linux-stable/kernel/rcu/tree_plugin.h

1336 lines
43 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0+ */
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Read-Copy Update mechanism for mutual exclusion (tree-based version)
* Internal non-public definitions that provide either classic
* or preemptible semantics.
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
*
* Copyright Red Hat, 2009
* Copyright IBM Corporation, 2009
*
* Author: Ingo Molnar <mingo@elte.hu>
* Paul E. McKenney <paulmck@linux.ibm.com>
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
*/
#include "../locking/rtmutex_common.h"
static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
{
/*
* In order to read the offloaded state of an rdp in a safe
* and stable way and prevent from its value to be changed
* under us, we must either hold the barrier mutex, the cpu
* hotplug lock (read or write) or the nocb lock. Local
* non-preemptible reads are also safe. NOCB kthreads and
* timers have their own means of synchronization against the
* offloaded state updaters.
*/
RCU_LOCKDEP_WARN(
!(lockdep_is_held(&rcu_state.barrier_mutex) ||
(IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
rcu_lockdep_is_held_nocb(rdp) ||
(rdp == this_cpu_ptr(&rcu_data) &&
!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
rcu/nocb: Use the rcuog CPU's ->nocb_timer Currently each CPU has its own ->nocb_timer queued when the nocb_gp wakeup must be deferred. This approach has many drawbacks, compared to a solution based on a single timer per NOCB group: * There are a lot of timers to maintain. * The per-rdp ->nocb_lock must be held to queue and cancel the timer and this lock can already be heavily contended. * One timer firing doesn't cancel the other timers in the same group: - These other timers can thus cause spurious wakeups - Each rdp that queued a timer must lock both ->nocb_lock and then ->nocb_gp_lock upon exit from the kernel to idle/user/guest mode. * We can't cancel all of them if we detect an unflushed bypass in nocb_gp_wait(). In fact currently we only ever cancel the ->nocb_timer of the leader group. * The leader group's nocb_timer is cancelled without locking ->nocb_lock in nocb_gp_wait(). This currently appears to be safe but is an accident waiting to happen. * Since the timer acquires ->nocb_lock, it requires extra care in the NOCB (de-)offloading process, requiring that it be either enabled or disabled and then flushed. This commit instead uses the rcuog kthread's CPU's ->nocb_timer instead. It is protected by nocb_gp_lock, which is _way_ less contended and remains so even after this change. As a matter of fact, the nocb_timer almost never fires and the deferred wakeup is mostly carried out upon idle/user/guest entry. Now the early check performed at this point in do_nocb_deferred_wakeup() is done on rdp_gp->nocb_defer_wakeup, which is of course racy. However, this raciness is harmless because we only need the guarantee that the timer is queued if we were the last one to queue it. Any other situation (another CPU has queued it and we either see it or not) is fine. This solves all the issues listed above. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-02-23 00:10:03 +00:00
rcu_current_is_nocb_kthread(rdp)),
"Unsafe read of RCU_NOCB offloaded state"
);
return rcu_segcblist_is_offloaded(&rdp->cblist);
}
/*
* Check the RCU kernel configuration parameters and print informative
* messages about anything out of the ordinary.
*/
static void __init rcu_bootup_announce_oddness(void)
{
if (IS_ENABLED(CONFIG_RCU_TRACE))
pr_info("\tRCU event tracing is enabled.\n");
if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
(!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
RCU_FANOUT);
if (rcu_fanout_exact)
pr_info("\tHierarchical RCU autobalancing is disabled.\n");
if (IS_ENABLED(CONFIG_PROVE_RCU))
pr_info("\tRCU lockdep checking is enabled.\n");
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
if (RCU_NUM_LVLS >= 4)
pr_info("\tFour(or more)-level hierarchy is enabled.\n");
if (RCU_FANOUT_LEAF != 16)
pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
RCU_FANOUT_LEAF);
if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
rcu_fanout_leaf);
if (nr_cpu_ids != NR_CPUS)
pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
#ifdef CONFIG_RCU_BOOST
pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
kthread_prio, CONFIG_RCU_BOOST_DELAY);
#endif
if (blimit != DEFAULT_RCU_BLIMIT)
pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
if (qhimark != DEFAULT_RCU_QHIMARK)
pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
if (qlowmark != DEFAULT_RCU_QLOMARK)
pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
if (qovld != DEFAULT_RCU_QOVLD)
pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
if (jiffies_till_first_fqs != ULONG_MAX)
pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
if (jiffies_till_next_fqs != ULONG_MAX)
pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
if (jiffies_till_sched_qs != ULONG_MAX)
pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
if (rcu_kick_kthreads)
pr_info("\tKick kthreads if too-long grace period.\n");
if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
if (gp_preinit_delay)
pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
if (gp_init_delay)
pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
if (gp_cleanup_delay)
pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
if (!use_softirq)
pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
pr_info("\tRCU debug extended QS entry/exit.\n");
rcupdate_announce_bootup_oddness();
}
#ifdef CONFIG_PREEMPT_RCU
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
static void rcu_read_unlock_special(struct task_struct *t);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Tell them what RCU they are running.
*/
static void __init rcu_bootup_announce(void)
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
{
pr_info("Preemptible hierarchical RCU implementation.\n");
rcu_bootup_announce_oddness();
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
}
/* Flags for rcu_preempt_ctxt_queue() decision table. */
#define RCU_GP_TASKS 0x8
#define RCU_EXP_TASKS 0x4
#define RCU_GP_BLKD 0x2
#define RCU_EXP_BLKD 0x1
/*
* Queues a task preempted within an RCU-preempt read-side critical
* section into the appropriate location within the ->blkd_tasks list,
* depending on the states of any ongoing normal and expedited grace
* periods. The ->gp_tasks pointer indicates which element the normal
* grace period is waiting on (NULL if none), and the ->exp_tasks pointer
* indicates which element the expedited grace period is waiting on (again,
* NULL if none). If a grace period is waiting on a given element in the
* ->blkd_tasks list, it also waits on all subsequent elements. Thus,
* adding a task to the tail of the list blocks any grace period that is
* already waiting on one of the elements. In contrast, adding a task
* to the head of the list won't block any grace period that is already
* waiting on one of the elements.
*
* This queuing is imprecise, and can sometimes make an ongoing grace
* period wait for a task that is not strictly speaking blocking it.
* Given the choice, we needlessly block a normal grace period rather than
* blocking an expedited grace period.
*
* Note that an endless sequence of expedited grace periods still cannot
* indefinitely postpone a normal grace period. Eventually, all of the
* fixed number of preempted tasks blocking the normal grace period that are
* not also blocking the expedited grace period will resume and complete
* their RCU read-side critical sections. At that point, the ->gp_tasks
* pointer will equal the ->exp_tasks pointer, at which point the end of
* the corresponding expedited grace period will also be the end of the
* normal grace period.
*/
static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
__releases(rnp->lock) /* But leaves rrupts disabled. */
{
int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
(rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
(rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
(rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
struct task_struct *t = current;
raw_lockdep_assert_held_rcu_node(rnp);
WARN_ON_ONCE(rdp->mynode != rnp);
WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
/* RCU better not be waiting on newly onlined CPUs! */
WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
rdp->grpmask);
/*
* Decide where to queue the newly blocked task. In theory,
* this could be an if-statement. In practice, when I tried
* that, it was quite messy.
*/
switch (blkd_state) {
case 0:
case RCU_EXP_TASKS:
case RCU_EXP_TASKS + RCU_GP_BLKD:
case RCU_GP_TASKS:
case RCU_GP_TASKS + RCU_EXP_TASKS:
/*
* Blocking neither GP, or first task blocking the normal
* GP but not blocking the already-waiting expedited GP.
* Queue at the head of the list to avoid unnecessarily
* blocking the already-waiting GPs.
*/
list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
break;
case RCU_EXP_BLKD:
case RCU_GP_BLKD:
case RCU_GP_BLKD + RCU_EXP_BLKD:
case RCU_GP_TASKS + RCU_EXP_BLKD:
case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
/*
* First task arriving that blocks either GP, or first task
* arriving that blocks the expedited GP (with the normal
* GP already waiting), or a task arriving that blocks
* both GPs with both GPs already waiting. Queue at the
* tail of the list to avoid any GP waiting on any of the
* already queued tasks that are not blocking it.
*/
list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
break;
case RCU_EXP_TASKS + RCU_EXP_BLKD:
case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
/*
* Second or subsequent task blocking the expedited GP.
* The task either does not block the normal GP, or is the
* first task blocking the normal GP. Queue just after
* the first task blocking the expedited GP.
*/
list_add(&t->rcu_node_entry, rnp->exp_tasks);
break;
case RCU_GP_TASKS + RCU_GP_BLKD:
case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
/*
* Second or subsequent task blocking the normal GP.
* The task does not block the expedited GP. Queue just
* after the first task blocking the normal GP.
*/
list_add(&t->rcu_node_entry, rnp->gp_tasks);
break;
default:
/* Yet another exercise in excessive paranoia. */
WARN_ON_ONCE(1);
break;
}
/*
* We have now queued the task. If it was the first one to
* block either grace period, update the ->gp_tasks and/or
* ->exp_tasks pointers, respectively, to reference the newly
* blocked tasks.
*/
if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
rcu: Avoid data-race in rcu_gp_fqs_check_wake() The rcu_gp_fqs_check_wake() function uses rcu_preempt_blocked_readers_cgp() to read ->gp_tasks while other cpus might overwrite this field. We need READ_ONCE()/WRITE_ONCE() pairs to avoid compiler tricks and KCSAN splats like the following : BUG: KCSAN: data-race in rcu_gp_fqs_check_wake / rcu_preempt_deferred_qs_irqrestore write to 0xffffffff85a7f190 of 8 bytes by task 7317 on cpu 0: rcu_preempt_deferred_qs_irqrestore+0x43d/0x580 kernel/rcu/tree_plugin.h:507 rcu_read_unlock_special+0xec/0x370 kernel/rcu/tree_plugin.h:659 __rcu_read_unlock+0xcf/0xe0 kernel/rcu/tree_plugin.h:394 rcu_read_unlock include/linux/rcupdate.h:645 [inline] __ip_queue_xmit+0x3b0/0xa40 net/ipv4/ip_output.c:533 ip_queue_xmit+0x45/0x60 include/net/ip.h:236 __tcp_transmit_skb+0xdeb/0x1cd0 net/ipv4/tcp_output.c:1158 __tcp_send_ack+0x246/0x300 net/ipv4/tcp_output.c:3685 tcp_send_ack+0x34/0x40 net/ipv4/tcp_output.c:3691 tcp_cleanup_rbuf+0x130/0x360 net/ipv4/tcp.c:1575 tcp_recvmsg+0x633/0x1a30 net/ipv4/tcp.c:2179 inet_recvmsg+0xbb/0x250 net/ipv4/af_inet.c:838 sock_recvmsg_nosec net/socket.c:871 [inline] sock_recvmsg net/socket.c:889 [inline] sock_recvmsg+0x92/0xb0 net/socket.c:885 sock_read_iter+0x15f/0x1e0 net/socket.c:967 call_read_iter include/linux/fs.h:1864 [inline] new_sync_read+0x389/0x4f0 fs/read_write.c:414 read to 0xffffffff85a7f190 of 8 bytes by task 10 on cpu 1: rcu_gp_fqs_check_wake kernel/rcu/tree.c:1556 [inline] rcu_gp_fqs_check_wake+0x93/0xd0 kernel/rcu/tree.c:1546 rcu_gp_fqs_loop+0x36c/0x580 kernel/rcu/tree.c:1611 rcu_gp_kthread+0x143/0x220 kernel/rcu/tree.c:1768 kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 10 Comm: rcu_preempt Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> [ paulmck: Added another READ_ONCE() for RCU CPU stall warnings. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2019-10-09 21:21:54 +00:00
WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
}
if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
!(rnp->qsmask & rdp->grpmask));
WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
!(rnp->expmask & rdp->grpmask));
raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
/*
* Report the quiescent state for the expedited GP. This expedited
* GP should not be able to end until we report, so there should be
* no need to check for a subsequent expedited GP. (Though we are
* still in a quiescent state in any case.)
*/
if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
rcu_report_exp_rdp(rdp);
else
WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Record a preemptible-RCU quiescent state for the specified CPU.
* Note that this does not necessarily mean that the task currently running
* on the CPU is in a quiescent state: Instead, it means that the current
* grace period need not wait on any RCU read-side critical section that
* starts later on this CPU. It also means that if the current task is
* in an RCU read-side critical section, it has already added itself to
* some leaf rcu_node structure's ->blkd_tasks list. In addition to the
* current task, there might be any number of other tasks blocked while
* in an RCU read-side critical section.
rcu: refactor RCU's context-switch handling The addition of preemptible RCU to treercu resulted in a bit of confusion and inefficiency surrounding the handling of context switches for RCU-sched and for RCU-preempt. For RCU-sched, a context switch is a quiescent state, pure and simple, just like it always has been. For RCU-preempt, a context switch is in no way a quiescent state, but special handling is required when a task blocks in an RCU read-side critical section. However, the callout from the scheduler and the outer loop in ksoftirqd still calls something named rcu_sched_qs(), whose name is no longer accurate. Furthermore, when rcu_check_callbacks() notes an RCU-sched quiescent state, it ends up unnecessarily (though harmlessly, aside from the performance hit) enqueuing the current task if it happens to be running in an RCU-preempt read-side critical section. This not only increases the maximum latency of scheduler_tick(), it also needlessly increases the overhead of the next outermost rcu_read_unlock() invocation. This patch addresses this situation by separating the notion of RCU's context-switch handling from that of RCU-sched's quiescent states. The context-switch handling is covered by rcu_note_context_switch() in general and by rcu_preempt_note_context_switch() for preemptible RCU. This permits rcu_sched_qs() to handle quiescent states and only quiescent states. It also reduces the maximum latency of scheduler_tick(), though probably by much less than a microsecond. Finally, it means that tasks within preemptible-RCU read-side critical sections avoid incurring the overhead of queuing unless there really is a context switch. Suggested-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org>
2010-04-02 00:37:01 +00:00
*
* Unlike non-preemptible-RCU, quiescent state reports for expedited
* grace periods are handled separately via deferred quiescent states
* and context switch events.
*
* Callers to this function must disable preemption.
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
*/
static void rcu_qs(void)
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
{
RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
trace_rcu_grace_period(TPS("rcu_preempt"),
__this_cpu_read(rcu_data.gp_seq),
TPS("cpuqs"));
__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
}
/*
* We have entered the scheduler, and the current task might soon be
* context-switched away from. If this task is in an RCU read-side
* critical section, we will no longer be able to rely on the CPU to
* record that fact, so we enqueue the task on the blkd_tasks list.
* The task will dequeue itself when it exits the outermost enclosing
* RCU read-side critical section. Therefore, the current grace period
* cannot be permitted to complete until the blkd_tasks list entries
* predating the current grace period drain, in other words, until
* rnp->gp_tasks becomes NULL.
*
* Caller must disable interrupts.
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
*/
void rcu_note_context_switch(bool preempt)
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
{
struct task_struct *t = current;
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
struct rcu_node *rnp;
trace_rcu_utilization(TPS("Start context switch"));
lockdep_assert_irqs_disabled();
WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
if (rcu_preempt_depth() > 0 &&
!t->rcu_read_unlock_special.b.blocked) {
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/* Possibly blocking in an RCU read-side critical section. */
rnp = rdp->mynode;
raw_spin_lock_rcu_node(rnp);
t->rcu_read_unlock_special.b.blocked = true;
t->rcu_blocked_node = rnp;
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Verify the CPU's sanity, trace the preemption, and
* then queue the task as required based on the states
* of any ongoing and expedited grace periods.
