linux-stable/fs/ext4/namei.c

4256 lines
112 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ext4/namei.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/namei.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
* Directory entry file type support and forward compatibility hooks
* for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998
* Hash Tree Directory indexing (c)
* Daniel Phillips, 2001
* Hash Tree Directory indexing porting
* Christopher Li, 2002
* Hash Tree Directory indexing cleanup
* Theodore Ts'o, 2002
*/
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/time.h>
#include <linux/fcntl.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/quotaops.h>
#include <linux/buffer_head.h>
#include <linux/bio.h>
#include <linux/iversion.h>
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
#include <linux/unicode.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include <trace/events/ext4.h>
/*
* define how far ahead to read directories while searching them.
*/
#define NAMEI_RA_CHUNKS 2
#define NAMEI_RA_BLOCKS 4
#define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS)
static struct buffer_head *ext4_append(handle_t *handle,
struct inode *inode,
ext4_lblk_t *block)
{
struct ext4_map_blocks map;
struct buffer_head *bh;
int err;
if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb &&
((inode->i_size >> 10) >=
EXT4_SB(inode->i_sb)->s_max_dir_size_kb)))
return ERR_PTR(-ENOSPC);
*block = inode->i_size >> inode->i_sb->s_blocksize_bits;
map.m_lblk = *block;
map.m_len = 1;
/*
* We're appending new directory block. Make sure the block is not
* allocated yet, otherwise we will end up corrupting the
* directory.
*/
err = ext4_map_blocks(NULL, inode, &map, 0);
if (err < 0)
return ERR_PTR(err);
if (err) {
EXT4_ERROR_INODE(inode, "Logical block already allocated");
return ERR_PTR(-EFSCORRUPTED);
}
bh = ext4_bread(handle, inode, *block, EXT4_GET_BLOCKS_CREATE);
if (IS_ERR(bh))
return bh;
inode->i_size += inode->i_sb->s_blocksize;
EXT4_I(inode)->i_disksize = inode->i_size;
ext4: fix dir corruption when ext4_dx_add_entry() fails commit 7177dd009c7c04290891e9a534cd47d1b620bd04 upstream. Following process may lead to fs corruption: 1. ext4_create(dir/foo) ext4_add_nondir ext4_add_entry ext4_dx_add_entry a. add_dirent_to_buf ext4_mark_inode_dirty ext4_handle_dirty_metadata // dir inode bh is recorded into journal b. ext4_append // dx_get_count(entries) == dx_get_limit(entries) ext4_bread(EXT4_GET_BLOCKS_CREATE) ext4_getblk ext4_map_blocks ext4_ext_map_blocks ext4_mb_new_blocks dquot_alloc_block dquot_alloc_space_nodirty inode_add_bytes // update dir's i_blocks ext4_ext_insert_extent ext4_ext_dirty // record extent bh into journal ext4_handle_dirty_metadata(bh) // record new block into journal inode->i_size += inode->i_sb->s_blocksize // new size(in mem) c. ext4_handle_dirty_dx_node(bh2) // record dir's new block(dx_node) into journal d. ext4_handle_dirty_dx_node((frame - 1)->bh) e. ext4_handle_dirty_dx_node(frame->bh) f. do_split // ret err! g. add_dirent_to_buf ext4_mark_inode_dirty(dir) // update raw_inode on disk(skipped) 2. fsck -a /dev/sdb drop last block(dx_node) which beyonds dir's i_size. /dev/sdb: recovering journal /dev/sdb contains a file system with errors, check forced. /dev/sdb: Inode 12, end of extent exceeds allowed value (logical block 128, physical block 3938, len 1) 3. fsck -fn /dev/sdb dx_node->entry[i].blk > dir->i_size Pass 2: Checking directory structure Problem in HTREE directory inode 12 (/dir): bad block number 128. Clear HTree index? no Problem in HTREE directory inode 12: block #3 has invalid depth (2) Problem in HTREE directory inode 12: block #3 has bad max hash Problem in HTREE directory inode 12: block #3 not referenced Fix it by marking inode dirty directly inside ext4_append(). Fetch a reproducer in [Link]. Link: https://bugzilla.kernel.org/show_bug.cgi?id=216466 Cc: stable@vger.kernel.org Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20220911045204.516460-1-chengzhihao1@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-11 04:52:04 +00:00
err = ext4_mark_inode_dirty(handle, inode);
if (err)
goto out;
BUFFER_TRACE(bh, "get_write_access");
err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
EXT4_JTR_NONE);
ext4: fix dir corruption when ext4_dx_add_entry() fails commit 7177dd009c7c04290891e9a534cd47d1b620bd04 upstream. Following process may lead to fs corruption: 1. ext4_create(dir/foo) ext4_add_nondir ext4_add_entry ext4_dx_add_entry a. add_dirent_to_buf ext4_mark_inode_dirty ext4_handle_dirty_metadata // dir inode bh is recorded into journal b. ext4_append // dx_get_count(entries) == dx_get_limit(entries) ext4_bread(EXT4_GET_BLOCKS_CREATE) ext4_getblk ext4_map_blocks ext4_ext_map_blocks ext4_mb_new_blocks dquot_alloc_block dquot_alloc_space_nodirty inode_add_bytes // update dir's i_blocks ext4_ext_insert_extent ext4_ext_dirty // record extent bh into journal ext4_handle_dirty_metadata(bh) // record new block into journal inode->i_size += inode->i_sb->s_blocksize // new size(in mem) c. ext4_handle_dirty_dx_node(bh2) // record dir's new block(dx_node) into journal d. ext4_handle_dirty_dx_node((frame - 1)->bh) e. ext4_handle_dirty_dx_node(frame->bh) f. do_split // ret err! g. add_dirent_to_buf ext4_mark_inode_dirty(dir) // update raw_inode on disk(skipped) 2. fsck -a /dev/sdb drop last block(dx_node) which beyonds dir's i_size. /dev/sdb: recovering journal /dev/sdb contains a file system with errors, check forced. /dev/sdb: Inode 12, end of extent exceeds allowed value (logical block 128, physical block 3938, len 1) 3. fsck -fn /dev/sdb dx_node->entry[i].blk > dir->i_size Pass 2: Checking directory structure Problem in HTREE directory inode 12 (/dir): bad block number 128. Clear HTree index? no Problem in HTREE directory inode 12: block #3 has invalid depth (2) Problem in HTREE directory inode 12: block #3 has bad max hash Problem in HTREE directory inode 12: block #3 not referenced Fix it by marking inode dirty directly inside ext4_append(). Fetch a reproducer in [Link]. Link: https://bugzilla.kernel.org/show_bug.cgi?id=216466 Cc: stable@vger.kernel.org Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20220911045204.516460-1-chengzhihao1@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-11 04:52:04 +00:00
if (err)
goto out;
return bh;
ext4: fix dir corruption when ext4_dx_add_entry() fails commit 7177dd009c7c04290891e9a534cd47d1b620bd04 upstream. Following process may lead to fs corruption: 1. ext4_create(dir/foo) ext4_add_nondir ext4_add_entry ext4_dx_add_entry a. add_dirent_to_buf ext4_mark_inode_dirty ext4_handle_dirty_metadata // dir inode bh is recorded into journal b. ext4_append // dx_get_count(entries) == dx_get_limit(entries) ext4_bread(EXT4_GET_BLOCKS_CREATE) ext4_getblk ext4_map_blocks ext4_ext_map_blocks ext4_mb_new_blocks dquot_alloc_block dquot_alloc_space_nodirty inode_add_bytes // update dir's i_blocks ext4_ext_insert_extent ext4_ext_dirty // record extent bh into journal ext4_handle_dirty_metadata(bh) // record new block into journal inode->i_size += inode->i_sb->s_blocksize // new size(in mem) c. ext4_handle_dirty_dx_node(bh2) // record dir's new block(dx_node) into journal d. ext4_handle_dirty_dx_node((frame - 1)->bh) e. ext4_handle_dirty_dx_node(frame->bh) f. do_split // ret err! g. add_dirent_to_buf ext4_mark_inode_dirty(dir) // update raw_inode on disk(skipped) 2. fsck -a /dev/sdb drop last block(dx_node) which beyonds dir's i_size. /dev/sdb: recovering journal /dev/sdb contains a file system with errors, check forced. /dev/sdb: Inode 12, end of extent exceeds allowed value (logical block 128, physical block 3938, len 1) 3. fsck -fn /dev/sdb dx_node->entry[i].blk > dir->i_size Pass 2: Checking directory structure Problem in HTREE directory inode 12 (/dir): bad block number 128. Clear HTree index? no Problem in HTREE directory inode 12: block #3 has invalid depth (2) Problem in HTREE directory inode 12: block #3 has bad max hash Problem in HTREE directory inode 12: block #3 not referenced Fix it by marking inode dirty directly inside ext4_append(). Fetch a reproducer in [Link]. Link: https://bugzilla.kernel.org/show_bug.cgi?id=216466 Cc: stable@vger.kernel.org Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20220911045204.516460-1-chengzhihao1@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-11 04:52:04 +00:00
out:
brelse(bh);
ext4_std_error(inode->i_sb, err);
return ERR_PTR(err);
}
static int ext4_dx_csum_verify(struct inode *inode,
struct ext4_dir_entry *dirent);
/*
* Hints to ext4_read_dirblock regarding whether we expect a directory
* block being read to be an index block, or a block containing
* directory entries (and if the latter, whether it was found via a
* logical block in an htree index block). This is used to control
* what sort of sanity checkinig ext4_read_dirblock() will do on the
* directory block read from the storage device. EITHER will means
* the caller doesn't know what kind of directory block will be read,
* so no specific verification will be done.
*/
typedef enum {
EITHER, INDEX, DIRENT, DIRENT_HTREE
} dirblock_type_t;
#define ext4_read_dirblock(inode, block, type) \
__ext4_read_dirblock((inode), (block), (type), __func__, __LINE__)
static struct buffer_head *__ext4_read_dirblock(struct inode *inode,
ext4_lblk_t block,
dirblock_type_t type,
const char *func,
unsigned int line)
{
struct buffer_head *bh;
struct ext4_dir_entry *dirent;
int is_dx_block = 0;
if (block >= inode->i_size >> inode->i_blkbits) {
ext4_error_inode(inode, func, line, block,
"Attempting to read directory block (%u) that is past i_size (%llu)",
block, inode->i_size);
return ERR_PTR(-EFSCORRUPTED);
}
if (ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_EIO))
bh = ERR_PTR(-EIO);
else
bh = ext4_bread(NULL, inode, block, 0);
if (IS_ERR(bh)) {
__ext4_warning(inode->i_sb, func, line,
"inode #%lu: lblock %lu: comm %s: "
"error %ld reading directory block",
inode->i_ino, (unsigned long)block,
current->comm, PTR_ERR(bh));
return bh;
}
if (!bh && (type == INDEX || type == DIRENT_HTREE)) {
ext4_error_inode(inode, func, line, block,
"Directory hole found for htree %s block",
(type == INDEX) ? "index" : "leaf");
return ERR_PTR(-EFSCORRUPTED);
}
if (!bh)
return NULL;
dirent = (struct ext4_dir_entry *) bh->b_data;
/* Determine whether or not we have an index block */
if (is_dx(inode)) {
if (block == 0)
is_dx_block = 1;
else if (ext4_rec_len_from_disk(dirent->rec_len,
inode->i_sb->s_blocksize) ==
inode->i_sb->s_blocksize)
is_dx_block = 1;
}
if (!is_dx_block && type == INDEX) {
ext4_error_inode(inode, func, line, block,
"directory leaf block found instead of index block");
brelse(bh);
return ERR_PTR(-EFSCORRUPTED);
}
if (!ext4_has_metadata_csum(inode->i_sb) ||
buffer_verified(bh))
return bh;
/*
* An empty leaf block can get mistaken for a index block; for
* this reason, we can only check the index checksum when the
* caller is sure it should be an index block.
*/
if (is_dx_block && type == INDEX) {
if (ext4_dx_csum_verify(inode, dirent) &&
!ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_CRC))
set_buffer_verified(bh);
else {
ext4_error_inode_err(inode, func, line, block,
EFSBADCRC,
"Directory index failed checksum");
brelse(bh);
return ERR_PTR(-EFSBADCRC);
}
}
if (!is_dx_block) {
if (ext4_dirblock_csum_verify(inode, bh) &&
!ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_CRC))
set_buffer_verified(bh);
else {
ext4_error_inode_err(inode, func, line, block,
EFSBADCRC,
"Directory block failed checksum");
brelse(bh);
return ERR_PTR(-EFSBADCRC);
}
}
return bh;
}
#ifdef DX_DEBUG
#define dxtrace(command) command
#else
#define dxtrace(command)
#endif
struct fake_dirent
{
__le32 inode;
__le16 rec_len;
u8 name_len;
u8 file_type;
};
struct dx_countlimit
{
__le16 limit;
__le16 count;
};
struct dx_entry
{
__le32 hash;
__le32 block;
};
/*
* dx_root_info is laid out so that if it should somehow get overlaid by a
* dirent the two low bits of the hash version will be zero. Therefore, the
* hash version mod 4 should never be 0. Sincerely, the paranoia department.
*/
struct dx_root
{
struct fake_dirent dot;
char dot_name[4];
struct fake_dirent dotdot;
char dotdot_name[4];
struct dx_root_info
{
__le32 reserved_zero;
u8 hash_version;
u8 info_length; /* 8 */
u8 indirect_levels;
u8 unused_flags;
}
info;
struct dx_entry entries[];
};
struct dx_node
{
struct fake_dirent fake;
struct dx_entry entries[];
};
struct dx_frame
{
struct buffer_head *bh;
struct dx_entry *entries;
struct dx_entry *at;
};
struct dx_map_entry
{
u32 hash;
ext34: ensure do_split leaves enough free space in both blocks The do_split() function for htree dir blocks is intended to split a leaf block to make room for a new entry. It sorts the entries in the original block by hash value, then moves the last half of the entries to the new block - without accounting for how much space this actually moves. (IOW, it moves half of the entry *count* not half of the entry *space*). If by chance we have both large & small entries, and we move only the smallest entries, and we have a large new entry to insert, we may not have created enough space for it. The patch below stores each record size when calculating the dx_map, and then walks the hash-sorted dx_map, calculating how many entries must be moved to more evenly split the existing entries between the old block and the new block, guaranteeing enough space for the new entry. The dx_map "offs" member is reduced to u16 so that the overall map size does not change - it is temporarily stored at the end of the new block, and if it grows too large it may be overwritten. By making offs and size both u16, we won't grow the map size. Also add a few comments to the functions involved. This fixes the testcase reported by hooanon05@yahoo.co.jp on the linux-ext4 list, "ext3 dir_index causes an error" Thanks to Andreas Dilger for discussing the problem & solution with me. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Andreas Dilger <adilger@clusterfs.com> Tested-by: Junjiro Okajima <hooanon05@yahoo.co.jp> Cc: Theodore Ts'o <tytso@mit.edu> Cc: <linux-ext4@vger.kernel.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 05:46:42 +00:00
u16 offs;
u16 size;
};
/*
* This goes at the end of each htree block.
*/
struct dx_tail {
u32 dt_reserved;
__le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */
};
static inline ext4_lblk_t dx_get_block(struct dx_entry *entry);
static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value);
static inline unsigned dx_get_hash(struct dx_entry *entry);
static void dx_set_hash(struct dx_entry *entry, unsigned value);
static unsigned dx_get_count(struct dx_entry *entries);
static unsigned dx_get_limit(struct dx_entry *entries);
static void dx_set_count(struct dx_entry *entries, unsigned value);
static void dx_set_limit(struct dx_entry *entries, unsigned value);
static unsigned dx_root_limit(struct inode *dir, unsigned infosize);
static unsigned dx_node_limit(struct inode *dir);
static struct dx_frame *dx_probe(struct ext4_filename *fname,
struct inode *dir,
struct dx_hash_info *hinfo,
struct dx_frame *frame);
static void dx_release(struct dx_frame *frames);
static int dx_make_map(struct inode *dir, struct buffer_head *bh,
struct dx_hash_info *hinfo,
struct dx_map_entry *map_tail);
static void dx_sort_map(struct dx_map_entry *map, unsigned count);
static struct ext4_dir_entry_2 *dx_move_dirents(struct inode *dir, char *from,
char *to, struct dx_map_entry *offsets,
int count, unsigned int blocksize);
static struct ext4_dir_entry_2 *dx_pack_dirents(struct inode *dir, char *base,
unsigned int blocksize);
static void dx_insert_block(struct dx_frame *frame,
u32 hash, ext4_lblk_t block);
static int ext4_htree_next_block(struct inode *dir, __u32 hash,
struct dx_frame *frame,
struct dx_frame *frames,
__u32 *start_hash);
static struct buffer_head * ext4_dx_find_entry(struct inode *dir,
struct ext4_filename *fname,
struct ext4_dir_entry_2 **res_dir);
static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname,
struct inode *dir, struct inode *inode);
/* checksumming functions */
void ext4_initialize_dirent_tail(struct buffer_head *bh,
unsigned int blocksize)
{
struct ext4_dir_entry_tail *t = EXT4_DIRENT_TAIL(bh->b_data, blocksize);
memset(t, 0, sizeof(struct ext4_dir_entry_tail));
t->det_rec_len = ext4_rec_len_to_disk(
sizeof(struct ext4_dir_entry_tail), blocksize);
t->det_reserved_ft = EXT4_FT_DIR_CSUM;
}
/* Walk through a dirent block to find a checksum "dirent" at the tail */
static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode,
struct buffer_head *bh)
{
struct ext4_dir_entry_tail *t;
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
int blocksize = EXT4_BLOCK_SIZE(inode->i_sb);
#ifdef PARANOID
struct ext4_dir_entry *d, *top;
d = (struct ext4_dir_entry *)bh->b_data;
top = (struct ext4_dir_entry *)(bh->b_data +
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
(blocksize - sizeof(struct ext4_dir_entry_tail)));
while (d < top && ext4_rec_len_from_disk(d->rec_len, blocksize))
d = (struct ext4_dir_entry *)(((void *)d) +
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
ext4_rec_len_from_disk(d->rec_len, blocksize));
if (d != top)
return NULL;
t = (struct ext4_dir_entry_tail *)d;
#else
t = EXT4_DIRENT_TAIL(bh->b_data, EXT4_BLOCK_SIZE(inode->i_sb));
#endif
if (t->det_reserved_zero1 ||
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
(ext4_rec_len_from_disk(t->det_rec_len, blocksize) !=
sizeof(struct ext4_dir_entry_tail)) ||
t->det_reserved_zero2 ||
t->det_reserved_ft != EXT4_FT_DIR_CSUM)
return NULL;
return t;
}
static __le32 ext4_dirblock_csum(struct inode *inode, void *dirent, int size)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
__u32 csum;
csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
return cpu_to_le32(csum);
}
#define warn_no_space_for_csum(inode) \
__warn_no_space_for_csum((inode), __func__, __LINE__)
static void __warn_no_space_for_csum(struct inode *inode, const char *func,
unsigned int line)
{
__ext4_warning_inode(inode, func, line,
"No space for directory leaf checksum. Please run e2fsck -D.");
}
int ext4_dirblock_csum_verify(struct inode *inode, struct buffer_head *bh)
{
struct ext4_dir_entry_tail *t;
if (!ext4_has_metadata_csum(inode->i_sb))
return 1;
t = get_dirent_tail(inode, bh);
if (!t) {
warn_no_space_for_csum(inode);
return 0;
}
if (t->det_checksum != ext4_dirblock_csum(inode, bh->b_data,
(char *)t - bh->b_data))
return 0;
return 1;
}
static void ext4_dirblock_csum_set(struct inode *inode,
struct buffer_head *bh)
{
struct ext4_dir_entry_tail *t;
if (!ext4_has_metadata_csum(inode->i_sb))
return;
t = get_dirent_tail(inode, bh);
if (!t) {
warn_no_space_for_csum(inode);
return;
}
t->det_checksum = ext4_dirblock_csum(inode, bh->b_data,
(char *)t - bh->b_data);
}
int ext4_handle_dirty_dirblock(handle_t *handle,
struct inode *inode,
struct buffer_head *bh)
{
ext4_dirblock_csum_set(inode, bh);
return ext4_handle_dirty_metadata(handle, inode, bh);
}
static struct dx_countlimit *get_dx_countlimit(struct inode *inode,
struct ext4_dir_entry *dirent,
int *offset)
{
struct ext4_dir_entry *dp;
struct dx_root_info *root;
int count_offset;
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
int blocksize = EXT4_BLOCK_SIZE(inode->i_sb);
unsigned int rlen = ext4_rec_len_from_disk(dirent->rec_len, blocksize);
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
if (rlen == blocksize)
count_offset = 8;
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
else if (rlen == 12) {
dp = (struct ext4_dir_entry *)(((void *)dirent) + 12);
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
if (ext4_rec_len_from_disk(dp->rec_len, blocksize) != blocksize - 12)
return NULL;
root = (struct dx_root_info *)(((void *)dp + 12));
if (root->reserved_zero ||
root->info_length != sizeof(struct dx_root_info))
return NULL;
count_offset = 32;
} else
return NULL;
if (offset)
*offset = count_offset;
return (struct dx_countlimit *)(((void *)dirent) + count_offset);
}
static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent,
int count_offset, int count, struct dx_tail *t)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
__u32 csum;
int size;
__u32 dummy_csum = 0;
int offset = offsetof(struct dx_tail, dt_checksum);
size = count_offset + (count * sizeof(struct dx_entry));
csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
csum = ext4_chksum(sbi, csum, (__u8 *)t, offset);
csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, sizeof(dummy_csum));
return cpu_to_le32(csum);
}
static int ext4_dx_csum_verify(struct inode *inode,
struct ext4_dir_entry *dirent)
{
struct dx_countlimit *c;
struct dx_tail *t;
int count_offset, limit, count;
if (!ext4_has_metadata_csum(inode->i_sb))
return 1;
c = get_dx_countlimit(inode, dirent, &count_offset);
if (!c) {
EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
return 0;
}
limit = le16_to_cpu(c->limit);
count = le16_to_cpu(c->count);
if (count_offset + (limit * sizeof(struct dx_entry)) >
EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
warn_no_space_for_csum(inode);
return 0;
}
t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset,
count, t))
return 0;
return 1;
}
static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent)
{
struct dx_countlimit *c;
struct dx_tail *t;
int count_offset, limit, count;
if (!ext4_has_metadata_csum(inode->i_sb))
return;
c = get_dx_countlimit(inode, dirent, &count_offset);
if (!c) {
EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
return;
}
limit = le16_to_cpu(c->limit);
count = le16_to_cpu(c->count);
if (count_offset + (limit * sizeof(struct dx_entry)) >
EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
warn_no_space_for_csum(inode);
return;
}
t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t);
}
static inline int ext4_handle_dirty_dx_node(handle_t *handle,
struct inode *inode,
struct buffer_head *bh)
{
ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data);
return ext4_handle_dirty_metadata(handle, inode, bh);
}
/*
* p is at least 6 bytes before the end of page
*/
static inline struct ext4_dir_entry_2 *
ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize)
{
return (struct ext4_dir_entry_2 *)((char *)p +
ext4_rec_len_from_disk(p->rec_len, blocksize));
}
/*
* Future: use high four bits of block for coalesce-on-delete flags
* Mask them off for now.
