON_PREEMPTION_TIMER, "PREEMPTION_TIMER" }, \
{ EXIT_REASON_INVVPID, "INVVPID" }, \
{ EXIT_REASON_WBINVD, "WBINVD" }, \
{ EXIT_REASON_XSETBV, "XSETBV" }, \
{ EXIT_REASON_APIC_WRITE, "APIC_WRITE" }, \
{ EXIT_REASON_RDRAND, "RDRAND" }, \
{ EXIT_REASON_INVPCID, "INVPCID" }, \
{ EXIT_REASON_VMFUNC, "VMFUNC" }, \
{ EXIT_REASON_ENCLS, "ENCLS" }, \
{ EXIT_REASON_RDSEED, "RDSEED" }, \
{ EXIT_REASON_PML_FULL, "PML_FULL" }, \
{ EXIT_REASON_XSAVES, "XSAVES" }, \
{ EXIT_REASON_XRSTORS, "XRSTORS" }, \
{ EXIT_REASON_UMWAIT, "UMWAIT" }, \
KVM: VMX: Enable bus lock VM exit Virtual Machine can exploit bus locks to degrade the performance of system. Bus lock can be caused by split locked access to writeback(WB) memory or by using locks on uncacheable(UC) memory. The bus lock is typically >1000 cycles slower than an atomic operation within a cache line. It also disrupts performance on other cores (which must wait for the bus lock to be released before their memory operations can complete). To address the threat, bus lock VM exit is introduced to notify the VMM when a bus lock was acquired, allowing it to enforce throttling or other policy based mitigations. A VMM can enable VM exit due to bus locks by setting a new "Bus Lock Detection" VM-execution control(bit 30 of Secondary Processor-based VM execution controls). If delivery of this VM exit was preempted by a higher priority VM exit (e.g. EPT misconfiguration, EPT violation, APIC access VM exit, APIC write VM exit, exception bitmap exiting), bit 26 of exit reason in vmcs field is set to 1. In current implementation, the KVM exposes this capability through KVM_CAP_X86_BUS_LOCK_EXIT. The user can get the supported mode bitmap (i.e. off and exit) and enable it explicitly (disabled by default). If bus locks in guest are detected by KVM, exit to user space even when current exit reason is handled by KVM internally. Set a new field KVM_RUN_BUS_LOCK in vcpu->run->flags to inform the user space that there is a bus lock detected in guest. Document for Bus Lock VM exit is now available at the latest "Intel Architecture Instruction Set Extensions Programming Reference". Document Link: https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com> Message-Id: <20201106090315.18606-4-chenyi.qiang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-06 09:03:14 +00:00
{ EXIT_REASON_TPAUSE, "TPAUSE" }, \
{ EXIT_REASON_BUS_LOCK, "BUS_LOCK" }
#define VMX_EXIT_REASON_FLAGS \
{ VMX_EXIT_REASONS_FAILED_VMENTRY, "FAILED_VMENTRY" }
#define VMX_ABORT_SAVE_GUEST_MSR_FAIL 1
#define VMX_ABORT_LOAD_HOST_PDPTE_FAIL 2
#define VMX_ABORT_LOAD_HOST_MSR_FAIL 4
#endif /* _UAPIVMX_H */