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
*/
WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
trace_rcu_preempt_task(rcu_state.name,
t->pid,
(rnp->qsmask & rdp->grpmask)
? rnp->gp_seq
: rcu_seq_snap(&rnp->gp_seq));
rcu_preempt_ctxt_queue(rnp, rdp);
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
} else {
rcu_preempt_deferred_qs(t);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
}
/*
* Either we were not in an RCU read-side critical section to
* begin with, or we have now recorded that critical section
* globally. Either way, we can now note a quiescent state
* for this CPU. Again, if we were in an RCU read-side critical
* section, and if that critical section was blocking the current
* grace period, then the fact that the task has been enqueued
* means that we continue to block the current grace period.
*/
rcu_qs();
if (rdp->cpu_no_qs.b.exp)
rcu_report_exp_rdp(rdp);
rcu_tasks_qs(current, preempt);
trace_rcu_utilization(TPS("End context switch"));
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
}
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Check for preempted RCU readers blocking the current grace period
* for the specified rcu_node structure. If the caller needs a reliable
* answer, it must hold the rcu_node's ->lock.
*/
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
rcu: Avoid data-race in rcu_gp_fqs_check_wake() The rcu_gp_fqs_check_wake() function uses rcu_preempt_blocked_readers_cgp() to read ->gp_tasks while other cpus might overwrite this field. We need READ_ONCE()/WRITE_ONCE() pairs to avoid compiler tricks and KCSAN splats like the following : BUG: KCSAN: data-race in rcu_gp_fqs_check_wake / rcu_preempt_deferred_qs_irqrestore write to 0xffffffff85a7f190 of 8 bytes by task 7317 on cpu 0: rcu_preempt_deferred_qs_irqrestore+0x43d/0x580 kernel/rcu/tree_plugin.h:507 rcu_read_unlock_special+0xec/0x370 kernel/rcu/tree_plugin.h:659 __rcu_read_unlock+0xcf/0xe0 kernel/rcu/tree_plugin.h:394 rcu_read_unlock include/linux/rcupdate.h:645 [inline] __ip_queue_xmit+0x3b0/0xa40 net/ipv4/ip_output.c:533 ip_queue_xmit+0x45/0x60 include/net/ip.h:236 __tcp_transmit_skb+0xdeb/0x1cd0 net/ipv4/tcp_output.c:1158 __tcp_send_ack+0x246/0x300 net/ipv4/tcp_output.c:3685 tcp_send_ack+0x34/0x40 net/ipv4/tcp_output.c:3691 tcp_cleanup_rbuf+0x130/0x360 net/ipv4/tcp.c:1575 tcp_recvmsg+0x633/0x1a30 net/ipv4/tcp.c:2179 inet_recvmsg+0xbb/0x250 net/ipv4/af_inet.c:838 sock_recvmsg_nosec net/socket.c:871 [inline] sock_recvmsg net/socket.c:889 [inline] sock_recvmsg+0x92/0xb0 net/socket.c:885 sock_read_iter+0x15f/0x1e0 net/socket.c:967 call_read_iter include/linux/fs.h:1864 [inline] new_sync_read+0x389/0x4f0 fs/read_write.c:414 read to 0xffffffff85a7f190 of 8 bytes by task 10 on cpu 1: rcu_gp_fqs_check_wake kernel/rcu/tree.c:1556 [inline] rcu_gp_fqs_check_wake+0x93/0xd0 kernel/rcu/tree.c:1546 rcu_gp_fqs_loop+0x36c/0x580 kernel/rcu/tree.c:1611 rcu_gp_kthread+0x143/0x220 kernel/rcu/tree.c:1768 kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 10 Comm: rcu_preempt Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> [ paulmck: Added another READ_ONCE() for RCU CPU stall warnings. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2019-10-09 21:21:54 +00:00
return READ_ONCE(rnp->gp_tasks) != NULL;
}
/* limit value for ->rcu_read_lock_nesting. */
#define RCU_NEST_PMAX (INT_MAX / 2)
static void rcu_preempt_read_enter(void)
{
WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
}
static int rcu_preempt_read_exit(void)
{
int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
WRITE_ONCE(current->rcu_read_lock_nesting, ret);
return ret;
}
static void rcu_preempt_depth_set(int val)
{
WRITE_ONCE(current->rcu_read_lock_nesting, val);
}
/*
* Preemptible RCU implementation for rcu_read_lock().
* Just increment ->rcu_read_lock_nesting, shared state will be updated
* if we block.
*/
void __rcu_read_lock(void)
{
rcu_preempt_read_enter();
if (IS_ENABLED(CONFIG_PROVE_LOCKING))
WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
barrier(); /* critical section after entry code. */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);
/*
* Preemptible RCU implementation for rcu_read_unlock().
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
* invoke rcu_read_unlock_special() to clean up after a context switch
* in an RCU read-side critical section and other special cases.
*/
void __rcu_read_unlock(void)
{
struct task_struct *t = current;
barrier(); // critical section before exit code.
if (rcu_preempt_read_exit() == 0) {
barrier(); // critical-section exit before .s check.
if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
rcu_read_unlock_special(t);
}
if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
int rrln = rcu_preempt_depth();
WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
}
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
/*
* Advance a ->blkd_tasks-list pointer to the next entry, instead
* returning NULL if at the end of the list.
*/
static struct list_head *rcu_next_node_entry(struct task_struct *t,
struct rcu_node *rnp)
{
struct list_head *np;
np = t->rcu_node_entry.next;
if (np == &rnp->blkd_tasks)
np = NULL;
return np;
}
/*
* Return true if the specified rcu_node structure has tasks that were
* preempted within an RCU read-side critical section.
*/
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
return !list_empty(&rnp->blkd_tasks);
}
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-22 16:53:48 +00:00
/*
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
* Report deferred quiescent states. The deferral time can
* be quite short, for example, in the case of the call from
* rcu_read_unlock_special().
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-22 16:53:48 +00:00
*/
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
static void
rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
{
bool empty_exp;
bool empty_norm;
bool empty_exp_now;
struct list_head *np;
bool drop_boost_mutex = false;
struct rcu_data *rdp;
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
struct rcu_node *rnp;
union rcu_special special;
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* If RCU core is waiting for this CPU to exit its critical section,
* report the fact that it has exited. Because irqs are disabled,
* t->rcu_read_unlock_special cannot change.
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
*/
special = t->rcu_read_unlock_special;
rdp = this_cpu_ptr(&rcu_data);
if (!special.s && !rdp->cpu_no_qs.b.exp) {
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
local_irq_restore(flags);
return;
}
t->rcu_read_unlock_special.s = 0;
if (special.b.need_qs) {
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
rdp->cpu_no_qs.b.norm = false;
rcu_report_qs_rdp(rdp);
udelay(rcu_unlock_delay);
} else {
rcu_qs();
}
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
* Respond to a request by an expedited grace period for a
* quiescent state from this CPU. Note that requests from
* tasks are handled when removing the task from the
* blocked-tasks list below.
*/
if (rdp->cpu_no_qs.b.exp)
rcu_report_exp_rdp(rdp);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/* Clean up if blocked during RCU read-side critical section. */
if (special.b.blocked) {
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Remove this task from the list it blocked on. The task
* now remains queued on the rcu_node corresponding to the
* CPU it first blocked on, so there is no longer any need
* to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
*/
rnp = t->rcu_blocked_node;
raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
WARN_ON_ONCE(rnp != t->rcu_blocked_node);
WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
(!empty_norm || rnp->qsmask));
empty_exp = sync_rcu_exp_done(rnp);
smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
np = rcu_next_node_entry(t, rnp);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
list_del_init(&t->rcu_node_entry);
t->rcu_blocked_node = NULL;
rcu: Have the RCU tracepoints use the tracepoint_string infrastructure Currently, RCU tracepoints save only a pointer to strings in the ring buffer. When displayed via the /sys/kernel/debug/tracing/trace file they are referenced like the printf "%s" that looks at the address in the ring buffer and prints out the string it points too. This requires that the strings are constant and persistent in the kernel. The problem with this is for tools like trace-cmd and perf that read the binary data from the buffers but have no access to the kernel memory to find out what string is represented by the address in the buffer. By using the tracepoint_string infrastructure, the RCU tracepoint strings can be exported such that userspace tools can map the addresses to the strings. # cat /sys/kernel/debug/tracing/printk_formats 0xffffffff81a4a0e8 : "rcu_preempt" 0xffffffff81a4a0f4 : "rcu_bh" 0xffffffff81a4a100 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437a6 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437b0 : "rcu_bh" 0xffffffff818437b7 : "Start context switch" 0xffffffff818437cc : "End context switch" 0xffffffff818437a0 : "cpuqs" [...] Now userspaces tools can display: rcu_utilization: Start context switch rcu_dyntick: Start 1 0 rcu_utilization: End context switch rcu_batch_start: rcu_preempt CBs=0/5 bl=10 rcu_dyntick: End 0 140000000000000 rcu_invoke_callback: rcu_preempt rhp=0xffff880071c0d600 func=proc_i_callback rcu_invoke_callback: rcu_preempt rhp=0xffff880077b5b230 func=__d_free rcu_dyntick: Start 140000000000000 0 rcu_invoke_callback: rcu_preempt rhp=0xffff880077563980 func=file_free_rcu rcu_batch_end: rcu_preempt CBs-invoked=3 idle=>c<>c<>c<>c< rcu_utilization: End RCU core rcu_grace_period: rcu_preempt 9741 start rcu_dyntick: Start 1 0 rcu_dyntick: End 0 140000000000000 rcu_dyntick: Start 140000000000000 0 Instead of: rcu_utilization: ffffffff81843110 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_batch_start: ffffffff81842f1d CBs=0/4 bl=10 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888aac0 func=file_free_rcu rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f95 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88006aeb4600 func=proc_i_callback rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_invoke_callback: ffffffff81842f1d rhp=0xffff880071cb9fc0 func=__d_free rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888ae80 func=file_free_rcu rcu_batch_end: ffffffff81842f1d CBs-invoked=4 idle=>c<>c<>c<>c< rcu_utilization: ffffffff8184311f Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-12 21:18:47 +00:00
trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
rnp->gp_seq, t->pid);
if (&t->rcu_node_entry == rnp->gp_tasks)
rcu: Avoid data-race in rcu_gp_fqs_check_wake() The rcu_gp_fqs_check_wake() function uses rcu_preempt_blocked_readers_cgp() to read ->gp_tasks while other cpus might overwrite this field. We need READ_ONCE()/WRITE_ONCE() pairs to avoid compiler tricks and KCSAN splats like the following : BUG: KCSAN: data-race in rcu_gp_fqs_check_wake / rcu_preempt_deferred_qs_irqrestore write to 0xffffffff85a7f190 of 8 bytes by task 7317 on cpu 0: rcu_preempt_deferred_qs_irqrestore+0x43d/0x580 kernel/rcu/tree_plugin.h:507 rcu_read_unlock_special+0xec/0x370 kernel/rcu/tree_plugin.h:659 __rcu_read_unlock+0xcf/0xe0 kernel/rcu/tree_plugin.h:394 rcu_read_unlock include/linux/rcupdate.h:645 [inline] __ip_queue_xmit+0x3b0/0xa40 net/ipv4/ip_output.c:533 ip_queue_xmit+0x45/0x60 include/net/ip.h:236 __tcp_transmit_skb+0xdeb/0x1cd0 net/ipv4/tcp_output.c:1158 __tcp_send_ack+0x246/0x300 net/ipv4/tcp_output.c:3685 tcp_send_ack+0x34/0x40 net/ipv4/tcp_output.c:3691 tcp_cleanup_rbuf+0x130/0x360 net/ipv4/tcp.c:1575 tcp_recvmsg+0x633/0x1a30 net/ipv4/tcp.c:2179 inet_recvmsg+0xbb/0x250 net/ipv4/af_inet.c:838 sock_recvmsg_nosec net/socket.c:871 [inline] sock_recvmsg net/socket.c:889 [inline] sock_recvmsg+0x92/0xb0 net/socket.c:885 sock_read_iter+0x15f/0x1e0 net/socket.c:967 call_read_iter include/linux/fs.h:1864 [inline] new_sync_read+0x389/0x4f0 fs/read_write.c:414 read to 0xffffffff85a7f190 of 8 bytes by task 10 on cpu 1: rcu_gp_fqs_check_wake kernel/rcu/tree.c:1556 [inline] rcu_gp_fqs_check_wake+0x93/0xd0 kernel/rcu/tree.c:1546 rcu_gp_fqs_loop+0x36c/0x580 kernel/rcu/tree.c:1611 rcu_gp_kthread+0x143/0x220 kernel/rcu/tree.c:1768 kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 10 Comm: rcu_preempt Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> [ paulmck: Added another READ_ONCE() for RCU CPU stall warnings. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2019-10-09 21:21:54 +00:00
WRITE_ONCE(rnp->gp_tasks, np);
if (&t->rcu_node_entry == rnp->exp_tasks)
WRITE_ONCE(rnp->exp_tasks, np);
if (IS_ENABLED(CONFIG_RCU_BOOST)) {
/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
if (&t->rcu_node_entry == rnp->boost_tasks)
WRITE_ONCE(rnp->boost_tasks, np);
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* If this was the last task on the current list, and if
* we aren't waiting on any CPUs, report the quiescent state.
rcu: Avoid RCU-preempt expedited grace-period botch Because rcu_read_unlock_special() samples rcu_preempted_readers_exp(rnp) after dropping rnp->lock, the following sequence of events is possible: 1. Task A exits its RCU read-side critical section, and removes itself from the ->blkd_tasks list, releases rnp->lock, and is then preempted. Task B remains on the ->blkd_tasks list, and blocks the current expedited grace period. 2. Task B exits from its RCU read-side critical section and removes itself from the ->blkd_tasks list. Because it is the last task blocking the current expedited grace period, it ends that expedited grace period. 3. Task A resumes, and samples rcu_preempted_readers_exp(rnp) which of course indicates that nothing is blocking the nonexistent expedited grace period. Task A is again preempted. 4. Some other CPU starts an expedited grace period. There are several tasks blocking this expedited grace period queued on the same rcu_node structure that Task A was using in step 1 above. 5. Task A examines its state and incorrectly concludes that it was the last task blocking the expedited grace period on the current rcu_node structure. It therefore reports completion up the rcu_node tree. 6. The expedited grace period can then incorrectly complete before the tasks blocked on this same rcu_node structure exit their RCU read-side critical sections. Arbitrarily bad things happen. This commit therefore takes a snapshot of rcu_preempted_readers_exp(rnp) prior to dropping the lock, so that only the last task thinks that it is the last task, thus avoiding the failure scenario laid out above. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-09-21 21:41:37 +00:00
* Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
* so we must take a snapshot of the expedited state.
