linux-stable/drivers/mtd/nand/omap2.c

1619 lines
44 KiB
C
Raw Normal View History

/*
* Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
* Copyright © 2004 Micron Technology Inc.
* Copyright © 2004 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/sched.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/omap-dma.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#ifdef CONFIG_MTD_NAND_OMAP_BCH
#include <linux/bch.h>
#endif
#include <linux/platform_data/mtd-nand-omap2.h>
#define DRIVER_NAME "omap2-nand"
#define OMAP_NAND_TIMEOUT_MS 5000
#define NAND_Ecc_P1e (1 << 0)
#define NAND_Ecc_P2e (1 << 1)
#define NAND_Ecc_P4e (1 << 2)
#define NAND_Ecc_P8e (1 << 3)
#define NAND_Ecc_P16e (1 << 4)
#define NAND_Ecc_P32e (1 << 5)
#define NAND_Ecc_P64e (1 << 6)
#define NAND_Ecc_P128e (1 << 7)
#define NAND_Ecc_P256e (1 << 8)
#define NAND_Ecc_P512e (1 << 9)
#define NAND_Ecc_P1024e (1 << 10)
#define NAND_Ecc_P2048e (1 << 11)
#define NAND_Ecc_P1o (1 << 16)
#define NAND_Ecc_P2o (1 << 17)
#define NAND_Ecc_P4o (1 << 18)
#define NAND_Ecc_P8o (1 << 19)
#define NAND_Ecc_P16o (1 << 20)
#define NAND_Ecc_P32o (1 << 21)
#define NAND_Ecc_P64o (1 << 22)
#define NAND_Ecc_P128o (1 << 23)
#define NAND_Ecc_P256o (1 << 24)
#define NAND_Ecc_P512o (1 << 25)
#define NAND_Ecc_P1024o (1 << 26)
#define NAND_Ecc_P2048o (1 << 27)
#define TF(value) (value ? 1 : 0)
#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
#define PREFETCH_CONFIG1_CS_SHIFT 24
#define ECC_CONFIG_CS_SHIFT 1
#define CS_MASK 0x7
#define ENABLE_PREFETCH (0x1 << 7)
#define DMA_MPU_MODE_SHIFT 2
#define ECCSIZE0_SHIFT 12
#define ECCSIZE1_SHIFT 22
#define ECC1RESULTSIZE 0x1
#define ECCCLEAR 0x100
#define ECC1 0x1
#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
#define STATUS_BUFF_EMPTY 0x00000001
#define OMAP24XX_DMA_GPMC 4
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
/* Define some generic bad / good block scan pattern which are used
* while scanning a device for factory marked good / bad blocks
*/
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr bb_descrip_flashbased = {
.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
.offs = 0,
.len = 1,
.pattern = scan_ff_pattern,
};
struct omap_nand_info {
struct nand_hw_control controller;
struct omap_nand_platform_data *pdata;
struct mtd_info mtd;
struct nand_chip nand;
struct platform_device *pdev;
int gpmc_cs;
unsigned long phys_base;
unsigned long mem_size;
struct completion comp;
struct dma_chan *dma;
int gpmc_irq_fifo;
int gpmc_irq_count;
enum {
OMAP_NAND_IO_READ = 0, /* read */
OMAP_NAND_IO_WRITE, /* write */
} iomode;
u_char *buf;
int buf_len;
struct gpmc_nand_regs reg;
#ifdef CONFIG_MTD_NAND_OMAP_BCH
struct bch_control *bch;
struct nand_ecclayout ecclayout;
#endif
};
/**
* omap_prefetch_enable - configures and starts prefetch transfer
* @cs: cs (chip select) number
* @fifo_th: fifo threshold to be used for read/ write
* @dma_mode: dma mode enable (1) or disable (0)
* @u32_count: number of bytes to be transferred
* @is_write: prefetch read(0) or write post(1) mode
*/
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
u32 val;
if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
return -1;
if (readl(info->reg.gpmc_prefetch_control))
return -EBUSY;
/* Set the amount of bytes to be prefetched */
writel(u32_count, info->reg.gpmc_prefetch_config2);
/* Set dma/mpu mode, the prefetch read / post write and
* enable the engine. Set which cs is has requested for.
*/
val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
writel(val, info->reg.gpmc_prefetch_config1);
/* Start the prefetch engine */
writel(0x1, info->reg.gpmc_prefetch_control);
return 0;
}
/**
* omap_prefetch_reset - disables and stops the prefetch engine
*/
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
u32 config1;
/* check if the same module/cs is trying to reset */
config1 = readl(info->reg.gpmc_prefetch_config1);
if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
return -EINVAL;
/* Stop the PFPW engine */
writel(0x0, info->reg.gpmc_prefetch_control);
/* Reset/disable the PFPW engine */
writel(0x0, info->reg.gpmc_prefetch_config1);
return 0;
}
/**
* omap_hwcontrol - hardware specific access to control-lines
* @mtd: MTD device structure
* @cmd: command to device
* @ctrl:
* NAND_NCE: bit 0 -> don't care
* NAND_CLE: bit 1 -> Command Latch
* NAND_ALE: bit 2 -> Address Latch
*
* NOTE: boards may use different bits for these!!