*/
static inline ext4_lblk_t dx_get_block(struct dx_entry *entry)
{
return le32_to_cpu(entry->block) & 0x0fffffff;
}
static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value)
{
entry->block = cpu_to_le32(value);
}
static inline unsigned dx_get_hash(struct dx_entry *entry)
{
return le32_to_cpu(entry->hash);
}
static inline void dx_set_hash(struct dx_entry *entry, unsigned value)
{
entry->hash = cpu_to_le32(value);
}
static inline unsigned dx_get_count(struct dx_entry *entries)
{
return le16_to_cpu(((struct dx_countlimit *) entries)->count);
}
static inline unsigned dx_get_limit(struct dx_entry *entries)
{
return le16_to_cpu(((struct dx_countlimit *) entries)->limit);
}
static inline void dx_set_count(struct dx_entry *entries, unsigned value)
{
((struct dx_countlimit *) entries)->count = cpu_to_le16(value);
}
static inline void dx_set_limit(struct dx_entry *entries, unsigned value)
{
((struct dx_countlimit *) entries)->limit = cpu_to_le16(value);
}
static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize)
{
unsigned int entry_space = dir->i_sb->s_blocksize -
ext4_dir_rec_len(1, NULL) -
ext4_dir_rec_len(2, NULL) - infosize;
if (ext4_has_metadata_csum(dir->i_sb))
entry_space -= sizeof(struct dx_tail);
return entry_space / sizeof(struct dx_entry);
}
static inline unsigned dx_node_limit(struct inode *dir)
{
unsigned int entry_space = dir->i_sb->s_blocksize -
ext4_dir_rec_len(0, dir);
if (ext4_has_metadata_csum(dir->i_sb))
entry_space -= sizeof(struct dx_tail);
return entry_space / sizeof(struct dx_entry);
}
/*
* Debug
*/
#ifdef DX_DEBUG
static void dx_show_index(char * label, struct dx_entry *entries)
{
int i, n = dx_get_count (entries);
printk(KERN_DEBUG "%s index", label);
for (i = 0; i < n; i++) {
printk(KERN_CONT " %x->%lu",
i ? dx_get_hash(entries + i) : 0,
(unsigned long)dx_get_block(entries + i));
}
printk(KERN_CONT "\n");
}
struct stats
{
unsigned names;
unsigned space;
unsigned bcount;
};
static struct stats dx_show_leaf(struct inode *dir,
struct dx_hash_info *hinfo,
struct ext4_dir_entry_2 *de,
int size, int show_names)
{
unsigned names = 0, space = 0;
char *base = (char *) de;
struct dx_hash_info h = *hinfo;
printk("names: ");
while ((char *) de < base + size)
{
if (de->inode)
{
if (show_names)
{
#ifdef CONFIG_FS_ENCRYPTION
int len;
char *name;
struct fscrypt_str fname_crypto_str =
FSTR_INIT(NULL, 0);
int res = 0;
name = de->name;
len = de->name_len;
if (!IS_ENCRYPTED(dir)) {
/* Directory is not encrypted */
(void) ext4fs_dirhash(dir, de->name,
de->name_len, &h);
printk("%*.s:(U)%x.%u ", len,
name, h.hash,
(unsigned) ((char *) de
- base));
} else {
struct fscrypt_str de_name =
FSTR_INIT(name, len);
/* Directory is encrypted */
res = fscrypt_fname_alloc_buffer(
len, &fname_crypto_str);
if (res)
printk(KERN_WARNING "Error "
"allocating crypto "
"buffer--skipping "
"crypto\n");
res = fscrypt_fname_disk_to_usr(dir,
0, 0, &de_name,
&fname_crypto_str);
if (res) {
printk(KERN_WARNING "Error "
"converting filename "
"from disk to usr"
"\n");
name = "??";
len = 2;
} else {
name = fname_crypto_str.name;
len = fname_crypto_str.len;
}
if (IS_CASEFOLDED(dir))
h.hash = EXT4_DIRENT_HASH(de);
else
(void) ext4fs_dirhash(dir,
de->name,
de->name_len, &h);
printk("%*.s:(E)%x.%u ", len, name,
h.hash, (unsigned) ((char *) de
- base));
fscrypt_fname_free_buffer(
&fname_crypto_str);
}
#else
int len = de->name_len;
char *name = de->name;
(void) ext4fs_dirhash(dir, de->name,
de->name_len, &h);
printk("%*.s:%x.%u ", len, name, h.hash,
(unsigned) ((char *) de - base));
#endif
}
space += ext4_dir_rec_len(de->name_len, dir);
names++;
}
de = ext4_next_entry(de, size);
}
printk(KERN_CONT "(%i)\n", names);
return (struct stats) { names, space, 1 };
}
struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir,
struct dx_entry *entries, int levels)
{
unsigned blocksize = dir->i_sb->s_blocksize;
unsigned count = dx_get_count(entries), names = 0, space = 0, i;
unsigned bcount = 0;
struct buffer_head *bh;
printk("%i indexed blocks...\n", count);
for (i = 0; i < count; i++, entries++)
{
ext4_lblk_t block = dx_get_block(entries);
ext4_lblk_t hash = i ? dx_get_hash(entries): 0;
u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash;
struct stats stats;
printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range);
bh = ext4_bread(NULL,dir, block, 0);
if (!bh || IS_ERR(bh))
continue;
stats = levels?
dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1):
dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *)
bh->b_data, blocksize, 0);
names += stats.names;
space += stats.space;
bcount += stats.bcount;
brelse(bh);
}
if (bcount)
printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n",
levels ? "" : " ", names, space/bcount,
(space/bcount)*100/blocksize);
return (struct stats) { names, space, bcount};
}
/*
* Linear search cross check
*/
static inline void htree_rep_invariant_check(struct dx_entry *at,
struct dx_entry *target,
u32 hash, unsigned int n)
{
while (n--) {
dxtrace(printk(KERN_CONT ","));
if (dx_get_hash(++at) > hash) {
at--;
break;
}
}
ASSERT(at == target - 1);
}
#else /* DX_DEBUG */
static inline void htree_rep_invariant_check(struct dx_entry *at,
struct dx_entry *target,
u32 hash, unsigned int n)
{
}
#endif /* DX_DEBUG */
/*
* Probe for a directory leaf block to search.
*
* dx_probe can return ERR_BAD_DX_DIR, which means there was a format
* error in the directory index, and the caller should fall back to
* searching the directory normally. The callers of dx_probe **MUST**
* check for this error code, and make sure it never gets reflected
* back to userspace.
*/
static struct dx_frame *
dx_probe(struct ext4_filename *fname, struct inode *dir,
struct dx_hash_info *hinfo, struct dx_frame *frame_in)
{
unsigned count, indirect, level, i;
struct dx_entry *at, *entries, *p, *q, *m;
struct dx_root *root;
struct dx_frame *frame = frame_in;
struct dx_frame *ret_err = ERR_PTR(ERR_BAD_DX_DIR);
u32 hash;
ext4_lblk_t block;
ext4_lblk_t blocks[EXT4_HTREE_LEVEL];
memset(frame_in, 0, EXT4_HTREE_LEVEL * sizeof(frame_in[0]));
frame->bh = ext4_read_dirblock(dir, 0, INDEX);
if (IS_ERR(frame->bh))
return (struct dx_frame *) frame->bh;
root = (struct dx_root *) frame->bh->b_data;
if (root->info.hash_version != DX_HASH_TEA &&
root->info.hash_version != DX_HASH_HALF_MD4 &&
root->info.hash_version != DX_HASH_LEGACY &&
root->info.hash_version != DX_HASH_SIPHASH) {
ext4_warning_inode(dir, "Unrecognised inode hash code %u",
root->info.hash_version);
goto fail;
}
if (ext4_hash_in_dirent(dir)) {
if (root->info.hash_version != DX_HASH_SIPHASH) {
ext4_warning_inode(dir,
"Hash in dirent, but hash is not SIPHASH");
goto fail;
}
} else {
if (root->info.hash_version == DX_HASH_SIPHASH) {
ext4_warning_inode(dir,
"Hash code is SIPHASH, but hash not in dirent");
goto fail;
}
}
if (fname)
hinfo = &fname->hinfo;
hinfo->hash_version = root->info.hash_version;
if (hinfo->hash_version <= DX_HASH_TEA)
hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed;
/* hash is already computed for encrypted casefolded directory */
if (fname && fname_name(fname) &&
!(IS_ENCRYPTED(dir) && IS_CASEFOLDED(dir))) {
int ret = ext4fs_dirhash(dir, fname_name(fname),
fname_len(fname), hinfo);
if (ret < 0) {
ret_err = ERR_PTR(ret);
goto fail;
}
}
hash = hinfo->hash;
if (root->info.unused_flags & 1) {
ext4_warning_inode(dir, "Unimplemented hash flags: %#06x",
root->info.unused_flags);
goto fail;
}
indirect = root->info.indirect_levels;
if (indirect >= ext4_dir_htree_level(dir->i_sb)) {
ext4_warning(dir->i_sb,
"Directory (ino: %lu) htree depth %#06x exceed"
"supported value", dir->i_ino,
ext4_dir_htree_level(dir->i_sb));
if (ext4_dir_htree_level(dir->i_sb) < EXT4_HTREE_LEVEL) {
ext4_warning(dir->i_sb, "Enable large directory "
"feature to access it");
}
goto fail;
}
entries = (struct dx_entry *)(((char *)&root->info) +
root->info.info_length);
if (dx_get_limit(entries) != dx_root_limit(dir,
root->info.info_length)) {
ext4_warning_inode(dir, "dx entry: limit %u != root limit %u",
dx_get_limit(entries),
dx_root_limit(dir, root->info.info_length));
goto fail;
}
dxtrace(printk("Look up %x", hash));
level = 0;
blocks[0] = 0;
while (1) {
count = dx_get_count(entries);
if (!count || count > dx_get_limit(entries)) {
ext4_warning_inode(dir,
"dx entry: count %u beyond limit %u",
count, dx_get_limit(entries));
goto fail;
}
p = entries + 1;
q = entries + count - 1;
while (p <= q) {
m = p + (q - p) / 2;
dxtrace(printk(KERN_CONT "."));
if (dx_get_hash(m) > hash)
q = m - 1;
else
p = m + 1;
}
htree_rep_invariant_check(entries, p, hash, count - 1);
at = p - 1;
dxtrace(printk(KERN_CONT " %x->%u\n",
at == entries ? 0 : dx_get_hash(at),
dx_get_block(at)));
frame->entries = entries;
frame->at = at;
block = dx_get_block(at);
for (i = 0; i <= level; i++) {
if (blocks[i] == block) {
ext4_warning_inode(dir,
"dx entry: tree cycle block %u points back to block %u",
blocks[level], block);
goto fail;
}
}
if (++level > indirect)
return frame;
blocks[level] = block;
frame++;
frame->bh = ext4_read_dirblock(dir, block, INDEX);
if (IS_ERR(frame->bh)) {
ret_err = (struct dx_frame *) frame->bh;
frame->bh = NULL;
goto fail;
}
entries = ((struct dx_node *) frame->bh->b_data)->entries;
if (dx_get_limit(entries) != dx_node_limit(dir)) {
ext4_warning_inode(dir,
"dx entry: limit %u != node limit %u",
dx_get_limit(entries), dx_node_limit(dir));
goto fail;
}
}
fail:
while (frame >= frame_in) {
brelse(frame->bh);
frame--;
}
if (ret_err == ERR_PTR(ERR_BAD_DX_DIR))
ext4_warning_inode(dir,
"Corrupt directory, running e2fsck is recommended");
return ret_err;
}
static void dx_release(struct dx_frame *frames)
{
struct dx_root_info *info;
int i;
unsigned int indirect_levels;
if (frames[0].bh == NULL)
return;
info = &((struct dx_root *)frames[0].bh->b_data)->info;
/* save local copy, "info" may be freed after brelse() */
indirect_levels = info->indirect_levels;
for (i = 0; i <= indirect_levels; i++) {
if (frames[i].bh == NULL)
break;
brelse(frames[i].bh);
frames[i].bh = NULL;
}
}
/*
* This function increments the frame pointer to search the next leaf
* block, and reads in the necessary intervening nodes if the search
* should be necessary. Whether or not the search is necessary is
* controlled by the hash parameter. If the hash value is even, then
* the search is only continued if the next block starts with that
* hash value. This is used if we are searching for a specific file.
*
* If the hash value is HASH_NB_ALWAYS, then always go to the next block.
*
* This function returns 1 if the caller should continue to search,
* or 0 if it should not. If there is an error reading one of the
* index blocks, it will a negative error code.
*
* If start_hash is non-null, it will be filled in with the starting
* hash of the next page.
*/
static int ext4_htree_next_block(struct inode *dir, __u32 hash,
struct dx_frame *frame,
struct dx_frame *frames,
__u32 *start_hash)
{
struct dx_frame *p;
struct buffer_head *bh;
int num_frames = 0;
__u32 bhash;
p = frame;
/*
* Find the next leaf page by incrementing the frame pointer.
* If we run out of entries in the interior node, loop around and
* increment pointer in the parent node. When we break out of
* this loop, num_frames indicates the number of interior
* nodes need to be read.
*/
while (1) {
if (++(p->at) < p->entries + dx_get_count(p->entries))
break;
if (p == frames)
return 0;
num_frames++;
p--;
}
/*
* If the hash is 1, then continue only if the next page has a
* continuation hash of any value. This is used for readdir
* handling. Otherwise, check to see if the hash matches the
* desired continuation hash. If it doesn't, return since
* there's no point to read in the successive index pages.
*/
bhash = dx_get_hash(p->at);
if (start_hash)
*start_hash = bhash;
if ((hash & 1) == 0) {
if ((bhash & ~1) != hash)
return 0;
}
/*
* If the hash is HASH_NB_ALWAYS, we always go to the next
* block so no check is necessary
*/
while (num_frames--) {
bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX);
if (IS_ERR(bh))
return PTR_ERR(bh);
p++;
brelse(p->bh);
p->bh = bh;
p->at = p->entries = ((struct dx_node *) bh->b_data)->entries;
}
return 1;
}
/*
* This function fills a red-black tree with information from a
* directory block. It returns the number directory entries loaded
* into the tree. If there is an error it is returned in err.
*/
static int htree_dirblock_to_tree(struct file *dir_file,
struct inode *dir, ext4_lblk_t block,
struct dx_hash_info *hinfo,
__u32 start_hash, __u32 start_minor_hash)
{
struct buffer_head *bh;
struct ext4_dir_entry_2 *de, *top;
ext4: fix possible non-initialized variable in htree_dirblock_to_tree() htree_dirblock_to_tree() declares a non-initialized 'err' variable, which is passed as a reference to another functions expecting them to set this variable with their error codes. It's passed to ext4_bread(), which then passes it to ext4_getblk(). If ext4_map_blocks() returns 0 due to a lookup failure, leaving the ext4_getblk() buffer_head uninitialized, it will make ext4_getblk() return to ext4_bread() without initialize the 'err' variable, and ext4_bread() will return to htree_dirblock_to_tree() with this variable still uninitialized. htree_dirblock_to_tree() will pass this variable with garbage back to ext4_htree_fill_tree(), which expects a number of directory entries added to the rb-tree. which, in case, might return a fake non-zero value due the garbage left in the 'err' variable, leading the kernel to an Oops in ext4_dx_readdir(), once this is expecting a filled rb-tree node, when in turn it will have a NULL-ed one, causing an invalid page request when trying to get a fname struct from this NULL-ed rb-tree node in this line: fname = rb_entry(info->curr_node, struct fname, rb_hash); The patch itself initializes the err variable in htree_dirblock_to_tree() to avoid usage mistakes by the called functions, and also fix ext4_getblk() to return a initialized 'err' variable when ext4_map_blocks() fails a lookup. Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2012-09-18 03:39:12 +00:00
int err = 0, count = 0;
struct fscrypt_str fname_crypto_str = FSTR_INIT(NULL, 0), tmp_str;
int csum = ext4_has_metadata_csum(dir->i_sb);
dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n",
(unsigned long)block));
bh = ext4_read_dirblock(dir, block, DIRENT_HTREE);
if (IS_ERR(bh))
return PTR_ERR(bh);
de = (struct ext4_dir_entry_2 *) bh->b_data;
/* csum entries are not larger in the casefolded encrypted case */
top = (struct ext4_dir_entry_2 *) ((char *) de +
dir->i_sb->s_blocksize -
ext4_dir_rec_len(0,
csum ? NULL : dir));
/* Check if the directory is encrypted */
if (IS_ENCRYPTED(dir)) {
err = fscrypt_prepare_readdir(dir);
if (err < 0) {
brelse(bh);
return err;
}
err = fscrypt_fname_alloc_buffer(EXT4_NAME_LEN,
&fname_crypto_str);
if (err < 0) {
brelse(bh);
return err;
}
}
for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) {
if (ext4_check_dir_entry(dir, NULL, de, bh,
bh->b_data, bh->b_size,
(block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb))
+ ((char *)de - bh->b_data))) {
/* silently ignore the rest of the block */
break;
[PATCH] handle ext4 directory corruption better I've been using Steve Grubb's purely evil "fsfuzzer" tool, at http://people.redhat.com/sgrubb/files/fsfuzzer-0.4.tar.gz Basically it makes a filesystem, splats some random bits over it, then tries to mount it and do some simple filesystem actions. At best, the filesystem catches the corruption gracefully. At worst, things spin out of control. As you might guess, we found a couple places in ext4 where things spin out of control :) First, we had a corrupted directory that was never checked for consistency... it was corrupt, and pointed to another bad "entry" of length 0. The for() loop looped forever, since the length of ext4_next_entry(de) was 0, and we kept looking at the same pointer over and over and over and over... I modeled this check and subsequent action on what is done for other directory types in ext4_readdir... (adding this check adds some computational expense; I am testing a followup patch to reduce the number of times we check and re-check these directory entries, in all cases. Thanks for the idea, Andreas). Next we had a root directory inode which had a corrupted size, claimed to be > 200M on a 4M filesystem. There was only really 1 block in the directory, but because the size was so large, readdir kept coming back for more, spewing thousands of printk's along the way. Per Andreas' suggestion, if we're in this read error condition and we're trying to read an offset which is greater than i_blocks worth of bytes, stop trying, and break out of the loop. With these two changes fsfuzz test survives quite well on ext4. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Cc: <linux-ext4@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 04:36:28 +00:00
}
if (ext4_hash_in_dirent(dir)) {
if (de->name_len && de->inode) {
hinfo->hash = EXT4_DIRENT_HASH(de);
hinfo->minor_hash = EXT4_DIRENT_MINOR_HASH(de);
} else {
hinfo->hash = 0;
hinfo->minor_hash = 0;
}
} else {
err = ext4fs_dirhash(dir, de->name,
de->name_len, hinfo);
if (err < 0) {
count = err;
goto errout;
}
}
if ((hinfo->hash < start_hash) ||
((hinfo->hash == start_hash) &&
(hinfo->minor_hash < start_minor_hash)))
continue;
if (de->inode == 0)
continue;
if (!IS_ENCRYPTED(dir)) {
tmp_str.name = de->name;
tmp_str.len = de->name_len;
err = ext4_htree_store_dirent(dir_file,
hinfo->hash, hinfo->minor_hash, de,
&tmp_str);
} else {
int save_len = fname_crypto_str.len;
struct fscrypt_str de_name = FSTR_INIT(de->name,
de->name_len);
/* Directory is encrypted */
err = fscrypt_fname_disk_to_usr(dir, hinfo->hash,
hinfo->minor_hash, &de_name,
&fname_crypto_str);
if (err) {
count = err;
goto errout;
}
err = ext4_htree_store_dirent(dir_file,
hinfo->hash, hinfo->minor_hash, de,
&fname_crypto_str);
fname_crypto_str.len = save_len;
}
if (err != 0) {
count = err;
goto errout;
}
count++;
}
errout:
brelse(bh);
fscrypt_fname_free_buffer(&fname_crypto_str);
return count;
}
/*
* This function fills a red-black tree with information from a
* directory. We start scanning the directory in hash order, starting
* at start_hash and start_minor_hash.
*
* This function returns the number of entries inserted into the tree,
* or a negative error code.
*/
int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash,
__u32 start_minor_hash, __u32 *next_hash)
{
struct dx_hash_info hinfo;
struct ext4_dir_entry_2 *de;
struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
struct inode *dir;
ext4_lblk_t block;
int count = 0;
int ret, err;
__u32 hashval;
struct fscrypt_str tmp_str;
dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n",
start_hash, start_minor_hash));
dir = file_inode(dir_file);
if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) {
if (ext4_hash_in_dirent(dir))
hinfo.hash_version = DX_HASH_SIPHASH;
else
hinfo.hash_version =
EXT4_SB(dir->i_sb)->s_def_hash_version;
if (hinfo.hash_version <= DX_HASH_TEA)
hinfo.hash_version +=
EXT4_SB(dir->i_sb)->s_hash_unsigned;
hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
if (ext4_has_inline_data(dir)) {
int has_inline_data = 1;
count = ext4_inlinedir_to_tree(dir_file, dir, 0,
&hinfo, start_hash,
start_minor_hash,
&has_inline_data);
if (has_inline_data) {
*next_hash = ~0;
return count;
}
}
count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo,
start_hash, start_minor_hash);
*next_hash = ~0;
return count;
}
hinfo.hash = start_hash;
hinfo.minor_hash = 0;
frame = dx_probe(NULL, dir, &hinfo, frames);
if (IS_ERR(frame))
return PTR_ERR(frame);
/* Add '.' and '..' from the htree header */
if (!start_hash && !start_minor_hash) {
de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
tmp_str.name = de->name;
tmp_str.len = de->name_len;
err = ext4_htree_store_dirent(dir_file, 0, 0,
de, &tmp_str);
if (err != 0)
goto errout;
count++;
}
if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) {
de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
de = ext4_next_entry(de, dir->i_sb->s_blocksize);
tmp_str.name = de->name;
tmp_str.len = de->name_len;
err = ext4_htree_store_dirent(dir_file, 2, 0,
de, &tmp_str);
if (err != 0)
goto errout;
count++;
}
while (1) {
if (fatal_signal_pending(current)) {
err = -ERESTARTSYS;
goto errout;
}
cond_resched();
block = dx_get_block(frame->at);
ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo,
start_hash, start_minor_hash);
if (ret < 0) {
err = ret;
goto errout;
}
count += ret;
hashval = ~0;
ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS,
frame, frames, &hashval);
*next_hash = hashval;
if (ret < 0) {
err = ret;
goto errout;
}
/*
* Stop if: (a) there are no more entries, or
* (b) we have inserted at least one entry and the
* next hash value is not a continuation
*/
if ((ret == 0) ||
(count && ((hashval & 1) == 0)))
break;
}
dx_release(frames);
dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, "
"next hash: %x\n", count, *next_hash));
return count;
errout:
dx_release(frames);
return (err);
}
static inline int search_dirblock(struct buffer_head *bh,
struct inode *dir,
struct ext4_filename *fname,
unsigned int offset,
struct ext4_dir_entry_2 **res_dir)
{
return ext4_search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir,
fname, offset, res_dir);
}
/*
* Directory block splitting, compacting
*/
ext34: ensure do_split leaves enough free space in both blocks The do_split() function for htree dir blocks is intended to split a leaf block to make room for a new entry. It sorts the entries in the original block by hash value, then moves the last half of the entries to the new block - without accounting for how much space this actually moves. (IOW, it moves half of the entry *count* not half of the entry *space*). If by chance we have both large & small entries, and we move only the smallest entries, and we have a large new entry to insert, we may not have created enough space for it. The patch below stores each record size when calculating the dx_map, and then walks the hash-sorted dx_map, calculating how many entries must be moved to more evenly split the existing entries between the old block and the new block, guaranteeing enough space for the new entry. The dx_map "offs" member is reduced to u16 so that the overall map size does not change - it is temporarily stored at the end of the new block, and if it grows too large it may be overwritten. By making offs and size both u16, we won't grow the map size. Also add a few comments to the functions involved. This fixes the testcase reported by hooanon05@yahoo.co.jp on the linux-ext4 list, "ext3 dir_index causes an error" Thanks to Andreas Dilger for discussing the problem & solution with me. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Andreas Dilger <adilger@clusterfs.com> Tested-by: Junjiro Okajima <hooanon05@yahoo.co.jp> Cc: Theodore Ts'o <tytso@mit.edu> Cc: <linux-ext4@vger.kernel.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 05:46:42 +00:00
/*
* Create map of hash values, offsets, and sizes, stored at end of block.
