linux-stable/include/linux/export.h

92 lines
2.4 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef _LINUX_EXPORT_H
#define _LINUX_EXPORT_H
kbuild: generate KSYMTAB entries by modpost Commit 7b4537199a4a ("kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way whether the EXPORT_SYMBOL() is placed in *.c or *.S. For further cleanups, this commit applies a similar approach to the entire data structure of EXPORT_SYMBOL(). The EXPORT_SYMBOL() compilation is split into two stages. When a source file is compiled, EXPORT_SYMBOL() will be converted into a dummy symbol in the .export_symbol section. For example, EXPORT_SYMBOL(foo); EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE); will be encoded into the following assembly code: .section ".export_symbol","a" __export_symbol_foo: .asciz "" /* license */ .asciz "" /* name space */ .balign 8 .quad foo /* symbol reference */ .previous .section ".export_symbol","a" __export_symbol_bar: .asciz "GPL" /* license */ .asciz "BAR_NAMESPACE" /* name space */ .balign 8 .quad bar /* symbol reference */ .previous They are mere markers to tell modpost the name, license, and namespace of the symbols. They will be dropped from the final vmlinux and modules because the *(.export_symbol) will go into /DISCARD/ in the linker script. Then, modpost extracts all the information about EXPORT_SYMBOL() from the .export_symbol section, and generates the final C code: KSYMTAB_FUNC(foo, "", ""); KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE"); KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct kernel_symbol that will be linked to the vmlinux or a module. With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S files, providing the following benefits. [1] Deprecate EXPORT_DATA_SYMBOL() In the old days, EXPORT_SYMBOL() was only available in C files. To export a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file. arch/arm/kernel/armksyms.c is one example written in the classic manner. Commit 22823ab419d8 ("EXPORT_SYMBOL() for asm") removed this limitation. Since then, EXPORT_SYMBOL() can be placed close to the symbol definition in *.S files. It was a nice improvement. However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL() for data objects on some architectures. In the new approach, modpost checks symbol's type (STT_FUNC or not), and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly. There are only two users of EXPORT_DATA_SYMBOL: EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S) EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S) They are transformed as follows and output into .vmlinux.export.c KSYMTAB_DATA(empty_zero_page, "_gpl", ""); KSYMTAB_DATA(ia64_ivt, "", ""); The other EXPORT_SYMBOL users in ia64 assembly are output as KSYMTAB_FUNC(). EXPORT_DATA_SYMBOL() is now deprecated. [2] merge <linux/export.h> and <asm-generic/export.h> There are two similar header implementations: include/linux/export.h for .c files include/asm-generic/export.h for .S files Ideally, the functionality should be consistent between them, but they tend to diverge. Commit 8651ec01daed ("module: add support for symbol namespaces.") did not support the namespace for *.S files. This commit shifts the essential implementation part to C, which supports EXPORT_SYMBOL_NS() for *.S files. <asm/export.h> and <asm-generic/export.h> will remain as a wrapper of <linux/export.h> for a while. They will be removed after #include <asm/export.h> directives are all replaced with #include <linux/export.h>. [3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit) When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. We can do this better now; modpost can selectively emit KSYMTAB entries that are really used by modules. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-11 15:50:52 +00:00
#include <linux/compiler.h>
#include <linux/linkage.h>
#include <linux/stringify.h>
/*
* Export symbols from the kernel to modules. Forked from module.h
* to reduce the amount of pointless cruft we feed to gcc when only
* exporting a simple symbol or two.
*
* Try not to add #includes here. It slows compilation and makes kernel
* hackers place grumpy comments in header files.
*/
2022-05-13 11:39:22 +00:00
/*
* This comment block is used by fixdep. Please do not remove.
*
* When CONFIG_MODVERSIONS is changed from n to y, all source files having
* EXPORT_SYMBOL variants must be re-compiled because genksyms is run as a
* side effect of the *.o build rule.