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
*/
empty_exp_now = sync_rcu_exp_done(rnp);
if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
rcu: Have the RCU tracepoints use the tracepoint_string infrastructure Currently, RCU tracepoints save only a pointer to strings in the ring buffer. When displayed via the /sys/kernel/debug/tracing/trace file they are referenced like the printf "%s" that looks at the address in the ring buffer and prints out the string it points too. This requires that the strings are constant and persistent in the kernel. The problem with this is for tools like trace-cmd and perf that read the binary data from the buffers but have no access to the kernel memory to find out what string is represented by the address in the buffer. By using the tracepoint_string infrastructure, the RCU tracepoint strings can be exported such that userspace tools can map the addresses to the strings. # cat /sys/kernel/debug/tracing/printk_formats 0xffffffff81a4a0e8 : "rcu_preempt" 0xffffffff81a4a0f4 : "rcu_bh" 0xffffffff81a4a100 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437a6 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437b0 : "rcu_bh" 0xffffffff818437b7 : "Start context switch" 0xffffffff818437cc : "End context switch" 0xffffffff818437a0 : "cpuqs" [...] Now userspaces tools can display: rcu_utilization: Start context switch rcu_dyntick: Start 1 0 rcu_utilization: End context switch rcu_batch_start: rcu_preempt CBs=0/5 bl=10 rcu_dyntick: End 0 140000000000000 rcu_invoke_callback: rcu_preempt rhp=0xffff880071c0d600 func=proc_i_callback rcu_invoke_callback: rcu_preempt rhp=0xffff880077b5b230 func=__d_free rcu_dyntick: Start 140000000000000 0 rcu_invoke_callback: rcu_preempt rhp=0xffff880077563980 func=file_free_rcu rcu_batch_end: rcu_preempt CBs-invoked=3 idle=>c<>c<>c<>c< rcu_utilization: End RCU core rcu_grace_period: rcu_preempt 9741 start rcu_dyntick: Start 1 0 rcu_dyntick: End 0 140000000000000 rcu_dyntick: Start 140000000000000 0 Instead of: rcu_utilization: ffffffff81843110 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_batch_start: ffffffff81842f1d CBs=0/4 bl=10 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888aac0 func=file_free_rcu rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f95 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88006aeb4600 func=proc_i_callback rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_invoke_callback: ffffffff81842f1d rhp=0xffff880071cb9fc0 func=__d_free rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888ae80 func=file_free_rcu rcu_batch_end: ffffffff81842f1d CBs-invoked=4 idle=>c<>c<>c<>c< rcu_utilization: ffffffff8184311f Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-12 21:18:47 +00:00
trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
rnp->gp_seq,
0, rnp->qsmask,
rnp->level,
rnp->grplo,
rnp->grphi,
!!rnp->gp_tasks);
rcu_report_unblock_qs_rnp(rnp, flags);
} else {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
/*
* If this was the last task on the expedited lists,
* then we need to report up the rcu_node hierarchy.
*/
rcu: Avoid RCU-preempt expedited grace-period botch Because rcu_read_unlock_special() samples rcu_preempted_readers_exp(rnp) after dropping rnp->lock, the following sequence of events is possible: 1. Task A exits its RCU read-side critical section, and removes itself from the ->blkd_tasks list, releases rnp->lock, and is then preempted. Task B remains on the ->blkd_tasks list, and blocks the current expedited grace period. 2. Task B exits from its RCU read-side critical section and removes itself from the ->blkd_tasks list. Because it is the last task blocking the current expedited grace period, it ends that expedited grace period. 3. Task A resumes, and samples rcu_preempted_readers_exp(rnp) which of course indicates that nothing is blocking the nonexistent expedited grace period. Task A is again preempted. 4. Some other CPU starts an expedited grace period. There are several tasks blocking this expedited grace period queued on the same rcu_node structure that Task A was using in step 1 above. 5. Task A examines its state and incorrectly concludes that it was the last task blocking the expedited grace period on the current rcu_node structure. It therefore reports completion up the rcu_node tree. 6. The expedited grace period can then incorrectly complete before the tasks blocked on this same rcu_node structure exit their RCU read-side critical sections. Arbitrarily bad things happen. This commit therefore takes a snapshot of rcu_preempted_readers_exp(rnp) prior to dropping the lock, so that only the last task thinks that it is the last task, thus avoiding the failure scenario laid out above. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-09-21 21:41:37 +00:00
if (!empty_exp && empty_exp_now)
rcu_report_exp_rnp(rnp, true);
/* Unboost if we were boosted. */
if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-22 16:53:48 +00:00
} else {
local_irq_restore(flags);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
}
}
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
/*
* Is a deferred quiescent-state pending, and are we also not in
* an RCU read-side critical section? It is the caller's responsibility
* to ensure it is otherwise safe to report any deferred quiescent
* states. The reason for this is that it is safe to report a
* quiescent state during context switch even though preemption
* is disabled. This function cannot be expected to understand these
* nuances, so the caller must handle them.
*/
static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{
return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
READ_ONCE(t->rcu_read_unlock_special.s)) &&
rcu_preempt_depth() == 0;
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
}
/*
* Report a deferred quiescent state if needed and safe to do so.
* As with rcu_preempt_need_deferred_qs(), "safe" involves only
* not being in an RCU read-side critical section. The caller must
* evaluate safety in terms of interrupt, softirq, and preemption
* disabling.
*/
static void rcu_preempt_deferred_qs(struct task_struct *t)
{
unsigned long flags;
if (!rcu_preempt_need_deferred_qs(t))
return;
local_irq_save(flags);
rcu_preempt_deferred_qs_irqrestore(t, flags);
}
/*
* Minimal handler to give the scheduler a chance to re-evaluate.
*/
static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
{
struct rcu_data *rdp;
rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
rdp->defer_qs_iw_pending = false;
}
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
/*
* Handle special cases during rcu_read_unlock(), such as needing to
* notify RCU core processing or task having blocked during the RCU
* read-side critical section.
*/
static void rcu_read_unlock_special(struct task_struct *t)
{
unsigned long flags;
rcu: Expedite deboost in case of deferred quiescent state Historically, a task that has been subjected to RCU priority boosting is deboosted at rcu_read_unlock() time. However, with the advent of deferred quiescent states, if the outermost rcu_read_unlock() was invoked with either bottom halves, interrupts, or preemption disabled, the deboosting will be delayed for some time. During this time, a low-priority process might be incorrectly running at a high real-time priority level. Fortunately, rcu_read_unlock_special() already provides mechanisms for forcing a minimal deferral of quiescent states, at least for kernels built with CONFIG_IRQ_WORK=y. These mechanisms are currently used when expedited grace periods are pending that might be blocked by the current task. This commit therefore causes those mechanisms to also be used in cases where the current task has been or might soon be subjected to RCU priority boosting. Note that this applies to all kernels built with CONFIG_RCU_BOOST=y, regardless of whether or not they are also built with CONFIG_PREEMPT_RT=y. This approach assumes that kernels build for use with aggressive real-time applications are built with CONFIG_IRQ_WORK=y. It is likely to be far simpler to enable CONFIG_IRQ_WORK=y than to implement a fast-deboosting scheme that works correctly in its absence. While in the area, alphabetize the rcu_preempt_deferred_qs_handler() function's local variables. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-14 18:39:31 +00:00
bool irqs_were_disabled;
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
bool preempt_bh_were_disabled =
!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
/* NMI handlers cannot block and cannot safely manipulate state. */
if (in_nmi())
return;
local_irq_save(flags);
irqs_were_disabled = irqs_disabled_flags(flags);
rcu: Speed up expedited GPs when interrupting RCU reader In PREEMPT kernels, an expedited grace period might send an IPI to a CPU that is executing an RCU read-side critical section. In that case, it would be nice if the rcu_read_unlock() directly interacted with the RCU core code to immediately report the quiescent state. And this does happen in the case where the reader has been preempted. But it would also be a nice performance optimization if immediate reporting also happened in the preemption-free case. This commit therefore adds an ->exp_hint field to the task_struct structure's ->rcu_read_unlock_special field. The IPI handler sets this hint when it has interrupted an RCU read-side critical section, and this causes the outermost rcu_read_unlock() call to invoke rcu_read_unlock_special(), which, if preemption is enabled, reports the quiescent state immediately. If preemption is disabled, then the report is required to be deferred until preemption (or bottom halves or interrupts or whatever) is re-enabled. Because this is a hint, it does nothing for more complicated cases. For example, if the IPI interrupts an RCU reader, but interrupts are disabled across the rcu_read_unlock(), but another rcu_read_lock() is executed before interrupts are re-enabled, the hint will already have been cleared. If you do crazy things like this, reporting will be deferred until some later RCU_SOFTIRQ handler, context switch, cond_resched(), or similar. Reported-by: Joel Fernandes <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2018-10-16 11:12:58 +00:00
if (preempt_bh_were_disabled || irqs_were_disabled) {
rcu: Expedite deboost in case of deferred quiescent state Historically, a task that has been subjected to RCU priority boosting is deboosted at rcu_read_unlock() time. However, with the advent of deferred quiescent states, if the outermost rcu_read_unlock() was invoked with either bottom halves, interrupts, or preemption disabled, the deboosting will be delayed for some time. During this time, a low-priority process might be incorrectly running at a high real-time priority level. Fortunately, rcu_read_unlock_special() already provides mechanisms for forcing a minimal deferral of quiescent states, at least for kernels built with CONFIG_IRQ_WORK=y. These mechanisms are currently used when expedited grace periods are pending that might be blocked by the current task. This commit therefore causes those mechanisms to also be used in cases where the current task has been or might soon be subjected to RCU priority boosting. Note that this applies to all kernels built with CONFIG_RCU_BOOST=y, regardless of whether or not they are also built with CONFIG_PREEMPT_RT=y. This approach assumes that kernels build for use with aggressive real-time applications are built with CONFIG_IRQ_WORK=y. It is likely to be far simpler to enable CONFIG_IRQ_WORK=y than to implement a fast-deboosting scheme that works correctly in its absence. While in the area, alphabetize the rcu_preempt_deferred_qs_handler() function's local variables. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-14 18:39:31 +00:00
bool expboost; // Expedited GP in flight or possible boosting.
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
struct rcu_node *rnp = rdp->mynode;
rcu: Expedite deboost in case of deferred quiescent state Historically, a task that has been subjected to RCU priority boosting is deboosted at rcu_read_unlock() time. However, with the advent of deferred quiescent states, if the outermost rcu_read_unlock() was invoked with either bottom halves, interrupts, or preemption disabled, the deboosting will be delayed for some time. During this time, a low-priority process might be incorrectly running at a high real-time priority level. Fortunately, rcu_read_unlock_special() already provides mechanisms for forcing a minimal deferral of quiescent states, at least for kernels built with CONFIG_IRQ_WORK=y. These mechanisms are currently used when expedited grace periods are pending that might be blocked by the current task. This commit therefore causes those mechanisms to also be used in cases where the current task has been or might soon be subjected to RCU priority boosting. Note that this applies to all kernels built with CONFIG_RCU_BOOST=y, regardless of whether or not they are also built with CONFIG_PREEMPT_RT=y. This approach assumes that kernels build for use with aggressive real-time applications are built with CONFIG_IRQ_WORK=y. It is likely to be far simpler to enable CONFIG_IRQ_WORK=y than to implement a fast-deboosting scheme that works correctly in its absence. While in the area, alphabetize the rcu_preempt_deferred_qs_handler() function's local variables. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-14 18:39:31 +00:00
expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
(rdp->grpmask & READ_ONCE(rnp->expmask)) ||
IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
rcu: Expedite deboost in case of deferred quiescent state Historically, a task that has been subjected to RCU priority boosting is deboosted at rcu_read_unlock() time. However, with the advent of deferred quiescent states, if the outermost rcu_read_unlock() was invoked with either bottom halves, interrupts, or preemption disabled, the deboosting will be delayed for some time. During this time, a low-priority process might be incorrectly running at a high real-time priority level. Fortunately, rcu_read_unlock_special() already provides mechanisms for forcing a minimal deferral of quiescent states, at least for kernels built with CONFIG_IRQ_WORK=y. These mechanisms are currently used when expedited grace periods are pending that might be blocked by the current task. This commit therefore causes those mechanisms to also be used in cases where the current task has been or might soon be subjected to RCU priority boosting. Note that this applies to all kernels built with CONFIG_RCU_BOOST=y, regardless of whether or not they are also built with CONFIG_PREEMPT_RT=y. This approach assumes that kernels build for use with aggressive real-time applications are built with CONFIG_IRQ_WORK=y. It is likely to be far simpler to enable CONFIG_IRQ_WORK=y than to implement a fast-deboosting scheme that works correctly in its absence. While in the area, alphabetize the rcu_preempt_deferred_qs_handler() function's local variables. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-14 18:39:31 +00:00
(IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
t->rcu_blocked_node);
rcu: Check for wakeup-safe conditions in rcu_read_unlock_special() When RCU core processing is offloaded from RCU_SOFTIRQ to the rcuc kthreads, a full and unconditional wakeup is required to initiate RCU core processing. In contrast, when RCU core processing is carried out by RCU_SOFTIRQ, a raise_softirq() suffices. Of course, there are situations where raise_softirq() does a full wakeup, but these do not occur with normal usage of rcu_read_unlock(). The reason that full wakeups can be problematic is that the scheduler sometimes invokes rcu_read_unlock() with its pi or rq locks held, which can of course result in deadlock in CONFIG_PREEMPT=y kernels when rcu_read_unlock() invokes the scheduler. Scheduler invocations can happen in the following situations: (1) The just-ended reader has been subjected to RCU priority boosting, in which case rcu_read_unlock() must deboost, (2) Interrupts were disabled across the call to rcu_read_unlock(), so the quiescent state must be deferred, requiring a wakeup of the rcuc kthread corresponding to the current CPU. Now, the scheduler may hold one of its locks across rcu_read_unlock() only if preemption has been disabled across the entire RCU read-side critical section, which in the days prior to RCU flavor consolidation meant that rcu_read_unlock() never needed to do wakeups. However, this is no longer the case for any but the first rcu_read_unlock() following a condition (e.g., preempted RCU reader) requiring special rcu_read_unlock() attention. For example, an RCU read-side critical section might be preempted, but preemption might be disabled across the rcu_read_unlock(). The rcu_read_unlock() must defer the quiescent state, and therefore leaves the task queued on its leaf rcu_node structure. If a scheduler interrupt occurs, the scheduler might well invoke rcu_read_unlock() with one of its locks held. However, the preempted task is still queued, so rcu_read_unlock() will attempt to defer the quiescent state once more. When RCU core processing is carried out by RCU_SOFTIRQ, this works just fine: The raise_softirq() function simply sets a bit in a per-CPU mask and the RCU core processing will be undertaken upon return from interrupt. Not so when RCU core processing is carried out by the rcuc kthread: In this case, the required wakeup can result in deadlock. The initial solution to this problem was to use set_tsk_need_resched() and set_preempt_need_resched() to force a future context switch, which allows rcu_preempt_note_context_switch() to report the deferred quiescent state to RCU's core processing. Unfortunately for expedited grace periods, there can be a significant delay between the call for a context switch and the actual context switch. This commit therefore introduces a ->deferred_qs flag to the task_struct structure's rcu_special structure. This flag is initially false, and is set to true by the first call to rcu_read_unlock() requiring special attention, then finally reset back to false when the quiescent state is finally reported. Then rcu_read_unlock() attempts full wakeups only when ->deferred_qs is false, that is, on the first rcu_read_unlock() requiring special attention. Note that a chain of RCU readers linked by some other sort of reader may find that a later rcu_read_unlock() is once again able to do a full wakeup, courtesy of an intervening preemption: rcu_read_lock(); /* preempted */ local_irq_disable(); rcu_read_unlock(); /* Can do full wakeup, sets ->deferred_qs. */ rcu_read_lock(); local_irq_enable(); preempt_disable() rcu_read_unlock(); /* Cannot do full wakeup, ->deferred_qs set. */ rcu_read_lock(); preempt_enable(); /* preempted, >deferred_qs reset. */ local_irq_disable(); rcu_read_unlock(); /* Can again do full wakeup, sets ->deferred_qs. */ Such linked RCU readers do not yet seem to appear in the Linux kernel, and it is probably best if they don't. However, RCU needs to handle them, and some variations on this theme could make even raise_softirq() unsafe due to the possibility of its doing a full wakeup. This commit therefore also avoids invoking raise_softirq() when the ->deferred_qs set flag is set. Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
2019-03-24 22:25:51 +00:00
// Need to defer quiescent state until everything is enabled.