* Returns number of entries mapped.
*/
static int dx_make_map(struct inode *dir, struct buffer_head *bh,
struct dx_hash_info *hinfo,
struct dx_map_entry *map_tail)
{
int count = 0;
struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *)bh->b_data;
unsigned int buflen = bh->b_size;
char *base = bh->b_data;
struct dx_hash_info h = *hinfo;
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
int blocksize = EXT4_BLOCK_SIZE(dir->i_sb);
if (ext4_has_metadata_csum(dir->i_sb))
buflen -= sizeof(struct ext4_dir_entry_tail);
while ((char *) de < base + buflen) {
if (ext4_check_dir_entry(dir, NULL, de, bh, base, buflen,
((char *)de) - base))
return -EFSCORRUPTED;
if (de->name_len && de->inode) {
if (ext4_hash_in_dirent(dir))
h.hash = EXT4_DIRENT_HASH(de);
else {
int err = ext4fs_dirhash(dir, de->name,
de->name_len, &h);
if (err < 0)
return err;
}
map_tail--;
map_tail->hash = h.hash;
map_tail->offs = ((char *) de - base)>>2;
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
map_tail->size = ext4_rec_len_from_disk(de->rec_len,
blocksize);
count++;
cond_resched();
}
ext4: fix rec_len verify error commit 7fda67e8c3ab6069f75888f67958a6d30454a9f6 upstream. With the configuration PAGE_SIZE 64k and filesystem blocksize 64k, a problem occurred when more than 13 million files were directly created under a directory: EXT4-fs error (device xx): ext4_dx_csum_set:492: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): ext4_dx_csum_verify:463: inode #xxxx: comm xxxxx: dir seems corrupt? Run e2fsck -D. EXT4-fs error (device xx): dx_probe:856: inode #xxxx: block 8188: comm xxxxx: Directory index failed checksum When enough files are created, the fake_dirent->reclen will be 0xffff. it doesn't equal to the blocksize 65536, i.e. 0x10000. But it is not the same condition when blocksize equals to 4k. when enough files are created, the fake_dirent->reclen will be 0x1000. it equals to the blocksize 4k, i.e. 0x1000. The problem seems to be related to the limitation of the 16-bit field when the blocksize is set to 64k. To address this, helpers like ext4_rec_len_{from,to}_disk has already been introduced to complete the conversion between the encoded and the plain form of rec_len. So fix this one by using the helper, and all the other in this file too. Cc: stable@kernel.org Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Suggested-by: Andreas Dilger <adilger@dilger.ca> Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20230803060938.1929759-1-zhangshida@kylinos.cn Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 06:09:38 +00:00
de = ext4_next_entry(de, blocksize);
}
return count;
}
ext34: ensure do_split leaves enough free space in both blocks The do_split() function for htree dir blocks is intended to split a leaf block to make room for a new entry. It sorts the entries in the original block by hash value, then moves the last half of the entries to the new block - without accounting for how much space this actually moves. (IOW, it moves half of the entry *count* not half of the entry *space*). If by chance we have both large & small entries, and we move only the smallest entries, and we have a large new entry to insert, we may not have created enough space for it. The patch below stores each record size when calculating the dx_map, and then walks the hash-sorted dx_map, calculating how many entries must be moved to more evenly split the existing entries between the old block and the new block, guaranteeing enough space for the new entry. The dx_map "offs" member is reduced to u16 so that the overall map size does not change - it is temporarily stored at the end of the new block, and if it grows too large it may be overwritten. By making offs and size both u16, we won't grow the map size. Also add a few comments to the functions involved. This fixes the testcase reported by hooanon05@yahoo.co.jp on the linux-ext4 list, "ext3 dir_index causes an error" Thanks to Andreas Dilger for discussing the problem & solution with me. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Andreas Dilger <adilger@clusterfs.com> Tested-by: Junjiro Okajima <hooanon05@yahoo.co.jp> Cc: Theodore Ts'o <tytso@mit.edu> Cc: <linux-ext4@vger.kernel.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 05:46:42 +00:00
/* Sort map by hash value */
static void dx_sort_map (struct dx_map_entry *map, unsigned count)
{
struct dx_map_entry *p, *q, *top = map + count - 1;
int more;
/* Combsort until bubble sort doesn't suck */
while (count > 2) {
count = count*10/13;
if (count - 9 < 2) /* 9, 10 -> 11 */
count = 11;
for (p = top, q = p - count; q >= map; p--, q--)
if (p->hash < q->hash)
swap(*p, *q);
}
/* Garden variety bubble sort */
do {
more = 0;
q = top;
while (q-- > map) {
if (q[1].hash >= q[0].hash)
continue;
swap(*(q+1), *q);
more = 1;
}
} while(more);
}
static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block)
{
struct dx_entry *entries = frame->entries;
struct dx_entry *old = frame->at, *new = old + 1;
int count = dx_get_count(entries);
ASSERT(count < dx_get_limit(entries));
ASSERT(old < entries + count);
memmove(new + 1, new, (char *)(entries + count) - (char *)(new));
dx_set_hash(new, hash);
dx_set_block(new, block);
dx_set_count(entries, count + 1);
}
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
#ifdef CONFIG_UNICODE
/*
* Test whether a case-insensitive directory entry matches the filename
* being searched for. If quick is set, assume the name being looked up
* is already in the casefolded form.
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
*
* Returns: 0 if the directory entry matches, more than 0 if it
* doesn't match or less than zero on error.
*/
static int ext4_ci_compare(const struct inode *parent, const struct qstr *name,
u8 *de_name, size_t de_name_len, bool quick)
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
{
const struct super_block *sb = parent->i_sb;
const struct unicode_map *um = sb->s_encoding;
struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
struct qstr entry = QSTR_INIT(de_name, de_name_len);
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
int ret;
if (IS_ENCRYPTED(parent)) {
const struct fscrypt_str encrypted_name =
FSTR_INIT(de_name, de_name_len);
decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
if (!decrypted_name.name)
return -ENOMEM;
ret = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
&decrypted_name);
if (ret < 0)
goto out;
entry.name = decrypted_name.name;
entry.len = decrypted_name.len;
}
if (quick)
ret = utf8_strncasecmp_folded(um, name, &entry);
else
ret = utf8_strncasecmp(um, name, &entry);
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
if (ret < 0) {
/* Handle invalid character sequence as either an error
* or as an opaque byte sequence.
*/
if (sb_has_strict_encoding(sb))
ret = -EINVAL;
else if (name->len != entry.len)
ret = 1;
else
ret = !!memcmp(name->name, entry.name, entry.len);
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
}
out:
kfree(decrypted_name.name);
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
return ret;
}
int ext4_fname_setup_ci_filename(struct inode *dir, const struct qstr *iname,
struct ext4_filename *name)
{
struct fscrypt_str *cf_name = &name->cf_name;
struct dx_hash_info *hinfo = &name->hinfo;
int len;
if (!IS_CASEFOLDED(dir) || !dir->i_sb->s_encoding ||
(IS_ENCRYPTED(dir) && !fscrypt_has_encryption_key(dir))) {
cf_name->name = NULL;
return 0;
}
cf_name->name = kmalloc(EXT4_NAME_LEN, GFP_NOFS);
if (!cf_name->name)
return -ENOMEM;
len = utf8_casefold(dir->i_sb->s_encoding,
iname, cf_name->name,
EXT4_NAME_LEN);
if (len <= 0) {
kfree(cf_name->name);
cf_name->name = NULL;
}
cf_name->len = (unsigned) len;
if (!IS_ENCRYPTED(dir))
return 0;
hinfo->hash_version = DX_HASH_SIPHASH;
hinfo->seed = NULL;
if (cf_name->name)
return ext4fs_dirhash(dir, cf_name->name, cf_name->len, hinfo);
else
return ext4fs_dirhash(dir, iname->name, iname->len, hinfo);
}
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
#endif
/*
* Test whether a directory entry matches the filename being searched for.
*
* Return: %true if the directory entry matches, otherwise %false.
*/
static bool ext4_match(struct inode *parent,
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
const struct ext4_filename *fname,
struct ext4_dir_entry_2 *de)
{
struct fscrypt_name f;
if (!de->inode)
return false;
f.usr_fname = fname->usr_fname;
f.disk_name = fname->disk_name;
#ifdef CONFIG_FS_ENCRYPTION
f.crypto_buf = fname->crypto_buf;
#endif
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
#ifdef CONFIG_UNICODE
if (parent->i_sb->s_encoding && IS_CASEFOLDED(parent) &&
(!IS_ENCRYPTED(parent) || fscrypt_has_encryption_key(parent))) {
if (fname->cf_name.name) {
struct qstr cf = {.name = fname->cf_name.name,
.len = fname->cf_name.len};
if (IS_ENCRYPTED(parent)) {
if (fname->hinfo.hash != EXT4_DIRENT_HASH(de) ||
fname->hinfo.minor_hash !=
EXT4_DIRENT_MINOR_HASH(de)) {
return 0;
}
}
return !ext4_ci_compare(parent, &cf, de->name,
de->name_len, true);
}
return !ext4_ci_compare(parent, fname->usr_fname, de->name,
de->name_len, false);
}
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
#endif
return fscrypt_match_name(&f, de->name, de->name_len);
}
/*
* Returns 0 if not found, -1 on failure, and 1 on success
*/
int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size,
struct inode *dir, struct ext4_filename *fname,
unsigned int offset, struct ext4_dir_entry_2 **res_dir)
{
struct ext4_dir_entry_2 * de;
char * dlimit;
int de_len;
de = (struct ext4_dir_entry_2 *)search_buf;
dlimit = search_buf + buf_size;
ext4: fix use-after-free in ext4_search_dir commit c186f0887fe7061a35cebef024550ec33ef8fbd8 upstream. We got issue as follows: EXT4-fs (loop0): mounted filesystem without journal. Opts: ,errors=continue ================================================================== BUG: KASAN: use-after-free in ext4_search_dir fs/ext4/namei.c:1394 [inline] BUG: KASAN: use-after-free in search_dirblock fs/ext4/namei.c:1199 [inline] BUG: KASAN: use-after-free in __ext4_find_entry+0xdca/0x1210 fs/ext4/namei.c:1553 Read of size 1 at addr ffff8881317c3005 by task syz-executor117/2331 CPU: 1 PID: 2331 Comm: syz-executor117 Not tainted 5.10.0+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:83 [inline] dump_stack+0x144/0x187 lib/dump_stack.c:124 print_address_description+0x7d/0x630 mm/kasan/report.c:387 __kasan_report+0x132/0x190 mm/kasan/report.c:547 kasan_report+0x47/0x60 mm/kasan/report.c:564 ext4_search_dir fs/ext4/namei.c:1394 [inline] search_dirblock fs/ext4/namei.c:1199 [inline] __ext4_find_entry+0xdca/0x1210 fs/ext4/namei.c:1553 ext4_lookup_entry fs/ext4/namei.c:1622 [inline] ext4_lookup+0xb8/0x3a0 fs/ext4/namei.c:1690 __lookup_hash+0xc5/0x190 fs/namei.c:1451 do_rmdir+0x19e/0x310 fs/namei.c:3760 do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x445e59 Code: 4d c7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 1b c7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fff2277fac8 EFLAGS: 00000246 ORIG_RAX: 0000000000000054 RAX: ffffffffffffffda RBX: 0000000000400280 RCX: 0000000000445e59 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00000000200000c0 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000002 R10: 00007fff2277f990 R11: 0000000000000246 R12: 0000000000000000 R13: 431bde82d7b634db R14: 0000000000000000 R15: 0000000000000000 The buggy address belongs to the page: page:0000000048cd3304 refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x1317c3 flags: 0x200000000000000() raw: 0200000000000000 ffffea0004526588 ffffea0004528088 0000000000000000 raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8881317c2f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8881317c2f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8881317c3000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff8881317c3080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff8881317c3100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== ext4_search_dir: ... de = (struct ext4_dir_entry_2 *)search_buf; dlimit = search_buf + buf_size; while ((char *) de < dlimit) { ... if ((char *) de + de->name_len <= dlimit && ext4_match(dir, fname, de)) { ... } ... de_len = ext4_rec_len_from_disk(de->rec_len, dir->i_sb->s_blocksize); if (de_len <= 0) return -1; offset += de_len; de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); } Assume: de=0xffff8881317c2fff dlimit=0x0xffff8881317c3000 If read 'de->name_len' which address is 0xffff8881317c3005, obviously is out of range, then will trigger use-after-free. To solve this issue, 'dlimit' must reserve 8 bytes, as we will read 'de->name_len' to judge if '(char *) de + de->name_len' out of range. Signed-off-by: Ye Bin <yebin10@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20220324064816.1209985-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-24 06:48:16 +00:00
while ((char *) de < dlimit - EXT4_BASE_DIR_LEN) {
/* this code is executed quadratically often */
/* do minimal checking `by hand' */
ext4: fix use-after-free in ext4_search_dir commit c186f0887fe7061a35cebef024550ec33ef8fbd8 upstream. We got issue as follows: EXT4-fs (loop0): mounted filesystem without journal. Opts: ,errors=continue ================================================================== BUG: KASAN: use-after-free in ext4_search_dir fs/ext4/namei.c:1394 [inline] BUG: KASAN: use-after-free in search_dirblock fs/ext4/namei.c:1199 [inline] BUG: KASAN: use-after-free in __ext4_find_entry+0xdca/0x1210 fs/ext4/namei.c:1553 Read of size 1 at addr ffff8881317c3005 by task syz-executor117/2331 CPU: 1 PID: 2331 Comm: syz-executor117 Not tainted 5.10.0+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:83 [inline] dump_stack+0x144/0x187 lib/dump_stack.c:124 print_address_description+0x7d/0x630 mm/kasan/report.c:387 __kasan_report+0x132/0x190 mm/kasan/report.c:547 kasan_report+0x47/0x60 mm/kasan/report.c:564 ext4_search_dir fs/ext4/namei.c:1394 [inline] search_dirblock fs/ext4/namei.c:1199 [inline] __ext4_find_entry+0xdca/0x1210 fs/ext4/namei.c:1553 ext4_lookup_entry fs/ext4/namei.c:1622 [inline] ext4_lookup+0xb8/0x3a0 fs/ext4/namei.c:1690 __lookup_hash+0xc5/0x190 fs/namei.c:1451 do_rmdir+0x19e/0x310 fs/namei.c:3760 do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x445e59 Code: 4d c7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 1b c7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fff2277fac8 EFLAGS: 00000246 ORIG_RAX: 0000000000000054 RAX: ffffffffffffffda RBX: 0000000000400280 RCX: 0000000000445e59 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00000000200000c0 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000002 R10: 00007fff2277f990 R11: 0000000000000246 R12: 0000000000000000 R13: 431bde82d7b634db R14: 0000000000000000 R15: 0000000000000000 The buggy address belongs to the page: page:0000000048cd3304 refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x1317c3 flags: 0x200000000000000() raw: 0200000000000000 ffffea0004526588 ffffea0004528088 0000000000000000 raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8881317c2f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8881317c2f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8881317c3000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff8881317c3080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff8881317c3100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== ext4_search_dir: ... de = (struct ext4_dir_entry_2 *)search_buf; dlimit = search_buf + buf_size; while ((char *) de < dlimit) { ... if ((char *) de + de->name_len <= dlimit && ext4_match(dir, fname, de)) { ... } ... de_len = ext4_rec_len_from_disk(de->rec_len, dir->i_sb->s_blocksize); if (de_len <= 0) return -1; offset += de_len; de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); } Assume: de=0xffff8881317c2fff dlimit=0x0xffff8881317c3000 If read 'de->name_len' which address is 0xffff8881317c3005, obviously is out of range, then will trigger use-after-free. To solve this issue, 'dlimit' must reserve 8 bytes, as we will read 'de->name_len' to judge if '(char *) de + de->name_len' out of range. Signed-off-by: Ye Bin <yebin10@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20220324064816.1209985-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-24 06:48:16 +00:00
if (de->name + de->name_len <= dlimit &&
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
ext4_match(dir, fname, de)) {
/* found a match - just to be sure, do
* a full check */
if (ext4_check_dir_entry(dir, NULL, de, bh, search_buf,
buf_size, offset))
return -1;
*res_dir = de;
return 1;
}
/* prevent looping on a bad block */
de_len = ext4_rec_len_from_disk(de->rec_len,
dir->i_sb->s_blocksize);
if (de_len <= 0)
return -1;
offset += de_len;
de = (struct ext4_dir_entry_2 *) ((char *) de + de_len);
}
return 0;
}
static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block,
struct ext4_dir_entry *de)
{
struct super_block *sb = dir->i_sb;
if (!is_dx(dir))
return 0;
if (block == 0)
return 1;
if (de->inode == 0 &&
ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) ==
sb->s_blocksize)
return 1;
return 0;
}
/*
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
* __ext4_find_entry()
*
* finds an entry in the specified directory with the wanted name. It
* returns the cache buffer in which the entry was found, and the entry
* itself (as a parameter - res_dir). It does NOT read the inode of the
* entry - you'll have to do that yourself if you want to.
*
* The returned buffer_head has ->b_count elevated. The caller is expected
* to brelse() it when appropriate.
*/
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
static struct buffer_head *__ext4_find_entry(struct inode *dir,
struct ext4_filename *fname,
struct ext4_dir_entry_2 **res_dir,
int *inlined)
{
struct super_block *sb;
struct buffer_head *bh_use[NAMEI_RA_SIZE];
struct buffer_head *bh, *ret = NULL;
ext4_lblk_t start, block;
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
const u8 *name = fname->usr_fname->name;
size_t ra_max = 0; /* Number of bh's in the readahead
buffer, bh_use[] */
size_t ra_ptr = 0; /* Current index into readahead
buffer */
ext4_lblk_t nblocks;
int i, namelen, retval;
*res_dir = NULL;
sb = dir->i_sb;
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
namelen = fname->usr_fname->len;
if (namelen > EXT4_NAME_LEN)
return NULL;
if (ext4_has_inline_data(dir)) {
int has_inline_data = 1;
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
ret = ext4_find_inline_entry(dir, fname, res_dir,
&has_inline_data);
ext4: fix RENAME_WHITEOUT handling for inline directories commit c9f62c8b2dbf7240536c0cc9a4529397bb8bf38e upstream. A significant number of xfstests can cause ext4 to log one or more warning messages when they are run on a test file system where the inline_data feature has been enabled. An example: "EXT4-fs warning (device vdc): ext4_dirblock_csum_set:425: inode #16385: comm fsstress: No space for directory leaf checksum. Please run e2fsck -D." The xfstests include: ext4/057, 058, and 307; generic/013, 051, 068, 070, 076, 078, 083, 232, 269, 270, 390, 461, 475, 476, 482, 579, 585, 589, 626, 631, and 650. In this situation, the warning message indicates a bug in the code that performs the RENAME_WHITEOUT operation on a directory entry that has been stored inline. It doesn't detect that the directory is stored inline, and incorrectly attempts to compute a dirent block checksum on the whiteout inode when creating it. This attempt fails as a result of the integrity checking in get_dirent_tail (usually due to a failure to match the EXT4_FT_DIR_CSUM magic cookie), and the warning message is then emitted. Fix this by simply collecting the inlined data state at the time the search for the source directory entry is performed. Existing code handles the rest, and this is sufficient to eliminate all spurious warning messages produced by the tests above. Go one step further and do the same in the code that resets the source directory entry in the event of failure. The inlined state should be present in the "old" struct, but given the possibility of a race there's no harm in taking a conservative approach and getting that information again since the directory entry is being reread anyway. Fixes: b7ff91fd030d ("ext4: find old entry again if failed to rename whiteout") Cc: stable@kernel.org Signed-off-by: Eric Whitney <enwlinux@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20230210173244.679890-1-enwlinux@gmail.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-10 17:32:44 +00:00
if (inlined)
*inlined = has_inline_data;
if (has_inline_data)
goto cleanup_and_exit;
}
if ((namelen <= 2) && (name[0] == '.') &&
(name[1] == '.' || name[1] == '\0')) {
/*
* "." or ".." will only be in the first block
* NFS may look up ".."; "." should be handled by the VFS
*/
block = start = 0;
nblocks = 1;
goto restart;
}
if (is_dx(dir)) {
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
ret = ext4_dx_find_entry(dir, fname, res_dir);
/*
* On success, or if the error was file not found,
* return. Otherwise, fall back to doing a search the
* old fashioned way.
*/
if (!IS_ERR(ret) || PTR_ERR(ret) != ERR_BAD_DX_DIR)
goto cleanup_and_exit;
dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, "
"falling back\n"));
ret = NULL;
}
nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
if (!nblocks) {
ret = NULL;
goto cleanup_and_exit;
}
start = EXT4_I(dir)->i_dir_start_lookup;
if (start >= nblocks)
start = 0;
block = start;
restart:
do {
/*
* We deal with the read-ahead logic here.