*/
#ifndef __ASSEMBLY__
#ifdef MODULE
extern struct module __this_module;
#define THIS_MODULE (&__this_module)
#else
#define THIS_MODULE ((struct module *)0)
#endif
kbuild: generate KSYMTAB entries by modpost Commit 7b4537199a4a ("kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way whether the EXPORT_SYMBOL() is placed in *.c or *.S. For further cleanups, this commit applies a similar approach to the entire data structure of EXPORT_SYMBOL(). The EXPORT_SYMBOL() compilation is split into two stages. When a source file is compiled, EXPORT_SYMBOL() will be converted into a dummy symbol in the .export_symbol section. For example, EXPORT_SYMBOL(foo); EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE); will be encoded into the following assembly code: .section ".export_symbol","a" __export_symbol_foo: .asciz "" /* license */ .asciz "" /* name space */ .balign 8 .quad foo /* symbol reference */ .previous .section ".export_symbol","a" __export_symbol_bar: .asciz "GPL" /* license */ .asciz "BAR_NAMESPACE" /* name space */ .balign 8 .quad bar /* symbol reference */ .previous They are mere markers to tell modpost the name, license, and namespace of the symbols. They will be dropped from the final vmlinux and modules because the *(.export_symbol) will go into /DISCARD/ in the linker script. Then, modpost extracts all the information about EXPORT_SYMBOL() from the .export_symbol section, and generates the final C code: KSYMTAB_FUNC(foo, "", ""); KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE"); KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct kernel_symbol that will be linked to the vmlinux or a module. With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S files, providing the following benefits. [1] Deprecate EXPORT_DATA_SYMBOL() In the old days, EXPORT_SYMBOL() was only available in C files. To export a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file. arch/arm/kernel/armksyms.c is one example written in the classic manner. Commit 22823ab419d8 ("EXPORT_SYMBOL() for asm") removed this limitation. Since then, EXPORT_SYMBOL() can be placed close to the symbol definition in *.S files. It was a nice improvement. However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL() for data objects on some architectures. In the new approach, modpost checks symbol's type (STT_FUNC or not), and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly. There are only two users of EXPORT_DATA_SYMBOL: EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S) EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S) They are transformed as follows and output into .vmlinux.export.c KSYMTAB_DATA(empty_zero_page, "_gpl", ""); KSYMTAB_DATA(ia64_ivt, "", ""); The other EXPORT_SYMBOL users in ia64 assembly are output as KSYMTAB_FUNC(). EXPORT_DATA_SYMBOL() is now deprecated. [2] merge <linux/export.h> and <asm-generic/export.h> There are two similar header implementations: include/linux/export.h for .c files include/asm-generic/export.h for .S files Ideally, the functionality should be consistent between them, but they tend to diverge. Commit 8651ec01daed ("module: add support for symbol namespaces.") did not support the namespace for *.S files. This commit shifts the essential implementation part to C, which supports EXPORT_SYMBOL_NS() for *.S files. <asm/export.h> and <asm-generic/export.h> will remain as a wrapper of <linux/export.h> for a while. They will be removed after #include <asm/export.h> directives are all replaced with #include <linux/export.h>. [3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit) When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. We can do this better now; modpost can selectively emit KSYMTAB entries that are really used by modules. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-11 15:50:52 +00:00
#endif /* __ASSEMBLY__ */
kbuild: generate KSYMTAB entries by modpost Commit 7b4537199a4a ("kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way whether the EXPORT_SYMBOL() is placed in *.c or *.S. For further cleanups, this commit applies a similar approach to the entire data structure of EXPORT_SYMBOL(). The EXPORT_SYMBOL() compilation is split into two stages. When a source file is compiled, EXPORT_SYMBOL() will be converted into a dummy symbol in the .export_symbol section. For example, EXPORT_SYMBOL(foo); EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE); will be encoded into the following assembly code: .section ".export_symbol","a" __export_symbol_foo: .asciz "" /* license */ .asciz "" /* name space */ .balign 8 .quad foo /* symbol reference */ .previous .section ".export_symbol","a" __export_symbol_bar: .asciz "GPL" /* license */ .asciz "BAR_NAMESPACE" /* name space */ .balign 8 .quad bar /* symbol reference */ .previous They are mere markers to tell modpost the name, license, and namespace of the symbols. They will be dropped from the final vmlinux and modules because the *(.export_symbol) will go into /DISCARD/ in the linker script. Then, modpost extracts all the information about EXPORT_SYMBOL() from the .export_symbol section, and generates the final C code: KSYMTAB_FUNC(foo, "", ""); KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE"); KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct kernel_symbol that will be linked to the vmlinux or a module. With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S files, providing the following benefits. [1] Deprecate EXPORT_DATA_SYMBOL() In the old days, EXPORT_SYMBOL() was only available in C files. To export a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file. arch/arm/kernel/armksyms.c is one example written in the classic manner. Commit 22823ab419d8 ("EXPORT_SYMBOL() for asm") removed this limitation. Since then, EXPORT_SYMBOL() can be placed close to the symbol definition in *.S files. It was a nice improvement. However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL() for data objects on some architectures. In the new approach, modpost checks symbol's type (STT_FUNC or not), and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly. There are only two users of EXPORT_DATA_SYMBOL: EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S) EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S) They are transformed as follows and output into .vmlinux.export.c KSYMTAB_DATA(empty_zero_page, "_gpl", ""); KSYMTAB_DATA(ia64_ivt, "", ""); The other EXPORT_SYMBOL users in ia64 assembly are output as KSYMTAB_FUNC(). EXPORT_DATA_SYMBOL() is now deprecated. [2] merge <linux/export.h> and <asm-generic/export.h> There are two similar header implementations: include/linux/export.h for .c files include/asm-generic/export.h for .S files Ideally, the functionality should be consistent between them, but they tend to diverge. Commit 8651ec01daed ("module: add support for symbol namespaces.") did not support the namespace for *.S files. This commit shifts the essential implementation part to C, which supports EXPORT_SYMBOL_NS() for *.S files. <asm/export.h> and <asm-generic/export.h> will remain as a wrapper of <linux/export.h> for a while. They will be removed after #include <asm/export.h> directives are all replaced with #include <linux/export.h>. [3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit) When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. We can do this better now; modpost can selectively emit KSYMTAB entries that are really used by modules. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-11 15:50:52 +00:00