*/
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
if (cmd != NAND_CMD_NONE) {
if (ctrl & NAND_CLE)
writeb(cmd, info->reg.gpmc_nand_command);
else if (ctrl & NAND_ALE)
writeb(cmd, info->reg.gpmc_nand_address);
else /* NAND_NCE */
writeb(cmd, info->reg.gpmc_nand_data);
}
}
/**
* omap_read_buf8 - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand = mtd->priv;
ioread8_rep(nand->IO_ADDR_R, buf, len);
}
/**
* omap_write_buf8 - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
u_char *p = (u_char *)buf;
u32 status = 0;
while (len--) {
iowrite8(*p++, info->nand.IO_ADDR_W);
/* wait until buffer is available for write */
do {
status = readl(info->reg.gpmc_status) &
STATUS_BUFF_EMPTY;
} while (!status);
}
}
/**
* omap_read_buf16 - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand = mtd->priv;
ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
}
/**
* omap_write_buf16 - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
u16 *p = (u16 *) buf;
u32 status = 0;
/* FIXME try bursts of writesw() or DMA ... */
len >>= 1;
while (len--) {
iowrite16(*p++, info->nand.IO_ADDR_W);
/* wait until buffer is available for write */
do {
status = readl(info->reg.gpmc_status) &
STATUS_BUFF_EMPTY;
} while (!status);
}
}
/**
* omap_read_buf_pref - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
uint32_t r_count = 0;
int ret = 0;
u32 *p = (u32 *)buf;
/* take care of subpage reads */
if (len % 4) {
if (info->nand.options & NAND_BUSWIDTH_16)
omap_read_buf16(mtd, buf, len % 4);
else
omap_read_buf8(mtd, buf, len % 4);
p = (u32 *) (buf + len % 4);
len -= len % 4;
}
/* configure and start prefetch transfer */
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
if (ret) {
/* PFPW engine is busy, use cpu copy method */
if (info->nand.options & NAND_BUSWIDTH_16)
omap_read_buf16(mtd, (u_char *)p, len);
else
omap_read_buf8(mtd, (u_char *)p, len);
} else {
do {
r_count = readl(info->reg.gpmc_prefetch_status);
r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
r_count = r_count >> 2;
ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
p += r_count;
len -= r_count << 2;
} while (len);
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
}
}
/**
* omap_write_buf_pref - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf_pref(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
uint32_t w_count = 0;
int i = 0, ret = 0;
u16 *p = (u16 *)buf;
unsigned long tim, limit;
u32 val;
/* take care of subpage writes */
if (len % 2 != 0) {
writeb(*buf, info->nand.IO_ADDR_W);
p = (u16 *)(buf + 1);
len--;
}
/* configure and start prefetch transfer */
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
if (ret) {
/* PFPW engine is busy, use cpu copy method */
if (info->nand.options & NAND_BUSWIDTH_16)
omap_write_buf16(mtd, (u_char *)p, len);
else
omap_write_buf8(mtd, (u_char *)p, len);
} else {
while (len) {
w_count = readl(info->reg.gpmc_prefetch_status);
w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
w_count = w_count >> 1;
for (i = 0; (i < w_count) && len; i++, len -= 2)
iowrite16(*p++, info->nand.IO_ADDR_W);
}
/* wait for data to flushed-out before reset the prefetch */
tim = 0;
limit = (loops_per_jiffy *
msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
do {
cpu_relax();
val = readl(info->reg.gpmc_prefetch_status);
val = PREFETCH_STATUS_COUNT(val);
} while (val && (tim++ < limit));
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
}
}
/*
* omap_nand_dma_callback: callback on the completion of dma transfer
* @data: pointer to completion data structure
*/
static void omap_nand_dma_callback(void *data)
{
complete((struct completion *) data);
}
/*
* omap_nand_dma_transfer: configure and start dma transfer
* @mtd: MTD device structure
* @addr: virtual address in RAM of source/destination
* @len: number of data bytes to be transferred
* @is_write: flag for read/write operation
*/
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
unsigned int len, int is_write)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
struct dma_async_tx_descriptor *tx;
enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
DMA_FROM_DEVICE;
struct scatterlist sg;
unsigned long tim, limit;
unsigned n;
int ret;
u32 val;
if (addr >= high_memory) {
struct page *p1;
if (((size_t)addr & PAGE_MASK) !=
((size_t)(addr + len - 1) & PAGE_MASK))
goto out_copy;
p1 = vmalloc_to_page(addr);
if (!p1)
goto out_copy;
addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
}
sg_init_one(&sg, addr, len);
n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
if (n == 0) {
dev_err(&info->pdev->dev,
"Couldn't DMA map a %d byte buffer\n", len);
goto out_copy;
}
tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx)
goto out_copy_unmap;
tx->callback = omap_nand_dma_callback;
tx->callback_param = &info->comp;
dmaengine_submit(tx);
/* configure and start prefetch transfer */
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
if (ret)