*/
ext4: add cond_resched() to __ext4_find_entry() We tested a soft lockup problem in linux 4.19 which could also be found in linux 5.x. When dir inode takes up a large number of blocks, and if the directory is growing when we are searching, it's possible the restart branch could be called many times, and the do while loop could hold cpu a long time. Here is the call trace in linux 4.19. [ 473.756186] Call trace: [ 473.756196] dump_backtrace+0x0/0x198 [ 473.756199] show_stack+0x24/0x30 [ 473.756205] dump_stack+0xa4/0xcc [ 473.756210] watchdog_timer_fn+0x300/0x3e8 [ 473.756215] __hrtimer_run_queues+0x114/0x358 [ 473.756217] hrtimer_interrupt+0x104/0x2d8 [ 473.756222] arch_timer_handler_virt+0x38/0x58 [ 473.756226] handle_percpu_devid_irq+0x90/0x248 [ 473.756231] generic_handle_irq+0x34/0x50 [ 473.756234] __handle_domain_irq+0x68/0xc0 [ 473.756236] gic_handle_irq+0x6c/0x150 [ 473.756238] el1_irq+0xb8/0x140 [ 473.756286] ext4_es_lookup_extent+0xdc/0x258 [ext4] [ 473.756310] ext4_map_blocks+0x64/0x5c0 [ext4] [ 473.756333] ext4_getblk+0x6c/0x1d0 [ext4] [ 473.756356] ext4_bread_batch+0x7c/0x1f8 [ext4] [ 473.756379] ext4_find_entry+0x124/0x3f8 [ext4] [ 473.756402] ext4_lookup+0x8c/0x258 [ext4] [ 473.756407] __lookup_hash+0x8c/0xe8 [ 473.756411] filename_create+0xa0/0x170 [ 473.756413] do_mkdirat+0x6c/0x140 [ 473.756415] __arm64_sys_mkdirat+0x28/0x38 [ 473.756419] el0_svc_common+0x78/0x130 [ 473.756421] el0_svc_handler+0x38/0x78 [ 473.756423] el0_svc+0x8/0xc [ 485.755156] watchdog: BUG: soft lockup - CPU#2 stuck for 22s! [tmp:5149] Add cond_resched() to avoid soft lockup and to provide a better system responding. Link: https://lore.kernel.org/r/20200215080206.13293-1-luoshijie1@huawei.com Signed-off-by: Shijie Luo <luoshijie1@huawei.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Jan Kara <jack@suse.cz> Cc: stable@kernel.org
2020-02-15 08:02:06 +00:00
cond_resched();
if (ra_ptr >= ra_max) {
/* Refill the readahead buffer */
ra_ptr = 0;
if (block < start)
ra_max = start - block;
else
ra_max = nblocks - block;
ra_max = min(ra_max, ARRAY_SIZE(bh_use));
retval = ext4_bread_batch(dir, block, ra_max,
false /* wait */, bh_use);
if (retval) {
ret = ERR_PTR(retval);
ra_max = 0;
goto cleanup_and_exit;
}
}
if ((bh = bh_use[ra_ptr++]) == NULL)
goto next;
wait_on_buffer(bh);
if (!buffer_uptodate(bh)) {
EXT4_ERROR_INODE_ERR(dir, EIO,
"reading directory lblock %lu",
(unsigned long) block);
brelse(bh);
ret = ERR_PTR(-EIO);
goto cleanup_and_exit;
}
if (!buffer_verified(bh) &&
!is_dx_internal_node(dir, block,
(struct ext4_dir_entry *)bh->b_data) &&
!ext4_dirblock_csum_verify(dir, bh)) {
EXT4_ERROR_INODE_ERR(dir, EFSBADCRC,
"checksumming directory "
"block %lu", (unsigned long)block);
brelse(bh);
ret = ERR_PTR(-EFSBADCRC);
goto cleanup_and_exit;
}
set_buffer_verified(bh);
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
i = search_dirblock(bh, dir, fname,
block << EXT4_BLOCK_SIZE_BITS(sb), res_dir);
if (i == 1) {
EXT4_I(dir)->i_dir_start_lookup = block;
ret = bh;
goto cleanup_and_exit;
} else {
brelse(bh);
if (i < 0)
goto cleanup_and_exit;
}
next:
if (++block >= nblocks)
block = 0;
} while (block != start);
/*
* If the directory has grown while we were searching, then
* search the last part of the directory before giving up.
*/
block = nblocks;
nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
if (block < nblocks) {
start = 0;
goto restart;
}
cleanup_and_exit:
/* Clean up the read-ahead blocks */
for (; ra_ptr < ra_max; ra_ptr++)
brelse(bh_use[ra_ptr]);
return ret;
}
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
static struct buffer_head *ext4_find_entry(struct inode *dir,
const struct qstr *d_name,
struct ext4_dir_entry_2 **res_dir,
int *inlined)
{
int err;
struct ext4_filename fname;
struct buffer_head *bh;
err = ext4_fname_setup_filename(dir, d_name, 1, &fname);
if (err == -ENOENT)
return NULL;
if (err)
return ERR_PTR(err);
bh = __ext4_find_entry(dir, &fname, res_dir, inlined);
ext4_fname_free_filename(&fname);
return bh;
}
static struct buffer_head *ext4_lookup_entry(struct inode *dir,
struct dentry *dentry,
struct ext4_dir_entry_2 **res_dir)
{
int err;
struct ext4_filename fname;
struct buffer_head *bh;
err = ext4_fname_prepare_lookup(dir, dentry, &fname);
generic_set_encrypted_ci_d_ops(dentry);
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
if (err == -ENOENT)
return NULL;
if (err)
return ERR_PTR(err);
bh = __ext4_find_entry(dir, &fname, res_dir, NULL);
ext4_fname_free_filename(&fname);
return bh;
}
static struct buffer_head * ext4_dx_find_entry(struct inode *dir,
struct ext4_filename *fname,
struct ext4_dir_entry_2 **res_dir)
{
struct super_block * sb = dir->i_sb;
struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
struct buffer_head *bh;
ext4_lblk_t block;
int retval;
#ifdef CONFIG_FS_ENCRYPTION
*res_dir = NULL;
#endif
frame = dx_probe(fname, dir, NULL, frames);
if (IS_ERR(frame))
return (struct buffer_head *) frame;
do {
block = dx_get_block(frame->at);
bh = ext4_read_dirblock(dir, block, DIRENT_HTREE);
if (IS_ERR(bh))
goto errout;
retval = search_dirblock(bh, dir, fname,
block << EXT4_BLOCK_SIZE_BITS(sb),
res_dir);
if (retval == 1)
goto success;
brelse(bh);
if (retval == -1) {
bh = ERR_PTR(ERR_BAD_DX_DIR);
goto errout;
}
/* Check to see if we should continue to search */
retval = ext4_htree_next_block(dir, fname->hinfo.hash, frame,
frames, NULL);
if (retval < 0) {
ext4_warning_inode(dir,
"error %d reading directory index block",
retval);
bh = ERR_PTR(retval);
goto errout;
}
} while (retval == 1);
bh = NULL;
errout:
dxtrace(printk(KERN_DEBUG "%s not found\n", fname->usr_fname->name));
success:
dx_release(frames);
return bh;
}
static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
struct inode *inode;
struct ext4_dir_entry_2 *de;
struct buffer_head *bh;
if (dentry->d_name.len > EXT4_NAME_LEN)
return ERR_PTR(-ENAMETOOLONG);
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-20 18:39:13 +00:00
bh = ext4_lookup_entry(dir, dentry, &de);
if (IS_ERR(bh))
return ERR_CAST(bh);
inode = NULL;
if (bh) {
__u32 ino = le32_to_cpu(de->inode);
brelse(bh);
if (!ext4_valid_inum(dir->i_sb, ino)) {
EXT4_ERROR_INODE(dir, "bad inode number: %u", ino);
return ERR_PTR(-EFSCORRUPTED);
ext3/ext4: orphan list corruption due bad inode After ext3 orphan list check has been added into ext3_destroy_inode() (please see my previous patch) the following situation has been detected: EXT3-fs warning (device sda6): ext3_unlink: Deleting nonexistent file (37901290), 0 Inode 00000101a15b7840: orphan list check failed! 00000773 6f665f00 74616d72 00000573 65725f00 06737270 66000000 616d726f ... Call Trace: [<ffffffff80211ea9>] ext3_destroy_inode+0x79/0x90 [<ffffffff801a2b16>] sys_unlink+0x126/0x1a0 [<ffffffff80111479>] error_exit+0x0/0x81 [<ffffffff80110aba>] system_call+0x7e/0x83 First messages said that unlinked inode has i_nlink=0, then ext3_unlink() adds this inode into orphan list. Second message means that this inode has not been removed from orphan list. Inode dump has showed that i_fop = &bad_file_ops and it can be set in make_bad_inode() only. Then I've found that ext3_read_inode() can call make_bad_inode() without any error/warning messages, for example in the following case: ... if (inode->i_nlink == 0) { if (inode->i_mode == 0 || !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) { /* this inode is deleted */ brelse (bh); goto bad_inode; ... Bad inode can live some time, ext3_unlink can add it to orphan list, but ext3_delete_inode() do not deleted this inode from orphan list. As result we can have orphan list corruption detected in ext3_destroy_inode(). However it is not clear for me how to fix this issue correctly. As far as i see is_bad_inode() is called after iget() in all places excluding ext3_lookup() and ext3_get_parent(). I believe it makes sense to add bad inode check to these functions too and call iput if bad inode detected. Signed-off-by: Vasily Averin <vvs@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:40:46 +00:00
}
if (unlikely(ino == dir->i_ino)) {
EXT4_ERROR_INODE(dir, "'%pd' linked to parent dir",
dentry);
return ERR_PTR(-EFSCORRUPTED);
}
inode = ext4_iget(dir->i_sb, ino, EXT4_IGET_NORMAL);
if (inode == ERR_PTR(-ESTALE)) {
EXT4_ERROR_INODE(dir,
"deleted inode referenced: %u",
ino);
return ERR_PTR(-EFSCORRUPTED);
}
if (!IS_ERR(inode) && IS_ENCRYPTED(dir) &&
(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
!fscrypt_has_permitted_context(dir, inode)) {
ext4_warning(inode->i_sb,
"Inconsistent encryption contexts: %lu/%lu",
dir->i_ino, inode->i_ino);
iput(inode);
return ERR_PTR(-EPERM);
}
}
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
#ifdef CONFIG_UNICODE
if (!inode && IS_CASEFOLDED(dir)) {
/* Eventually we want to call d_add_ci(dentry, NULL)
* for negative dentries in the encoding case as
* well. For now, prevent the negative dentry
* from being cached.
*/
return NULL;
}
#endif
return d_splice_alias(inode, dentry);
}
struct dentry *ext4_get_parent(struct dentry *child)
{
__u32 ino;
struct ext4_dir_entry_2 * de;
struct buffer_head *bh;
bh = ext4_find_entry(d_inode(child), &dotdot_name, &de, NULL);
if (IS_ERR(bh))
return ERR_CAST(bh);
if (!bh)
return ERR_PTR(-ENOENT);
ino = le32_to_cpu(de->inode);
brelse(bh);
if (!ext4_valid_inum(child->d_sb, ino)) {
EXT4_ERROR_INODE(d_inode(child),
"bad parent inode number: %u", ino);
return ERR_PTR(-EFSCORRUPTED);
ext3/ext4: orphan list corruption due bad inode After ext3 orphan list check has been added into ext3_destroy_inode() (please see my previous patch) the following situation has been detected: EXT3-fs warning (device sda6): ext3_unlink: Deleting nonexistent file (37901290), 0 Inode 00000101a15b7840: orphan list check failed! 00000773 6f665f00 74616d72 00000573 65725f00 06737270 66000000 616d726f ... Call Trace: [<ffffffff80211ea9>] ext3_destroy_inode+0x79/0x90 [<ffffffff801a2b16>] sys_unlink+0x126/0x1a0 [<ffffffff80111479>] error_exit+0x0/0x81 [<ffffffff80110aba>] system_call+0x7e/0x83 First messages said that unlinked inode has i_nlink=0, then ext3_unlink() adds this inode into orphan list. Second message means that this inode has not been removed from orphan list. Inode dump has showed that i_fop = &bad_file_ops and it can be set in make_bad_inode() only. Then I've found that ext3_read_inode() can call make_bad_inode() without any error/warning messages, for example in the following case: ... if (inode->i_nlink == 0) { if (inode->i_mode == 0 || !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) { /* this inode is deleted */ brelse (bh); goto bad_inode; ... Bad inode can live some time, ext3_unlink can add it to orphan list, but ext3_delete_inode() do not deleted this inode from orphan list. As result we can have orphan list corruption detected in ext3_destroy_inode(). However it is not clear for me how to fix this issue correctly. As far as i see is_bad_inode() is called after iget() in all places excluding ext3_lookup() and ext3_get_parent(). I believe it makes sense to add bad inode check to these functions too and call iput if bad inode detected. Signed-off-by: Vasily Averin <vvs@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:40:46 +00:00
}
return d_obtain_alias(ext4_iget(child->d_sb, ino, EXT4_IGET_NORMAL));
}
ext34: ensure do_split leaves enough free space in both blocks The do_split() function for htree dir blocks is intended to split a leaf block to make room for a new entry. It sorts the entries in the original block by hash value, then moves the last half of the entries to the new block - without accounting for how much space this actually moves. (IOW, it moves half of the entry *count* not half of the entry *space*). If by chance we have both large & small entries, and we move only the smallest entries, and we have a large new entry to insert, we may not have created enough space for it. The patch below stores each record size when calculating the dx_map, and then walks the hash-sorted dx_map, calculating how many entries must be moved to more evenly split the existing entries between the old block and the new block, guaranteeing enough space for the new entry. The dx_map "offs" member is reduced to u16 so that the overall map size does not change - it is temporarily stored at the end of the new block, and if it grows too large it may be overwritten. By making offs and size both u16, we won't grow the map size. Also add a few comments to the functions involved. This fixes the testcase reported by hooanon05@yahoo.co.jp on the linux-ext4 list, "ext3 dir_index causes an error" Thanks to Andreas Dilger for discussing the problem & solution with me. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Andreas Dilger <adilger@clusterfs.com> Tested-by: Junjiro Okajima <hooanon05@yahoo.co.jp> Cc: Theodore Ts'o <tytso@mit.edu> Cc: <linux-ext4@vger.kernel.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 05:46:42 +00:00
/*
* Move count entries from end of map between two memory locations.
* Returns pointer to last entry moved.
*/
static struct ext4_dir_entry_2 *
dx_move_dirents(struct inode *dir, char *from, char *to,
struct dx_map_entry *map, int count,
unsigned blocksize)
{
unsigned rec_len = 0;
while (count--) {
struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *)
(from + (map->offs<<2));
rec_len = ext4_dir_rec_len(de->name_len, dir);
memcpy (to, de, rec_len);
((struct ext4_dir_entry_2 *) to)->rec_len =
ext4_rec_len_to_disk(rec_len, blocksize);
/* wipe dir_entry excluding the rec_len field */
de->inode = 0;
memset(&de->name_len, 0, ext4_rec_len_from_disk(de->rec_len,
blocksize) -
offsetof(struct ext4_dir_entry_2,
name_len));
map++;
to += rec_len;
}
return (struct ext4_dir_entry_2 *) (to - rec_len);
}
ext34: ensure do_split leaves enough free space in both blocks The do_split() function for htree dir blocks is intended to split a leaf block to make room for a new entry. It sorts the entries in the original block by hash value, then moves the last half of the entries to the new block - without accounting for how much space this actually moves. (IOW, it moves half of the entry *count* not half of the entry *space*). If by chance we have both large & small entries, and we move only the smallest entries, and we have a large new entry to insert, we may not have created enough space for it. The patch below stores each record size when calculating the dx_map, and then walks the hash-sorted dx_map, calculating how many entries must be moved to more evenly split the existing entries between the old block and the new block, guaranteeing enough space for the new entry. The dx_map "offs" member is reduced to u16 so that the overall map size does not change - it is temporarily stored at the end of the new block, and if it grows too large it may be overwritten. By making offs and size both u16, we won't grow the map size. Also add a few comments to the functions involved. This fixes the testcase reported by hooanon05@yahoo.co.jp on the linux-ext4 list, "ext3 dir_index causes an error" Thanks to Andreas Dilger for discussing the problem & solution with me. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Andreas Dilger <adilger@clusterfs.com> Tested-by: Junjiro Okajima <hooanon05@yahoo.co.jp> Cc: Theodore Ts'o <tytso@mit.edu> Cc: <linux-ext4@vger.kernel.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 05:46:42 +00:00
/*
* Compact each dir entry in the range to the minimal rec_len.
* Returns pointer to last entry in range.
*/
static struct ext4_dir_entry_2 *dx_pack_dirents(struct inode *dir, char *base,
unsigned int blocksize)
{
struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base;
unsigned rec_len = 0;
prev = to = de;
while ((char*)de < base + blocksize) {
next = ext4_next_entry(de, blocksize);
if (de->inode && de->name_len) {
rec_len = ext4_dir_rec_len(de->name_len, dir);
if (de > to)
memmove(to, de, rec_len);
to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize);
prev = to;
to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len);
}
de = next;
}
return prev;
}
ext34: ensure do_split leaves enough free space in both blocks The do_split() function for htree dir blocks is intended to split a leaf block to make room for a new entry. It sorts the entries in the original block by hash value, then moves the last half of the entries to the new block - without accounting for how much space this actually moves. (IOW, it moves half of the entry *count* not half of the entry *space*). If by chance we have both large & small entries, and we move only the smallest entries, and we have a large new entry to insert, we may not have created enough space for it. The patch below stores each record size when calculating the dx_map, and then walks the hash-sorted dx_map, calculating how many entries must be moved to more evenly split the existing entries between the old block and the new block, guaranteeing enough space for the new entry. The dx_map "offs" member is reduced to u16 so that the overall map size does not change - it is temporarily stored at the end of the new block, and if it grows too large it may be overwritten. By making offs and size both u16, we won't grow the map size. Also add a few comments to the functions involved. This fixes the testcase reported by hooanon05@yahoo.co.jp on the linux-ext4 list, "ext3 dir_index causes an error" Thanks to Andreas Dilger for discussing the problem & solution with me. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Andreas Dilger <adilger@clusterfs.com> Tested-by: Junjiro Okajima <hooanon05@yahoo.co.jp> Cc: Theodore Ts'o <tytso@mit.edu> Cc: <linux-ext4@vger.kernel.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 05:46:42 +00:00
/*
* Split a full leaf block to make room for a new dir entry.
* Allocate a new block, and move entries so that they are approx. equally full.
* Returns pointer to de in block into which the new entry will be inserted.
*/
static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir,
struct buffer_head **bh,struct dx_frame *frame,
struct dx_hash_info *hinfo)
{
unsigned blocksize = dir->i_sb->s_blocksize;
unsigned continued;
int count;
struct buffer_head *bh2;
ext4_lblk_t newblock;
u32 hash2;
struct dx_map_entry *map;
char *data1 = (*bh)->b_data, *data2;
unsigned split, move, size;
struct ext4_dir_entry_2 *de = NULL, *de2;
int csum_size = 0;
int err = 0, i;
if (ext4_has_metadata_csum(dir->i_sb))
csum_size = sizeof(struct ext4_dir_entry_tail);
bh2 = ext4_append(handle, dir, &newblock);
if (IS_ERR(bh2)) {
brelse(*bh);
*bh = NULL;
return (struct ext4_dir_entry_2 *) bh2;
}
BUFFER_TRACE(*bh, "get_write_access");
err = ext4_journal_get_write_access(handle, dir->i_sb, *bh,
EXT4_JTR_NONE);
if (err)
goto journal_error;
BUFFER_TRACE(frame->bh, "get_write_access");
err = ext4_journal_get_write_access(handle, dir->i_sb, frame->bh,
EXT4_JTR_NONE);
if (err)
goto journal_error;
data2 = bh2->b_data;
/* create map in the end of data2 block */
map = (struct dx_map_entry *) (data2 + blocksize);
count = dx_make_map(dir, *bh, hinfo, map);
if (count < 0) {
err = count;
goto journal_error;
}
map -= count;
dx_sort_map(map, count);
/* Ensure that neither split block is over half full */
ext34: ensure do_split leaves enough free space in both blocks The do_split() function for htree dir blocks is intended to split a leaf block to make room for a new entry. It sorts the entries in the original block by hash value, then moves the last half of the entries to the new block - without accounting for how much space this actually moves. (IOW, it moves half of the entry *count* not half of the entry *space*). If by chance we have both large & small entries, and we move only the smallest entries, and we have a large new entry to insert, we may not have created enough space for it. The patch below stores each record size when calculating the dx_map, and then walks the hash-sorted dx_map, calculating how many entries must be moved to more evenly split the existing entries between the old block and the new block, guaranteeing enough space for the new entry. The dx_map "offs" member is reduced to u16 so that the overall map size does not change - it is temporarily stored at the end of the new block, and if it grows too large it may be overwritten. By making offs and size both u16, we won't grow the map size. Also add a few comments to the functions involved. This fixes the testcase reported by hooanon05@yahoo.co.jp on the linux-ext4 list, "ext3 dir_index causes an error" Thanks to Andreas Dilger for discussing the problem & solution with me. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Andreas Dilger <adilger@clusterfs.com> Tested-by: Junjiro Okajima <hooanon05@yahoo.co.jp> Cc: Theodore Ts'o <tytso@mit.edu> Cc: <linux-ext4@vger.kernel.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 05:46:42 +00:00
size = 0;
move = 0;
for (i = count-1; i >= 0; i--) {
/* is more than half of this entry in 2nd half of the block? */
if (size + map[i].size/2 > blocksize/2)
break;
size += map[i].size;
move++;
}
/*
* map index at which we will split
*
* If the sum of active entries didn't exceed half the block size, just
* split it in half by count; each resulting block will have at least
* half the space free.
*/
if (i > 0)
split = count - move;
else
split = count/2;
hash2 = map[split].hash;
continued = hash2 == map[split - 1].hash;
dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n",
(unsigned long)dx_get_block(frame->at),
hash2, split, count-split));
/* Fancy dance to stay within two buffers */
de2 = dx_move_dirents(dir, data1, data2, map + split, count - split,
blocksize);
de = dx_pack_dirents(dir, data1, blocksize);
de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) -
(char *) de,
blocksize);
de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) -
(char *) de2,
blocksize);
if (csum_size) {
ext4_initialize_dirent_tail(*bh, blocksize);
ext4_initialize_dirent_tail(bh2, blocksize);
}
dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data1,
blocksize, 1));
dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data2,
blocksize, 1));
/* Which block gets the new entry? */
if (hinfo->hash >= hash2) {
swap(*bh, bh2);
de = de2;
}
dx_insert_block(frame, hash2 + continued, newblock);
err = ext4_handle_dirty_dirblock(handle, dir, bh2);
if (err)
goto journal_error;
err = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
if (err)
goto journal_error;
brelse(bh2);
dxtrace(dx_show_index("frame", frame->entries));
return de;
journal_error:
brelse(*bh);
brelse(bh2);
*bh = NULL;
ext4_std_error(dir->i_sb, err);
return ERR_PTR(err);
}
int ext4_find_dest_de(struct inode *dir, struct inode *inode,
struct buffer_head *bh,
void *buf, int buf_size,
struct ext4_filename *fname,
struct ext4_dir_entry_2 **dest_de)
{
struct ext4_dir_entry_2 *de;
unsigned short reclen = ext4_dir_rec_len(fname_len(fname), dir);
int nlen, rlen;
unsigned int offset = 0;
char *top;
de = (struct ext4_dir_entry_2 *)buf;
top = buf + buf_size - reclen;
while ((char *) de <= top) {
if (ext4_check_dir_entry(dir, NULL, de, bh,
buf, buf_size, offset))
return -EFSCORRUPTED;
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
if (ext4_match(dir, fname, de))
return -EEXIST;
nlen = ext4_dir_rec_len(de->name_len, dir);
rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
if ((de->inode ? rlen - nlen : rlen) >= reclen)
break;
de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
offset += rlen;
}
if ((char *) de > top)
return -ENOSPC;
*dest_de = de;
return 0;
}
void ext4_insert_dentry(struct inode *dir,
struct inode *inode,
struct ext4_dir_entry_2 *de,
int buf_size,
struct ext4_filename *fname)
{
int nlen, rlen;
nlen = ext4_dir_rec_len(de->name_len, dir);
rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
if (de->inode) {
struct ext4_dir_entry_2 *de1 =
(struct ext4_dir_entry_2 *)((char *)de + nlen);
de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size);
de->rec_len = ext4_rec_len_to_disk(nlen, buf_size);
de = de1;
}
de->file_type = EXT4_FT_UNKNOWN;
de->inode = cpu_to_le32(inode->i_ino);
ext4_set_de_type(inode->i_sb, de, inode->i_mode);
de->name_len = fname_len(fname);
memcpy(de->name, fname_name(fname), fname_len(fname));
if (ext4_hash_in_dirent(dir)) {
struct dx_hash_info *hinfo = &fname->hinfo;
EXT4_DIRENT_HASHES(de)->hash = cpu_to_le32(hinfo->hash);
EXT4_DIRENT_HASHES(de)->minor_hash =
cpu_to_le32(hinfo->minor_hash);
}
}
/*
* Add a new entry into a directory (leaf) block. If de is non-NULL,
* it points to a directory entry which is guaranteed to be large
* enough for new directory entry. If de is NULL, then
* add_dirent_to_buf will attempt search the directory block for
* space. It will return -ENOSPC if no space is available, and -EIO
* and -EEXIST if directory entry already exists.