#ifdef CONFIG_64BIT
#define __EXPORT_SYMBOL_REF(sym) \
.balign 8 ASM_NL \
.quad sym
module: use relative references for __ksymtab entries An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries, each consisting of two 64-bit fields containing absolute references, to the symbol itself and to a char array containing its name, respectively. When we build the same configuration with KASLR enabled, we end up with an additional ~192 KB of relocations in the .init section, i.e., one 24 byte entry for each absolute reference, which all need to be processed at boot time. Given how the struct kernel_symbol that describes each entry is completely local to module.c (except for the references emitted by EXPORT_SYMBOL() itself), we can easily modify it to contain two 32-bit relative references instead. This reduces the size of the __ksymtab section by 50% for all 64-bit architectures, and gets rid of the runtime relocations entirely for architectures implementing KASLR, either via standard PIE linking (arm64) or using custom host tools (x86). Note that the binary search involving __ksymtab contents relies on each section being sorted by symbol name. This is implemented based on the input section names, not the names in the ksymtab entries, so this patch does not interfere with that. Given that the use of place-relative relocations requires support both in the toolchain and in the module loader, we cannot enable this feature for all architectures. So make it dependent on whether CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined. Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Jessica Yu <jeyu@kernel.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Will Deacon <will.deacon@arm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morris <james.morris@microsoft.com> Cc: James Morris <jmorris@namei.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Nicolas Pitre <nico@linaro.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Russell King <linux@armlinux.org.uk> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Garnier <thgarnie@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 04:56:09 +00:00
#else
kbuild: generate KSYMTAB entries by modpost Commit 7b4537199a4a ("kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way whether the EXPORT_SYMBOL() is placed in *.c or *.S. For further cleanups, this commit applies a similar approach to the entire data structure of EXPORT_SYMBOL(). The EXPORT_SYMBOL() compilation is split into two stages. When a source file is compiled, EXPORT_SYMBOL() will be converted into a dummy symbol in the .export_symbol section. For example, EXPORT_SYMBOL(foo); EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE); will be encoded into the following assembly code: .section ".export_symbol","a" __export_symbol_foo: .asciz "" /* license */ .asciz "" /* name space */ .balign 8 .quad foo /* symbol reference */ .previous .section ".export_symbol","a" __export_symbol_bar: .asciz "GPL" /* license */ .asciz "BAR_NAMESPACE" /* name space */ .balign 8 .quad bar /* symbol reference */ .previous They are mere markers to tell modpost the name, license, and namespace of the symbols. They will be dropped from the final vmlinux and modules because the *(.export_symbol) will go into /DISCARD/ in the linker script. Then, modpost extracts all the information about EXPORT_SYMBOL() from the .export_symbol section, and generates the final C code: KSYMTAB_FUNC(foo, "", ""); KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE"); KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct kernel_symbol that will be linked to the vmlinux or a module. With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S files, providing the following benefits. [1] Deprecate EXPORT_DATA_SYMBOL() In the old days, EXPORT_SYMBOL() was only available in C files. To export a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file. arch/arm/kernel/armksyms.c is one example written in the classic manner. Commit 22823ab419d8 ("EXPORT_SYMBOL() for asm") removed this limitation. Since then, EXPORT_SYMBOL() can be placed close to the symbol definition in *.S files. It was a nice improvement. However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL() for data objects on some architectures. In the new approach, modpost checks symbol's type (STT_FUNC or not), and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly. There are only two users of EXPORT_DATA_SYMBOL: EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S) EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S) They are transformed as follows and output into .vmlinux.export.c KSYMTAB_DATA(empty_zero_page, "_gpl", ""); KSYMTAB_DATA(ia64_ivt, "", ""); The other EXPORT_SYMBOL users in ia64 assembly are output as KSYMTAB_FUNC(). EXPORT_DATA_SYMBOL() is now deprecated. [2] merge <linux/export.h> and <asm-generic/export.h> There are two similar header implementations: include/linux/export.h for .c files include/asm-generic/export.h for .S files Ideally, the functionality should be consistent between them, but they tend to diverge. Commit 8651ec01daed ("module: add support for symbol namespaces.") did not support the namespace for *.S files. This commit shifts the essential implementation part to C, which supports EXPORT_SYMBOL_NS() for *.S files. <asm/export.h> and <asm-generic/export.h> will remain as a wrapper of <linux/export.h> for a while. They will be removed after #include <asm/export.h> directives are all replaced with #include <linux/export.h>. [3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit) When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. We can do this better now; modpost can selectively emit KSYMTAB entries that are really used by modules. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-11 15:50:52 +00:00
#define __EXPORT_SYMBOL_REF(sym) \
.balign 4 ASM_NL \
.long sym