if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
// Using softirq, safe to awaken, and either the
rcu: Expedite deboost in case of deferred quiescent state Historically, a task that has been subjected to RCU priority boosting is deboosted at rcu_read_unlock() time. However, with the advent of deferred quiescent states, if the outermost rcu_read_unlock() was invoked with either bottom halves, interrupts, or preemption disabled, the deboosting will be delayed for some time. During this time, a low-priority process might be incorrectly running at a high real-time priority level. Fortunately, rcu_read_unlock_special() already provides mechanisms for forcing a minimal deferral of quiescent states, at least for kernels built with CONFIG_IRQ_WORK=y. These mechanisms are currently used when expedited grace periods are pending that might be blocked by the current task. This commit therefore causes those mechanisms to also be used in cases where the current task has been or might soon be subjected to RCU priority boosting. Note that this applies to all kernels built with CONFIG_RCU_BOOST=y, regardless of whether or not they are also built with CONFIG_PREEMPT_RT=y. This approach assumes that kernels build for use with aggressive real-time applications are built with CONFIG_IRQ_WORK=y. It is likely to be far simpler to enable CONFIG_IRQ_WORK=y than to implement a fast-deboosting scheme that works correctly in its absence. While in the area, alphabetize the rcu_preempt_deferred_qs_handler() function's local variables. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-14 18:39:31 +00:00
// wakeup is free or there is either an expedited
// GP in flight or a potential need to deboost.
rcu: Speed up expedited GPs when interrupting RCU reader In PREEMPT kernels, an expedited grace period might send an IPI to a CPU that is executing an RCU read-side critical section. In that case, it would be nice if the rcu_read_unlock() directly interacted with the RCU core code to immediately report the quiescent state. And this does happen in the case where the reader has been preempted. But it would also be a nice performance optimization if immediate reporting also happened in the preemption-free case. This commit therefore adds an ->exp_hint field to the task_struct structure's ->rcu_read_unlock_special field. The IPI handler sets this hint when it has interrupted an RCU read-side critical section, and this causes the outermost rcu_read_unlock() call to invoke rcu_read_unlock_special(), which, if preemption is enabled, reports the quiescent state immediately. If preemption is disabled, then the report is required to be deferred until preemption (or bottom halves or interrupts or whatever) is re-enabled. Because this is a hint, it does nothing for more complicated cases. For example, if the IPI interrupts an RCU reader, but interrupts are disabled across the rcu_read_unlock(), but another rcu_read_lock() is executed before interrupts are re-enabled, the hint will already have been cleared. If you do crazy things like this, reporting will be deferred until some later RCU_SOFTIRQ handler, context switch, cond_resched(), or similar. Reported-by: Joel Fernandes <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2018-10-16 11:12:58 +00:00
raise_softirq_irqoff(RCU_SOFTIRQ);
} else {
rcu: Check for wakeup-safe conditions in rcu_read_unlock_special() When RCU core processing is offloaded from RCU_SOFTIRQ to the rcuc kthreads, a full and unconditional wakeup is required to initiate RCU core processing. In contrast, when RCU core processing is carried out by RCU_SOFTIRQ, a raise_softirq() suffices. Of course, there are situations where raise_softirq() does a full wakeup, but these do not occur with normal usage of rcu_read_unlock(). The reason that full wakeups can be problematic is that the scheduler sometimes invokes rcu_read_unlock() with its pi or rq locks held, which can of course result in deadlock in CONFIG_PREEMPT=y kernels when rcu_read_unlock() invokes the scheduler. Scheduler invocations can happen in the following situations: (1) The just-ended reader has been subjected to RCU priority boosting, in which case rcu_read_unlock() must deboost, (2) Interrupts were disabled across the call to rcu_read_unlock(), so the quiescent state must be deferred, requiring a wakeup of the rcuc kthread corresponding to the current CPU. Now, the scheduler may hold one of its locks across rcu_read_unlock() only if preemption has been disabled across the entire RCU read-side critical section, which in the days prior to RCU flavor consolidation meant that rcu_read_unlock() never needed to do wakeups. However, this is no longer the case for any but the first rcu_read_unlock() following a condition (e.g., preempted RCU reader) requiring special rcu_read_unlock() attention. For example, an RCU read-side critical section might be preempted, but preemption might be disabled across the rcu_read_unlock(). The rcu_read_unlock() must defer the quiescent state, and therefore leaves the task queued on its leaf rcu_node structure. If a scheduler interrupt occurs, the scheduler might well invoke rcu_read_unlock() with one of its locks held. However, the preempted task is still queued, so rcu_read_unlock() will attempt to defer the quiescent state once more. When RCU core processing is carried out by RCU_SOFTIRQ, this works just fine: The raise_softirq() function simply sets a bit in a per-CPU mask and the RCU core processing will be undertaken upon return from interrupt. Not so when RCU core processing is carried out by the rcuc kthread: In this case, the required wakeup can result in deadlock. The initial solution to this problem was to use set_tsk_need_resched() and set_preempt_need_resched() to force a future context switch, which allows rcu_preempt_note_context_switch() to report the deferred quiescent state to RCU's core processing. Unfortunately for expedited grace periods, there can be a significant delay between the call for a context switch and the actual context switch. This commit therefore introduces a ->deferred_qs flag to the task_struct structure's rcu_special structure. This flag is initially false, and is set to true by the first call to rcu_read_unlock() requiring special attention, then finally reset back to false when the quiescent state is finally reported. Then rcu_read_unlock() attempts full wakeups only when ->deferred_qs is false, that is, on the first rcu_read_unlock() requiring special attention. Note that a chain of RCU readers linked by some other sort of reader may find that a later rcu_read_unlock() is once again able to do a full wakeup, courtesy of an intervening preemption: rcu_read_lock(); /* preempted */ local_irq_disable(); rcu_read_unlock(); /* Can do full wakeup, sets ->deferred_qs. */ rcu_read_lock(); local_irq_enable(); preempt_disable() rcu_read_unlock(); /* Cannot do full wakeup, ->deferred_qs set. */ rcu_read_lock(); preempt_enable(); /* preempted, >deferred_qs reset. */ local_irq_disable(); rcu_read_unlock(); /* Can again do full wakeup, sets ->deferred_qs. */ Such linked RCU readers do not yet seem to appear in the Linux kernel, and it is probably best if they don't. However, RCU needs to handle them, and some variations on this theme could make even raise_softirq() unsafe due to the possibility of its doing a full wakeup. This commit therefore also avoids invoking raise_softirq() when the ->deferred_qs set flag is set. Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
2019-03-24 22:25:51 +00:00
// Enabling BH or preempt does reschedule, so...
rcu: Expedite deboost in case of deferred quiescent state Historically, a task that has been subjected to RCU priority boosting is deboosted at rcu_read_unlock() time. However, with the advent of deferred quiescent states, if the outermost rcu_read_unlock() was invoked with either bottom halves, interrupts, or preemption disabled, the deboosting will be delayed for some time. During this time, a low-priority process might be incorrectly running at a high real-time priority level. Fortunately, rcu_read_unlock_special() already provides mechanisms for forcing a minimal deferral of quiescent states, at least for kernels built with CONFIG_IRQ_WORK=y. These mechanisms are currently used when expedited grace periods are pending that might be blocked by the current task. This commit therefore causes those mechanisms to also be used in cases where the current task has been or might soon be subjected to RCU priority boosting. Note that this applies to all kernels built with CONFIG_RCU_BOOST=y, regardless of whether or not they are also built with CONFIG_PREEMPT_RT=y. This approach assumes that kernels build for use with aggressive real-time applications are built with CONFIG_IRQ_WORK=y. It is likely to be far simpler to enable CONFIG_IRQ_WORK=y than to implement a fast-deboosting scheme that works correctly in its absence. While in the area, alphabetize the rcu_preempt_deferred_qs_handler() function's local variables. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-14 18:39:31 +00:00
// Also if no expediting and no possible deboosting,
// slow is OK. Plus nohz_full CPUs eventually get
// tick enabled.
rcu: Speed up expedited GPs when interrupting RCU reader In PREEMPT kernels, an expedited grace period might send an IPI to a CPU that is executing an RCU read-side critical section. In that case, it would be nice if the rcu_read_unlock() directly interacted with the RCU core code to immediately report the quiescent state. And this does happen in the case where the reader has been preempted. But it would also be a nice performance optimization if immediate reporting also happened in the preemption-free case. This commit therefore adds an ->exp_hint field to the task_struct structure's ->rcu_read_unlock_special field. The IPI handler sets this hint when it has interrupted an RCU read-side critical section, and this causes the outermost rcu_read_unlock() call to invoke rcu_read_unlock_special(), which, if preemption is enabled, reports the quiescent state immediately. If preemption is disabled, then the report is required to be deferred until preemption (or bottom halves or interrupts or whatever) is re-enabled. Because this is a hint, it does nothing for more complicated cases. For example, if the IPI interrupts an RCU reader, but interrupts are disabled across the rcu_read_unlock(), but another rcu_read_lock() is executed before interrupts are re-enabled, the hint will already have been cleared. If you do crazy things like this, reporting will be deferred until some later RCU_SOFTIRQ handler, context switch, cond_resched(), or similar. Reported-by: Joel Fernandes <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2018-10-16 11:12:58 +00:00
set_tsk_need_resched(current);
set_preempt_need_resched();
if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
rcu: Expedite deboost in case of deferred quiescent state Historically, a task that has been subjected to RCU priority boosting is deboosted at rcu_read_unlock() time. However, with the advent of deferred quiescent states, if the outermost rcu_read_unlock() was invoked with either bottom halves, interrupts, or preemption disabled, the deboosting will be delayed for some time. During this time, a low-priority process might be incorrectly running at a high real-time priority level. Fortunately, rcu_read_unlock_special() already provides mechanisms for forcing a minimal deferral of quiescent states, at least for kernels built with CONFIG_IRQ_WORK=y. These mechanisms are currently used when expedited grace periods are pending that might be blocked by the current task. This commit therefore causes those mechanisms to also be used in cases where the current task has been or might soon be subjected to RCU priority boosting. Note that this applies to all kernels built with CONFIG_RCU_BOOST=y, regardless of whether or not they are also built with CONFIG_PREEMPT_RT=y. This approach assumes that kernels build for use with aggressive real-time applications are built with CONFIG_IRQ_WORK=y. It is likely to be far simpler to enable CONFIG_IRQ_WORK=y than to implement a fast-deboosting scheme that works correctly in its absence. While in the area, alphabetize the rcu_preempt_deferred_qs_handler() function's local variables. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-14 18:39:31 +00:00
expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
// Get scheduler to re-evaluate and call hooks.
// If !IRQ_WORK, FQS scan will eventually IPI.
rcu: Expedite deboost in case of deferred quiescent state Historically, a task that has been subjected to RCU priority boosting is deboosted at rcu_read_unlock() time. However, with the advent of deferred quiescent states, if the outermost rcu_read_unlock() was invoked with either bottom halves, interrupts, or preemption disabled, the deboosting will be delayed for some time. During this time, a low-priority process might be incorrectly running at a high real-time priority level. Fortunately, rcu_read_unlock_special() already provides mechanisms for forcing a minimal deferral of quiescent states, at least for kernels built with CONFIG_IRQ_WORK=y. These mechanisms are currently used when expedited grace periods are pending that might be blocked by the current task. This commit therefore causes those mechanisms to also be used in cases where the current task has been or might soon be subjected to RCU priority boosting. Note that this applies to all kernels built with CONFIG_RCU_BOOST=y, regardless of whether or not they are also built with CONFIG_PREEMPT_RT=y. This approach assumes that kernels build for use with aggressive real-time applications are built with CONFIG_IRQ_WORK=y. It is likely to be far simpler to enable CONFIG_IRQ_WORK=y than to implement a fast-deboosting scheme that works correctly in its absence. While in the area, alphabetize the rcu_preempt_deferred_qs_handler() function's local variables. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-14 18:39:31 +00:00
init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler);
rdp->defer_qs_iw_pending = true;
irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
}
rcu: Speed up expedited GPs when interrupting RCU reader In PREEMPT kernels, an expedited grace period might send an IPI to a CPU that is executing an RCU read-side critical section. In that case, it would be nice if the rcu_read_unlock() directly interacted with the RCU core code to immediately report the quiescent state. And this does happen in the case where the reader has been preempted. But it would also be a nice performance optimization if immediate reporting also happened in the preemption-free case. This commit therefore adds an ->exp_hint field to the task_struct structure's ->rcu_read_unlock_special field. The IPI handler sets this hint when it has interrupted an RCU read-side critical section, and this causes the outermost rcu_read_unlock() call to invoke rcu_read_unlock_special(), which, if preemption is enabled, reports the quiescent state immediately. If preemption is disabled, then the report is required to be deferred until preemption (or bottom halves or interrupts or whatever) is re-enabled. Because this is a hint, it does nothing for more complicated cases. For example, if the IPI interrupts an RCU reader, but interrupts are disabled across the rcu_read_unlock(), but another rcu_read_lock() is executed before interrupts are re-enabled, the hint will already have been cleared. If you do crazy things like this, reporting will be deferred until some later RCU_SOFTIRQ handler, context switch, cond_resched(), or similar. Reported-by: Joel Fernandes <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2018-10-16 11:12:58 +00:00
}
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
local_irq_restore(flags);
return;
}
rcu_preempt_deferred_qs_irqrestore(t, flags);
}
/*
* Check that the list of blocked tasks for the newly completed grace
* period is in fact empty. It is a serious bug to complete a grace
* period that still has RCU readers blocked! This function must be
* invoked -before- updating this rnp's ->gp_seq.