*/
static int add_dirent_to_buf(handle_t *handle, struct ext4_filename *fname,
struct inode *dir,
struct inode *inode, struct ext4_dir_entry_2 *de,
struct buffer_head *bh)
{
unsigned int blocksize = dir->i_sb->s_blocksize;
int csum_size = 0;
int err, err2;
if (ext4_has_metadata_csum(inode->i_sb))
csum_size = sizeof(struct ext4_dir_entry_tail);
if (!de) {
err = ext4_find_dest_de(dir, inode, bh, bh->b_data,
blocksize - csum_size, fname, &de);
if (err)
return err;
}
BUFFER_TRACE(bh, "get_write_access");
err = ext4_journal_get_write_access(handle, dir->i_sb, bh,
EXT4_JTR_NONE);
if (err) {
ext4_std_error(dir->i_sb, err);
return err;
}
/* By now the buffer is marked for journaling */
ext4_insert_dentry(dir, inode, de, blocksize, fname);
/*
* XXX shouldn't update any times until successful
* completion of syscall, but too many callers depend
* on this.
*
* XXX similarly, too many callers depend on
* ext4_new_inode() setting the times, but error
* recovery deletes the inode, so the worst that can
* happen is that the times are slightly out of date
* and/or different from the directory change time.
*/
dir->i_mtime = dir->i_ctime = current_time(dir);
ext4_update_dx_flag(dir);
inode_inc_iversion(dir);
err2 = ext4_mark_inode_dirty(handle, dir);
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_dirblock(handle, dir, bh);
if (err)
ext4_std_error(dir->i_sb, err);
return err ? err : err2;
}
/*
* This converts a one block unindexed directory to a 3 block indexed
* directory, and adds the dentry to the indexed directory.
*/
static int make_indexed_dir(handle_t *handle, struct ext4_filename *fname,
struct inode *dir,
struct inode *inode, struct buffer_head *bh)
{
struct buffer_head *bh2;
struct dx_root *root;
struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
struct dx_entry *entries;
struct ext4_dir_entry_2 *de, *de2;
char *data2, *top;
unsigned len;
int retval;
unsigned blocksize;
ext4_lblk_t block;
struct fake_dirent *fde;
int csum_size = 0;
if (ext4_has_metadata_csum(inode->i_sb))
csum_size = sizeof(struct ext4_dir_entry_tail);
blocksize = dir->i_sb->s_blocksize;
dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino));
BUFFER_TRACE(bh, "get_write_access");
retval = ext4_journal_get_write_access(handle, dir->i_sb, bh,
EXT4_JTR_NONE);
if (retval) {
ext4_std_error(dir->i_sb, retval);
brelse(bh);
return retval;
}
root = (struct dx_root *) bh->b_data;
/* The 0th block becomes the root, move the dirents out */
fde = &root->dotdot;
de = (struct ext4_dir_entry_2 *)((char *)fde +
ext4_rec_len_from_disk(fde->rec_len, blocksize));
if ((char *) de >= (((char *) root) + blocksize)) {
EXT4_ERROR_INODE(dir, "invalid rec_len for '..'");
brelse(bh);
return -EFSCORRUPTED;
}
len = ((char *) root) + (blocksize - csum_size) - (char *) de;
/* Allocate new block for the 0th block's dirents */
bh2 = ext4_append(handle, dir, &block);
if (IS_ERR(bh2)) {
brelse(bh);
return PTR_ERR(bh2);
}
ext4_set_inode_flag(dir, EXT4_INODE_INDEX);
data2 = bh2->b_data;
memcpy(data2, de, len);
memset(de, 0, len); /* wipe old data */
de = (struct ext4_dir_entry_2 *) data2;
top = data2 + len;
while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top) {
if (ext4_check_dir_entry(dir, NULL, de, bh2, data2, len,
(data2 + (blocksize - csum_size) -
(char *) de))) {
brelse(bh2);
brelse(bh);
return -EFSCORRUPTED;
}
de = de2;
}
de->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) -
(char *) de, blocksize);
if (csum_size)
ext4_initialize_dirent_tail(bh2, blocksize);
/* Initialize the root; the dot dirents already exist */
de = (struct ext4_dir_entry_2 *) (&root->dotdot);
de->rec_len = ext4_rec_len_to_disk(
blocksize - ext4_dir_rec_len(2, NULL), blocksize);
memset (&root->info, 0, sizeof(root->info));
root->info.info_length = sizeof(root->info);
if (ext4_hash_in_dirent(dir))
root->info.hash_version = DX_HASH_SIPHASH;
else
root->info.hash_version =
EXT4_SB(dir->i_sb)->s_def_hash_version;
entries = root->entries;
dx_set_block(entries, 1);
dx_set_count(entries, 1);
dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info)));
/* Initialize as for dx_probe */
fname->hinfo.hash_version = root->info.hash_version;
if (fname->hinfo.hash_version <= DX_HASH_TEA)
fname->hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
fname->hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
/* casefolded encrypted hashes are computed on fname setup */
if (!ext4_hash_in_dirent(dir)) {
int err = ext4fs_dirhash(dir, fname_name(fname),
fname_len(fname), &fname->hinfo);
if (err < 0) {
brelse(bh2);
brelse(bh);
return err;
}
}
memset(frames, 0, sizeof(frames));
frame = frames;
frame->entries = entries;
frame->at = entries;
frame->bh = bh;
retval = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
if (retval)
goto out_frames;
retval = ext4_handle_dirty_dirblock(handle, dir, bh2);
if (retval)
goto out_frames;
de = do_split(handle,dir, &bh2, frame, &fname->hinfo);
if (IS_ERR(de)) {
retval = PTR_ERR(de);
goto out_frames;
}
retval = add_dirent_to_buf(handle, fname, dir, inode, de, bh2);
out_frames:
/*
* Even if the block split failed, we have to properly write
* out all the changes we did so far. Otherwise we can end up
* with corrupted filesystem.
*/
if (retval)
ext4_mark_inode_dirty(handle, dir);
dx_release(frames);
brelse(bh2);
return retval;
}
/*
* ext4_add_entry()
*
* adds a file entry to the specified directory, using the same
* semantics as ext4_find_entry(). It returns NULL if it failed.
*
* NOTE!! The inode part of 'de' is left at 0 - which means you
* may not sleep between calling this and putting something into
* the entry, as someone else might have used it while you slept.
*/
static int ext4_add_entry(handle_t *handle, struct dentry *dentry,
struct inode *inode)
{
struct inode *dir = d_inode(dentry->d_parent);
struct buffer_head *bh = NULL;
struct ext4_dir_entry_2 *de;
struct super_block *sb;
struct ext4_filename fname;
int retval;
int dx_fallback=0;
unsigned blocksize;
ext4_lblk_t block, blocks;
int csum_size = 0;
if (ext4_has_metadata_csum(inode->i_sb))
csum_size = sizeof(struct ext4_dir_entry_tail);
sb = dir->i_sb;
blocksize = sb->s_blocksize;
if (!dentry->d_name.len)
return -EINVAL;
if (fscrypt_is_nokey_name(dentry))
return -ENOKEY;
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
#ifdef CONFIG_UNICODE
if (sb_has_strict_encoding(sb) && IS_CASEFOLDED(dir) &&
sb->s_encoding && utf8_validate(sb->s_encoding, &dentry->d_name))
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
return -EINVAL;
#endif
retval = ext4_fname_setup_filename(dir, &dentry->d_name, 0, &fname);
if (retval)
return retval;
if (ext4_has_inline_data(dir)) {
retval = ext4_try_add_inline_entry(handle, &fname, dir, inode);
if (retval < 0)
goto out;
if (retval == 1) {
retval = 0;
goto out;
}
}
if (is_dx(dir)) {
retval = ext4_dx_add_entry(handle, &fname, dir, inode);
if (!retval || (retval != ERR_BAD_DX_DIR))
goto out;
ext4: fix checksum errors with indexed dirs DIR_INDEX has been introduced as a compat ext4 feature. That means that even kernels / tools that don't understand the feature may modify the filesystem. This works because for kernels not understanding indexed dir format, internal htree nodes appear just as empty directory entries. Index dir aware kernels then check the htree structure is still consistent before using the data. This all worked reasonably well until metadata checksums were introduced. The problem is that these effectively made DIR_INDEX only ro-compatible because internal htree nodes store checksums in a different place than normal directory blocks. Thus any modification ignorant to DIR_INDEX (or just clearing EXT4_INDEX_FL from the inode) will effectively cause checksum mismatch and trigger kernel errors. So we have to be more careful when dealing with indexed directories on filesystems with checksumming enabled. 1) We just disallow loading any directory inodes with EXT4_INDEX_FL when DIR_INDEX is not enabled. This is harsh but it should be very rare (it means someone disabled DIR_INDEX on existing filesystem and didn't run e2fsck), e2fsck can fix the problem, and we don't want to answer the difficult question: "Should we rather corrupt the directory more or should we ignore that DIR_INDEX feature is not set?" 2) When we find out htree structure is corrupted (but the filesystem and the directory should in support htrees), we continue just ignoring htree information for reading but we refuse to add new entries to the directory to avoid corrupting it more. Link: https://lore.kernel.org/r/20200210144316.22081-1-jack@suse.cz Fixes: dbe89444042a ("ext4: Calculate and verify checksums for htree nodes") Reviewed-by: Andreas Dilger <adilger@dilger.ca> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org
2020-02-10 14:43:16 +00:00
/* Can we just ignore htree data? */
if (ext4_has_metadata_csum(sb)) {
EXT4_ERROR_INODE(dir,
"Directory has corrupted htree index.");
retval = -EFSCORRUPTED;
goto out;
}
ext4_clear_inode_flag(dir, EXT4_INODE_INDEX);
dx_fallback++;
retval = ext4_mark_inode_dirty(handle, dir);
if (unlikely(retval))
goto out;
}
blocks = dir->i_size >> sb->s_blocksize_bits;
for (block = 0; block < blocks; block++) {
bh = ext4_read_dirblock(dir, block, DIRENT);
if (bh == NULL) {
bh = ext4_bread(handle, dir, block,
EXT4_GET_BLOCKS_CREATE);
goto add_to_new_block;
}
if (IS_ERR(bh)) {
retval = PTR_ERR(bh);
bh = NULL;
goto out;
}
retval = add_dirent_to_buf(handle, &fname, dir, inode,
NULL, bh);
if (retval != -ENOSPC)
goto out;
if (blocks == 1 && !dx_fallback &&
ext4_has_feature_dir_index(sb)) {
retval = make_indexed_dir(handle, &fname, dir,
inode, bh);
bh = NULL; /* make_indexed_dir releases bh */
goto out;
}
brelse(bh);
}
bh = ext4_append(handle, dir, &block);
add_to_new_block:
if (IS_ERR(bh)) {
retval = PTR_ERR(bh);
bh = NULL;
goto out;
}
de = (struct ext4_dir_entry_2 *) bh->b_data;
de->inode = 0;
de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize);
if (csum_size)
ext4_initialize_dirent_tail(bh, blocksize);
retval = add_dirent_to_buf(handle, &fname, dir, inode, de, bh);
out:
ext4_fname_free_filename(&fname);
brelse(bh);
if (retval == 0)
ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY);
return retval;
}
/*
* Returns 0 for success, or a negative error value
*/
static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname,
struct inode *dir, struct inode *inode)
{
struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
struct dx_entry *entries, *at;
struct buffer_head *bh;
struct super_block *sb = dir->i_sb;
struct ext4_dir_entry_2 *de;
int restart;
int err;
again:
restart = 0;
frame = dx_probe(fname, dir, NULL, frames);
if (IS_ERR(frame))
return PTR_ERR(frame);
entries = frame->entries;
at = frame->at;
bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT_HTREE);
if (IS_ERR(bh)) {
err = PTR_ERR(bh);
bh = NULL;
goto cleanup;
}
BUFFER_TRACE(bh, "get_write_access");
err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
if (err)
goto journal_error;
err = add_dirent_to_buf(handle, fname, dir, inode, NULL, bh);
if (err != -ENOSPC)
goto cleanup;
err = 0;
/* Block full, should compress but for now just split */
dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n",
dx_get_count(entries), dx_get_limit(entries)));
/* Need to split index? */
if (dx_get_count(entries) == dx_get_limit(entries)) {
ext4_lblk_t newblock;
int levels = frame - frames + 1;
unsigned int icount;
int add_level = 1;
struct dx_entry *entries2;
struct dx_node *node2;
struct buffer_head *bh2;
while (frame > frames) {
if (dx_get_count((frame - 1)->entries) <
dx_get_limit((frame - 1)->entries)) {
add_level = 0;
break;
}
frame--; /* split higher index block */
at = frame->at;
entries = frame->entries;
restart = 1;
}
if (add_level && levels == ext4_dir_htree_level(sb)) {
ext4_warning(sb, "Directory (ino: %lu) index full, "
"reach max htree level :%d",
dir->i_ino, levels);
if (ext4_dir_htree_level(sb) < EXT4_HTREE_LEVEL) {
ext4_warning(sb, "Large directory feature is "
"not enabled on this "
"filesystem");
}
err = -ENOSPC;
goto cleanup;
}
icount = dx_get_count(entries);
bh2 = ext4_append(handle, dir, &newblock);
if (IS_ERR(bh2)) {
err = PTR_ERR(bh2);
goto cleanup;
}
node2 = (struct dx_node *)(bh2->b_data);
entries2 = node2->entries;
memset(&node2->fake, 0, sizeof(struct fake_dirent));
node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize,
sb->s_blocksize);
BUFFER_TRACE(frame->bh, "get_write_access");
err = ext4_journal_get_write_access(handle, sb, frame->bh,
EXT4_JTR_NONE);
if (err)
goto journal_error;
if (!add_level) {
unsigned icount1 = icount/2, icount2 = icount - icount1;
unsigned hash2 = dx_get_hash(entries + icount1);
dxtrace(printk(KERN_DEBUG "Split index %i/%i\n",
icount1, icount2));
BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */
err = ext4_journal_get_write_access(handle, sb,
(frame - 1)->bh,
EXT4_JTR_NONE);
if (err)
goto journal_error;
memcpy((char *) entries2, (char *) (entries + icount1),
icount2 * sizeof(struct dx_entry));
dx_set_count(entries, icount1);
dx_set_count(entries2, icount2);
dx_set_limit(entries2, dx_node_limit(dir));
/* Which index block gets the new entry? */
if (at - entries >= icount1) {
frame->at = at - entries - icount1 + entries2;
frame->entries = entries = entries2;
swap(frame->bh, bh2);
}
dx_insert_block((frame - 1), hash2, newblock);
dxtrace(dx_show_index("node", frame->entries));
dxtrace(dx_show_index("node",
((struct dx_node *) bh2->b_data)->entries));
err = ext4_handle_dirty_dx_node(handle, dir, bh2);
if (err)
goto journal_error;
brelse (bh2);
err = ext4_handle_dirty_dx_node(handle, dir,
(frame - 1)->bh);
if (err)
goto journal_error;
err = ext4_handle_dirty_dx_node(handle, dir,
frame->bh);
if (restart || err)
goto journal_error;
} else {
struct dx_root *dxroot;
memcpy((char *) entries2, (char *) entries,
icount * sizeof(struct dx_entry));
dx_set_limit(entries2, dx_node_limit(dir));
/* Set up root */
dx_set_count(entries, 1);
dx_set_block(entries + 0, newblock);
dxroot = (struct dx_root *)frames[0].bh->b_data;
dxroot->info.indirect_levels += 1;
dxtrace(printk(KERN_DEBUG
"Creating %d level index...\n",
dxroot->info.indirect_levels));
err = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
if (err)
goto journal_error;
err = ext4_handle_dirty_dx_node(handle, dir, bh2);
brelse(bh2);
restart = 1;
goto journal_error;
}
}
de = do_split(handle, dir, &bh, frame, &fname->hinfo);
if (IS_ERR(de)) {
err = PTR_ERR(de);
goto cleanup;
}
err = add_dirent_to_buf(handle, fname, dir, inode, de, bh);
goto cleanup;
journal_error:
ext4_std_error(dir->i_sb, err); /* this is a no-op if err == 0 */
cleanup:
brelse(bh);
dx_release(frames);
/* @restart is true means htree-path has been changed, we need to
* repeat dx_probe() to find out valid htree-path
*/
if (restart && err == 0)
goto again;
return err;
}
/*
* ext4_generic_delete_entry deletes a directory entry by merging it
* with the previous entry
*/
int ext4_generic_delete_entry(struct inode *dir,
struct ext4_dir_entry_2 *de_del,
struct buffer_head *bh,
void *entry_buf,
int buf_size,
int csum_size)
{
struct ext4_dir_entry_2 *de, *pde;
unsigned int blocksize = dir->i_sb->s_blocksize;
int i;
i = 0;
pde = NULL;
de = (struct ext4_dir_entry_2 *)entry_buf;
while (i < buf_size - csum_size) {
if (ext4_check_dir_entry(dir, NULL, de, bh,
entry_buf, buf_size, i))
return -EFSCORRUPTED;
if (de == de_del) {
if (pde) {
pde->rec_len = ext4_rec_len_to_disk(
ext4_rec_len_from_disk(pde->rec_len,
blocksize) +
ext4_rec_len_from_disk(de->rec_len,
blocksize),
blocksize);
/* wipe entire dir_entry */
memset(de, 0, ext4_rec_len_from_disk(de->rec_len,
blocksize));
} else {
/* wipe dir_entry excluding the rec_len field */
de->inode = 0;
memset(&de->name_len, 0,
ext4_rec_len_from_disk(de->rec_len,
blocksize) -
offsetof(struct ext4_dir_entry_2,
name_len));
}
inode_inc_iversion(dir);
return 0;
}
i += ext4_rec_len_from_disk(de->rec_len, blocksize);
pde = de;
de = ext4_next_entry(de, blocksize);
}
return -ENOENT;
}
static int ext4_delete_entry(handle_t *handle,
struct inode *dir,
struct ext4_dir_entry_2 *de_del,
struct buffer_head *bh)
{
int err, csum_size = 0;
if (ext4_has_inline_data(dir)) {
int has_inline_data = 1;
err = ext4_delete_inline_entry(handle, dir, de_del, bh,
&has_inline_data);
if (has_inline_data)
return err;
}
if (ext4_has_metadata_csum(dir->i_sb))
csum_size = sizeof(struct ext4_dir_entry_tail);
BUFFER_TRACE(bh, "get_write_access");
err = ext4_journal_get_write_access(handle, dir->i_sb, bh,
EXT4_JTR_NONE);
if (unlikely(err))
goto out;
err = ext4_generic_delete_entry(dir, de_del, bh, bh->b_data,
dir->i_sb->s_blocksize, csum_size);
if (err)
goto out;
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_dirblock(handle, dir, bh);
if (unlikely(err))
goto out;
return 0;
out:
if (err != -ENOENT)
ext4_std_error(dir->i_sb, err);
return err;
}
/*
* Set directory link count to 1 if nlinks > EXT4_LINK_MAX, or if nlinks == 2
* since this indicates that nlinks count was previously 1 to avoid overflowing
* the 16-bit i_links_count field on disk. Directories with i_nlink == 1 mean
* that subdirectory link counts are not being maintained accurately.
*
* The caller has already checked for i_nlink overflow in case the DIR_LINK
* feature is not enabled and returned -EMLINK. The is_dx() check is a proxy
* for checking S_ISDIR(inode) (since the INODE_INDEX feature will not be set
* on regular files) and to avoid creating huge/slow non-HTREE directories.
*/
static void ext4_inc_count(struct inode *inode)
{
inc_nlink(inode);
if (is_dx(inode) &&
(inode->i_nlink > EXT4_LINK_MAX || inode->i_nlink == 2))
set_nlink(inode, 1);
}
/*
* If a directory had nlink == 1, then we should let it be 1. This indicates
* directory has >EXT4_LINK_MAX subdirs.
*/
static void ext4_dec_count(struct inode *inode)
{
if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2)
drop_nlink(inode);
}
/*
* Add non-directory inode to a directory. On success, the inode reference is
* consumed by dentry is instantiation. This is also indicated by clearing of
* *inodep pointer. On failure, the caller is responsible for dropping the
* inode reference in the safe context.
*/
static int ext4_add_nondir(handle_t *handle,
struct dentry *dentry, struct inode **inodep)
{
struct inode *dir = d_inode(dentry->d_parent);
struct inode *inode = *inodep;
int err = ext4_add_entry(handle, dentry, inode);
if (!err) {
err = ext4_mark_inode_dirty(handle, inode);
if (IS_DIRSYNC(dir))
ext4_handle_sync(handle);
d_instantiate_new(dentry, inode);
*inodep = NULL;
return err;
}
drop_nlink(inode);
ext4: fix unttached inode after power cut with orphan file feature enabled [ Upstream commit 1524773425ae8113b0b782886366e68656b34e53 ] Running generic/475(filesystem consistent tests after power cut) could easily trigger unattached inode error while doing fsck: Unattached zero-length inode 39405. Clear? no Unattached inode 39405 Connect to /lost+found? no Above inconsistence is caused by following process: P1 P2 ext4_create inode = ext4_new_inode_start_handle // itable records nlink=1 ext4_add_nondir err = ext4_add_entry // ENOSPC ext4_append ext4_bread ext4_getblk ext4_map_blocks // returns ENOSPC drop_nlink(inode) // won't be updated into disk inode ext4_orphan_add(handle, inode) ext4_orphan_file_add ext4_journal_stop(handle) jbd2_journal_commit_transaction // commit success >> power cut << ext4_fill_super ext4_load_and_init_journal // itable records nlink=1 ext4_orphan_cleanup ext4_process_orphan if (inode->i_nlink) // true, inode won't be deleted Then, allocated inode will be reserved on disk and corresponds to no dentries, so e2fsck reports 'unattached inode' problem. The problem won't happen if orphan file feature is disabled, because ext4_orphan_add() will update disk inode in orphan list mode. There are several places not updating disk inode while putting inode into orphan area, such as ext4_add_nondir(), ext4_symlink() and whiteout in ext4_rename(). Fix it by updating inode into disk in all error branches of these places. Link: https://bugzilla.kernel.org/show_bug.cgi?id=217605 Fixes: 02f310fcf47f ("ext4: Speedup ext4 orphan inode handling") Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20230628132011.650383-1-chengzhihao1@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 13:20:11 +00:00
ext4_mark_inode_dirty(handle, inode);
ext4_orphan_add(handle, inode);
unlock_new_inode(inode);
return err;
}
/*
* By the time this is called, we already have created
* the directory cache entry for the new file, but it
* is so far negative - it has no inode.