module: use relative references for __ksymtab entries An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries, each consisting of two 64-bit fields containing absolute references, to the symbol itself and to a char array containing its name, respectively. When we build the same configuration with KASLR enabled, we end up with an additional ~192 KB of relocations in the .init section, i.e., one 24 byte entry for each absolute reference, which all need to be processed at boot time. Given how the struct kernel_symbol that describes each entry is completely local to module.c (except for the references emitted by EXPORT_SYMBOL() itself), we can easily modify it to contain two 32-bit relative references instead. This reduces the size of the __ksymtab section by 50% for all 64-bit architectures, and gets rid of the runtime relocations entirely for architectures implementing KASLR, either via standard PIE linking (arm64) or using custom host tools (x86). Note that the binary search involving __ksymtab contents relies on each section being sorted by symbol name. This is implemented based on the input section names, not the names in the ksymtab entries, so this patch does not interfere with that. Given that the use of place-relative relocations requires support both in the toolchain and in the module loader, we cannot enable this feature for all architectures. So make it dependent on whether CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined. Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Jessica Yu <jeyu@kernel.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Will Deacon <will.deacon@arm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morris <james.morris@microsoft.com> Cc: James Morris <jmorris@namei.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Nicolas Pitre <nico@linaro.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Russell King <linux@armlinux.org.uk> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Garnier <thgarnie@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 04:56:09 +00:00
#endif
kbuild: implement CONFIG_TRIM_UNUSED_KSYMS without recursion When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. Linus stated negative opinions about this slowness in commits: - 5cf0fd591f2e ("Kbuild: disable TRIM_UNUSED_KSYMS option") - a555bdd0c58c ("Kbuild: enable TRIM_UNUSED_KSYMS again, with some guarding") We can do this better now. The final data structures of EXPORT_SYMBOL are generated by the modpost stage, so modpost can selectively emit KSYMTAB entries that are really used by modules. Commit f73edc8951b2 ("kbuild: unify two modpost invocations") is another ground-work to do this in a one-pass algorithm. With the list of modules, modpost sets sym->used if it is used by a module. modpost emits KSYMTAB only for symbols with sym->used==true. BTW, Nicolas explained why the trimming was implemented with recursion: https://lore.kernel.org/all/2o2rpn97-79nq-p7s2-nq5-8p83391473r@syhkavp.arg/ Actually, we never achieved that level of optimization where the chain reaction of trimming comes into play because: - CONFIG_LTO_CLANG cannot remove any unused symbols - CONFIG_LD_DEAD_CODE_DATA_ELIMINATION is enabled only for vmlinux, but not modules If deeper trimming is required, we need to revisit this, but I guess that is unlikely to happen. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-06-11 15:50:57 +00:00
#define ___EXPORT_SYMBOL(sym, license, ns) \
kbuild: generate KSYMTAB entries by modpost Commit 7b4537199a4a ("kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way whether the EXPORT_SYMBOL() is placed in *.c or *.S. For further cleanups, this commit applies a similar approach to the entire data structure of EXPORT_SYMBOL(). The EXPORT_SYMBOL() compilation is split into two stages. When a source file is compiled, EXPORT_SYMBOL() will be converted into a dummy symbol in the .export_symbol section. For example, EXPORT_SYMBOL(foo); EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE); will be encoded into the following assembly code: .section ".export_symbol","a" __export_symbol_foo: .asciz "" /* license */ .asciz "" /* name space */ .balign 8 .quad foo /* symbol reference */ .previous .section ".export_symbol","a" __export_symbol_bar: .asciz "GPL" /* license */ .asciz "BAR_NAMESPACE" /* name space */ .balign 8 .quad bar /* symbol reference */ .previous They are mere markers to tell modpost the name, license, and namespace of the symbols. They will be dropped from the final vmlinux and modules because the *(.export_symbol) will go into /DISCARD/ in the linker script. Then, modpost extracts all the information about EXPORT_SYMBOL() from the .export_symbol section, and generates the final C code: KSYMTAB_FUNC(foo, "", ""); KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE"); KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct kernel_symbol that will be linked to the vmlinux or a module. With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S files, providing the following benefits. [1] Deprecate EXPORT_DATA_SYMBOL() In the old days, EXPORT_SYMBOL() was only available in C files. To export a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file. arch/arm/kernel/armksyms.c is one example written in the classic manner. Commit 22823ab419d8 ("EXPORT_SYMBOL() for asm") removed this limitation. Since then, EXPORT_SYMBOL() can be placed close to the symbol definition in *.S files. It was a nice improvement. However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL() for data objects on some architectures. In the new approach, modpost checks symbol's type (STT_FUNC or not), and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly. There are only two users of EXPORT_DATA_SYMBOL: EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S) EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S) They are transformed as follows and output into .vmlinux.export.c KSYMTAB_DATA(empty_zero_page, "_gpl", ""); KSYMTAB_DATA(ia64_ivt, "", ""); The other EXPORT_SYMBOL users in ia64 assembly are output as KSYMTAB_FUNC(). EXPORT_DATA_SYMBOL() is now deprecated. [2] merge <linux/export.h> and <asm-generic/export.h> There are two similar header implementations: include/linux/export.h for .c files include/asm-generic/export.h for .S files Ideally, the functionality should be consistent between them, but they tend to diverge. Commit 8651ec01daed ("module: add support for symbol namespaces.") did not support the namespace for *.S files. This commit shifts the essential implementation part to C, which supports EXPORT_SYMBOL_NS() for *.S files. <asm/export.h> and <asm-generic/export.h> will remain as a wrapper of <linux/export.h> for a while. They will be removed after #include <asm/export.h> directives are all replaced with #include <linux/export.h>. [3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit) When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. We can do this better now; modpost can selectively emit KSYMTAB entries that are really used by modules. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-11 15:50:52 +00:00
.section ".export_symbol","a" ASM_NL \
__export_symbol_##sym: ASM_NL \
.asciz license ASM_NL \
.asciz ns ASM_NL \
__EXPORT_SYMBOL_REF(sym) ASM_NL \
.previous
#if defined(__DISABLE_EXPORTS)
2018-08-22 04:56:04 +00:00
/*
* Allow symbol exports to be disabled completely so that C code may
* be reused in other execution contexts such as the UEFI stub or the
* decompressor.