*
* Also, if there are blocked tasks on the list, they automatically
* block the newly created grace period, so set up ->gp_tasks accordingly.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
struct task_struct *t;
RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
raw_lockdep_assert_held_rcu_node(rnp);
if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
dump_blkd_tasks(rnp, 10);
rcu: Suppress false-positive splats from mid-init task resume Consider the following sequence of events in a PREEMPT=y kernel: 1. All CPUs corresponding to a given leaf rcu_node structure are offline. 2. The first phase of the rcu_gp_init() function's grace-period initialization runs, and sets that rcu_node structure's ->qsmaskinit to zero, as it should. 3. One of the CPUs corresponding to that rcu_node structure comes back online. Note that because this CPU came online after the grace period started, this grace period can safely ignore this newly onlined CPU. 4. A task running on the newly onlined CPU enters an RCU-preempt read-side critical section, and is then preempted. Because the corresponding rcu_node structure's ->qsmask is zero, rcu_preempt_ctxt_queue() leaves the rcu_node structure's ->gp_tasks field NULL, as it should. 5. The rcu_gp_init() function continues running the second phase of grace-period initialization. The ->qsmask field of the parent of the aforementioned leaf rcu_node structure is set to not expect a quiescent state from the leaf, as is only right and proper. However, when rcu_gp_init() reaches the leaf, it invokes rcu_preempt_check_blocked_tasks(), which sees that the leaf's ->blkd_tasks list is non-empty, and therefore sets the leaf's ->gp_tasks field to reference the first task on that list. 6. The grace period ends before the preempted task resumes, which is perfectly fine, given that this grace period was under no obligation to wait for that task to exit its late-starting RCU-preempt read-side critical section. Unfortunately, the leaf's ->gp_tasks field is non-NULL, so rcu_gp_cleanup() splats. After all, it appears to rcu_gp_cleanup() that the grace period failed to wait for a task that was supposed to be blocking that grace period. This commit avoids this false-positive splat by adding a check of both ->qsmaskinit and ->wait_blkd_tasks to rcu_preempt_check_blocked_tasks(). If both ->qsmaskinit and ->wait_blkd_tasks are zero, then the task must have entered its RCU-preempt read-side critical section late (after all, the CPU that it is running on was not online at that time), which means that the upper-level rcu_node structure won't be waiting for anything on the leaf anyway. If ->wait_blkd_tasks is non-zero, then there is at least one task on ths rcu_node structure's ->blkd_tasks list whose RCU read-side critical section predates the current grace period. If ->qsmaskinit is non-zero, there is at least one CPU that was online at the start of the current grace period. Thus, if both are zero, there is nothing to wait for. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-08 23:18:28 +00:00
if (rcu_preempt_has_tasks(rnp) &&
(rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
rcu: Avoid data-race in rcu_gp_fqs_check_wake() The rcu_gp_fqs_check_wake() function uses rcu_preempt_blocked_readers_cgp() to read ->gp_tasks while other cpus might overwrite this field. We need READ_ONCE()/WRITE_ONCE() pairs to avoid compiler tricks and KCSAN splats like the following : BUG: KCSAN: data-race in rcu_gp_fqs_check_wake / rcu_preempt_deferred_qs_irqrestore write to 0xffffffff85a7f190 of 8 bytes by task 7317 on cpu 0: rcu_preempt_deferred_qs_irqrestore+0x43d/0x580 kernel/rcu/tree_plugin.h:507 rcu_read_unlock_special+0xec/0x370 kernel/rcu/tree_plugin.h:659 __rcu_read_unlock+0xcf/0xe0 kernel/rcu/tree_plugin.h:394 rcu_read_unlock include/linux/rcupdate.h:645 [inline] __ip_queue_xmit+0x3b0/0xa40 net/ipv4/ip_output.c:533 ip_queue_xmit+0x45/0x60 include/net/ip.h:236 __tcp_transmit_skb+0xdeb/0x1cd0 net/ipv4/tcp_output.c:1158 __tcp_send_ack+0x246/0x300 net/ipv4/tcp_output.c:3685 tcp_send_ack+0x34/0x40 net/ipv4/tcp_output.c:3691 tcp_cleanup_rbuf+0x130/0x360 net/ipv4/tcp.c:1575 tcp_recvmsg+0x633/0x1a30 net/ipv4/tcp.c:2179 inet_recvmsg+0xbb/0x250 net/ipv4/af_inet.c:838 sock_recvmsg_nosec net/socket.c:871 [inline] sock_recvmsg net/socket.c:889 [inline] sock_recvmsg+0x92/0xb0 net/socket.c:885 sock_read_iter+0x15f/0x1e0 net/socket.c:967 call_read_iter include/linux/fs.h:1864 [inline] new_sync_read+0x389/0x4f0 fs/read_write.c:414 read to 0xffffffff85a7f190 of 8 bytes by task 10 on cpu 1: rcu_gp_fqs_check_wake kernel/rcu/tree.c:1556 [inline] rcu_gp_fqs_check_wake+0x93/0xd0 kernel/rcu/tree.c:1546 rcu_gp_fqs_loop+0x36c/0x580 kernel/rcu/tree.c:1611 rcu_gp_kthread+0x143/0x220 kernel/rcu/tree.c:1768 kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 10 Comm: rcu_preempt Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> [ paulmck: Added another READ_ONCE() for RCU CPU stall warnings. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2019-10-09 21:21:54 +00:00
WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
t = container_of(rnp->gp_tasks, struct task_struct,
rcu_node_entry);
trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
rnp->gp_seq, t->pid);
}
WARN_ON_ONCE(rnp->qsmask);
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Check for a quiescent state from the current CPU, including voluntary
* context switches for Tasks RCU. When a task blocks, the task is
* recorded in the corresponding CPU's rcu_node structure, which is checked
* elsewhere, hence this function need only check for quiescent states
* related to the current CPU, not to those related to tasks.
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
*/
static void rcu_flavor_sched_clock_irq(int user)
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
{
struct task_struct *t = current;
lockdep_assert_irqs_disabled();
if (user || rcu_is_cpu_rrupt_from_idle()) {
rcu_note_voluntary_context_switch(current);
}
if (rcu_preempt_depth() > 0 ||
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
/* No QS, force context switch if deferred. */
if (rcu_preempt_need_deferred_qs(t)) {
set_tsk_need_resched(t);
set_preempt_need_resched();
}
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
} else if (rcu_preempt_need_deferred_qs(t)) {
rcu_preempt_deferred_qs(t); /* Report deferred QS. */
return;
} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
rcu_qs(); /* Report immediate QS. */
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
return;
}
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
if (rcu_preempt_depth() > 0 &&
__this_cpu_read(rcu_data.core_needs_qs) &&
__this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
!t->rcu_read_unlock_special.b.need_qs &&
time_after(jiffies, rcu_state.gp_start + HZ))
t->rcu_read_unlock_special.b.need_qs = true;
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
}
/*
* Check for a task exiting while in a preemptible-RCU read-side
rcu: Make exit_rcu() handle non-preempted RCU readers The purpose of exit_rcu() is to handle cases where buggy code causes a task to exit within an RCU read-side critical section. It currently does that in the case where said RCU read-side critical section was preempted at least once, but fails to handle cases where preemption did not occur. This case needs to be handled because otherwise the final context switch away from the exiting task will incorrectly behave as if task exit were instead a preemption of an RCU read-side critical section, and will therefore queue the exiting task. The exiting task will have exited, and thus won't ever execute rcu_read_unlock(), which means that it will remain queued forever, blocking all subsequent grace periods, and eventually resulting in OOM. Although this is arguably better than letting grace periods proceed and having a later rcu_read_unlock() access the now-freed task structure that once belonged to the exiting tasks, it would obviously be better to correctly handle this case. This commit therefore sets ->rcu_read_lock_nesting to 1 in that case, so that the subsequence call to __rcu_read_unlock() causes the exiting task to exit its dangling RCU read-side critical section. Note that deferred quiescent states need not be considered. The reason is that removing the task from the ->blkd_tasks[] list in the call to rcu_preempt_deferred_qs() handles the per-task component of any deferred quiescent state, and all other components of any deferred quiescent state are associated with the CPU, which isn't going anywhere until some later CPU-hotplug operation, which will report any remaining deferred quiescent states from within the rcu_report_dead() function. Note also that negative values of ->rcu_read_lock_nesting need not be considered. First, these won't show up in exit_rcu() unless there is a serious bug in RCU, and second, setting ->rcu_read_lock_nesting sets the state so that the RCU read-side critical section will be exited normally. Again, this code has no effect unless there has been some prior bug that prevents a task from leaving an RCU read-side critical section before exiting. Furthermore, there have been no reports of the bug fixed by this commit appearing in production. This commit is therefore absolutely -not- recommended for backporting to -stable. Reported-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in> Reported-by: BHARATH Y MOURYA <bharathm@iisc.ac.in> Reported-by: Aravinda Prasad <aravinda@iisc.ac.in> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Tested-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in>
2019-02-11 15:21:29 +00:00
* critical section, clean up if so. No need to issue warnings, as
* debug_check_no_locks_held() already does this if lockdep is enabled.
* Besides, if this function does anything other than just immediately
* return, there was a bug of some sort. Spewing warnings from this
* function is like as not to simply obscure important prior warnings.
*/
void exit_rcu(void)
{
struct task_struct *t = current;
rcu: Make exit_rcu() handle non-preempted RCU readers The purpose of exit_rcu() is to handle cases where buggy code causes a task to exit within an RCU read-side critical section. It currently does that in the case where said RCU read-side critical section was preempted at least once, but fails to handle cases where preemption did not occur. This case needs to be handled because otherwise the final context switch away from the exiting task will incorrectly behave as if task exit were instead a preemption of an RCU read-side critical section, and will therefore queue the exiting task. The exiting task will have exited, and thus won't ever execute rcu_read_unlock(), which means that it will remain queued forever, blocking all subsequent grace periods, and eventually resulting in OOM. Although this is arguably better than letting grace periods proceed and having a later rcu_read_unlock() access the now-freed task structure that once belonged to the exiting tasks, it would obviously be better to correctly handle this case. This commit therefore sets ->rcu_read_lock_nesting to 1 in that case, so that the subsequence call to __rcu_read_unlock() causes the exiting task to exit its dangling RCU read-side critical section. Note that deferred quiescent states need not be considered. The reason is that removing the task from the ->blkd_tasks[] list in the call to rcu_preempt_deferred_qs() handles the per-task component of any deferred quiescent state, and all other components of any deferred quiescent state are associated with the CPU, which isn't going anywhere until some later CPU-hotplug operation, which will report any remaining deferred quiescent states from within the rcu_report_dead() function. Note also that negative values of ->rcu_read_lock_nesting need not be considered. First, these won't show up in exit_rcu() unless there is a serious bug in RCU, and second, setting ->rcu_read_lock_nesting sets the state so that the RCU read-side critical section will be exited normally. Again, this code has no effect unless there has been some prior bug that prevents a task from leaving an RCU read-side critical section before exiting. Furthermore, there have been no reports of the bug fixed by this commit appearing in production. This commit is therefore absolutely -not- recommended for backporting to -stable. Reported-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in> Reported-by: BHARATH Y MOURYA <bharathm@iisc.ac.in> Reported-by: Aravinda Prasad <aravinda@iisc.ac.in> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Tested-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in>
2019-02-11 15:21:29 +00:00
if (unlikely(!list_empty(&current->rcu_node_entry))) {
rcu_preempt_depth_set(1);
rcu: Make exit_rcu() handle non-preempted RCU readers The purpose of exit_rcu() is to handle cases where buggy code causes a task to exit within an RCU read-side critical section. It currently does that in the case where said RCU read-side critical section was preempted at least once, but fails to handle cases where preemption did not occur. This case needs to be handled because otherwise the final context switch away from the exiting task will incorrectly behave as if task exit were instead a preemption of an RCU read-side critical section, and will therefore queue the exiting task. The exiting task will have exited, and thus won't ever execute rcu_read_unlock(), which means that it will remain queued forever, blocking all subsequent grace periods, and eventually resulting in OOM. Although this is arguably better than letting grace periods proceed and having a later rcu_read_unlock() access the now-freed task structure that once belonged to the exiting tasks, it would obviously be better to correctly handle this case. This commit therefore sets ->rcu_read_lock_nesting to 1 in that case, so that the subsequence call to __rcu_read_unlock() causes the exiting task to exit its dangling RCU read-side critical section. Note that deferred quiescent states need not be considered. The reason is that removing the task from the ->blkd_tasks[] list in the call to rcu_preempt_deferred_qs() handles the per-task component of any deferred quiescent state, and all other components of any deferred quiescent state are associated with the CPU, which isn't going anywhere until some later CPU-hotplug operation, which will report any remaining deferred quiescent states from within the rcu_report_dead() function. Note also that negative values of ->rcu_read_lock_nesting need not be considered. First, these won't show up in exit_rcu() unless there is a serious bug in RCU, and second, setting ->rcu_read_lock_nesting sets the state so that the RCU read-side critical section will be exited normally. Again, this code has no effect unless there has been some prior bug that prevents a task from leaving an RCU read-side critical section before exiting. Furthermore, there have been no reports of the bug fixed by this commit appearing in production. This commit is therefore absolutely -not- recommended for backporting to -stable. Reported-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in> Reported-by: BHARATH Y MOURYA <bharathm@iisc.ac.in> Reported-by: Aravinda Prasad <aravinda@iisc.ac.in> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Tested-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in>
2019-02-11 15:21:29 +00:00
barrier();
WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
} else if (unlikely(rcu_preempt_depth())) {
rcu_preempt_depth_set(1);
rcu: Make exit_rcu() handle non-preempted RCU readers The purpose of exit_rcu() is to handle cases where buggy code causes a task to exit within an RCU read-side critical section. It currently does that in the case where said RCU read-side critical section was preempted at least once, but fails to handle cases where preemption did not occur. This case needs to be handled because otherwise the final context switch away from the exiting task will incorrectly behave as if task exit were instead a preemption of an RCU read-side critical section, and will therefore queue the exiting task. The exiting task will have exited, and thus won't ever execute rcu_read_unlock(), which means that it will remain queued forever, blocking all subsequent grace periods, and eventually resulting in OOM. Although this is arguably better than letting grace periods proceed and having a later rcu_read_unlock() access the now-freed task structure that once belonged to the exiting tasks, it would obviously be better to correctly handle this case. This commit therefore sets ->rcu_read_lock_nesting to 1 in that case, so that the subsequence call to __rcu_read_unlock() causes the exiting task to exit its dangling RCU read-side critical section. Note that deferred quiescent states need not be considered. The reason is that removing the task from the ->blkd_tasks[] list in the call to rcu_preempt_deferred_qs() handles the per-task component of any deferred quiescent state, and all other components of any deferred quiescent state are associated with the CPU, which isn't going anywhere until some later CPU-hotplug operation, which will report any remaining deferred quiescent states from within the rcu_report_dead() function. Note also that negative values of ->rcu_read_lock_nesting need not be considered. First, these won't show up in exit_rcu() unless there is a serious bug in RCU, and second, setting ->rcu_read_lock_nesting sets the state so that the RCU read-side critical section will be exited normally. Again, this code has no effect unless there has been some prior bug that prevents a task from leaving an RCU read-side critical section before exiting. Furthermore, there have been no reports of the bug fixed by this commit appearing in production. This commit is therefore absolutely -not- recommended for backporting to -stable. Reported-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in> Reported-by: BHARATH Y MOURYA <bharathm@iisc.ac.in> Reported-by: Aravinda Prasad <aravinda@iisc.ac.in> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Tested-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in>
2019-02-11 15:21:29 +00:00
} else {
return;
rcu: Make exit_rcu() handle non-preempted RCU readers The purpose of exit_rcu() is to handle cases where buggy code causes a task to exit within an RCU read-side critical section. It currently does that in the case where said RCU read-side critical section was preempted at least once, but fails to handle cases where preemption did not occur. This case needs to be handled because otherwise the final context switch away from the exiting task will incorrectly behave as if task exit were instead a preemption of an RCU read-side critical section, and will therefore queue the exiting task. The exiting task will have exited, and thus won't ever execute rcu_read_unlock(), which means that it will remain queued forever, blocking all subsequent grace periods, and eventually resulting in OOM. Although this is arguably better than letting grace periods proceed and having a later rcu_read_unlock() access the now-freed task structure that once belonged to the exiting tasks, it would obviously be better to correctly handle this case. This commit therefore sets ->rcu_read_lock_nesting to 1 in that case, so that the subsequence call to __rcu_read_unlock() causes the exiting task to exit its dangling RCU read-side critical section. Note that deferred quiescent states need not be considered. The reason is that removing the task from the ->blkd_tasks[] list in the call to rcu_preempt_deferred_qs() handles the per-task component of any deferred quiescent state, and all other components of any deferred quiescent state are associated with the CPU, which isn't going anywhere until some later CPU-hotplug operation, which will report any remaining deferred quiescent states from within the rcu_report_dead() function. Note also that negative values of ->rcu_read_lock_nesting need not be considered. First, these won't show up in exit_rcu() unless there is a serious bug in RCU, and second, setting ->rcu_read_lock_nesting sets the state so that the RCU read-side critical section will be exited normally. Again, this code has no effect unless there has been some prior bug that prevents a task from leaving an RCU read-side critical section before exiting. Furthermore, there have been no reports of the bug fixed by this commit appearing in production. This commit is therefore absolutely -not- recommended for backporting to -stable. Reported-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in> Reported-by: BHARATH Y MOURYA <bharathm@iisc.ac.in> Reported-by: Aravinda Prasad <aravinda@iisc.ac.in> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Tested-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in>
2019-02-11 15:21:29 +00:00
}
__rcu_read_unlock();
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
rcu_preempt_deferred_qs(current);
}
/*
* Dump the blocked-tasks state, but limit the list dump to the
* specified number of elements.