/* PFPW engine is busy, use cpu copy method */
goto out_copy_unmap;
init_completion(&info->comp);
dma_async_issue_pending(info->dma);
/* setup and start DMA using dma_addr */
wait_for_completion(&info->comp);
tim = 0;
limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
do {
cpu_relax();
val = readl(info->reg.gpmc_prefetch_status);
val = PREFETCH_STATUS_COUNT(val);
} while (val && (tim++ < limit));
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
return 0;
out_copy_unmap:
dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
out_copy:
if (info->nand.options & NAND_BUSWIDTH_16)
is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
: omap_write_buf16(mtd, (u_char *) addr, len);
else
is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
: omap_write_buf8(mtd, (u_char *) addr, len);
return 0;
}
/**
* omap_read_buf_dma_pref - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
if (len <= mtd->oobsize)
omap_read_buf_pref(mtd, buf, len);
else
/* start transfer in DMA mode */
omap_nand_dma_transfer(mtd, buf, len, 0x0);
}
/**
* omap_write_buf_dma_pref - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
const u_char *buf, int len)
{
if (len <= mtd->oobsize)
omap_write_buf_pref(mtd, buf, len);
else
/* start transfer in DMA mode */
omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
}
/*
* omap_nand_irq - GPMC irq handler
* @this_irq: gpmc irq number
* @dev: omap_nand_info structure pointer is passed here
*/
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
struct omap_nand_info *info = (struct omap_nand_info *) dev;
u32 bytes;
bytes = readl(info->reg.gpmc_prefetch_status);
bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
if (this_irq == info->gpmc_irq_count)
goto done;
if (info->buf_len && (info->buf_len < bytes))
bytes = info->buf_len;
else if (!info->buf_len)
bytes = 0;
iowrite32_rep(info->nand.IO_ADDR_W,
(u32 *)info->buf, bytes >> 2);
info->buf = info->buf + bytes;
info->buf_len -= bytes;
} else {
ioread32_rep(info->nand.IO_ADDR_R,
(u32 *)info->buf, bytes >> 2);
info->buf = info->buf + bytes;
if (this_irq == info->gpmc_irq_count)
goto done;
}
return IRQ_HANDLED;
done:
complete(&info->comp);
disable_irq_nosync(info->gpmc_irq_fifo);
disable_irq_nosync(info->gpmc_irq_count);
return IRQ_HANDLED;
}
/*
* omap_read_buf_irq_pref - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
int ret = 0;
if (len <= mtd->oobsize) {
omap_read_buf_pref(mtd, buf, len);
return;
}
info->iomode = OMAP_NAND_IO_READ;
info->buf = buf;
init_completion(&info->comp);
/* configure and start prefetch transfer */
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
if (ret)
/* PFPW engine is busy, use cpu copy method */
goto out_copy;
info->buf_len = len;
enable_irq(info->gpmc_irq_count);
enable_irq(info->gpmc_irq_fifo);
/* waiting for read to complete */
wait_for_completion(&info->comp);
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
return;
out_copy:
if (info->nand.options & NAND_BUSWIDTH_16)
omap_read_buf16(mtd, buf, len);
else
omap_read_buf8(mtd, buf, len);
}
/*
* omap_write_buf_irq_pref - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
int ret = 0;
unsigned long tim, limit;
u32 val;
if (len <= mtd->oobsize) {
omap_write_buf_pref(mtd, buf, len);
return;
}
info->iomode = OMAP_NAND_IO_WRITE;
info->buf = (u_char *) buf;
init_completion(&info->comp);
/* configure and start prefetch transfer : size=24 */
ret = omap_prefetch_enable(info->gpmc_cs,
(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
if (ret)
/* PFPW engine is busy, use cpu copy method */
goto out_copy;
info->buf_len = len;
enable_irq(info->gpmc_irq_count);
enable_irq(info->gpmc_irq_fifo);
/* waiting for write to complete */
wait_for_completion(&info->comp);
/* wait for data to flushed-out before reset the prefetch */
tim = 0;
limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
do {
val = readl(info->reg.gpmc_prefetch_status);
val = PREFETCH_STATUS_COUNT(val);
cpu_relax();
} while (val && (tim++ < limit));
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
return;
out_copy:
if (info->nand.options & NAND_BUSWIDTH_16)
omap_write_buf16(mtd, buf, len);
else
omap_write_buf8(mtd, buf, len);
}
/**
* gen_true_ecc - This function will generate true ECC value
* @ecc_buf: buffer to store ecc code
*
* This generated true ECC value can be used when correcting
* data read from NAND flash memory core
*/
static void gen_true_ecc(u8 *ecc_buf)
{
u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}
/**
* omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
* @ecc_data1: ecc code from nand spare area
* @ecc_data2: ecc code from hardware register obtained from hardware ecc
* @page_data: page data
*
* This function compares two ECC's and indicates if there is an error.
* If the error can be corrected it will be corrected to the buffer.
* If there is no error, %0 is returned. If there is an error but it
* was corrected, %1 is returned. Otherwise, %-1 is returned.