*/
#define __EXPORT_SYMBOL(sym, license, ns)
2018-08-22 04:56:04 +00:00
kbuild: implement CONFIG_TRIM_UNUSED_KSYMS without recursion When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. Linus stated negative opinions about this slowness in commits: - 5cf0fd591f2e ("Kbuild: disable TRIM_UNUSED_KSYMS option") - a555bdd0c58c ("Kbuild: enable TRIM_UNUSED_KSYMS again, with some guarding") We can do this better now. The final data structures of EXPORT_SYMBOL are generated by the modpost stage, so modpost can selectively emit KSYMTAB entries that are really used by modules. Commit f73edc8951b2 ("kbuild: unify two modpost invocations") is another ground-work to do this in a one-pass algorithm. With the list of modules, modpost sets sym->used if it is used by a module. modpost emits KSYMTAB only for symbols with sym->used==true. BTW, Nicolas explained why the trimming was implemented with recursion: https://lore.kernel.org/all/2o2rpn97-79nq-p7s2-nq5-8p83391473r@syhkavp.arg/ Actually, we never achieved that level of optimization where the chain reaction of trimming comes into play because: - CONFIG_LTO_CLANG cannot remove any unused symbols - CONFIG_LD_DEAD_CODE_DATA_ELIMINATION is enabled only for vmlinux, but not modules If deeper trimming is required, we need to revisit this, but I guess that is unlikely to happen. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-06-11 15:50:57 +00:00
#elif defined(__GENKSYMS__)
#define __EXPORT_SYMBOL(sym, license, ns) __GENKSYMS_EXPORT_SYMBOL(sym)
kbuild: add fine grained build dependencies for exported symbols Like with kconfig options, we now have the ability to compile in and out individual EXPORT_SYMBOL() declarations based on the content of include/generated/autoksyms.h. However we don't want the entire world to be rebuilt whenever that file is touched. Let's apply the same build dependency trick used for CONFIG_* symbols where the time stamp of empty files whose paths matching those symbols is used to trigger fine grained rebuilds. In our case the key is the symbol name passed to EXPORT_SYMBOL(). However, unlike config options, we cannot just use fixdep to parse the source code for EXPORT_SYMBOL(ksym) because several variants exist and parsing them all in a separate tool, and keeping it in synch, is not trivially maintainable. Furthermore, there are variants such as EXPORT_SYMBOL_GPL(pci_user_read_config_##size); that are instanciated via a macro for which we can't easily determine the actual exported symbol name(s) short of actually running the preprocessor on them. Storing the symbol name string in a special ELF section doesn't work for targets that output assembly or preprocessed source. So the best way is really to leverage the preprocessor by having it output actual symbol names anchored by a special sequence that can be easily filtered out. Then the list of symbols is simply fed to fixdep to be merged with the other dependencies. That implies the preprocessor is executed twice for each source file. A previous attempt relied on a warning pragma for each EXPORT_SYMBOL() instance that was filtered apart from stderr by the build system with a sed script during the actual compilation pass. Unfortunately the preprocessor/compiler diagnostic output isn't stable between versions and this solution, although more efficient, was deemed too fragile. Because of the lowercasing performed by fixdep, there might be name collisions triggering spurious rebuilds for similar symbols. But this shouldn't be a big issue in practice. (This is the case for CONFIG_* symbols and I didn't want to be different here, whatever the original reason for doing so.) To avoid needless build overhead, the exported symbol name gathering is performed only when CONFIG_TRIM_UNUSED_KSYMS is selected. Signed-off-by: Nicolas Pitre <nico@linaro.org> Acked-by: Rusty Russell <rusty@rustcorp.com.au>
2016-01-22 18:41:57 +00:00
kbuild: implement CONFIG_TRIM_UNUSED_KSYMS without recursion When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. Linus stated negative opinions about this slowness in commits: - 5cf0fd591f2e ("Kbuild: disable TRIM_UNUSED_KSYMS option") - a555bdd0c58c ("Kbuild: enable TRIM_UNUSED_KSYMS again, with some guarding") We can do this better now. The final data structures of EXPORT_SYMBOL are generated by the modpost stage, so modpost can selectively emit KSYMTAB entries that are really used by modules. Commit f73edc8951b2 ("kbuild: unify two modpost invocations") is another ground-work to do this in a one-pass algorithm. With the list of modules, modpost sets sym->used if it is used by a module. modpost emits KSYMTAB only for symbols with sym->used==true. BTW, Nicolas explained why the trimming was implemented with recursion: https://lore.kernel.org/all/2o2rpn97-79nq-p7s2-nq5-8p83391473r@syhkavp.arg/ Actually, we never achieved that level of optimization where the chain reaction of trimming comes into play because: - CONFIG_LTO_CLANG cannot remove any unused symbols - CONFIG_LD_DEAD_CODE_DATA_ELIMINATION is enabled only for vmlinux, but not modules If deeper trimming is required, we need to revisit this, but I guess that is unlikely to happen. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-06-11 15:50:57 +00:00
#elif defined(__ASSEMBLY__)