*/
static void
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
{
int cpu;
int i;
struct list_head *lhp;
struct rcu_data *rdp;
struct rcu_node *rnp1;
raw_lockdep_assert_held_rcu_node(rnp);
pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
__func__, rnp->grplo, rnp->grphi, rnp->level,
(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
READ_ONCE(rnp->exp_tasks));
pr_info("%s: ->blkd_tasks", __func__);
i = 0;
list_for_each(lhp, &rnp->blkd_tasks) {
pr_cont(" %p", lhp);
if (++i >= ncheck)
break;
}
pr_cont("\n");
for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
rdp = per_cpu_ptr(&rcu_data, cpu);
pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
cpu, ".o"[rcu_rdp_cpu_online(rdp)],
(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
}
}
#else /* #ifdef CONFIG_PREEMPT_RCU */
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* If strict grace periods are enabled, and if the calling
* __rcu_read_unlock() marks the beginning of a quiescent state, immediately
* report that quiescent state and, if requested, spin for a bit.
*/
void rcu_read_unlock_strict(void)
{
struct rcu_data *rdp;
if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
return;
rdp = this_cpu_ptr(&rcu_data);
rcu_report_qs_rdp(rdp);
udelay(rcu_unlock_delay);
}
EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Tell them what RCU they are running.
*/
static void __init rcu_bootup_announce(void)
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
{
pr_info("Hierarchical RCU implementation.\n");
rcu_bootup_announce_oddness();
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
}
/*
* Note a quiescent state for PREEMPTION=n. Because we do not need to know
* how many quiescent states passed, just if there was at least one since
* the start of the grace period, this just sets a flag. The caller must
* have disabled preemption.
*/
static void rcu_qs(void)
{
RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
return;
trace_rcu_grace_period(TPS("rcu_sched"),
__this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
}
/*
* Register an urgently needed quiescent state. If there is an
* emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
* dyntick-idle quiescent state visible to other CPUs, which will in
* some cases serve for expedited as well as normal grace periods.
* Either way, register a lightweight quiescent state.
*/
void rcu_all_qs(void)
{
unsigned long flags;
if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
return;
preempt_disable();
/* Load rcu_urgent_qs before other flags. */
if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
preempt_enable();
return;
}
this_cpu_write(rcu_data.rcu_urgent_qs, false);
if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
local_irq_save(flags);
rcu_momentary_dyntick_idle();
local_irq_restore(flags);
}
rcu_qs();
preempt_enable();
}
EXPORT_SYMBOL_GPL(rcu_all_qs);
/*
* Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
*/
void rcu_note_context_switch(bool preempt)
{
trace_rcu_utilization(TPS("Start context switch"));
rcu_qs();
/* Load rcu_urgent_qs before other flags. */
if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
goto out;
this_cpu_write(rcu_data.rcu_urgent_qs, false);
if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
rcu_momentary_dyntick_idle();
rcu_tasks_qs(current, preempt);
out:
trace_rcu_utilization(TPS("End context switch"));
}
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
/*
* Because preemptible RCU does not exist, there are never any preempted
* RCU readers.
*/
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
return 0;
}
/*
* Because there is no preemptible RCU, there can be no readers blocked.
*/
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-22 16:53:48 +00:00
{
return false;
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-22 16:53:48 +00:00
}
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
/*
* Because there is no preemptible RCU, there can be no deferred quiescent
* states.
*/
static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{
return false;
}
// Except that we do need to respond to a request by an expedited grace
// period for a quiescent state from this CPU. Note that requests from
// tasks are handled when removing the task from the blocked-tasks list
// below.
static void rcu_preempt_deferred_qs(struct task_struct *t)
{
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
if (rdp->cpu_no_qs.b.exp)
rcu_report_exp_rdp(rdp);
}
rcu: Defer reporting RCU-preempt quiescent states when disabled This commit defers reporting of RCU-preempt quiescent states at rcu_read_unlock_special() time when any of interrupts, softirq, or preemption are disabled. These deferred quiescent states are reported at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug offline operation. Of course, if another RCU read-side critical section has started in the meantime, the reporting of the quiescent state will be further deferred. This also means that disabling preemption, interrupts, and/or softirqs will act as an RCU-preempt read-side critical section. This is enforced by checking preempt_count() as needed. Some special cases must be handled on an ad-hoc basis, for example, context switch is a quiescent state even though both the scheduler and do_exit() disable preemption. In these cases, additional calls to rcu_preempt_deferred_qs() override the preemption disabling. Similar logic overrides disabled interrupts in rcu_preempt_check_callbacks() because in this case the quiescent state happened just before the corresponding scheduling-clock interrupt. In theory, this change lifts a long-standing restriction that required that if interrupts were disabled across a call to rcu_read_unlock() that the matching rcu_read_lock() also be contained within that interrupts-disabled region of code. Because the reporting of the corresponding RCU-preempt quiescent state is now deferred until after interrupts have been enabled, it is no longer possible for this situation to result in deadlocks involving the scheduler's runqueue and priority-inheritance locks. This may allow some code simplification that might reduce interrupt latency a bit. Unfortunately, in practice this would also defer deboosting a low-priority task that had been subjected to RCU priority boosting, so real-time-response considerations might well force this restriction to remain in place. Because RCU-preempt grace periods are now blocked not only by RCU read-side critical sections, but also by disabling of interrupts, preemption, and softirqs, it will be possible to eliminate RCU-bh and RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may require some additional plumbing to provide the network denial-of-service guarantees that have been traditionally provided by RCU-bh. Once these are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh into RCU-sched. This would mean that all kernels would have but one flavor of RCU, which would open the door to significant code cleanup. Moving to a single flavor of RCU would also have the beneficial effect of reducing the NOCB kthreads by at least a factor of two. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback from Joel Fernandes. ] [ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in response to bug reports from kbuild test robot. ] [ paulmck: Fix bug located by kbuild test robot involving recursion via rcu_preempt_deferred_qs(). ]
2018-06-21 19:50:01 +00:00
/*
* Because there is no preemptible RCU, there can be no readers blocked,
* so there is no need to check for blocked tasks. So check only for
* bogus qsmask values.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
WARN_ON_ONCE(rnp->qsmask);
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Check to see if this CPU is in a non-context-switch quiescent state,
* namely user mode and idle loop.
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
*/
static void rcu_flavor_sched_clock_irq(int user)
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
{
if (user || rcu_is_cpu_rrupt_from_idle()) {
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
/*
* Get here if this CPU took its interrupt from user
* mode or from the idle loop, and if this is not a
* nested interrupt. In this case, the CPU is in
* a quiescent state, so note it.
*
* No memory barrier is required here because rcu_qs()
* references only CPU-local variables that other CPUs
* neither access nor modify, at least not while the
* corresponding CPU is online.
*/
rcu_qs();
}
}
/*
* Because preemptible RCU does not exist, tasks cannot possibly exit
* while in preemptible RCU read-side critical sections.
*/
void exit_rcu(void)
{
}
/*
* Dump the guaranteed-empty blocked-tasks state. Trust but verify.
*/
static void
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
{
WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
}
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
rcu: Accelerate grace period if last non-dynticked CPU Currently, rcu_needs_cpu() simply checks whether the current CPU has an outstanding RCU callback, which means that the last CPU to go into dyntick-idle mode might wait a few ticks for the relevant grace periods to complete. However, if all the other CPUs are in dyntick-idle mode, and if this CPU is in a quiescent state (which it is for RCU-bh and RCU-sched any time that we are considering going into dyntick-idle mode), then the grace period is instantly complete. This patch therefore repeatedly invokes the RCU grace-period machinery in order to force any needed grace periods to complete quickly. It does so a limited number of times in order to prevent starvation by an RCU callback function that might pass itself to call_rcu(). However, if any CPU other than the current one is not in dyntick-idle mode, fall back to simply checking (with fix to bug noted by Lai Jiangshan). Also, take advantage of last grace-period forcing, the opportunity to do so noted by Steve Rostedt. And apply simplified #ifdef condition suggested by Frederic Weisbecker. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1266887105-1528-15-git-send-email-paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 01:04:59 +00:00
/*
* If boosting, set rcuc kthreads to realtime priority.
*/
static void rcu_cpu_kthread_setup(unsigned int cpu)
{
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
#ifdef CONFIG_RCU_BOOST
struct sched_param sp;
sp.sched_priority = kthread_prio;
sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
#endif /* #ifdef CONFIG_RCU_BOOST */
WRITE_ONCE(rdp->rcuc_activity, jiffies);
rcu: Yield simpler The rcu_yield() code is amazing. It's there to avoid starvation of the system when lots of (boosting) work is to be done. Now looking at the code it's functionality is: Make the thread SCHED_OTHER and very nice, i.e. get it out of the way Arm a timer with 2 ticks schedule() Now if the system goes idle the rcu task returns, regains SCHED_FIFO and plugs on. If the systems stays busy the timer fires and wakes a per node kthread which in turn makes the per cpu thread SCHED_FIFO and brings it back on the cpu. For the boosting thread the "make it FIFO" bit is missing and it just runs some magic boost checks. Now this is a lot of code with extra threads and complexity. It's way simpler to let the tasks when they detect overload schedule away for 2 ticks and defer the normal wakeup as long as they are in yielded state and the cpu is not idle. That solves the same problem and the only difference is that when the cpu goes idle it's not guaranteed that the thread returns right away, but it won't be longer out than two ticks, so no harm is done. If that's an issue than it is way simpler just to wake the task from idle as RCU has callbacks there anyway. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Namhyung Kim <namhyung@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20120716103948.131256723@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-07-16 10:42:35 +00:00
}
#ifdef CONFIG_RCU_BOOST
/*
* Carry out RCU priority boosting on the task indicated by ->exp_tasks
* or ->boost_tasks, advancing the pointer to the next task in the
* ->blkd_tasks list.
*
* Note that irqs must be enabled: boosting the task can block.
* Returns 1 if there are more tasks needing to be boosted.
*/
static int rcu_boost(struct rcu_node *rnp)
{
unsigned long flags;
struct task_struct *t;
struct list_head *tb;
if (READ_ONCE(rnp->exp_tasks) == NULL &&
READ_ONCE(rnp->boost_tasks) == NULL)
return 0; /* Nothing left to boost. */
raw_spin_lock_irqsave_rcu_node(rnp, flags);
/*
* Recheck under the lock: all tasks in need of boosting
* might exit their RCU read-side critical sections on their own.
*/
if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
return 0;
}
/*
* Preferentially boost tasks blocking expedited grace periods.
* This cannot starve the normal grace periods because a second
* expedited grace period must boost all blocked tasks, including
* those blocking the pre-existing normal grace period.
*/
if (rnp->exp_tasks != NULL)
tb = rnp->exp_tasks;
else
tb = rnp->boost_tasks;
/*
* We boost task t by manufacturing an rt_mutex that appears to
* be held by task t. We leave a pointer to that rt_mutex where
* task t can find it, and task t will release the mutex when it
* exits its outermost RCU read-side critical section. Then
* simply acquiring this artificial rt_mutex will boost task
* t's priority. (Thanks to tglx for suggesting this approach!)
*
* Note that task t must acquire rnp->lock to remove itself from
* the ->blkd_tasks list, which it will do from exit() if from
* nowhere else. We therefore are guaranteed that task t will
* stay around at least until we drop rnp->lock. Note that
* rnp->lock also resolves races between our priority boosting
* and task t's exiting its outermost RCU read-side critical
* section.
*/
t = container_of(tb, struct task_struct, rcu_node_entry);
rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
/* Lock only for side effect: boosts task t's priority. */
rt_mutex_lock(&rnp->boost_mtx);
rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
rnp->n_boosts++;
return READ_ONCE(rnp->exp_tasks) != NULL ||
READ_ONCE(rnp->boost_tasks) != NULL;
}
/*
* Priority-boosting kthread, one per leaf rcu_node.