*/
static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
u8 *ecc_data2, /* read from register */
u8 *page_data)
{
uint i;
u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
u8 ecc_bit[24];
u8 ecc_sum = 0;
u8 find_bit = 0;
uint find_byte = 0;
int isEccFF;
isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
gen_true_ecc(ecc_data1);
gen_true_ecc(ecc_data2);
for (i = 0; i <= 2; i++) {
*(ecc_data1 + i) = ~(*(ecc_data1 + i));
*(ecc_data2 + i) = ~(*(ecc_data2 + i));
}
for (i = 0; i < 8; i++) {
tmp0_bit[i] = *ecc_data1 % 2;
*ecc_data1 = *ecc_data1 / 2;
}
for (i = 0; i < 8; i++) {
tmp1_bit[i] = *(ecc_data1 + 1) % 2;
*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
}
for (i = 0; i < 8; i++) {
tmp2_bit[i] = *(ecc_data1 + 2) % 2;
*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
}
for (i = 0; i < 8; i++) {
comp0_bit[i] = *ecc_data2 % 2;
*ecc_data2 = *ecc_data2 / 2;
}
for (i = 0; i < 8; i++) {
comp1_bit[i] = *(ecc_data2 + 1) % 2;
*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
}
for (i = 0; i < 8; i++) {
comp2_bit[i] = *(ecc_data2 + 2) % 2;
*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
}
for (i = 0; i < 6; i++)
ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
for (i = 0; i < 8; i++)
ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
for (i = 0; i < 8; i++)
ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
for (i = 0; i < 24; i++)
ecc_sum += ecc_bit[i];
switch (ecc_sum) {
case 0:
/* Not reached because this function is not called if
* ECC values are equal
*/
return 0;
case 1:
/* Uncorrectable error */
pr_debug("ECC UNCORRECTED_ERROR 1\n");
return -1;
case 11:
/* UN-Correctable error */
pr_debug("ECC UNCORRECTED_ERROR B\n");
return -1;
case 12:
/* Correctable error */
find_byte = (ecc_bit[23] << 8) +
(ecc_bit[21] << 7) +
(ecc_bit[19] << 6) +
(ecc_bit[17] << 5) +
(ecc_bit[15] << 4) +
(ecc_bit[13] << 3) +
(ecc_bit[11] << 2) +
(ecc_bit[9] << 1) +
ecc_bit[7];
find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
pr_debug("Correcting single bit ECC error at offset: "
"%d, bit: %d\n", find_byte, find_bit);
page_data[find_byte] ^= (1 << find_bit);
return 1;
default:
if (isEccFF) {
if (ecc_data2[0] == 0 &&
ecc_data2[1] == 0 &&
ecc_data2[2] == 0)
return 0;
}
pr_debug("UNCORRECTED_ERROR default\n");
return -1;
}
}
/**
* omap_correct_data - Compares the ECC read with HW generated ECC
* @mtd: MTD device structure
* @dat: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from HW ECC registers
*
* Compares the ecc read from nand spare area with ECC registers values
* and if ECC's mismatched, it will call 'omap_compare_ecc' for error
* detection and correction. If there are no errors, %0 is returned. If
* there were errors and all of the errors were corrected, the number of
* corrected errors is returned. If uncorrectable errors exist, %-1 is
* returned.
*/
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
int blockCnt = 0, i = 0, ret = 0;
int stat = 0;
/* Ex NAND_ECC_HW12_2048 */
if ((info->nand.ecc.mode == NAND_ECC_HW) &&
(info->nand.ecc.size == 2048))
blockCnt = 4;
else
blockCnt = 1;
for (i = 0; i < blockCnt; i++) {
if (memcmp(read_ecc, calc_ecc, 3) != 0) {
ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
if (ret < 0)
return ret;
/* keep track of the number of corrected errors */
stat += ret;
}
read_ecc += 3;
calc_ecc += 3;
dat += 512;
}
return stat;
}
/**
* omap_calcuate_ecc - Generate non-inverted ECC bytes.
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*
* Using noninverted ECC can be considered ugly since writing a blank
* page ie. padding will clear the ECC bytes. This is no problem as long
* nobody is trying to write data on the seemingly unused page. Reading
* an erased page will produce an ECC mismatch between generated and read
* ECC bytes that has to be dealt with separately.
*/
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
u32 val;
val = readl(info->reg.gpmc_ecc_config);
if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
return -EINVAL;
/* read ecc result */
val = readl(info->reg.gpmc_ecc1_result);
*ecc_code++ = val; /* P128e, ..., P1e */
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
return 0;
}
/**
* omap_enable_hwecc - This function enables the hardware ecc functionality
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
struct nand_chip *chip = mtd->priv;
unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
u32 val;
/* clear ecc and enable bits */
val = ECCCLEAR | ECC1;
writel(val, info->reg.gpmc_ecc_control);
/* program ecc and result sizes */
val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
ECC1RESULTSIZE);
writel(val, info->reg.gpmc_ecc_size_config);
switch (mode) {
case NAND_ECC_READ:
case NAND_ECC_WRITE:
writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
break;
case NAND_ECC_READSYN:
writel(ECCCLEAR, info->reg.gpmc_ecc_control);
break;
default:
dev_info(&info->pdev->dev,
"error: unrecognized Mode[%d]!\n", mode);
break;
}
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
writel(val, info->reg.gpmc_ecc_config);
}
/**
* omap_wait - wait until the command is done
* @mtd: MTD device structure
* @chip: NAND Chip structure
*
* Wait function is called during Program and erase operations and
* the way it is called from MTD layer, we should wait till the NAND
* chip is ready after the programming/erase operation has completed.