kbuild: generate KSYMTAB entries by modpost Commit 7b4537199a4a ("kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way whether the EXPORT_SYMBOL() is placed in *.c or *.S. For further cleanups, this commit applies a similar approach to the entire data structure of EXPORT_SYMBOL(). The EXPORT_SYMBOL() compilation is split into two stages. When a source file is compiled, EXPORT_SYMBOL() will be converted into a dummy symbol in the .export_symbol section. For example, EXPORT_SYMBOL(foo); EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE); will be encoded into the following assembly code: .section ".export_symbol","a" __export_symbol_foo: .asciz "" /* license */ .asciz "" /* name space */ .balign 8 .quad foo /* symbol reference */ .previous .section ".export_symbol","a" __export_symbol_bar: .asciz "GPL" /* license */ .asciz "BAR_NAMESPACE" /* name space */ .balign 8 .quad bar /* symbol reference */ .previous They are mere markers to tell modpost the name, license, and namespace of the symbols. They will be dropped from the final vmlinux and modules because the *(.export_symbol) will go into /DISCARD/ in the linker script. Then, modpost extracts all the information about EXPORT_SYMBOL() from the .export_symbol section, and generates the final C code: KSYMTAB_FUNC(foo, "", ""); KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE"); KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct kernel_symbol that will be linked to the vmlinux or a module. With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S files, providing the following benefits. [1] Deprecate EXPORT_DATA_SYMBOL() In the old days, EXPORT_SYMBOL() was only available in C files. To export a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file. arch/arm/kernel/armksyms.c is one example written in the classic manner. Commit 22823ab419d8 ("EXPORT_SYMBOL() for asm") removed this limitation. Since then, EXPORT_SYMBOL() can be placed close to the symbol definition in *.S files. It was a nice improvement. However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL() for data objects on some architectures. In the new approach, modpost checks symbol's type (STT_FUNC or not), and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly. There are only two users of EXPORT_DATA_SYMBOL: EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S) EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S) They are transformed as follows and output into .vmlinux.export.c KSYMTAB_DATA(empty_zero_page, "_gpl", ""); KSYMTAB_DATA(ia64_ivt, "", ""); The other EXPORT_SYMBOL users in ia64 assembly are output as KSYMTAB_FUNC(). EXPORT_DATA_SYMBOL() is now deprecated. [2] merge <linux/export.h> and <asm-generic/export.h> There are two similar header implementations: include/linux/export.h for .c files include/asm-generic/export.h for .S files Ideally, the functionality should be consistent between them, but they tend to diverge. Commit 8651ec01daed ("module: add support for symbol namespaces.") did not support the namespace for *.S files. This commit shifts the essential implementation part to C, which supports EXPORT_SYMBOL_NS() for *.S files. <asm/export.h> and <asm-generic/export.h> will remain as a wrapper of <linux/export.h> for a while. They will be removed after #include <asm/export.h> directives are all replaced with #include <linux/export.h>. [3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit) When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. We can do this better now; modpost can selectively emit KSYMTAB entries that are really used by modules. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-11 15:50:52 +00:00
kbuild: implement CONFIG_TRIM_UNUSED_KSYMS without recursion When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. Linus stated negative opinions about this slowness in commits: - 5cf0fd591f2e ("Kbuild: disable TRIM_UNUSED_KSYMS option") - a555bdd0c58c ("Kbuild: enable TRIM_UNUSED_KSYMS again, with some guarding") We can do this better now. The final data structures of EXPORT_SYMBOL are generated by the modpost stage, so modpost can selectively emit KSYMTAB entries that are really used by modules. Commit f73edc8951b2 ("kbuild: unify two modpost invocations") is another ground-work to do this in a one-pass algorithm. With the list of modules, modpost sets sym->used if it is used by a module. modpost emits KSYMTAB only for symbols with sym->used==true. BTW, Nicolas explained why the trimming was implemented with recursion: https://lore.kernel.org/all/2o2rpn97-79nq-p7s2-nq5-8p83391473r@syhkavp.arg/ Actually, we never achieved that level of optimization where the chain reaction of trimming comes into play because: - CONFIG_LTO_CLANG cannot remove any unused symbols - CONFIG_LD_DEAD_CODE_DATA_ELIMINATION is enabled only for vmlinux, but not modules If deeper trimming is required, we need to revisit this, but I guess that is unlikely to happen. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-06-11 15:50:57 +00:00
#define __EXPORT_SYMBOL(sym, license, ns) \