*
* If the create succeeds, we fill in the inode information
* with d_instantiate().
*/
static int ext4_create(struct user_namespace *mnt_userns, struct inode *dir,
struct dentry *dentry, umode_t mode, bool excl)
{
handle_t *handle;
struct inode *inode;
int err, credits, retries = 0;
err = dquot_initialize(dir);
if (err)
return err;
credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
retry:
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
inode = ext4_new_inode_start_handle(mnt_userns, dir, mode, &dentry->d_name,
0, NULL, EXT4_HT_DIR, credits);
handle = ext4_journal_current_handle();
err = PTR_ERR(inode);
if (!IS_ERR(inode)) {
inode->i_op = &ext4_file_inode_operations;
inode->i_fop = &ext4_file_operations;
ext4_set_aops(inode);
err = ext4_add_nondir(handle, dentry, &inode);
if (!err)
ext4_fc_track_create(handle, dentry);
}
if (handle)
ext4_journal_stop(handle);
if (!IS_ERR_OR_NULL(inode))
iput(inode);
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
}
static int ext4_mknod(struct user_namespace *mnt_userns, struct inode *dir,
struct dentry *dentry, umode_t mode, dev_t rdev)
{
handle_t *handle;
struct inode *inode;
int err, credits, retries = 0;
err = dquot_initialize(dir);
if (err)
return err;
credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
retry:
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
inode = ext4_new_inode_start_handle(mnt_userns, dir, mode, &dentry->d_name,
0, NULL, EXT4_HT_DIR, credits);
handle = ext4_journal_current_handle();
err = PTR_ERR(inode);
if (!IS_ERR(inode)) {
init_special_inode(inode, inode->i_mode, rdev);
inode->i_op = &ext4_special_inode_operations;
err = ext4_add_nondir(handle, dentry, &inode);
if (!err)
ext4_fc_track_create(handle, dentry);
}
if (handle)
ext4_journal_stop(handle);
if (!IS_ERR_OR_NULL(inode))
iput(inode);
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
}
static int ext4_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
struct dentry *dentry, umode_t mode)
{
handle_t *handle;
struct inode *inode;
int err, retries = 0;
err = dquot_initialize(dir);
if (err)
return err;
retry:
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
inode = ext4_new_inode_start_handle(mnt_userns, dir, mode,
NULL, 0, NULL,
EXT4_HT_DIR,
EXT4_MAXQUOTAS_TRANS_BLOCKS(dir->i_sb) +
4 + EXT4_XATTR_TRANS_BLOCKS);
handle = ext4_journal_current_handle();
err = PTR_ERR(inode);
if (!IS_ERR(inode)) {
inode->i_op = &ext4_file_inode_operations;
inode->i_fop = &ext4_file_operations;
ext4_set_aops(inode);
ext4: fix a BUG when opening a file with O_TMPFILE flag When we try to open a file with O_TMPFILE flag, we will trigger a bug. The root cause is that in ext4_orphan_add() we check ->i_nlink == 0 and this check always fails because we set ->i_nlink = 1 in inode_init_always(). We can use the following program to trigger it: int main(int argc, char *argv[]) { int fd; fd = open(argv[1], O_TMPFILE, 0666); if (fd < 0) { perror("open "); return -1; } close(fd); return 0; } The oops message looks like this: kernel BUG at fs/ext4/namei.c:2572! invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: dlci bridge stp hidp cmtp kernelcapi l2tp_ppp l2tp_netlink l2tp_core sctp libcrc32c rfcomm tun fuse nfnetli nk can_raw ipt_ULOG can_bcm x25 scsi_transport_iscsi ipx p8023 p8022 appletalk phonet psnap vmw_vsock_vmci_transport af_key vmw_vmci rose vsock atm can netrom ax25 af_rxrpc ir da pppoe pppox ppp_generic slhc bluetooth nfc rfkill rds caif_socket caif crc_ccitt af_802154 llc2 llc snd_hda_codec_realtek snd_hda_intel snd_hda_codec serio_raw snd_pcm pcsp kr edac_core snd_page_alloc snd_timer snd soundcore r8169 mii sr_mod cdrom pata_atiixp radeon backlight drm_kms_helper ttm CPU: 1 PID: 1812571 Comm: trinity-child2 Not tainted 3.11.0-rc1+ #12 Hardware name: Gigabyte Technology Co., Ltd. GA-MA78GM-S2H/GA-MA78GM-S2H, BIOS F12a 04/23/2010 task: ffff88007dfe69a0 ti: ffff88010f7b6000 task.ti: ffff88010f7b6000 RIP: 0010:[<ffffffff8125ce69>] [<ffffffff8125ce69>] ext4_orphan_add+0x299/0x2b0 RSP: 0018:ffff88010f7b7cf8 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff8800966d3020 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff88007dfe70b8 RDI: 0000000000000001 RBP: ffff88010f7b7d40 R08: ffff880126a3c4e0 R09: ffff88010f7b7ca0 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8801271fd668 R13: ffff8800966d2f78 R14: ffff88011d7089f0 R15: ffff88007dfe69a0 FS: 00007f70441a3740(0000) GS:ffff88012a800000(0000) knlGS:00000000f77c96c0 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000002834000 CR3: 0000000107964000 CR4: 00000000000007e0 DR0: 0000000000780000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000600 Stack: 0000000000002000 00000020810b6dde 0000000000000000 ffff88011d46db00 ffff8800966d3020 ffff88011d7089f0 ffff88009c7f4c10 ffff88010f7b7f2c ffff88007dfe69a0 ffff88010f7b7da8 ffffffff8125cfac ffff880100000004 Call Trace: [<ffffffff8125cfac>] ext4_tmpfile+0x12c/0x180 [<ffffffff811cba78>] path_openat+0x238/0x700 [<ffffffff8100afc4>] ? native_sched_clock+0x24/0x80 [<ffffffff811cc647>] do_filp_open+0x47/0xa0 [<ffffffff811db73f>] ? __alloc_fd+0xaf/0x200 [<ffffffff811ba2e4>] do_sys_open+0x124/0x210 [<ffffffff81010725>] ? syscall_trace_enter+0x25/0x290 [<ffffffff811ba3ee>] SyS_open+0x1e/0x20 [<ffffffff816ca8d4>] tracesys+0xdd/0xe2 [<ffffffff81001001>] ? start_thread_common.constprop.6+0x1/0xa0 Code: 04 00 00 00 89 04 24 31 c0 e8 c4 77 04 00 e9 43 fe ff ff 66 25 00 d0 66 3d 00 80 0f 84 0e fe ff ff 83 7b 48 00 0f 84 04 fe ff ff <0f> 0b 49 8b 8c 24 50 07 00 00 e9 88 fe ff ff 0f 1f 84 00 00 00 Here we couldn't call clear_nlink() directly because in d_tmpfile() we will call inode_dec_link_count() to decrease ->i_nlink. So this commit tries to call d_tmpfile() before ext4_orphan_add() to fix this problem. Reported-by: Dave Jones <davej@redhat.com> Signed-off-by: Zheng Liu <wenqing.lz@taobao.com> Tested-by: Darrick J. Wong <darrick.wong@oracle.com> Tested-by: Dave Jones <davej@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Acked-by: Al Viro <viro@zeniv.linux.org.uk>
2013-07-21 01:58:38 +00:00
d_tmpfile(dentry, inode);
err = ext4_orphan_add(handle, inode);
if (err)
goto err_unlock_inode;
mark_inode_dirty(inode);
unlock_new_inode(inode);
}
if (handle)
ext4_journal_stop(handle);
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
err_unlock_inode:
ext4_journal_stop(handle);
unlock_new_inode(inode);
return err;
}
struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode,
struct ext4_dir_entry_2 *de,
int blocksize, int csum_size,
unsigned int parent_ino, int dotdot_real_len)
{
de->inode = cpu_to_le32(inode->i_ino);
de->name_len = 1;
de->rec_len = ext4_rec_len_to_disk(ext4_dir_rec_len(de->name_len, NULL),
blocksize);
strcpy(de->name, ".");
ext4_set_de_type(inode->i_sb, de, S_IFDIR);
de = ext4_next_entry(de, blocksize);
de->inode = cpu_to_le32(parent_ino);
de->name_len = 2;
if (!dotdot_real_len)
de->rec_len = ext4_rec_len_to_disk(blocksize -
(csum_size + ext4_dir_rec_len(1, NULL)),
blocksize);
else
de->rec_len = ext4_rec_len_to_disk(
ext4_dir_rec_len(de->name_len, NULL),
blocksize);
strcpy(de->name, "..");
ext4_set_de_type(inode->i_sb, de, S_IFDIR);
return ext4_next_entry(de, blocksize);
}
int ext4_init_new_dir(handle_t *handle, struct inode *dir,
struct inode *inode)
{
struct buffer_head *dir_block = NULL;
struct ext4_dir_entry_2 *de;
ext4_lblk_t block = 0;
unsigned int blocksize = dir->i_sb->s_blocksize;
int csum_size = 0;
int err;
if (ext4_has_metadata_csum(dir->i_sb))
csum_size = sizeof(struct ext4_dir_entry_tail);
if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
err = ext4_try_create_inline_dir(handle, dir, inode);
if (err < 0 && err != -ENOSPC)
goto out;
if (!err)
goto out;
}
inode->i_size = 0;
dir_block = ext4_append(handle, inode, &block);
if (IS_ERR(dir_block))
return PTR_ERR(dir_block);
de = (struct ext4_dir_entry_2 *)dir_block->b_data;
ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0);
set_nlink(inode, 2);
if (csum_size)
ext4_initialize_dirent_tail(dir_block, blocksize);
BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_dirblock(handle, inode, dir_block);
if (err)
goto out;
set_buffer_verified(dir_block);
out:
brelse(dir_block);
return err;
}
static int ext4_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
struct dentry *dentry, umode_t mode)
{
handle_t *handle;
struct inode *inode;
int err, err2 = 0, credits, retries = 0;
if (EXT4_DIR_LINK_MAX(dir))
return -EMLINK;
err = dquot_initialize(dir);
if (err)
return err;
credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
retry:
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
inode = ext4_new_inode_start_handle(mnt_userns, dir, S_IFDIR | mode,
&dentry->d_name,
0, NULL, EXT4_HT_DIR, credits);
handle = ext4_journal_current_handle();
err = PTR_ERR(inode);
if (IS_ERR(inode))
goto out_stop;
inode->i_op = &ext4_dir_inode_operations;
inode->i_fop = &ext4_dir_operations;
err = ext4_init_new_dir(handle, dir, inode);
if (err)
goto out_clear_inode;
err = ext4_mark_inode_dirty(handle, inode);
if (!err)
err = ext4_add_entry(handle, dentry, inode);
if (err) {
out_clear_inode:
clear_nlink(inode);
ext4_orphan_add(handle, inode);
unlock_new_inode(inode);
err2 = ext4_mark_inode_dirty(handle, inode);
if (unlikely(err2))
err = err2;
ext4_journal_stop(handle);
iput(inode);
goto out_retry;
}
ext4_inc_count(dir);
ext4_update_dx_flag(dir);
err = ext4_mark_inode_dirty(handle, dir);
if (err)
goto out_clear_inode;
d_instantiate_new(dentry, inode);
ext4_fc_track_create(handle, dentry);
if (IS_DIRSYNC(dir))
ext4_handle_sync(handle);
out_stop:
if (handle)
ext4_journal_stop(handle);
out_retry:
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
}
/*
* routine to check that the specified directory is empty (for rmdir)
*/
bool ext4_empty_dir(struct inode *inode)
{
unsigned int offset;
struct buffer_head *bh;
struct ext4_dir_entry_2 *de;
struct super_block *sb;
if (ext4_has_inline_data(inode)) {
int has_inline_data = 1;
int ret;
ret = empty_inline_dir(inode, &has_inline_data);
if (has_inline_data)
return ret;
}
sb = inode->i_sb;
if (inode->i_size < ext4_dir_rec_len(1, NULL) +
ext4_dir_rec_len(2, NULL)) {
EXT4_ERROR_INODE(inode, "invalid size");
ext4: fix fs corruption when tring to remove a non-empty directory with IO error commit 7aab5c84a0f6ec2290e2ba4a6b245178b1bf949a upstream. We inject IO error when rmdir non empty direcory, then got issue as follows: step1: mkfs.ext4 -F /dev/sda step2: mount /dev/sda test step3: cd test step4: mkdir -p 1/2 step5: rmdir 1 [ 110.920551] ext4_empty_dir: inject fault [ 110.921926] EXT4-fs warning (device sda): ext4_rmdir:3113: inode #12: comm rmdir: empty directory '1' has too many links (3) step6: cd .. step7: umount test step8: fsck.ext4 -f /dev/sda e2fsck 1.42.9 (28-Dec-2013) Pass 1: Checking inodes, blocks, and sizes Pass 2: Checking directory structure Entry '..' in .../??? (13) has deleted/unused inode 12. Clear<y>? yes Pass 3: Checking directory connectivity Unconnected directory inode 13 (...) Connect to /lost+found<y>? yes Pass 4: Checking reference counts Inode 13 ref count is 3, should be 2. Fix<y>? yes Pass 5: Checking group summary information /dev/sda: ***** FILE SYSTEM WAS MODIFIED ***** /dev/sda: 12/131072 files (0.0% non-contiguous), 26157/524288 blocks ext4_rmdir if (!ext4_empty_dir(inode)) goto end_rmdir; ext4_empty_dir bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE); if (IS_ERR(bh)) return true; Now if read directory block failed, 'ext4_empty_dir' will return true, assume directory is empty. Obviously, it will lead to above issue. To solve this issue, if read directory block failed 'ext4_empty_dir' just return false. To avoid making things worse when file system is already corrupted, 'ext4_empty_dir' also return false. Signed-off-by: Ye Bin <yebin10@huawei.com> Cc: stable@kernel.org Link: https://lore.kernel.org/r/20220228024815.3952506-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-28 02:48:15 +00:00
return false;
}
/* The first directory block must not be a hole,
* so treat it as DIRENT_HTREE
*/
bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE);
if (IS_ERR(bh))
ext4: fix fs corruption when tring to remove a non-empty directory with IO error commit 7aab5c84a0f6ec2290e2ba4a6b245178b1bf949a upstream. We inject IO error when rmdir non empty direcory, then got issue as follows: step1: mkfs.ext4 -F /dev/sda step2: mount /dev/sda test step3: cd test step4: mkdir -p 1/2 step5: rmdir 1 [ 110.920551] ext4_empty_dir: inject fault [ 110.921926] EXT4-fs warning (device sda): ext4_rmdir:3113: inode #12: comm rmdir: empty directory '1' has too many links (3) step6: cd .. step7: umount test step8: fsck.ext4 -f /dev/sda e2fsck 1.42.9 (28-Dec-2013) Pass 1: Checking inodes, blocks, and sizes Pass 2: Checking directory structure Entry '..' in .../??? (13) has deleted/unused inode 12. Clear<y>? yes Pass 3: Checking directory connectivity Unconnected directory inode 13 (...) Connect to /lost+found<y>? yes Pass 4: Checking reference counts Inode 13 ref count is 3, should be 2. Fix<y>? yes Pass 5: Checking group summary information /dev/sda: ***** FILE SYSTEM WAS MODIFIED ***** /dev/sda: 12/131072 files (0.0% non-contiguous), 26157/524288 blocks ext4_rmdir if (!ext4_empty_dir(inode)) goto end_rmdir; ext4_empty_dir bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE); if (IS_ERR(bh)) return true; Now if read directory block failed, 'ext4_empty_dir' will return true, assume directory is empty. Obviously, it will lead to above issue. To solve this issue, if read directory block failed 'ext4_empty_dir' just return false. To avoid making things worse when file system is already corrupted, 'ext4_empty_dir' also return false. Signed-off-by: Ye Bin <yebin10@huawei.com> Cc: stable@kernel.org Link: https://lore.kernel.org/r/20220228024815.3952506-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-28 02:48:15 +00:00
return false;
de = (struct ext4_dir_entry_2 *) bh->b_data;
if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data, bh->b_size,
0) ||
le32_to_cpu(de->inode) != inode->i_ino || strcmp(".", de->name)) {
ext4_warning_inode(inode, "directory missing '.'");
brelse(bh);
ext4: fix fs corruption when tring to remove a non-empty directory with IO error commit 7aab5c84a0f6ec2290e2ba4a6b245178b1bf949a upstream. We inject IO error when rmdir non empty direcory, then got issue as follows: step1: mkfs.ext4 -F /dev/sda step2: mount /dev/sda test step3: cd test step4: mkdir -p 1/2 step5: rmdir 1 [ 110.920551] ext4_empty_dir: inject fault [ 110.921926] EXT4-fs warning (device sda): ext4_rmdir:3113: inode #12: comm rmdir: empty directory '1' has too many links (3) step6: cd .. step7: umount test step8: fsck.ext4 -f /dev/sda e2fsck 1.42.9 (28-Dec-2013) Pass 1: Checking inodes, blocks, and sizes Pass 2: Checking directory structure Entry '..' in .../??? (13) has deleted/unused inode 12. Clear<y>? yes Pass 3: Checking directory connectivity Unconnected directory inode 13 (...) Connect to /lost+found<y>? yes Pass 4: Checking reference counts Inode 13 ref count is 3, should be 2. Fix<y>? yes Pass 5: Checking group summary information /dev/sda: ***** FILE SYSTEM WAS MODIFIED ***** /dev/sda: 12/131072 files (0.0% non-contiguous), 26157/524288 blocks ext4_rmdir if (!ext4_empty_dir(inode)) goto end_rmdir; ext4_empty_dir bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE); if (IS_ERR(bh)) return true; Now if read directory block failed, 'ext4_empty_dir' will return true, assume directory is empty. Obviously, it will lead to above issue. To solve this issue, if read directory block failed 'ext4_empty_dir' just return false. To avoid making things worse when file system is already corrupted, 'ext4_empty_dir' also return false. Signed-off-by: Ye Bin <yebin10@huawei.com> Cc: stable@kernel.org Link: https://lore.kernel.org/r/20220228024815.3952506-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-28 02:48:15 +00:00
return false;
}
offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize);
de = ext4_next_entry(de, sb->s_blocksize);
if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data, bh->b_size,
offset) ||
le32_to_cpu(de->inode) == 0 || strcmp("..", de->name)) {
ext4_warning_inode(inode, "directory missing '..'");
brelse(bh);
ext4: fix fs corruption when tring to remove a non-empty directory with IO error commit 7aab5c84a0f6ec2290e2ba4a6b245178b1bf949a upstream. We inject IO error when rmdir non empty direcory, then got issue as follows: step1: mkfs.ext4 -F /dev/sda step2: mount /dev/sda test step3: cd test step4: mkdir -p 1/2 step5: rmdir 1 [ 110.920551] ext4_empty_dir: inject fault [ 110.921926] EXT4-fs warning (device sda): ext4_rmdir:3113: inode #12: comm rmdir: empty directory '1' has too many links (3) step6: cd .. step7: umount test step8: fsck.ext4 -f /dev/sda e2fsck 1.42.9 (28-Dec-2013) Pass 1: Checking inodes, blocks, and sizes Pass 2: Checking directory structure Entry '..' in .../??? (13) has deleted/unused inode 12. Clear<y>? yes Pass 3: Checking directory connectivity Unconnected directory inode 13 (...) Connect to /lost+found<y>? yes Pass 4: Checking reference counts Inode 13 ref count is 3, should be 2. Fix<y>? yes Pass 5: Checking group summary information /dev/sda: ***** FILE SYSTEM WAS MODIFIED ***** /dev/sda: 12/131072 files (0.0% non-contiguous), 26157/524288 blocks ext4_rmdir if (!ext4_empty_dir(inode)) goto end_rmdir; ext4_empty_dir bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE); if (IS_ERR(bh)) return true; Now if read directory block failed, 'ext4_empty_dir' will return true, assume directory is empty. Obviously, it will lead to above issue. To solve this issue, if read directory block failed 'ext4_empty_dir' just return false. To avoid making things worse when file system is already corrupted, 'ext4_empty_dir' also return false. Signed-off-by: Ye Bin <yebin10@huawei.com> Cc: stable@kernel.org Link: https://lore.kernel.org/r/20220228024815.3952506-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-28 02:48:15 +00:00
return false;
}
offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize);
while (offset < inode->i_size) {
if (!(offset & (sb->s_blocksize - 1))) {
unsigned int lblock;
brelse(bh);
lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb);
bh = ext4_read_dirblock(inode, lblock, EITHER);
if (bh == NULL) {
offset += sb->s_blocksize;
continue;
}
if (IS_ERR(bh))
ext4: fix fs corruption when tring to remove a non-empty directory with IO error commit 7aab5c84a0f6ec2290e2ba4a6b245178b1bf949a upstream. We inject IO error when rmdir non empty direcory, then got issue as follows: step1: mkfs.ext4 -F /dev/sda step2: mount /dev/sda test step3: cd test step4: mkdir -p 1/2 step5: rmdir 1 [ 110.920551] ext4_empty_dir: inject fault [ 110.921926] EXT4-fs warning (device sda): ext4_rmdir:3113: inode #12: comm rmdir: empty directory '1' has too many links (3) step6: cd .. step7: umount test step8: fsck.ext4 -f /dev/sda e2fsck 1.42.9 (28-Dec-2013) Pass 1: Checking inodes, blocks, and sizes Pass 2: Checking directory structure Entry '..' in .../??? (13) has deleted/unused inode 12. Clear<y>? yes Pass 3: Checking directory connectivity Unconnected directory inode 13 (...) Connect to /lost+found<y>? yes Pass 4: Checking reference counts Inode 13 ref count is 3, should be 2. Fix<y>? yes Pass 5: Checking group summary information /dev/sda: ***** FILE SYSTEM WAS MODIFIED ***** /dev/sda: 12/131072 files (0.0% non-contiguous), 26157/524288 blocks ext4_rmdir if (!ext4_empty_dir(inode)) goto end_rmdir; ext4_empty_dir bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE); if (IS_ERR(bh)) return true; Now if read directory block failed, 'ext4_empty_dir' will return true, assume directory is empty. Obviously, it will lead to above issue. To solve this issue, if read directory block failed 'ext4_empty_dir' just return false. To avoid making things worse when file system is already corrupted, 'ext4_empty_dir' also return false. Signed-off-by: Ye Bin <yebin10@huawei.com> Cc: stable@kernel.org Link: https://lore.kernel.org/r/20220228024815.3952506-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-28 02:48:15 +00:00
return false;
}
de = (struct ext4_dir_entry_2 *) (bh->b_data +
(offset & (sb->s_blocksize - 1)));
if (ext4_check_dir_entry(inode, NULL, de, bh,
bh->b_data, bh->b_size, offset) ||
le32_to_cpu(de->inode)) {
brelse(bh);
return false;
}
offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize);
}
brelse(bh);
return true;
}
static int ext4_rmdir(struct inode *dir, struct dentry *dentry)
{
int retval;
struct inode *inode;
struct buffer_head *bh;
struct ext4_dir_entry_2 *de;
handle_t *handle = NULL;
if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
return -EIO;
/* Initialize quotas before so that eventual writes go in
* separate transaction */
retval = dquot_initialize(dir);
if (retval)
return retval;
retval = dquot_initialize(d_inode(dentry));
if (retval)
return retval;
retval = -ENOENT;
bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
if (IS_ERR(bh))
return PTR_ERR(bh);
if (!bh)
goto end_rmdir;
inode = d_inode(dentry);
retval = -EFSCORRUPTED;
if (le32_to_cpu(de->inode) != inode->i_ino)
goto end_rmdir;
retval = -ENOTEMPTY;
if (!ext4_empty_dir(inode))
goto end_rmdir;
handle = ext4_journal_start(dir, EXT4_HT_DIR,
EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
if (IS_ERR(handle)) {
retval = PTR_ERR(handle);
handle = NULL;
goto end_rmdir;
}
if (IS_DIRSYNC(dir))
ext4_handle_sync(handle);
retval = ext4_delete_entry(handle, dir, de, bh);
if (retval)
goto end_rmdir;
if (!EXT4_DIR_LINK_EMPTY(inode))
ext4_warning_inode(inode,
"empty directory '%.*s' has too many links (%u)",
dentry->d_name.len, dentry->d_name.name,
inode->i_nlink);
inode_inc_iversion(inode);
clear_nlink(inode);
/* There's no need to set i_disksize: the fact that i_nlink is
* zero will ensure that the right thing happens during any
* recovery. */
inode->i_size = 0;
ext4_orphan_add(handle, inode);
inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
retval = ext4_mark_inode_dirty(handle, inode);
if (retval)
goto end_rmdir;
ext4_dec_count(dir);
ext4_update_dx_flag(dir);
ext4_fc_track_unlink(handle, dentry);
retval = ext4_mark_inode_dirty(handle, dir);
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
#ifdef CONFIG_UNICODE
/* VFS negative dentries are incompatible with Encoding and
* Case-insensitiveness. Eventually we'll want avoid
* invalidating the dentries here, alongside with returning the
* negative dentries at ext4_lookup(), when it is better
* supported by the VFS for the CI case.