*
* Erase can take up to 400ms and program up to 20ms according to
* general NAND and SmartMedia specs
*/
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
struct nand_chip *this = mtd->priv;
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
unsigned long timeo = jiffies;
int status, state = this->state;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
while (time_before(jiffies, timeo)) {
status = readb(info->reg.gpmc_nand_data);
if (status & NAND_STATUS_READY)
break;
cond_resched();
}
status = readb(info->reg.gpmc_nand_data);
return status;
}
/**
* omap_dev_ready - calls the platform specific dev_ready function
* @mtd: MTD device structure
*/
static int omap_dev_ready(struct mtd_info *mtd)
{
unsigned int val = 0;
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
val = readl(info->reg.gpmc_status);
if ((val & 0x100) == 0x100) {
return 1;
} else {
return 0;
}
}
#ifdef CONFIG_MTD_NAND_OMAP_BCH
/**
* omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
{
int nerrors;
unsigned int dev_width, nsectors;
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
struct nand_chip *chip = mtd->priv;
u32 val;
nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
nsectors = 1;
/*
* Program GPMC to perform correction on one 512-byte sector at a time.
* Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
* gives a slight (5%) performance gain (but requires additional code).
*/
writel(ECC1, info->reg.gpmc_ecc_control);
/*
* When using BCH, sector size is hardcoded to 512 bytes.
* Here we are using wrapping mode 6 both for reading and writing, with:
* size0 = 0 (no additional protected byte in spare area)
* size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
*/
val = (32 << ECCSIZE1_SHIFT) | (0 << ECCSIZE0_SHIFT);
writel(val, info->reg.gpmc_ecc_size_config);
/* BCH configuration */
val = ((1 << 16) | /* enable BCH */
(((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
(0x06 << 8) | /* wrap mode = 6 */
(dev_width << 7) | /* bus width */
(((nsectors-1) & 0x7) << 4) | /* number of sectors */
(info->gpmc_cs << 1) | /* ECC CS */
(0x1)); /* enable ECC */
writel(val, info->reg.gpmc_ecc_config);
/* clear ecc and enable bits */
writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
}
/**
* omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*/
static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
unsigned long nsectors, val1, val2;
int i;
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
/* Read hw-computed remainder */
val1 = readl(info->reg.gpmc_bch_result0[i]);
val2 = readl(info->reg.gpmc_bch_result1[i]);
/*
* Add constant polynomial to remainder, in order to get an ecc
* sequence of 0xFFs for a buffer filled with 0xFFs; and
* left-justify the resulting polynomial.
*/
*ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
*ecc_code++ = 0x13 ^ ((val2 >> 4) & 0xFF);
*ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
*ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
*ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
*ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
*ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
}
return 0;
}
/**
* omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*/
static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
unsigned long nsectors, val1, val2, val3, val4;
int i;
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
/* Read hw-computed remainder */
val1 = readl(info->reg.gpmc_bch_result0[i]);
val2 = readl(info->reg.gpmc_bch_result1[i]);
val3 = readl(info->reg.gpmc_bch_result2[i]);
val4 = readl(info->reg.gpmc_bch_result3[i]);
/*
* Add constant polynomial to remainder, in order to get an ecc
* sequence of 0xFFs for a buffer filled with 0xFFs.
*/
*ecc_code++ = 0xef ^ (val4 & 0xFF);
*ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
*ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
*ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
*ecc_code++ = 0xed ^ (val3 & 0xFF);
*ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
*ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
*ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
*ecc_code++ = 0x97 ^ (val2 & 0xFF);
*ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
*ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
*ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
*ecc_code++ = 0xb5 ^ (val1 & 0xFF);
}
return 0;
}
/**
* omap3_correct_data_bch - Decode received data and correct errors
* @mtd: MTD device structure
* @data: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from HW ECC registers
*/
static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
u_char *read_ecc, u_char *calc_ecc)
{
int i, count;
/* cannot correct more than 8 errors */
unsigned int errloc[8];
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
errloc);
if (count > 0) {
/* correct errors */
for (i = 0; i < count; i++) {
/* correct data only, not ecc bytes */
if (errloc[i] < 8*512)
data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
pr_debug("corrected bitflip %u\n", errloc[i]);
}
} else if (count < 0) {
pr_err("ecc unrecoverable error\n");
}
return count;
}
/**
* omap3_free_bch - Release BCH ecc resources
* @mtd: MTD device structure
*/
static void omap3_free_bch(struct mtd_info *mtd)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
if (info->bch) {
free_bch(info->bch);
info->bch = NULL;
}
}
/**
* omap3_init_bch - Initialize BCH ECC
* @mtd: MTD device structure
* @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
*/
static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
{
int max_errors;
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
#ifdef CONFIG_MTD_NAND_OMAP_BCH8
const int hw_errors = 8;
#else
const int hw_errors = 4;
#endif
info->bch = NULL;
max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
if (max_errors != hw_errors) {
pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
max_errors, hw_errors);
goto fail;
}
/* software bch library is only used to detect and locate errors */
info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
if (!info->bch)
goto fail;
info->nand.ecc.size = 512;
info->nand.ecc.hwctl = omap3_enable_hwecc_bch;
info->nand.ecc.correct = omap3_correct_data_bch;
info->nand.ecc.mode = NAND_ECC_HW;
/*
* The number of corrected errors in an ecc block that will trigger
* block scrubbing defaults to the ecc strength (4 or 8).