___EXPORT_SYMBOL(sym, license, ns)
module: add support for symbol namespaces. The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to export a symbol to a specific namespace. There are no _GPL_FUTURE and _UNUSED variants because these are currently unused, and I'm not sure they are necessary. I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the namespace of ASM exports to NULL by default. In case of relative references, it will be relocatable to NULL. If there's a need, this should be pretty easy to add. A module that wants to use a symbol exported to a namespace must add a MODULE_IMPORT_NS() statement to their module code; otherwise, modpost will complain when building the module, and the kernel module loader will emit an error and fail when loading the module. MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That tag can be observed by the modinfo command, modpost and kernel/module.c at the time of loading the module. The ELF symbols are renamed to include the namespace with an asm label; for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes 'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace checking, without having to go through all the effort of parsing ELF and relocation records just to get to the struct kernel_symbols. On x86_64 I saw no difference in binary size (compression), but at runtime this will require a word of memory per export to hold the namespace. An alternative could be to store namespaced symbols in their own section and use a separate 'struct namespaced_kernel_symbol' for that section, at the cost of making the module loader more complex. Co-developed-by: Martijn Coenen <maco@android.com> Signed-off-by: Martijn Coenen <maco@android.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Matthias Maennich <maennich@google.com> Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 10:32:27 +00:00
#else
kbuild: implement CONFIG_TRIM_UNUSED_KSYMS without recursion When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. Linus stated negative opinions about this slowness in commits: - 5cf0fd591f2e ("Kbuild: disable TRIM_UNUSED_KSYMS option") - a555bdd0c58c ("Kbuild: enable TRIM_UNUSED_KSYMS again, with some guarding") We can do this better now. The final data structures of EXPORT_SYMBOL are generated by the modpost stage, so modpost can selectively emit KSYMTAB entries that are really used by modules. Commit f73edc8951b2 ("kbuild: unify two modpost invocations") is another ground-work to do this in a one-pass algorithm. With the list of modules, modpost sets sym->used if it is used by a module. modpost emits KSYMTAB only for symbols with sym->used==true. BTW, Nicolas explained why the trimming was implemented with recursion: https://lore.kernel.org/all/2o2rpn97-79nq-p7s2-nq5-8p83391473r@syhkavp.arg/ Actually, we never achieved that level of optimization where the chain reaction of trimming comes into play because: - CONFIG_LTO_CLANG cannot remove any unused symbols - CONFIG_LD_DEAD_CODE_DATA_ELIMINATION is enabled only for vmlinux, but not modules If deeper trimming is required, we need to revisit this, but I guess that is unlikely to happen. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-06-11 15:50:57 +00:00
#define __EXPORT_SYMBOL(sym, license, ns) \
extern typeof(sym) sym; \
__ADDRESSABLE(sym) \
asm(__stringify(___EXPORT_SYMBOL(sym, license, ns)))
#endif
#ifdef DEFAULT_SYMBOL_NAMESPACE
#define _EXPORT_SYMBOL(sym, license) __EXPORT_SYMBOL(sym, license, __stringify(DEFAULT_SYMBOL_NAMESPACE))
#else
#define _EXPORT_SYMBOL(sym, license) __EXPORT_SYMBOL(sym, license, "")
#endif
#define EXPORT_SYMBOL(sym) _EXPORT_SYMBOL(sym, "")
kbuild: generate KSYMTAB entries by modpost Commit 7b4537199a4a ("kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way whether the EXPORT_SYMBOL() is placed in *.c or *.S. For further cleanups, this commit applies a similar approach to the entire data structure of EXPORT_SYMBOL(). The EXPORT_SYMBOL() compilation is split into two stages. When a source file is compiled, EXPORT_SYMBOL() will be converted into a dummy symbol in the .export_symbol section. For example, EXPORT_SYMBOL(foo); EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE); will be encoded into the following assembly code: .section ".export_symbol","a" __export_symbol_foo: .asciz "" /* license */ .asciz "" /* name space */ .balign 8 .quad foo /* symbol reference */ .previous .section ".export_symbol","a" __export_symbol_bar: .asciz "GPL" /* license */ .asciz "BAR_NAMESPACE" /* name space */ .balign 8 .quad bar /* symbol reference */ .previous They are mere markers to tell modpost the name, license, and namespace of the symbols. They will be dropped from the final vmlinux and modules because the *(.export_symbol) will go into /DISCARD/ in the linker script. Then, modpost extracts all the information about EXPORT_SYMBOL() from the .export_symbol section, and generates the final C code: KSYMTAB_FUNC(foo, "", ""); KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE"); KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct kernel_symbol that will be linked to the vmlinux or a module. With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S files, providing the following benefits. [1] Deprecate EXPORT_DATA_SYMBOL() In the old days, EXPORT_SYMBOL() was only available in C files. To export a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file. arch/arm/kernel/armksyms.c is one example written in the classic manner. Commit 22823ab419d8 ("EXPORT_SYMBOL() for asm") removed this limitation. Since then, EXPORT_SYMBOL() can be placed close to the symbol definition in *.S files. It was a nice improvement. However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL() for data objects on some architectures. In the new approach, modpost checks symbol's type (STT_FUNC or