*/
if (IS_CASEFOLDED(dir))
d_invalidate(dentry);
#endif
end_rmdir:
brelse(bh);
if (handle)
ext4_journal_stop(handle);
return retval;
}
int __ext4_unlink(struct inode *dir, const struct qstr *d_name,
struct inode *inode,
struct dentry *dentry /* NULL during fast_commit recovery */)
{
int retval = -ENOENT;
struct buffer_head *bh;
struct ext4_dir_entry_2 *de;
handle_t *handle;
int skip_remove_dentry = 0;
/*
* Keep this outside the transaction; it may have to set up the
* directory's encryption key, which isn't GFP_NOFS-safe.
*/
bh = ext4_find_entry(dir, d_name, &de, NULL);
if (IS_ERR(bh))
return PTR_ERR(bh);
if (!bh)
return -ENOENT;
if (le32_to_cpu(de->inode) != inode->i_ino) {
/*
* It's okay if we find dont find dentry which matches
* the inode. That's because it might have gotten
* renamed to a different inode number
*/
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
skip_remove_dentry = 1;
else
goto out_bh;
}
handle = ext4_journal_start(dir, EXT4_HT_DIR,
EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
if (IS_ERR(handle)) {
retval = PTR_ERR(handle);
goto out_bh;
}
if (IS_DIRSYNC(dir))
ext4_handle_sync(handle);
if (!skip_remove_dentry) {
retval = ext4_delete_entry(handle, dir, de, bh);
if (retval)
goto out_handle;
dir->i_ctime = dir->i_mtime = current_time(dir);
ext4_update_dx_flag(dir);
retval = ext4_mark_inode_dirty(handle, dir);
if (retval)
goto out_handle;
} else {
retval = 0;
}
if (inode->i_nlink == 0)
ext4_warning_inode(inode, "Deleting file '%.*s' with no links",
d_name->len, d_name->name);
else
drop_nlink(inode);
if (!inode->i_nlink)
ext4_orphan_add(handle, inode);
inode->i_ctime = current_time(inode);
retval = ext4_mark_inode_dirty(handle, inode);
if (dentry && !retval)
ext4_fc_track_unlink(handle, dentry);
out_handle:
ext4_journal_stop(handle);
out_bh:
brelse(bh);
return retval;
}
static int ext4_unlink(struct inode *dir, struct dentry *dentry)
{
int retval;
if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
return -EIO;
trace_ext4_unlink_enter(dir, dentry);
/*
* Initialize quotas before so that eventual writes go
* in separate transaction
*/
retval = dquot_initialize(dir);
if (retval)
goto out_trace;
retval = dquot_initialize(d_inode(dentry));
if (retval)
goto out_trace;
retval = __ext4_unlink(dir, &dentry->d_name, d_inode(dentry), dentry);
ext4: Support case-insensitive file name lookups This patch implements the actual support for case-insensitive file name lookups in ext4, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (EXT4_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, Ext4 only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in ext4 is implemented lives in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for EXT4 because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-25 18:12:08 +00:00
#ifdef CONFIG_UNICODE
/* VFS negative dentries are incompatible with Encoding and
* Case-insensitiveness. Eventually we'll want avoid
* invalidating the dentries here, alongside with returning the
* negative dentries at ext4_lookup(), when it is better
* supported by the VFS for the CI case.
*/
if (IS_CASEFOLDED(dir))
d_invalidate(dentry);
#endif
out_trace:
trace_ext4_unlink_exit(dentry, retval);
return retval;
}
static int ext4_symlink(struct user_namespace *mnt_userns, struct inode *dir,
struct dentry *dentry, const char *symname)
{
handle_t *handle;
struct inode *inode;
int err, len = strlen(symname);
int credits;
struct fscrypt_str disk_link;
if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
return -EIO;
err = fscrypt_prepare_symlink(dir, symname, len, dir->i_sb->s_blocksize,
&disk_link);
if (err)
return err;
err = dquot_initialize(dir);
if (err)
return err;
if ((disk_link.len > EXT4_N_BLOCKS * 4)) {
/*
* For non-fast symlinks, we just allocate inode and put it on
* orphan list in the first transaction => we need bitmap,
* group descriptor, sb, inode block, quota blocks, and
* possibly selinux xattr blocks.
*/
credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) +
EXT4_XATTR_TRANS_BLOCKS;
} else {
/*
* Fast symlink. We have to add entry to directory
* (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS),
* allocate new inode (bitmap, group descriptor, inode block,
* quota blocks, sb is already counted in previous macros).
*/
credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3;
}
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
inode = ext4_new_inode_start_handle(mnt_userns, dir, S_IFLNK|S_IRWXUGO,
&dentry->d_name, 0, NULL,
EXT4_HT_DIR, credits);
handle = ext4_journal_current_handle();
if (IS_ERR(inode)) {
if (handle)
ext4_journal_stop(handle);
return PTR_ERR(inode);
}
if (IS_ENCRYPTED(inode)) {
err = fscrypt_encrypt_symlink(inode, symname, len, &disk_link);
if (err)
goto err_drop_inode;
inode->i_op = &ext4_encrypted_symlink_inode_operations;
}
if ((disk_link.len > EXT4_N_BLOCKS * 4)) {
if (!IS_ENCRYPTED(inode))
inode->i_op = &ext4_symlink_inode_operations;
inode_nohighmem(inode);
ext4_set_aops(inode);
/*
* We cannot call page_symlink() with transaction started
* because it calls into ext4_write_begin() which can wait
* for transaction commit if we are running out of space
* and thus we deadlock. So we have to stop transaction now
* and restart it when symlink contents is written.
*
* To keep fs consistent in case of crash, we have to put inode
* to orphan list in the mean time.
*/
drop_nlink(inode);
err = ext4_orphan_add(handle, inode);
if (handle)
ext4_journal_stop(handle);
handle = NULL;
if (err)
goto err_drop_inode;
err = __page_symlink(inode, disk_link.name, disk_link.len, 1);
if (err)
goto err_drop_inode;
/*
* Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS
* + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified
*/
handle = ext4_journal_start(dir, EXT4_HT_DIR,
EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1);
if (IS_ERR(handle)) {
err = PTR_ERR(handle);
handle = NULL;
goto err_drop_inode;
}
set_nlink(inode, 1);
err = ext4_orphan_del(handle, inode);
if (err)
goto err_drop_inode;
} else {
/* clear the extent format for fast symlink */
ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS);
if (!IS_ENCRYPTED(inode)) {
inode->i_op = &ext4_fast_symlink_inode_operations;
inode->i_link = (char *)&EXT4_I(inode)->i_data;
}
memcpy((char *)&EXT4_I(inode)->i_data, disk_link.name,
disk_link.len);
inode->i_size = disk_link.len - 1;
}
EXT4_I(inode)->i_disksize = inode->i_size;
err = ext4_add_nondir(handle, dentry, &inode);
if (handle)
ext4_journal_stop(handle);
if (inode)
iput(inode);
goto out_free_encrypted_link;
err_drop_inode:
if (handle)
ext4_journal_stop(handle);
clear_nlink(inode);
ext4: fix unttached inode after power cut with orphan file feature enabled [ Upstream commit 1524773425ae8113b0b782886366e68656b34e53 ] Running generic/475(filesystem consistent tests after power cut) could easily trigger unattached inode error while doing fsck: Unattached zero-length inode 39405. Clear? no Unattached inode 39405 Connect to /lost+found? no Above inconsistence is caused by following process: P1 P2 ext4_create inode = ext4_new_inode_start_handle // itable records nlink=1 ext4_add_nondir err = ext4_add_entry // ENOSPC ext4_append ext4_bread ext4_getblk ext4_map_blocks // returns ENOSPC drop_nlink(inode) // won't be updated into disk inode ext4_orphan_add(handle, inode) ext4_orphan_file_add ext4_journal_stop(handle) jbd2_journal_commit_transaction // commit success >> power cut << ext4_fill_super ext4_load_and_init_journal // itable records nlink=1 ext4_orphan_cleanup ext4_process_orphan if (inode->i_nlink) // true, inode won't be deleted Then, allocated inode will be reserved on disk and corresponds to no dentries, so e2fsck reports 'unattached inode' problem. The problem won't happen if orphan file feature is disabled, because ext4_orphan_add() will update disk inode in orphan list mode. There are several places not updating disk inode while putting inode into orphan area, such as ext4_add_nondir(), ext4_symlink() and whiteout in ext4_rename(). Fix it by updating inode into disk in all error branches of these places. Link: https://bugzilla.kernel.org/show_bug.cgi?id=217605 Fixes: 02f310fcf47f ("ext4: Speedup ext4 orphan inode handling") Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20230628132011.650383-1-chengzhihao1@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 13:20:11 +00:00
ext4_mark_inode_dirty(handle, inode);
unlock_new_inode(inode);
iput(inode);
out_free_encrypted_link:
if (disk_link.name != (unsigned char *)symname)
kfree(disk_link.name);
return err;
}
int __ext4_link(struct inode *dir, struct inode *inode, struct dentry *dentry)
{
handle_t *handle;
int err, retries = 0;
retry:
handle = ext4_journal_start(dir, EXT4_HT_DIR,
(EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS) + 1);
if (IS_ERR(handle))
return PTR_ERR(handle);
if (IS_DIRSYNC(dir))
ext4_handle_sync(handle);
inode->i_ctime = current_time(inode);
ext4_inc_count(inode);
ihold(inode);
err = ext4_add_entry(handle, dentry, inode);
if (!err) {
err = ext4_mark_inode_dirty(handle, inode);
/* this can happen only for tmpfile being
* linked the first time
*/
if (inode->i_nlink == 1)
ext4_orphan_del(handle, inode);
d_instantiate(dentry, inode);
ext4_fc_track_link(handle, dentry);
} else {
drop_nlink(inode);
iput(inode);
}
ext4_journal_stop(handle);
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
}
static int ext4_link(struct dentry *old_dentry,
struct inode *dir, struct dentry *dentry)
{
struct inode *inode = d_inode(old_dentry);
int err;
if (inode->i_nlink >= EXT4_LINK_MAX)
return -EMLINK;
err = fscrypt_prepare_link(old_dentry, dir, dentry);
if (err)
return err;
if ((ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) &&
(!projid_eq(EXT4_I(dir)->i_projid,
EXT4_I(old_dentry->d_inode)->i_projid)))
return -EXDEV;
err = dquot_initialize(dir);
if (err)
return err;
return __ext4_link(dir, inode, dentry);
}
/*
* Try to find buffer head where contains the parent block.
* It should be the inode block if it is inlined or the 1st block
* if it is a normal dir.
*/
static struct buffer_head *ext4_get_first_dir_block(handle_t *handle,
struct inode *inode,
int *retval,
struct ext4_dir_entry_2 **parent_de,
int *inlined)
{
struct buffer_head *bh;
if (!ext4_has_inline_data(inode)) {
ext4: fix use-after-free in ext4_rename_dir_prepare commit 0be698ecbe4471fcad80e81ec6a05001421041b3 upstream. We got issue as follows: EXT4-fs (loop0): mounted filesystem without journal. Opts: ,errors=continue ext4_get_first_dir_block: bh->b_data=0xffff88810bee6000 len=34478 ext4_get_first_dir_block: *parent_de=0xffff88810beee6ae bh->b_data=0xffff88810bee6000 ext4_rename_dir_prepare: [1] parent_de=0xffff88810beee6ae ================================================================== BUG: KASAN: use-after-free in ext4_rename_dir_prepare+0x152/0x220 Read of size 4 at addr ffff88810beee6ae by task rep/1895 CPU: 13 PID: 1895 Comm: rep Not tainted 5.10.0+ #241 Call Trace: dump_stack+0xbe/0xf9 print_address_description.constprop.0+0x1e/0x220 kasan_report.cold+0x37/0x7f ext4_rename_dir_prepare+0x152/0x220 ext4_rename+0xf44/0x1ad0 ext4_rename2+0x11c/0x170 vfs_rename+0xa84/0x1440 do_renameat2+0x683/0x8f0 __x64_sys_renameat+0x53/0x60 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f45a6fc41c9 RSP: 002b:00007ffc5a470218 EFLAGS: 00000246 ORIG_RAX: 0000000000000108 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f45a6fc41c9 RDX: 0000000000000005 RSI: 0000000020000180 RDI: 0000000000000005 RBP: 00007ffc5a470240 R08: 00007ffc5a470160 R09: 0000000020000080 R10: 00000000200001c0 R11: 0000000000000246 R12: 0000000000400bb0 R13: 00007ffc5a470320 R14: 0000000000000000 R15: 0000000000000000 The buggy address belongs to the page: page:00000000440015ce refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x10beee flags: 0x200000000000000() raw: 0200000000000000 ffffea00043ff4c8 ffffea0004325608 0000000000000000 raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88810beee580: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88810beee600: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff88810beee680: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff88810beee700: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88810beee780: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Disabling lock debugging due to kernel taint ext4_rename_dir_prepare: [2] parent_de->inode=3537895424 ext4_rename_dir_prepare: [3] dir=0xffff888124170140 ext4_rename_dir_prepare: [4] ino=2 ext4_rename_dir_prepare: ent->dir->i_ino=2 parent=-757071872 Reason is first directory entry which 'rec_len' is 34478, then will get illegal parent entry. Now, we do not check directory entry after read directory block in 'ext4_get_first_dir_block'. To solve this issue, check directory entry in 'ext4_get_first_dir_block'. [ Trigger an ext4_error() instead of just warning if the directory is missing a '.' or '..' entry. Also make sure we return an error code if the file system is corrupted. -TYT ] Signed-off-by: Ye Bin <yebin10@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20220414025223.4113128-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-14 02:52:23 +00:00
struct ext4_dir_entry_2 *de;
unsigned int offset;
/* The first directory block must not be a hole, so
* treat it as DIRENT_HTREE
*/
bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE);
if (IS_ERR(bh)) {
*retval = PTR_ERR(bh);
return NULL;
}
ext4: fix use-after-free in ext4_rename_dir_prepare commit 0be698ecbe4471fcad80e81ec6a05001421041b3 upstream. We got issue as follows: EXT4-fs (loop0): mounted filesystem without journal. Opts: ,errors=continue ext4_get_first_dir_block: bh->b_data=0xffff88810bee6000 len=34478 ext4_get_first_dir_block: *parent_de=0xffff88810beee6ae bh->b_data=0xffff88810bee6000 ext4_rename_dir_prepare: [1] parent_de=0xffff88810beee6ae ================================================================== BUG: KASAN: use-after-free in ext4_rename_dir_prepare+0x152/0x220 Read of size 4 at addr ffff88810beee6ae by task rep/1895 CPU: 13 PID: 1895 Comm: rep Not tainted 5.10.0+ #241 Call Trace: dump_stack+0xbe/0xf9 print_address_description.constprop.0+0x1e/0x220 kasan_report.cold+0x37/0x7f ext4_rename_dir_prepare+0x152/0x220 ext4_rename+0xf44/0x1ad0 ext4_rename2+0x11c/0x170 vfs_rename+0xa84/0x1440 do_renameat2+0x683/0x8f0 __x64_sys_renameat+0x53/0x60 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f45a6fc41c9 RSP: 002b:00007ffc5a470218 EFLAGS: 00000246 ORIG_RAX: 0000000000000108 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f45a6fc41c9 RDX: 0000000000000005 RSI: 0000000020000180 RDI: 0000000000000005 RBP: 00007ffc5a470240 R08: 00007ffc5a470160 R09: 0000000020000080 R10: 00000000200001c0 R11: 0000000000000246 R12: 0000000000400bb0 R13: 00007ffc5a470320 R14: 0000000000000000 R15: 0000000000000000 The buggy address belongs to the page: page:00000000440015ce refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x10beee flags: 0x200000000000000() raw: 0200000000000000 ffffea00043ff4c8 ffffea0004325608 0000000000000000 raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88810beee580: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88810beee600: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff88810beee680: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff88810beee700: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88810beee780: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Disabling lock debugging due to kernel taint ext4_rename_dir_prepare: [2] parent_de->inode=3537895424 ext4_rename_dir_prepare: [3] dir=0xffff888124170140 ext4_rename_dir_prepare: [4] ino=2 ext4_rename_dir_prepare: ent->dir->i_ino=2 parent=-757071872 Reason is first directory entry which 'rec_len' is 34478, then will get illegal parent entry. Now, we do not check directory entry after read directory block in 'ext4_get_first_dir_block'. To solve this issue, check directory entry in 'ext4_get_first_dir_block'. [ Trigger an ext4_error() instead of just warning if the directory is missing a '.' or '..' entry. Also make sure we return an error code if the file system is corrupted. -TYT ] Signed-off-by: Ye Bin <yebin10@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20220414025223.4113128-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-14 02:52:23 +00:00
de = (struct ext4_dir_entry_2 *) bh->b_data;
if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data,
bh->b_size, 0) ||
le32_to_cpu(de->inode) != inode->i_ino ||
strcmp(".", de->name)) {
EXT4_ERROR_INODE(inode, "directory missing '.'");
brelse(bh);
*retval = -EFSCORRUPTED;
return NULL;
}
offset = ext4_rec_len_from_disk(de->rec_len,
inode->i_sb->s_blocksize);
de = ext4_next_entry(de, inode->i_sb->s_blocksize);
if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data,
bh->b_size, offset) ||
le32_to_cpu(de->inode) == 0 || strcmp("..", de->name)) {
EXT4_ERROR_INODE(inode, "directory missing '..'");
brelse(bh);
*retval = -EFSCORRUPTED;
return NULL;
}
*parent_de = de;
return bh;
}
*inlined = 1;
return ext4_get_first_inline_block(inode, parent_de, retval);
}
struct ext4_renament {
struct inode *dir;
struct dentry *dentry;
struct inode *inode;
bool is_dir;
int dir_nlink_delta;
/* entry for "dentry" */
struct buffer_head *bh;
struct ext4_dir_entry_2 *de;
int inlined;
/* entry for ".." in inode if it's a directory */
struct buffer_head *dir_bh;
struct ext4_dir_entry_2 *parent_de;
int dir_inlined;
};
static int ext4_rename_dir_prepare(handle_t *handle, struct ext4_renament *ent)
{
int retval;
ent->dir_bh = ext4_get_first_dir_block(handle, ent->inode,
&retval, &ent->parent_de,
&ent->dir_inlined);
if (!ent->dir_bh)
return retval;
if (le32_to_cpu(ent->parent_de->inode) != ent->dir->i_ino)
return -EFSCORRUPTED;
BUFFER_TRACE(ent->dir_bh, "get_write_access");
return ext4_journal_get_write_access(handle, ent->dir->i_sb,
ent->dir_bh, EXT4_JTR_NONE);
}
static int ext4_rename_dir_finish(handle_t *handle, struct ext4_renament *ent,
unsigned dir_ino)
{
int retval;
ent->parent_de->inode = cpu_to_le32(dir_ino);
BUFFER_TRACE(ent->dir_bh, "call ext4_handle_dirty_metadata");
if (!ent->dir_inlined) {
if (is_dx(ent->inode)) {
retval = ext4_handle_dirty_dx_node(handle,
ent->inode,
ent->dir_bh);
} else {
retval = ext4_handle_dirty_dirblock(handle, ent->inode,
ent->dir_bh);
}
} else {
retval = ext4_mark_inode_dirty(handle, ent->inode);
}
if (retval) {
ext4_std_error(ent->dir->i_sb, retval);
return retval;
}
return 0;
}
static int ext4_setent(handle_t *handle, struct ext4_renament *ent,
unsigned ino, unsigned file_type)
{
int retval, retval2;
BUFFER_TRACE(ent->bh, "get write access");
retval = ext4_journal_get_write_access(handle, ent->dir->i_sb, ent->bh,
EXT4_JTR_NONE);
if (retval)
return retval;
ent->de->inode = cpu_to_le32(ino);
if (ext4_has_feature_filetype(ent->dir->i_sb))
ent->de->file_type = file_type;
inode_inc_iversion(ent->dir);
ent->dir->i_ctime = ent->dir->i_mtime =
current_time(ent->dir);
retval = ext4_mark_inode_dirty(handle, ent->dir);
BUFFER_TRACE(ent->bh, "call ext4_handle_dirty_metadata");
if (!ent->inlined) {
retval2 = ext4_handle_dirty_dirblock(handle, ent->dir, ent->bh);
if (unlikely(retval2)) {
ext4_std_error(ent->dir->i_sb, retval2);
return retval2;
}
}
return retval;
}
static void ext4_resetent(handle_t *handle, struct ext4_renament *ent,
unsigned ino, unsigned file_type)
{
struct ext4_renament old = *ent;
int retval = 0;
/*
* old->de could have moved from under us during make indexed dir,
* so the old->de may no longer valid and need to find it again
* before reset old inode info.