* Set mtd->bitflip_threshold here to define a custom threshold.
*/
if (max_errors == 8) {
info->nand.ecc.strength = 8;
info->nand.ecc.bytes = 13;
info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
} else {
info->nand.ecc.strength = 4;
info->nand.ecc.bytes = 7;
info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
}
pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
return 0;
fail:
omap3_free_bch(mtd);
return -1;
}
/**
* omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
* @mtd: MTD device structure
*/
static int omap3_init_bch_tail(struct mtd_info *mtd)
{
int i, steps;
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
struct nand_ecclayout *layout = &info->ecclayout;
/* build oob layout */
steps = mtd->writesize/info->nand.ecc.size;
layout->eccbytes = steps*info->nand.ecc.bytes;
/* do not bother creating special oob layouts for small page devices */
if (mtd->oobsize < 64) {
pr_err("BCH ecc is not supported on small page devices\n");
goto fail;
}
/* reserve 2 bytes for bad block marker */
if (layout->eccbytes+2 > mtd->oobsize) {
pr_err("no oob layout available for oobsize %d eccbytes %u\n",
mtd->oobsize, layout->eccbytes);
goto fail;
}
/* put ecc bytes at oob tail */
for (i = 0; i < layout->eccbytes; i++)
layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
layout->oobfree[0].offset = 2;
layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
info->nand.ecc.layout = layout;
if (!(info->nand.options & NAND_BUSWIDTH_16))
info->nand.badblock_pattern = &bb_descrip_flashbased;
return 0;
fail:
omap3_free_bch(mtd);
return -1;
}
#else
static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
{
pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
return -1;
}
static int omap3_init_bch_tail(struct mtd_info *mtd)
{
return -1;
}
static void omap3_free_bch(struct mtd_info *mtd)
{
}
#endif /* CONFIG_MTD_NAND_OMAP_BCH */
static int omap_nand_probe(struct platform_device *pdev)
{
struct omap_nand_info *info;
struct omap_nand_platform_data *pdata;
int err;
int i, offset;
dma_cap_mask_t mask;
unsigned sig;
struct resource *res;
pdata = pdev->dev.platform_data;
if (pdata == NULL) {
dev_err(&pdev->dev, "platform data missing\n");
return -ENODEV;
}
info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
if (!info)
return -ENOMEM;
platform_set_drvdata(pdev, info);
spin_lock_init(&info->controller.lock);
init_waitqueue_head(&info->controller.wq);
info->pdev = pdev;
info->gpmc_cs = pdata->cs;
info->reg = pdata->reg;
info->mtd.priv = &info->nand;
info->mtd.name = dev_name(&pdev->dev);
info->mtd.owner = THIS_MODULE;
info->nand.options = pdata->devsize;
info->nand.options |= NAND_SKIP_BBTSCAN;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
err = -EINVAL;
dev_err(&pdev->dev, "error getting memory resource\n");
goto out_free_info;
}
info->phys_base = res->start;
info->mem_size = resource_size(res);
if (!request_mem_region(info->phys_base, info->mem_size,
pdev->dev.driver->name)) {
err = -EBUSY;
goto out_free_info;
}
info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
if (!info->nand.IO_ADDR_R) {
err = -ENOMEM;
goto out_release_mem_region;
}
info->nand.controller = &info->controller;
info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
info->nand.cmd_ctrl = omap_hwcontrol;
/*
* If RDY/BSY line is connected to OMAP then use the omap ready
* function and the generic nand_wait function which reads the status
* register after monitoring the RDY/BSY line. Otherwise use a standard
* chip delay which is slightly more than tR (AC Timing) of the NAND
* device and read status register until you get a failure or success
*/
if (pdata->dev_ready) {
info->nand.dev_ready = omap_dev_ready;
info->nand.chip_delay = 0;
} else {
info->nand.waitfunc = omap_wait;
info->nand.chip_delay = 50;
}
switch (pdata->xfer_type) {
case NAND_OMAP_PREFETCH_POLLED:
info->nand.read_buf = omap_read_buf_pref;
info->nand.write_buf = omap_write_buf_pref;
break;
case NAND_OMAP_POLLED:
if (info->nand.options & NAND_BUSWIDTH_16) {
info->nand.read_buf = omap_read_buf16;
info->nand.write_buf = omap_write_buf16;
} else {
info->nand.read_buf = omap_read_buf8;
info->nand.write_buf = omap_write_buf8;
}
break;
case NAND_OMAP_PREFETCH_DMA:
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
sig = OMAP24XX_DMA_GPMC;
info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
if (!info->dma) {