not), and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly. There are only two users of EXPORT_DATA_SYMBOL: EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S) EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S) They are transformed as follows and output into .vmlinux.export.c KSYMTAB_DATA(empty_zero_page, "_gpl", ""); KSYMTAB_DATA(ia64_ivt, "", ""); The other EXPORT_SYMBOL users in ia64 assembly are output as KSYMTAB_FUNC(). EXPORT_DATA_SYMBOL() is now deprecated. [2] merge <linux/export.h> and <asm-generic/export.h> There are two similar header implementations: include/linux/export.h for .c files include/asm-generic/export.h for .S files Ideally, the functionality should be consistent between them, but they tend to diverge. Commit 8651ec01daed ("module: add support for symbol namespaces.") did not support the namespace for *.S files. This commit shifts the essential implementation part to C, which supports EXPORT_SYMBOL_NS() for *.S files. <asm/export.h> and <asm-generic/export.h> will remain as a wrapper of <linux/export.h> for a while. They will be removed after #include <asm/export.h> directives are all replaced with #include <linux/export.h>. [3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit) When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. We can do this better now; modpost can selectively emit KSYMTAB entries that are really used by modules. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-11 15:50:52 +00:00
#define EXPORT_SYMBOL_GPL(sym) _EXPORT_SYMBOL(sym, "GPL")
#define EXPORT_SYMBOL_NS(sym, ns) __EXPORT_SYMBOL(sym, "", __stringify(ns))
kbuild: generate KSYMTAB entries by modpost Commit 7b4537199a4a ("kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way whether the EXPORT_SYMBOL() is placed in *.c or *.S. For further cleanups, this commit applies a similar approach to the entire data structure of EXPORT_SYMBOL(). The EXPORT_SYMBOL() compilation is split into two stages. When a source file is compiled, EXPORT_SYMBOL() will be converted into a dummy symbol in the .export_symbol section. For example, EXPORT_SYMBOL(foo); EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE); will be encoded into the following assembly code: .section ".export_symbol","a" __export_symbol_foo: .asciz "" /* license */ .asciz "" /* name space */ .balign 8 .quad foo /* symbol reference */ .previous .section ".export_symbol","a" __export_symbol_bar: .asciz "GPL" /* license */ .asciz "BAR_NAMESPACE" /* name space */ .balign 8 .quad bar /* symbol reference */ .previous They are mere markers to tell modpost the name, license, and namespace of the symbols. They will be dropped from the final vmlinux and modules because the *(.export_symbol) will go into /DISCARD/ in the linker script. Then, modpost extracts all the information about EXPORT_SYMBOL() from the .export_symbol section, and generates the final C code: KSYMTAB_FUNC(foo, "", ""); KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE"); KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct kernel_symbol that will be linked to the vmlinux or a module. With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S files, providing the following benefits. [1] Deprecate EXPORT_DATA_SYMBOL() In the old days, EXPORT_SYMBOL() was only available in C files. To export a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file. arch/arm/kernel/armksyms.c is one example written in the classic manner. Commit 22823ab419d8 ("EXPORT_SYMBOL() for asm") removed this limitation. Since then, EXPORT_SYMBOL() can be placed close to the symbol definition in *.S files. It was a nice improvement. However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL() for data objects on some architectures. In the new approach, modpost checks symbol's type (STT_FUNC or not), and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly. There are only two users of EXPORT_DATA_SYMBOL: EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S) EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S) They are transformed as follows and output into .vmlinux.export.c KSYMTAB_DATA(empty_zero_page, "_gpl", ""); KSYMTAB_DATA(ia64_ivt, "", ""); The other EXPORT_SYMBOL users in ia64 assembly are output as KSYMTAB_FUNC(). EXPORT_DATA_SYMBOL() is now deprecated. [2] merge <linux/export.h> and <asm-generic/export.h> There are two similar header implementations: include/linux/export.h for .c files include/asm-generic/export.h for .S files Ideally, the functionality should be consistent between them, but they tend to diverge. Commit 8651ec01daed ("module: add support for symbol namespaces.") did not support the namespace for *.S files. This commit shifts the essential implementation part to C, which supports EXPORT_SYMBOL_NS() for *.S files. <asm/export.h> and <asm-generic/export.h> will remain as a wrapper of <linux/export.h> for a while. They will be removed after #include <asm/export.h> directives are all replaced with #include <linux/export.h>. [3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit) When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. We can do this better now; modpost can selectively emit KSYMTAB entries that are really used by modules. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-11 15:50:52 +00:00
#define EXPORT_SYMBOL_NS_GPL(sym, ns) __EXPORT_SYMBOL(sym, "GPL", __stringify(ns))
#endif /* _LINUX_EXPORT_H */