*/
static int rcu_boost_kthread(void *arg)
{
struct rcu_node *rnp = (struct rcu_node *)arg;
int spincnt = 0;
int more2boost;
rcu: Have the RCU tracepoints use the tracepoint_string infrastructure Currently, RCU tracepoints save only a pointer to strings in the ring buffer. When displayed via the /sys/kernel/debug/tracing/trace file they are referenced like the printf "%s" that looks at the address in the ring buffer and prints out the string it points too. This requires that the strings are constant and persistent in the kernel. The problem with this is for tools like trace-cmd and perf that read the binary data from the buffers but have no access to the kernel memory to find out what string is represented by the address in the buffer. By using the tracepoint_string infrastructure, the RCU tracepoint strings can be exported such that userspace tools can map the addresses to the strings. # cat /sys/kernel/debug/tracing/printk_formats 0xffffffff81a4a0e8 : "rcu_preempt" 0xffffffff81a4a0f4 : "rcu_bh" 0xffffffff81a4a100 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437a6 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437b0 : "rcu_bh" 0xffffffff818437b7 : "Start context switch" 0xffffffff818437cc : "End context switch" 0xffffffff818437a0 : "cpuqs" [...] Now userspaces tools can display: rcu_utilization: Start context switch rcu_dyntick: Start 1 0 rcu_utilization: End context switch rcu_batch_start: rcu_preempt CBs=0/5 bl=10 rcu_dyntick: End 0 140000000000000 rcu_invoke_callback: rcu_preempt rhp=0xffff880071c0d600 func=proc_i_callback rcu_invoke_callback: rcu_preempt rhp=0xffff880077b5b230 func=__d_free rcu_dyntick: Start 140000000000000 0 rcu_invoke_callback: rcu_preempt rhp=0xffff880077563980 func=file_free_rcu rcu_batch_end: rcu_preempt CBs-invoked=3 idle=>c<>c<>c<>c< rcu_utilization: End RCU core rcu_grace_period: rcu_preempt 9741 start rcu_dyntick: Start 1 0 rcu_dyntick: End 0 140000000000000 rcu_dyntick: Start 140000000000000 0 Instead of: rcu_utilization: ffffffff81843110 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_batch_start: ffffffff81842f1d CBs=0/4 bl=10 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888aac0 func=file_free_rcu rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f95 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88006aeb4600 func=proc_i_callback rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_invoke_callback: ffffffff81842f1d rhp=0xffff880071cb9fc0 func=__d_free rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888ae80 func=file_free_rcu rcu_batch_end: ffffffff81842f1d CBs-invoked=4 idle=>c<>c<>c<>c< rcu_utilization: ffffffff8184311f Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-12 21:18:47 +00:00
trace_rcu_utilization(TPS("Start boost kthread@init"));
for (;;) {
WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
rcu: Have the RCU tracepoints use the tracepoint_string infrastructure Currently, RCU tracepoints save only a pointer to strings in the ring buffer. When displayed via the /sys/kernel/debug/tracing/trace file they are referenced like the printf "%s" that looks at the address in the ring buffer and prints out the string it points too. This requires that the strings are constant and persistent in the kernel. The problem with this is for tools like trace-cmd and perf that read the binary data from the buffers but have no access to the kernel memory to find out what string is represented by the address in the buffer. By using the tracepoint_string infrastructure, the RCU tracepoint strings can be exported such that userspace tools can map the addresses to the strings. # cat /sys/kernel/debug/tracing/printk_formats 0xffffffff81a4a0e8 : "rcu_preempt" 0xffffffff81a4a0f4 : "rcu_bh" 0xffffffff81a4a100 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437a6 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437b0 : "rcu_bh" 0xffffffff818437b7 : "Start context switch" 0xffffffff818437cc : "End context switch" 0xffffffff818437a0 : "cpuqs" [...] Now userspaces tools can display: rcu_utilization: Start context switch rcu_dyntick: Start 1 0 rcu_utilization: End context switch rcu_batch_start: rcu_preempt CBs=0/5 bl=10 rcu_dyntick: End 0 140000000000000 rcu_invoke_callback: rcu_preempt rhp=0xffff880071c0d600 func=proc_i_callback rcu_invoke_callback: rcu_preempt rhp=0xffff880077b5b230 func=__d_free rcu_dyntick: Start 140000000000000 0 rcu_invoke_callback: rcu_preempt rhp=0xffff880077563980 func=file_free_rcu rcu_batch_end: rcu_preempt CBs-invoked=3 idle=>c<>c<>c<>c< rcu_utilization: End RCU core rcu_grace_period: rcu_preempt 9741 start rcu_dyntick: Start 1 0 rcu_dyntick: End 0 140000000000000 rcu_dyntick: Start 140000000000000 0 Instead of: rcu_utilization: ffffffff81843110 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_batch_start: ffffffff81842f1d CBs=0/4 bl=10 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888aac0 func=file_free_rcu rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f95 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88006aeb4600 func=proc_i_callback rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_invoke_callback: ffffffff81842f1d rhp=0xffff880071cb9fc0 func=__d_free rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888ae80 func=file_free_rcu rcu_batch_end: ffffffff81842f1d CBs-invoked=4 idle=>c<>c<>c<>c< rcu_utilization: ffffffff8184311f Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-12 21:18:47 +00:00
trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
rcu_wait(READ_ONCE(rnp->boost_tasks) ||
READ_ONCE(rnp->exp_tasks));
rcu: Have the RCU tracepoints use the tracepoint_string infrastructure Currently, RCU tracepoints save only a pointer to strings in the ring buffer. When displayed via the /sys/kernel/debug/tracing/trace file they are referenced like the printf "%s" that looks at the address in the ring buffer and prints out the string it points too. This requires that the strings are constant and persistent in the kernel. The problem with this is for tools like trace-cmd and perf that read the binary data from the buffers but have no access to the kernel memory to find out what string is represented by the address in the buffer. By using the tracepoint_string infrastructure, the RCU tracepoint strings can be exported such that userspace tools can map the addresses to the strings. # cat /sys/kernel/debug/tracing/printk_formats 0xffffffff81a4a0e8 : "rcu_preempt" 0xffffffff81a4a0f4 : "rcu_bh" 0xffffffff81a4a100 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437a6 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437b0 : "rcu_bh" 0xffffffff818437b7 : "Start context switch" 0xffffffff818437cc : "End context switch" 0xffffffff818437a0 : "cpuqs" [...] Now userspaces tools can display: rcu_utilization: Start context switch rcu_dyntick: Start 1 0 rcu_utilization: End context switch rcu_batch_start: rcu_preempt CBs=0/5 bl=10 rcu_dyntick: End 0 140000000000000 rcu_invoke_callback: rcu_preempt rhp=0xffff880071c0d600 func=proc_i_callback rcu_invoke_callback: rcu_preempt rhp=0xffff880077b5b230 func=__d_free rcu_dyntick: Start 140000000000000 0 rcu_invoke_callback: rcu_preempt rhp=0xffff880077563980 func=file_free_rcu rcu_batch_end: rcu_preempt CBs-invoked=3 idle=>c<>c<>c<>c< rcu_utilization: End RCU core rcu_grace_period: rcu_preempt 9741 start rcu_dyntick: Start 1 0 rcu_dyntick: End 0 140000000000000 rcu_dyntick: Start 140000000000000 0 Instead of: rcu_utilization: ffffffff81843110 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_batch_start: ffffffff81842f1d CBs=0/4 bl=10 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888aac0 func=file_free_rcu rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f95 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88006aeb4600 func=proc_i_callback rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_invoke_callback: ffffffff81842f1d rhp=0xffff880071cb9fc0 func=__d_free rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888ae80 func=file_free_rcu rcu_batch_end: ffffffff81842f1d CBs-invoked=4 idle=>c<>c<>c<>c< rcu_utilization: ffffffff8184311f Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-12 21:18:47 +00:00
trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
more2boost = rcu_boost(rnp);
if (more2boost)
spincnt++;
else
spincnt = 0;
if (spincnt > 10) {
WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
rcu: Have the RCU tracepoints use the tracepoint_string infrastructure Currently, RCU tracepoints save only a pointer to strings in the ring buffer. When displayed via the /sys/kernel/debug/tracing/trace file they are referenced like the printf "%s" that looks at the address in the ring buffer and prints out the string it points too. This requires that the strings are constant and persistent in the kernel. The problem with this is for tools like trace-cmd and perf that read the binary data from the buffers but have no access to the kernel memory to find out what string is represented by the address in the buffer. By using the tracepoint_string infrastructure, the RCU tracepoint strings can be exported such that userspace tools can map the addresses to the strings. # cat /sys/kernel/debug/tracing/printk_formats 0xffffffff81a4a0e8 : "rcu_preempt" 0xffffffff81a4a0f4 : "rcu_bh" 0xffffffff81a4a100 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437a6 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437b0 : "rcu_bh" 0xffffffff818437b7 : "Start context switch" 0xffffffff818437cc : "End context switch" 0xffffffff818437a0 : "cpuqs" [...] Now userspaces tools can display: rcu_utilization: Start context switch rcu_dyntick: Start 1 0 rcu_utilization: End context switch rcu_batch_start: rcu_preempt CBs=0/5 bl=10 rcu_dyntick: End 0 140000000000000 rcu_invoke_callback: rcu_preempt rhp=0xffff880071c0d600 func=proc_i_callback rcu_invoke_callback: rcu_preempt rhp=0xffff880077b5b230 func=__d_free rcu_dyntick: Start 140000000000000 0 rcu_invoke_callback: rcu_preempt rhp=0xffff880077563980 func=file_free_rcu rcu_batch_end: rcu_preempt CBs-invoked=3 idle=>c<>c<>c<>c< rcu_utilization: End RCU core rcu_grace_period: rcu_preempt 9741 start rcu_dyntick: Start 1 0 rcu_dyntick: End 0 140000000000000 rcu_dyntick: Start 140000000000000 0 Instead of: rcu_utilization: ffffffff81843110 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_batch_start: ffffffff81842f1d CBs=0/4 bl=10 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888aac0 func=file_free_rcu rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f95 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88006aeb4600 func=proc_i_callback rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_invoke_callback: ffffffff81842f1d rhp=0xffff880071cb9fc0 func=__d_free rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888ae80 func=file_free_rcu rcu_batch_end: ffffffff81842f1d CBs-invoked=4 idle=>c<>c<>c<>c< rcu_utilization: ffffffff8184311f Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-12 21:18:47 +00:00
trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
schedule_timeout_idle(2);
rcu: Have the RCU tracepoints use the tracepoint_string infrastructure Currently, RCU tracepoints save only a pointer to strings in the ring buffer. When displayed via the /sys/kernel/debug/tracing/trace file they are referenced like the printf "%s" that looks at the address in the ring buffer and prints out the string it points too. This requires that the strings are constant and persistent in the kernel. The problem with this is for tools like trace-cmd and perf that read the binary data from the buffers but have no access to the kernel memory to find out what string is represented by the address in the buffer. By using the tracepoint_string infrastructure, the RCU tracepoint strings can be exported such that userspace tools can map the addresses to the strings. # cat /sys/kernel/debug/tracing/printk_formats 0xffffffff81a4a0e8 : "rcu_preempt" 0xffffffff81a4a0f4 : "rcu_bh" 0xffffffff81a4a100 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437a6 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437b0 : "rcu_bh" 0xffffffff818437b7 : "Start context switch" 0xffffffff818437cc : "End context switch" 0xffffffff818437a0 : "cpuqs" [...] Now userspaces tools can display: rcu_utilization: Start context switch rcu_dyntick: Start 1 0 rcu_utilization: End context switch rcu_batch_start: rcu_preempt CBs=0/5 bl=10 rcu_dyntick: End 0 140000000000000 rcu_invoke_callback: rcu_preempt rhp=0xffff880071c0d600 func=proc_i_callback rcu_invoke_callback: rcu_preempt rhp=0xffff880077b5b230 func=__d_free rcu_dyntick: Start 140000000000000 0 rcu_invoke_callback: rcu_preempt rhp=0xffff880077563980 func=file_free_rcu rcu_batch_end: rcu_preempt CBs-invoked=3 idle=>c<>c<>c<>c< rcu_utilization: End RCU core rcu_grace_period: rcu_preempt 9741 start rcu_dyntick: Start 1 0 rcu_dyntick: End 0 140000000000000 rcu_dyntick: Start 140000000000000 0 Instead of: rcu_utilization: ffffffff81843110 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_batch_start: ffffffff81842f1d CBs=0/4 bl=10 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888aac0 func=file_free_rcu rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f95 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88006aeb4600 func=proc_i_callback rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_invoke_callback: ffffffff81842f1d rhp=0xffff880071cb9fc0 func=__d_free rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888ae80 func=file_free_rcu rcu_batch_end: ffffffff81842f1d CBs-invoked=4 idle=>c<>c<>c<>c< rcu_utilization: ffffffff8184311f Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-12 21:18:47 +00:00
trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
spincnt = 0;
}
}
/* NOTREACHED */
rcu: Have the RCU tracepoints use the tracepoint_string infrastructure Currently, RCU tracepoints save only a pointer to strings in the ring buffer. When displayed via the /sys/kernel/debug/tracing/trace file they are referenced like the printf "%s" that looks at the address in the ring buffer and prints out the string it points too. This requires that the strings are constant and persistent in the kernel. The problem with this is for tools like trace-cmd and perf that read the binary data from the buffers but have no access to the kernel memory to find out what string is represented by the address in the buffer. By using the tracepoint_string infrastructure, the RCU tracepoint strings can be exported such that userspace tools can map the addresses to the strings. # cat /sys/kernel/debug/tracing/printk_formats 0xffffffff81a4a0e8 : "rcu_preempt" 0xffffffff81a4a0f4 : "rcu_bh" 0xffffffff81a4a100 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437a6 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437b0 : "rcu_bh" 0xffffffff818437b7 : "Start context switch" 0xffffffff818437cc : "End context switch" 0xffffffff818437a0 : "cpuqs" [...] Now userspaces tools can display: rcu_utilization: Start context switch rcu_dyntick: Start 1 0 rcu_utilization: End context switch rcu_batch_start: rcu_preempt CBs=0/5 bl=10 rcu_dyntick: End 0 140000000000000 rcu_invoke_callback: rcu_preempt rhp=0xffff880071c0d600 func=proc_i_callback rcu_invoke_callback: rcu_preempt rhp=0xffff880077b5b230 func=__d_free rcu_dyntick: Start 140000000000000 0 rcu_invoke_callback: rcu_preempt rhp=0xffff880077563980 func=file_free_rcu rcu_batch_end: rcu_preempt CBs-invoked=3 idle=>c<>c<>c<>c< rcu_utilization: End RCU core rcu_grace_period: rcu_preempt 9741 start rcu_dyntick: Start 1 0 rcu_dyntick: End 0 140000000000000 rcu_dyntick: Start 140000000000000 0 Instead of: rcu_utilization: ffffffff81843110 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_batch_start: ffffffff81842f1d CBs=0/4 bl=10 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888aac0 func=file_free_rcu rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f95 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88006aeb4600 func=proc_i_callback rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_invoke_callback: ffffffff81842f1d rhp=0xffff880071cb9fc0 func=__d_free rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888ae80 func=file_free_rcu rcu_batch_end: ffffffff81842f1d CBs-invoked=4 idle=>c<>c<>c<>c< rcu_utilization: ffffffff8184311f Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-12 21:18:47 +00:00
trace_rcu_utilization(TPS("End boost kthread@notreached"));
return 0;
}
/*
* Check to see if it is time to start boosting RCU readers that are
* blocking the current grace period, and, if so, tell the per-rcu_node
* kthread to start boosting them. If there is an expedited grace
* period in progress, it is always time to boost.
*
* The caller must hold rnp->lock, which this function releases.
* The ->boost_kthread_task is immortal, so we don't need to worry
* about it going away.
*/
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
__releases(rnp->lock)
{
raw_lockdep_assert_held_rcu_node(rnp);
if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
return;
}
if (rnp->exp_tasks != NULL ||
(rnp->gp_tasks != NULL &&
rnp->boost_tasks == NULL &&
rnp->qsmask == 0 &&
(!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
if (rnp->exp_tasks == NULL)
WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
rcu_wake_cond(rnp->boost_kthread_task,
READ_ONCE(rnp->boost_kthread_status));
} else {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
}
/*
* Is the current CPU running the RCU-callbacks kthread?
* Caller must have preemption disabled.
*/
static bool rcu_is_callbacks_kthread(void)
{
return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
}
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
/*
* Do priority-boost accounting for the start of a new grace period.
*/
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}
/*
* Create an RCU-boost kthread for the specified node if one does not
* already exist. We only create this kthread for preemptible RCU.
*/
static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
{
unsigned long flags;
rcu: Make RCU priority boosting work on single-CPU rcu_node structures When any CPU comes online, it checks to see if an RCU-boost kthread has already been created for that CPU's leaf rcu_node structure, and if not, it creates one. Unfortunately, it also verifies that this leaf rcu_node structure actually has at least one online CPU, and if not, it declines to create the kthread. Although this behavior makes sense during early boot, especially on systems that claim far more CPUs than they actually have, it makes no sense for the first CPU to come online for a given rcu_node structure. There is no point in checking because we know there is a CPU on its way in. The problem is that timing differences can cause this incoming CPU to not yet be reflected in the various bit masks even at rcutree_online_cpu() time, and there is no chance at rcutree_prepare_cpu() time. Plus it would be better to create the RCU-boost kthread at rcutree_prepare_cpu() to handle the case where the CPU is involved in an RCU priority inversion very shortly after it comes online. This commit therefore moves the checking to rcu_prepare_kthreads(), which is called only at early boot, when the check is appropriate. In addition, it makes rcutree_prepare_cpu() invoke rcu_spawn_one_boost_kthread(), which no longer does any checking for online CPUs. With this change, RCU priority boosting tests now pass for short rcutorture runs, even with single-CPU leaf rcu_node structures. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-06 03:42:09 +00:00
int rnp_index = rnp - rcu_get_root();
struct sched_param sp;
struct task_struct *t;
mutex_lock(&rnp->boost_kthread_mutex);
rcu: Make RCU priority boosting work on single-CPU rcu_node structures When any CPU comes online, it checks to see if an RCU-boost kthread has already been created for that CPU's leaf rcu_node structure, and if not, it creates one. Unfortunately, it also verifies that this leaf rcu_node structure actually has at least one online CPU, and if not, it declines to create the kthread. Although this behavior makes sense during early boot, especially on systems that claim far more CPUs than they actually have, it makes no sense for the first CPU to come online for a given rcu_node structure. There is no point in checking because we know there is a CPU on its way in. The problem is that timing differences can cause this incoming CPU to not yet be reflected in the various bit masks even at rcutree_online_cpu() time, and there is no chance at rcutree_prepare_cpu() time. Plus it would be better to create the RCU-boost kthread at rcutree_prepare_cpu() to handle the case where the CPU is involved in an RCU priority inversion very shortly after it comes online. This commit therefore moves the checking to rcu_prepare_kthreads(), which is called only at early boot, when the check is appropriate. In addition, it makes rcutree_prepare_cpu() invoke rcu_spawn_one_boost_kthread(), which no longer does any checking for online CPUs. With this change, RCU priority boosting tests now pass for short rcutorture runs, even with single-CPU leaf rcu_node structures. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-06 03:42:09 +00:00
if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
goto out;
t = kthread_create(rcu_boost_kthread, (void *)rnp,
"rcub/%d", rnp_index);
if (WARN_ON_ONCE(IS_ERR(t)))
goto out;
raw_spin_lock_irqsave_rcu_node(rnp, flags);
rnp->boost_kthread_task = t;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
sp.sched_priority = kthread_prio;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
out:
mutex_unlock(&rnp->boost_kthread_mutex);
}
/*
* Set the per-rcu_node kthread's affinity to cover all CPUs that are
* served by the rcu_node in question. The CPU hotplug lock is still
* held, so the value of rnp->qsmaskinit will be stable.