dev_err(&pdev->dev, "DMA engine request failed\n");
err = -ENXIO;
goto out_release_mem_region;
} else {
struct dma_slave_config cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.src_addr = info->phys_base;
cfg.dst_addr = info->phys_base;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = 16;
cfg.dst_maxburst = 16;
err = dmaengine_slave_config(info->dma, &cfg);
if (err) {
dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
err);
goto out_release_mem_region;
}
info->nand.read_buf = omap_read_buf_dma_pref;
info->nand.write_buf = omap_write_buf_dma_pref;
}
break;
case NAND_OMAP_PREFETCH_IRQ:
info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
if (info->gpmc_irq_fifo <= 0) {
dev_err(&pdev->dev, "error getting fifo irq\n");
err = -ENODEV;
goto out_release_mem_region;
}
err = request_irq(info->gpmc_irq_fifo, omap_nand_irq,
IRQF_SHARED, "gpmc-nand-fifo", info);
if (err) {
dev_err(&pdev->dev, "requesting irq(%d) error:%d",
info->gpmc_irq_fifo, err);
info->gpmc_irq_fifo = 0;
goto out_release_mem_region;
}
info->gpmc_irq_count = platform_get_irq(pdev, 1);
if (info->gpmc_irq_count <= 0) {
dev_err(&pdev->dev, "error getting count irq\n");
err = -ENODEV;
goto out_release_mem_region;
}
err = request_irq(info->gpmc_irq_count, omap_nand_irq,
IRQF_SHARED, "gpmc-nand-count", info);
if (err) {
dev_err(&pdev->dev, "requesting irq(%d) error:%d",
info->gpmc_irq_count, err);
info->gpmc_irq_count = 0;
goto out_release_mem_region;
}
info->nand.read_buf = omap_read_buf_irq_pref;
info->nand.write_buf = omap_write_buf_irq_pref;
break;
default:
dev_err(&pdev->dev,
"xfer_type(%d) not supported!\n", pdata->xfer_type);
err = -EINVAL;
goto out_release_mem_region;
}
/* select the ecc type */
if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
info->nand.ecc.mode = NAND_ECC_SOFT;
else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
(pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
info->nand.ecc.bytes = 3;
info->nand.ecc.size = 512;
info->nand.ecc.strength = 1;
info->nand.ecc.calculate = omap_calculate_ecc;
info->nand.ecc.hwctl = omap_enable_hwecc;
info->nand.ecc.correct = omap_correct_data;
info->nand.ecc.mode = NAND_ECC_HW;
} else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
(pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
if (err) {
err = -EINVAL;
goto out_release_mem_region;
}
}
/* DIP switches on some boards change between 8 and 16 bit
* bus widths for flash. Try the other width if the first try fails.
*/
if (nand_scan_ident(&info->mtd, 1, NULL)) {
info->nand.options ^= NAND_BUSWIDTH_16;
if (nand_scan_ident(&info->mtd, 1, NULL)) {
err = -ENXIO;
goto out_release_mem_region;
}
}
/* rom code layout */
if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
if (info->nand.options & NAND_BUSWIDTH_16)
offset = 2;
else {
offset = 1;
info->nand.badblock_pattern = &bb_descrip_flashbased;
}
omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
for (i = 0; i < omap_oobinfo.eccbytes; i++)
omap_oobinfo.eccpos[i] = i+offset;
omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
omap_oobinfo.oobfree->length = info->mtd.oobsize -
(offset + omap_oobinfo.eccbytes);
info->nand.ecc.layout = &omap_oobinfo;
} else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
(pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
/* build OOB layout for BCH ECC correction */
err = omap3_init_bch_tail(&info->mtd);
if (err) {
err = -EINVAL;
goto out_release_mem_region;
}
}
/* second phase scan */
if (nand_scan_tail(&info->mtd)) {
err = -ENXIO;
goto out_release_mem_region;
}
mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
pdata->nr_parts);
platform_set_drvdata(pdev, &info->mtd);
return 0;
out_release_mem_region:
if (info->dma)
dma_release_channel(info->dma);
if (info->gpmc_irq_count > 0)
free_irq(info->gpmc_irq_count, info);
if (info->gpmc_irq_fifo > 0)
free_irq(info->gpmc_irq_fifo, info);
release_mem_region(info->phys_base, info->mem_size);
out_free_info:
kfree(info);
return err;
}
static int omap_nand_remove(struct platform_device *pdev)
{
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
omap3_free_bch(&info->mtd);
platform_set_drvdata(pdev, NULL);
if (info->dma)
dma_release_channel(info->dma);
if (info->gpmc_irq_count > 0)
free_irq(info->gpmc_irq_count, info);
if (info->gpmc_irq_fifo > 0)
free_irq(info->gpmc_irq_fifo, info);
/* Release NAND device, its internal structures and partitions */
nand_release(&info->mtd);
iounmap(info->nand.IO_ADDR_R);
release_mem_region(info->phys_base, info->mem_size);
mtd: omap2: fix omap_nand_remove segfault Do not kfree() the mtd_info; it is handled in the mtd subsystem and already freed by nand_release(). Instead kfree() the struct omap_nand_info allocated in omap_nand_probe which was not freed before. This patch fixes following error when unloading the omap2 module: ---8<--- ~ $ rmmod omap2 ------------[ cut here ]------------ kernel BUG at mm/slab.c:3126! Internal error: Oops - BUG: 0 [#1] PREEMPT ARM Modules linked in: omap2(-) CPU: 0 Not tainted (3.6.0-rc3-00230-g155e36d-dirty #3) PC is at cache_free_debugcheck+0x2d4/0x36c LR is at kfree+0xc8/0x2ac pc : [<c01125a0>] lr : [<c0112efc>] psr: 200d0193 sp : c521fe08 ip : c0e8ef90 fp : c521fe5c r10: bf0001fc r9 : c521e000 r8 : c0d99c8c r7 : c661ebc0 r6 : c065d5a4 r5 : c65c4060 r4 : c78005c0 r3 : 00000000 r2 : 00001000 r1 : c65c4000 r0 : 00000001 Flags: nzCv IRQs off FIQs on Mode SVC_32 ISA ARM Segment user Control: 10c5387d Table: 86694019 DAC: 00000015 Process rmmod (pid: 549, stack limit = 0xc521e2f0) Stack: (0xc521fe08 to 0xc5220000) fe00: c008a874 c00bf44c c515c6d0 200d0193 c65c4860 c515c240 fe20: c521fe3c c521fe30 c008a9c0 c008a854 c521fe5c c65c4860 c78005c0 bf0001fc fe40: c780ff40 a00d0113 c521e000 00000000 c521fe84 c521fe60 c0112efc c01122d8 fe60: c65c4860 c0673778 c06737ac 00000000 00070013 00000000 c521fe9c c521fe88 fe80: bf0001fc c0112e40 c0673778 bf001ca8 c521feac c521fea0 c02ca11c bf0001ac fea0: c521fec4 c521feb0 c02c82c4 c02ca100 c0673778 bf001ca8 c521fee4 c521fec8 fec0: c02c8dd8 c02c8250 00000000 bf001ca8 bf001ca8 c0804ee0 c521ff04 c521fee8 fee0: c02c804c c02c8d20 bf001924 00000000 bf001ca8 c521e000 c521ff1c c521ff08 ff00: c02c950c c02c7fbc bf001d48 00000000 c521ff2c c521ff20 c02ca3a4 c02c94b8 ff20: c521ff3c c521ff30 bf001938 c02ca394 c521ffa4 c521ff40 c009beb4 bf001930 ff40: c521ff6c 70616d6f b6fe0032 c0014f84 70616d6f b6fe0032 00000081 60070010 ff60: c521ff84 c521ff70 c008e1f4 c00bf328 0001a004 70616d6f c521ff94 0021ff88 ff80: c008e368 0001a004 70616d6f b6fe0032 00000081 c0015028 00000000 c521ffa8 ffa0: c0014dc0 c009bcd0 0001a004 70616d6f bec2ab38 00000880 bec2ab38 00000880 ffc0: 0001a004 70616d6f b6fe0032 00000081 00000319 00000000 b6fe1000 00000000 ffe0: bec2ab30 bec2ab20 00019f00 b6f539c0 60070010 bec2ab38 aaaaaaaa aaaaaaaa Backtrace: [<c01122cc>] (cache_free_debugcheck+0x0/0x36c) from [<c0112efc>] (kfree+0xc8/0x2ac) [<c0112e34>] (kfree+0x0/0x2ac) from [<bf0001fc>] (omap_nand_remove+0x5c/0x64 [omap2]) [<bf0001a0>] (omap_nand_remove+0x0/0x64 [omap2]) from [<c02ca11c>] (platform_drv_remove+0x28/0x2c) r5:bf001ca8 r4:c0673778 [<c02ca0f4>] (platform_drv_remove+0x0/0x2c) from [<c02c82c4>] (__device_release_driver+0x80/0xdc) [<c02c8244>] (__device_release_driver+0x0/0xdc) from [<c02c8dd8>] (driver_detach+0xc4/0xc8) r5:bf001ca8 r4:c0673778 [<c02c8d14>] (driver_detach+0x0/0xc8) from [<c02c804c>] (bus_remove_driver+0x9c/0x104) r6:c0804ee0 r5:bf001ca8 r4:bf001ca8 r3:00000000 [<c02c7fb0>] (bus_remove_driver+0x0/0x104) from [<c02c950c>] (driver_unregister+0x60/0x80) r6:c521e000 r5:bf001ca8 r4:00000000 r3:bf001924 [<c02c94ac>] (driver_unregister+0x0/0x80) from [<c02ca3a4>] (platform_driver_unregister+0x1c/0x20) r5:00000000 r4:bf001d48 [<c02ca388>] (platform_driver_unregister+0x0/0x20) from [<bf001938>] (omap_nand_driver_exit+0x14/0x1c [omap2]) [<bf001924>] (omap_nand_driver_exit+0x0/0x1c [omap2]) from [<c009beb4>] (sys_delete_module+0x1f0/0x2ec) [<c009bcc4>] (sys_delete_module+0x0/0x2ec) from [<c0014dc0>] (ret_fast_syscall+0x0/0x48) r8:c0015028 r7:00000081 r6:b6fe0032 r5:70616d6f r4:0001a004 Code: e1a00005 eb0d9172 e7f001f2 e7f001f2 (e7f001f2) ---[ end trace 6a30b24d8c0cc2ee ]--- Segmentation fault --->8--- This error was introduced in 67ce04bf2746f8a1f8c2a104b313d20c63f68378 which was the first commit of this driver. Signed-off-by: Andreas Bießmann <andreas@biessmann.de> Cc: stable@vger.kernel.org Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-08-31 11:35:41 +00:00
kfree(info);
return 0;
}
static struct platform_driver omap_nand_driver = {
.probe = omap_nand_probe,
.remove = omap_nand_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
module_platform_driver(omap_nand_driver);
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");