*
* We don't include outgoingcpu in the affinity set, use -1 if there is
* no outgoing CPU. If there are no CPUs left in the affinity set,
* this function allows the kthread to execute on any CPU.
*/
rcu: Yield simpler The rcu_yield() code is amazing. It's there to avoid starvation of the system when lots of (boosting) work is to be done. Now looking at the code it's functionality is: Make the thread SCHED_OTHER and very nice, i.e. get it out of the way Arm a timer with 2 ticks schedule() Now if the system goes idle the rcu task returns, regains SCHED_FIFO and plugs on. If the systems stays busy the timer fires and wakes a per node kthread which in turn makes the per cpu thread SCHED_FIFO and brings it back on the cpu. For the boosting thread the "make it FIFO" bit is missing and it just runs some magic boost checks. Now this is a lot of code with extra threads and complexity. It's way simpler to let the tasks when they detect overload schedule away for 2 ticks and defer the normal wakeup as long as they are in yielded state and the cpu is not idle. That solves the same problem and the only difference is that when the cpu goes idle it's not guaranteed that the thread returns right away, but it won't be longer out than two ticks, so no harm is done. If that's an issue than it is way simpler just to wake the task from idle as RCU has callbacks there anyway. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Namhyung Kim <namhyung@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20120716103948.131256723@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-07-16 10:42:35 +00:00
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
rcu: Yield simpler The rcu_yield() code is amazing. It's there to avoid starvation of the system when lots of (boosting) work is to be done. Now looking at the code it's functionality is: Make the thread SCHED_OTHER and very nice, i.e. get it out of the way Arm a timer with 2 ticks schedule() Now if the system goes idle the rcu task returns, regains SCHED_FIFO and plugs on. If the systems stays busy the timer fires and wakes a per node kthread which in turn makes the per cpu thread SCHED_FIFO and brings it back on the cpu. For the boosting thread the "make it FIFO" bit is missing and it just runs some magic boost checks. Now this is a lot of code with extra threads and complexity. It's way simpler to let the tasks when they detect overload schedule away for 2 ticks and defer the normal wakeup as long as they are in yielded state and the cpu is not idle. That solves the same problem and the only difference is that when the cpu goes idle it's not guaranteed that the thread returns right away, but it won't be longer out than two ticks, so no harm is done. If that's an issue than it is way simpler just to wake the task from idle as RCU has callbacks there anyway. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Namhyung Kim <namhyung@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20120716103948.131256723@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-07-16 10:42:35 +00:00
struct task_struct *t = rnp->boost_kthread_task;
rcu: Process offlining and onlining only at grace-period start Races between CPU hotplug and grace periods can be difficult to resolve, so the ->onoff_mutex is used to exclude the two events. Unfortunately, this means that it is impossible for an outgoing CPU to perform the last bits of its offlining from its last pass through the idle loop, because sleeplocks cannot be acquired in that context. This commit avoids these problems by buffering online and offline events in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a grace period starts, the events accumulated in this mask are applied to the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special case of all CPUs corresponding to a given leaf rcu_node structure being offline while there are still elements in that structure's ->blkd_tasks list is handled using a new ->wait_blkd_tasks field. In this case, propagating the offline bits up the tree is deferred until the beginning of the grace period after all of the tasks have exited their RCU read-side critical sections and removed themselves from the list, at which point the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node structure's CPUs comes back online before the list empties, then the ->wait_blkd_tasks flag is simply cleared. This of course means that RCU's notion of which CPUs are offline can be out of date. This is OK because RCU need only wait on CPUs that were online at the time that the grace period started. In addition, RCU's force-quiescent-state actions will handle the case where a CPU goes offline after the grace period starts. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 05:52:37 +00:00
unsigned long mask = rcu_rnp_online_cpus(rnp);
cpumask_var_t cm;
int cpu;
rcu: Yield simpler The rcu_yield() code is amazing. It's there to avoid starvation of the system when lots of (boosting) work is to be done. Now looking at the code it's functionality is: Make the thread SCHED_OTHER and very nice, i.e. get it out of the way Arm a timer with 2 ticks schedule() Now if the system goes idle the rcu task returns, regains SCHED_FIFO and plugs on. If the systems stays busy the timer fires and wakes a per node kthread which in turn makes the per cpu thread SCHED_FIFO and brings it back on the cpu. For the boosting thread the "make it FIFO" bit is missing and it just runs some magic boost checks. Now this is a lot of code with extra threads and complexity. It's way simpler to let the tasks when they detect overload schedule away for 2 ticks and defer the normal wakeup as long as they are in yielded state and the cpu is not idle. That solves the same problem and the only difference is that when the cpu goes idle it's not guaranteed that the thread returns right away, but it won't be longer out than two ticks, so no harm is done. If that's an issue than it is way simpler just to wake the task from idle as RCU has callbacks there anyway. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Namhyung Kim <namhyung@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20120716103948.131256723@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-07-16 10:42:35 +00:00
if (!t)
return;
rcu: Yield simpler The rcu_yield() code is amazing. It's there to avoid starvation of the system when lots of (boosting) work is to be done. Now looking at the code it's functionality is: Make the thread SCHED_OTHER and very nice, i.e. get it out of the way Arm a timer with 2 ticks schedule() Now if the system goes idle the rcu task returns, regains SCHED_FIFO and plugs on. If the systems stays busy the timer fires and wakes a per node kthread which in turn makes the per cpu thread SCHED_FIFO and brings it back on the cpu. For the boosting thread the "make it FIFO" bit is missing and it just runs some magic boost checks. Now this is a lot of code with extra threads and complexity. It's way simpler to let the tasks when they detect overload schedule away for 2 ticks and defer the normal wakeup as long as they are in yielded state and the cpu is not idle. That solves the same problem and the only difference is that when the cpu goes idle it's not guaranteed that the thread returns right away, but it won't be longer out than two ticks, so no harm is done. If that's an issue than it is way simpler just to wake the task from idle as RCU has callbacks there anyway. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Namhyung Kim <namhyung@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20120716103948.131256723@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-07-16 10:42:35 +00:00
if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
return;
mutex_lock(&rnp->boost_kthread_mutex);
rcu: Correctly handle sparse possible cpus In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reported-by: Dennis Chen <dennis.chen@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Steve Capper <steve.capper@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-kernel@vger.kernel.org Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2016-06-03 14:20:04 +00:00
for_each_leaf_node_possible_cpu(rnp, cpu)
if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
cpu != outgoingcpu)
cpumask_set_cpu(cpu, cm);
cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
if (cpumask_empty(cm))
cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
rcu: Yield simpler The rcu_yield() code is amazing. It's there to avoid starvation of the system when lots of (boosting) work is to be done. Now looking at the code it's functionality is: Make the thread SCHED_OTHER and very nice, i.e. get it out of the way Arm a timer with 2 ticks schedule() Now if the system goes idle the rcu task returns, regains SCHED_FIFO and plugs on. If the systems stays busy the timer fires and wakes a per node kthread which in turn makes the per cpu thread SCHED_FIFO and brings it back on the cpu. For the boosting thread the "make it FIFO" bit is missing and it just runs some magic boost checks. Now this is a lot of code with extra threads and complexity. It's way simpler to let the tasks when they detect overload schedule away for 2 ticks and defer the normal wakeup as long as they are in yielded state and the cpu is not idle. That solves the same problem and the only difference is that when the cpu goes idle it's not guaranteed that the thread returns right away, but it won't be longer out than two ticks, so no harm is done. If that's an issue than it is way simpler just to wake the task from idle as RCU has callbacks there anyway. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Namhyung Kim <namhyung@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20120716103948.131256723@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-07-16 10:42:35 +00:00
set_cpus_allowed_ptr(t, cm);
mutex_unlock(&rnp->boost_kthread_mutex);
free_cpumask_var(cm);
}
/*
* Spawn boost kthreads -- called as soon as the scheduler is running.
*/
static void __init rcu_spawn_boost_kthreads(void)
{
struct rcu_node *rnp;
rcu_for_each_leaf_node(rnp)
rcu: Make RCU priority boosting work on single-CPU rcu_node structures When any CPU comes online, it checks to see if an RCU-boost kthread has already been created for that CPU's leaf rcu_node structure, and if not, it creates one. Unfortunately, it also verifies that this leaf rcu_node structure actually has at least one online CPU, and if not, it declines to create the kthread. Although this behavior makes sense during early boot, especially on systems that claim far more CPUs than they actually have, it makes no sense for the first CPU to come online for a given rcu_node structure. There is no point in checking because we know there is a CPU on its way in. The problem is that timing differences can cause this incoming CPU to not yet be reflected in the various bit masks even at rcutree_online_cpu() time, and there is no chance at rcutree_prepare_cpu() time. Plus it would be better to create the RCU-boost kthread at rcutree_prepare_cpu() to handle the case where the CPU is involved in an RCU priority inversion very shortly after it comes online. This commit therefore moves the checking to rcu_prepare_kthreads(), which is called only at early boot, when the check is appropriate. In addition, it makes rcutree_prepare_cpu() invoke rcu_spawn_one_boost_kthread(), which no longer does any checking for online CPUs. With this change, RCU priority boosting tests now pass for short rcutorture runs, even with single-CPU leaf rcu_node structures. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-06 03:42:09 +00:00
if (rcu_rnp_online_cpus(rnp))
rcu_spawn_one_boost_kthread(rnp);
}
#else /* #ifdef CONFIG_RCU_BOOST */
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
__releases(rnp->lock)
{
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
static bool rcu_is_callbacks_kthread(void)
{
return false;
}
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}
rcu: Make RCU priority boosting work on single-CPU rcu_node structures When any CPU comes online, it checks to see if an RCU-boost kthread has already been created for that CPU's leaf rcu_node structure, and if not, it creates one. Unfortunately, it also verifies that this leaf rcu_node structure actually has at least one online CPU, and if not, it declines to create the kthread. Although this behavior makes sense during early boot, especially on systems that claim far more CPUs than they actually have, it makes no sense for the first CPU to come online for a given rcu_node structure. There is no point in checking because we know there is a CPU on its way in. The problem is that timing differences can cause this incoming CPU to not yet be reflected in the various bit masks even at rcutree_online_cpu() time, and there is no chance at rcutree_prepare_cpu() time. Plus it would be better to create the RCU-boost kthread at rcutree_prepare_cpu() to handle the case where the CPU is involved in an RCU priority inversion very shortly after it comes online. This commit therefore moves the checking to rcu_prepare_kthreads(), which is called only at early boot, when the check is appropriate. In addition, it makes rcutree_prepare_cpu() invoke rcu_spawn_one_boost_kthread(), which no longer does any checking for online CPUs. With this change, RCU priority boosting tests now pass for short rcutorture runs, even with single-CPU leaf rcu_node structures. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-06 03:42:09 +00:00
static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
{
}
rcu: Make RCU priority boosting work on single-CPU rcu_node structures When any CPU comes online, it checks to see if an RCU-boost kthread has already been created for that CPU's leaf rcu_node structure, and if not, it creates one. Unfortunately, it also verifies that this leaf rcu_node structure actually has at least one online CPU, and if not, it declines to create the kthread. Although this behavior makes sense during early boot, especially on systems that claim far more CPUs than they actually have, it makes no sense for the first CPU to come online for a given rcu_node structure. There is no point in checking because we know there is a CPU on its way in. The problem is that timing differences can cause this incoming CPU to not yet be reflected in the various bit masks even at rcutree_online_cpu() time, and there is no chance at rcutree_prepare_cpu() time. Plus it would be better to create the RCU-boost kthread at rcutree_prepare_cpu() to handle the case where the CPU is involved in an RCU priority inversion very shortly after it comes online. This commit therefore moves the checking to rcu_prepare_kthreads(), which is called only at early boot, when the check is appropriate. In addition, it makes rcutree_prepare_cpu() invoke rcu_spawn_one_boost_kthread(), which no longer does any checking for online CPUs. With this change, RCU priority boosting tests now pass for short rcutorture runs, even with single-CPU leaf rcu_node structures. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-06 03:42:09 +00:00
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}
rcu: Make RCU priority boosting work on single-CPU rcu_node structures When any CPU comes online, it checks to see if an RCU-boost kthread has already been created for that CPU's leaf rcu_node structure, and if not, it creates one. Unfortunately, it also verifies that this leaf rcu_node structure actually has at least one online CPU, and if not, it declines to create the kthread. Although this behavior makes sense during early boot, especially on systems that claim far more CPUs than they actually have, it makes no sense for the first CPU to come online for a given rcu_node structure. There is no point in checking because we know there is a CPU on its way in. The problem is that timing differences can cause this incoming CPU to not yet be reflected in the various bit masks even at rcutree_online_cpu() time, and there is no chance at rcutree_prepare_cpu() time. Plus it would be better to create the RCU-boost kthread at rcutree_prepare_cpu() to handle the case where the CPU is involved in an RCU priority inversion very shortly after it comes online. This commit therefore moves the checking to rcu_prepare_kthreads(), which is called only at early boot, when the check is appropriate. In addition, it makes rcutree_prepare_cpu() invoke rcu_spawn_one_boost_kthread(), which no longer does any checking for online CPUs. With this change, RCU priority boosting tests now pass for short rcutorture runs, even with single-CPU leaf rcu_node structures. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-06 03:42:09 +00:00
static void __init rcu_spawn_boost_kthreads(void)
{
}
#endif /* #else #ifdef CONFIG_RCU_BOOST */
/*
* Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
* grace-period kthread will do force_quiescent_state() processing?
* The idea is to avoid waking up RCU core processing on such a
* CPU unless the grace period has extended for too long.
*
* This code relies on the fact that all NO_HZ_FULL CPUs are also
* RCU_NOCB_CPU CPUs.
*/
static bool rcu_nohz_full_cpu(void)
{
#ifdef CONFIG_NO_HZ_FULL
if (tick_nohz_full_cpu(smp_processor_id()) &&
(!rcu_gp_in_progress() ||
time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
return true;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
return false;
}
/*
* Bind the RCU grace-period kthreads to the housekeeping CPU.
*/
static void rcu_bind_gp_kthread(void)
{
if (!tick_nohz_full_enabled())
return;
housekeeping_affine(current, HK_TYPE_RCU);
}
/* Record the current task on dyntick-idle entry. */
static __always_inline void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}
/* Record no current task on dyntick-idle exit. */
static __always_inline void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
static __always_inline void rcu_dynticks_task_trace_enter(void)
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
{
#ifdef CONFIG_TASKS_TRACE_RCU
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
current->trc_reader_special.b.need_mb = true;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
}
/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
static __always_inline void rcu_dynticks_task_trace_exit(void)
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
{
#ifdef CONFIG_TASKS_TRACE_RCU
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
current->trc_reader_special.b.need_mb = false;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
}