*/
ext4: fix RENAME_WHITEOUT handling for inline directories commit c9f62c8b2dbf7240536c0cc9a4529397bb8bf38e upstream. A significant number of xfstests can cause ext4 to log one or more warning messages when they are run on a test file system where the inline_data feature has been enabled. An example: "EXT4-fs warning (device vdc): ext4_dirblock_csum_set:425: inode #16385: comm fsstress: No space for directory leaf checksum. Please run e2fsck -D." The xfstests include: ext4/057, 058, and 307; generic/013, 051, 068, 070, 076, 078, 083, 232, 269, 270, 390, 461, 475, 476, 482, 579, 585, 589, 626, 631, and 650. In this situation, the warning message indicates a bug in the code that performs the RENAME_WHITEOUT operation on a directory entry that has been stored inline. It doesn't detect that the directory is stored inline, and incorrectly attempts to compute a dirent block checksum on the whiteout inode when creating it. This attempt fails as a result of the integrity checking in get_dirent_tail (usually due to a failure to match the EXT4_FT_DIR_CSUM magic cookie), and the warning message is then emitted. Fix this by simply collecting the inlined data state at the time the search for the source directory entry is performed. Existing code handles the rest, and this is sufficient to eliminate all spurious warning messages produced by the tests above. Go one step further and do the same in the code that resets the source directory entry in the event of failure. The inlined state should be present in the "old" struct, but given the possibility of a race there's no harm in taking a conservative approach and getting that information again since the directory entry is being reread anyway. Fixes: b7ff91fd030d ("ext4: find old entry again if failed to rename whiteout") Cc: stable@kernel.org Signed-off-by: Eric Whitney <enwlinux@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20230210173244.679890-1-enwlinux@gmail.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-10 17:32:44 +00:00
old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de,
&old.inlined);
if (IS_ERR(old.bh))
retval = PTR_ERR(old.bh);
if (!old.bh)
retval = -ENOENT;
if (retval) {
ext4_std_error(old.dir->i_sb, retval);
return;
}
ext4_setent(handle, &old, ino, file_type);
brelse(old.bh);
}
static int ext4_find_delete_entry(handle_t *handle, struct inode *dir,
const struct qstr *d_name)
{
int retval = -ENOENT;
struct buffer_head *bh;
struct ext4_dir_entry_2 *de;
bh = ext4_find_entry(dir, d_name, &de, NULL);
if (IS_ERR(bh))
return PTR_ERR(bh);
if (bh) {
retval = ext4_delete_entry(handle, dir, de, bh);
brelse(bh);
}
return retval;
}
static void ext4_rename_delete(handle_t *handle, struct ext4_renament *ent,
int force_reread)
{
int retval;
/*
* ent->de could have moved from under us during htree split, so make
* sure that we are deleting the right entry. We might also be pointing
* to a stale entry in the unused part of ent->bh so just checking inum
* and the name isn't enough.
*/
if (le32_to_cpu(ent->de->inode) != ent->inode->i_ino ||
ent->de->name_len != ent->dentry->d_name.len ||
strncmp(ent->de->name, ent->dentry->d_name.name,
ent->de->name_len) ||
force_reread) {
retval = ext4_find_delete_entry(handle, ent->dir,
&ent->dentry->d_name);
} else {
retval = ext4_delete_entry(handle, ent->dir, ent->de, ent->bh);
if (retval == -ENOENT) {
retval = ext4_find_delete_entry(handle, ent->dir,
&ent->dentry->d_name);
}
}
if (retval) {
ext4_warning_inode(ent->dir,
"Deleting old file: nlink %d, error=%d",
ent->dir->i_nlink, retval);
}
}
static void ext4_update_dir_count(handle_t *handle, struct ext4_renament *ent)
{
if (ent->dir_nlink_delta) {
if (ent->dir_nlink_delta == -1)
ext4_dec_count(ent->dir);
else
ext4_inc_count(ent->dir);
ext4_mark_inode_dirty(handle, ent->dir);
}
}
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
static struct inode *ext4_whiteout_for_rename(struct user_namespace *mnt_userns,
struct ext4_renament *ent,
int credits, handle_t **h)
{
struct inode *wh;
handle_t *handle;
int retries = 0;
/*
* for inode block, sb block, group summaries,
* and inode bitmap
*/
credits += (EXT4_MAXQUOTAS_TRANS_BLOCKS(ent->dir->i_sb) +
EXT4_XATTR_TRANS_BLOCKS + 4);
retry:
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
wh = ext4_new_inode_start_handle(mnt_userns, ent->dir,
S_IFCHR | WHITEOUT_MODE,
&ent->dentry->d_name, 0, NULL,
EXT4_HT_DIR, credits);
handle = ext4_journal_current_handle();
if (IS_ERR(wh)) {
if (handle)
ext4_journal_stop(handle);
if (PTR_ERR(wh) == -ENOSPC &&
ext4_should_retry_alloc(ent->dir->i_sb, &retries))
goto retry;
} else {
*h = handle;
init_special_inode(wh, wh->i_mode, WHITEOUT_DEV);
wh->i_op = &ext4_special_inode_operations;
}
return wh;
}
/*
* Anybody can rename anything with this: the permission checks are left to the
* higher-level routines.
*
* n.b. old_{dentry,inode) refers to the source dentry/inode
* while new_{dentry,inode) refers to the destination dentry/inode
* This comes from rename(const char *oldpath, const char *newpath)
*/
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
static int ext4_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
struct dentry *old_dentry, struct inode *new_dir,
struct dentry *new_dentry, unsigned int flags)
{
handle_t *handle = NULL;
struct ext4_renament old = {
.dir = old_dir,
.dentry = old_dentry,
.inode = d_inode(old_dentry),
};
struct ext4_renament new = {
.dir = new_dir,
.dentry = new_dentry,
.inode = d_inode(new_dentry),
};
int force_reread;
int retval;
struct inode *whiteout = NULL;
int credits;
u8 old_file_type;
if (new.inode && new.inode->i_nlink == 0) {
EXT4_ERROR_INODE(new.inode,
"target of rename is already freed");
return -EFSCORRUPTED;
}
if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT)) &&
(!projid_eq(EXT4_I(new_dir)->i_projid,
EXT4_I(old_dentry->d_inode)->i_projid)))
return -EXDEV;
retval = dquot_initialize(old.dir);
ext4: init quota for 'old.inode' in 'ext4_rename' commit fae381a3d79bb94aa2eb752170d47458d778b797 upstream. Syzbot found the following issue: ext4_parse_param: s_want_extra_isize=128 ext4_inode_info_init: s_want_extra_isize=32 ext4_rename: old.inode=ffff88823869a2c8 old.dir=ffff888238699828 new.inode=ffff88823869d7e8 new.dir=ffff888238699828 __ext4_mark_inode_dirty: inode=ffff888238699828 ea_isize=32 want_ea_size=128 __ext4_mark_inode_dirty: inode=ffff88823869a2c8 ea_isize=32 want_ea_size=128 ext4_xattr_block_set: inode=ffff88823869a2c8 ------------[ cut here ]------------ WARNING: CPU: 13 PID: 2234 at fs/ext4/xattr.c:2070 ext4_xattr_block_set.cold+0x22/0x980 Modules linked in: RIP: 0010:ext4_xattr_block_set.cold+0x22/0x980 RSP: 0018:ffff888227d3f3b0 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88823007a000 RCX: 0000000000000000 RDX: 0000000000000a03 RSI: 0000000000000040 RDI: ffff888230078178 RBP: 0000000000000000 R08: 000000000000002c R09: ffffed1075c7df8e R10: ffff8883ae3efc6b R11: ffffed1075c7df8d R12: 0000000000000000 R13: ffff88823869a2c8 R14: ffff8881012e0460 R15: dffffc0000000000 FS: 00007f350ac1f740(0000) GS:ffff8883ae200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f350a6ed6a0 CR3: 0000000237456000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? ext4_xattr_set_entry+0x3b7/0x2320 ? ext4_xattr_block_set+0x0/0x2020 ? ext4_xattr_set_entry+0x0/0x2320 ? ext4_xattr_check_entries+0x77/0x310 ? ext4_xattr_ibody_set+0x23b/0x340 ext4_xattr_move_to_block+0x594/0x720 ext4_expand_extra_isize_ea+0x59a/0x10f0 __ext4_expand_extra_isize+0x278/0x3f0 __ext4_mark_inode_dirty.cold+0x347/0x410 ext4_rename+0xed3/0x174f vfs_rename+0x13a7/0x2510 do_renameat2+0x55d/0x920 __x64_sys_rename+0x7d/0xb0 do_syscall_64+0x3b/0xa0 entry_SYSCALL_64_after_hwframe+0x72/0xdc As 'ext4_rename' will modify 'old.inode' ctime and mark inode dirty, which may trigger expand 'extra_isize' and allocate block. If inode didn't init quota will lead to warning. To solve above issue, init 'old.inode' firstly in 'ext4_rename'. Reported-by: syzbot+98346927678ac3059c77@syzkaller.appspotmail.com Signed-off-by: Ye Bin <yebin10@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20221107015335.2524319-1-yebin@huaweicloud.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-07 01:53:35 +00:00
if (retval)
return retval;
retval = dquot_initialize(old.inode);
if (retval)
return retval;
retval = dquot_initialize(new.dir);
if (retval)
return retval;
/* Initialize quotas before so that eventual writes go
* in separate transaction */
if (new.inode) {
retval = dquot_initialize(new.inode);
if (retval)
return retval;
}
ext4: fix RENAME_WHITEOUT handling for inline directories commit c9f62c8b2dbf7240536c0cc9a4529397bb8bf38e upstream. A significant number of xfstests can cause ext4 to log one or more warning messages when they are run on a test file system where the inline_data feature has been enabled. An example: "EXT4-fs warning (device vdc): ext4_dirblock_csum_set:425: inode #16385: comm fsstress: No space for directory leaf checksum. Please run e2fsck -D." The xfstests include: ext4/057, 058, and 307; generic/013, 051, 068, 070, 076, 078, 083, 232, 269, 270, 390, 461, 475, 476, 482, 579, 585, 589, 626, 631, and 650. In this situation, the warning message indicates a bug in the code that performs the RENAME_WHITEOUT operation on a directory entry that has been stored inline. It doesn't detect that the directory is stored inline, and incorrectly attempts to compute a dirent block checksum on the whiteout inode when creating it. This attempt fails as a result of the integrity checking in get_dirent_tail (usually due to a failure to match the EXT4_FT_DIR_CSUM magic cookie), and the warning message is then emitted. Fix this by simply collecting the inlined data state at the time the search for the source directory entry is performed. Existing code handles the rest, and this is sufficient to eliminate all spurious warning messages produced by the tests above. Go one step further and do the same in the code that resets the source directory entry in the event of failure. The inlined state should be present in the "old" struct, but given the possibility of a race there's no harm in taking a conservative approach and getting that information again since the directory entry is being reread anyway. Fixes: b7ff91fd030d ("ext4: find old entry again if failed to rename whiteout") Cc: stable@kernel.org Signed-off-by: Eric Whitney <enwlinux@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20230210173244.679890-1-enwlinux@gmail.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-10 17:32:44 +00:00
old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de,
&old.inlined);
if (IS_ERR(old.bh))
return PTR_ERR(old.bh);
/*
* Check for inode number is _not_ due to possible IO errors.
* We might rmdir the source, keep it as pwd of some process
* and merrily kill the link to whatever was created under the
* same name. Goodbye sticky bit ;-<
*/
retval = -ENOENT;
if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino)
goto release_bh;
new.bh = ext4_find_entry(new.dir, &new.dentry->d_name,
&new.de, &new.inlined);
if (IS_ERR(new.bh)) {
retval = PTR_ERR(new.bh);
new.bh = NULL;
goto release_bh;
}
if (new.bh) {
if (!new.inode) {
brelse(new.bh);
new.bh = NULL;
}
}
if (new.inode && !test_opt(new.dir->i_sb, NO_AUTO_DA_ALLOC))
ext4_alloc_da_blocks(old.inode);
credits = (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2);
if (!(flags & RENAME_WHITEOUT)) {
handle = ext4_journal_start(old.dir, EXT4_HT_DIR, credits);
if (IS_ERR(handle)) {
retval = PTR_ERR(handle);
goto release_bh;
}
} else {
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
whiteout = ext4_whiteout_for_rename(mnt_userns, &old, credits, &handle);
if (IS_ERR(whiteout)) {
retval = PTR_ERR(whiteout);
goto release_bh;
}
}
ext4: fix bug for rename with RENAME_WHITEOUT We got a "deleted inode referenced" warning cross our fsstress test. The bug can be reproduced easily with following steps: cd /dev/shm mkdir test/ fallocate -l 128M img mkfs.ext4 -b 1024 img mount img test/ dd if=/dev/zero of=test/foo bs=1M count=128 mkdir test/dir/ && cd test/dir/ for ((i=0;i<1000;i++)); do touch file$i; done # consume all block cd ~ && renameat2(AT_FDCWD, /dev/shm/test/dir/file1, AT_FDCWD, /dev/shm/test/dir/dst_file, RENAME_WHITEOUT) # ext4_add_entry in ext4_rename will return ENOSPC!! cd /dev/shm/ && umount test/ && mount img test/ && ls -li test/dir/file1 We will get the output: "ls: cannot access 'test/dir/file1': Structure needs cleaning" and the dmesg show: "EXT4-fs error (device loop0): ext4_lookup:1626: inode #2049: comm ls: deleted inode referenced: 139" ext4_rename will create a special inode for whiteout and use this 'ino' to replace the source file's dir entry 'ino'. Once error happens latter(the error above was the ENOSPC return from ext4_add_entry in ext4_rename since all space has been consumed), the cleanup do drop the nlink for whiteout, but forget to restore 'ino' with source file. This will trigger the bug describle as above. Signed-off-by: yangerkun <yangerkun@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: stable@vger.kernel.org Fixes: cd808deced43 ("ext4: support RENAME_WHITEOUT") Link: https://lore.kernel.org/r/20210105062857.3566-1-yangerkun@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2021-01-05 06:28:57 +00:00
old_file_type = old.de->file_type;
if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir))
ext4_handle_sync(handle);
if (S_ISDIR(old.inode->i_mode)) {
if (new.inode) {
retval = -ENOTEMPTY;
if (!ext4_empty_dir(new.inode))
goto end_rename;
} else {
retval = -EMLINK;
if (new.dir != old.dir && EXT4_DIR_LINK_MAX(new.dir))
goto end_rename;
}
retval = ext4_rename_dir_prepare(handle, &old);
if (retval)
goto end_rename;
}
/*
* If we're renaming a file within an inline_data dir and adding or
* setting the new dirent causes a conversion from inline_data to
* extents/blockmap, we need to force the dirent delete code to
* re-read the directory, or else we end up trying to delete a dirent
* from what is now the extent tree root (or a block map).
*/
force_reread = (new.dir->i_ino == old.dir->i_ino &&
ext4_test_inode_flag(new.dir, EXT4_INODE_INLINE_DATA));
if (whiteout) {
/*
* Do this before adding a new entry, so the old entry is sure
* to be still pointing to the valid old entry.
*/
retval = ext4_setent(handle, &old, whiteout->i_ino,
EXT4_FT_CHRDEV);
if (retval)
goto end_rename;
retval = ext4_mark_inode_dirty(handle, whiteout);
if (unlikely(retval))
goto end_rename;
ext4: fix rename whiteout with fast commit This patch adds rename whiteout support in fast commits. Note that the whiteout object that gets created is actually char device. Which imples, the function ext4_inode_journal_mode(struct inode *inode) would return "JOURNAL_DATA" for this inode. This has a consequence in fast commit code that it will make creation of the whiteout object a fast-commit ineligible behavior and thus will fall back to full commits. With this patch, this can be observed by running fast commits with rename whiteout and seeing the stats generated by ext4_fc_stats tracepoint as follows: ext4_fc_stats: dev 254:32 fc ineligible reasons: XATTR:0, CROSS_RENAME:0, JOURNAL_FLAG_CHANGE:0, NO_MEM:0, SWAP_BOOT:0, RESIZE:0, RENAME_DIR:0, FALLOC_RANGE:0, INODE_JOURNAL_DATA:16; num_commits:6, ineligible: 6, numblks: 3 So in short, this patch guarantees that in case of rename whiteout, we fall back to full commits. Amir mentioned that instead of creating a new whiteout object for every rename, we can create a static whiteout object with irrelevant nlink. That will make fast commits to not fall back to full commit. But until this happens, this patch will ensure correctness by falling back to full commits. Fixes: 8016e29f4362 ("ext4: fast commit recovery path") Cc: stable@kernel.org Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@gmail.com> Link: https://lore.kernel.org/r/20210316221921.1124955-1-harshadshirwadkar@gmail.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2021-03-16 22:19:21 +00:00
}
if (!new.bh) {
retval = ext4_add_entry(handle, new.dentry, old.inode);
if (retval)
goto end_rename;
} else {
retval = ext4_setent(handle, &new,
old.inode->i_ino, old_file_type);
if (retval)
goto end_rename;
}
if (force_reread)
force_reread = !ext4_test_inode_flag(new.dir,
EXT4_INODE_INLINE_DATA);
/*
* Like most other Unix systems, set the ctime for inodes on a
* rename.
*/
old.inode->i_ctime = current_time(old.inode);
retval = ext4_mark_inode_dirty(handle, old.inode);
if (unlikely(retval))
goto end_rename;
if (!whiteout) {
/*
* ok, that's it
*/
ext4_rename_delete(handle, &old, force_reread);
}
if (new.inode) {
ext4_dec_count(new.inode);
new.inode->i_ctime = current_time(new.inode);
}
old.dir->i_ctime = old.dir->i_mtime = current_time(old.dir);
ext4_update_dx_flag(old.dir);
if (old.dir_bh) {
retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino);
if (retval)
goto end_rename;
ext4_dec_count(old.dir);
if (new.inode) {
/* checked ext4_empty_dir above, can't have another
* parent, ext4_dec_count() won't work for many-linked
* dirs */
clear_nlink(new.inode);
} else {
ext4_inc_count(new.dir);
ext4_update_dx_flag(new.dir);
retval = ext4_mark_inode_dirty(handle, new.dir);
if (unlikely(retval))
goto end_rename;
}
}
retval = ext4_mark_inode_dirty(handle, old.dir);
if (unlikely(retval))
goto end_rename;
if (S_ISDIR(old.inode->i_mode)) {
/*
* We disable fast commits here that's because the
* replay code is not yet capable of changing dot dot
* dirents in directories.
*/
ext4_fc_mark_ineligible(old.inode->i_sb,
EXT4_FC_REASON_RENAME_DIR, handle);
} else {
if (new.inode)
ext4_fc_track_unlink(handle, new.dentry);
__ext4_fc_track_link(handle, old.inode, new.dentry);
__ext4_fc_track_unlink(handle, old.inode, old.dentry);
ext4: fix rename whiteout with fast commit This patch adds rename whiteout support in fast commits. Note that the whiteout object that gets created is actually char device. Which imples, the function ext4_inode_journal_mode(struct inode *inode) would return "JOURNAL_DATA" for this inode. This has a consequence in fast commit code that it will make creation of the whiteout object a fast-commit ineligible behavior and thus will fall back to full commits. With this patch, this can be observed by running fast commits with rename whiteout and seeing the stats generated by ext4_fc_stats tracepoint as follows: ext4_fc_stats: dev 254:32 fc ineligible reasons: XATTR:0, CROSS_RENAME:0, JOURNAL_FLAG_CHANGE:0, NO_MEM:0, SWAP_BOOT:0, RESIZE:0, RENAME_DIR:0, FALLOC_RANGE:0, INODE_JOURNAL_DATA:16; num_commits:6, ineligible: 6, numblks: 3 So in short, this patch guarantees that in case of rename whiteout, we fall back to full commits. Amir mentioned that instead of creating a new whiteout object for every rename, we can create a static whiteout object with irrelevant nlink. That will make fast commits to not fall back to full commit. But until this happens, this patch will ensure correctness by falling back to full commits. Fixes: 8016e29f4362 ("ext4: fast commit recovery path") Cc: stable@kernel.org Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@gmail.com> Link: https://lore.kernel.org/r/20210316221921.1124955-1-harshadshirwadkar@gmail.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2021-03-16 22:19:21 +00:00
if (whiteout)
__ext4_fc_track_create(handle, whiteout, old.dentry);
}
if (new.inode) {
retval = ext4_mark_inode_dirty(handle, new.inode);
if (unlikely(retval))
goto end_rename;
if (!new.inode->i_nlink)
ext4_orphan_add(handle, new.inode);
}
retval = 0;
end_rename:
if (whiteout) {
ext4: fix bug for rename with RENAME_WHITEOUT We got a "deleted inode referenced" warning cross our fsstress test. The bug can be reproduced easily with following steps: cd /dev/shm mkdir test/ fallocate -l 128M img mkfs.ext4 -b 1024 img mount img test/ dd if=/dev/zero of=test/foo bs=1M count=128 mkdir test/dir/ && cd test/dir/ for ((i=0;i<1000;i++)); do touch file$i; done # consume all block cd ~ && renameat2(AT_FDCWD, /dev/shm/test/dir/file1, AT_FDCWD, /dev/shm/test/dir/dst_file, RENAME_WHITEOUT) # ext4_add_entry in ext4_rename will return ENOSPC!! cd /dev/shm/ && umount test/ && mount img test/ && ls -li test/dir/file1 We will get the output: "ls: cannot access 'test/dir/file1': Structure needs cleaning" and the dmesg show: "EXT4-fs error (device loop0): ext4_lookup:1626: inode #2049: comm ls: deleted inode referenced: 139" ext4_rename will create a special inode for whiteout and use this 'ino' to replace the source file's dir entry 'ino'. Once error happens latter(the error above was the ENOSPC return from ext4_add_entry in ext4_rename since all space has been consumed), the cleanup do drop the nlink for whiteout, but forget to restore 'ino' with source file. This will trigger the bug describle as above. Signed-off-by: yangerkun <yangerkun@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: stable@vger.kernel.org Fixes: cd808deced43 ("ext4: support RENAME_WHITEOUT") Link: https://lore.kernel.org/r/20210105062857.3566-1-yangerkun@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2021-01-05 06:28:57 +00:00
if (retval) {
ext4_resetent(handle, &old,
old.inode->i_ino, old_file_type);
drop_nlink(whiteout);
ext4: fix unttached inode after power cut with orphan file feature enabled [ Upstream commit 1524773425ae8113b0b782886366e68656b34e53 ] Running generic/475(filesystem consistent tests after power cut) could easily trigger unattached inode error while doing fsck: Unattached zero-length inode 39405. Clear? no Unattached inode 39405 Connect to /lost+found? no Above inconsistence is caused by following process: P1 P2 ext4_create inode = ext4_new_inode_start_handle // itable records nlink=1 ext4_add_nondir err = ext4_add_entry // ENOSPC ext4_append ext4_bread ext4_getblk ext4_map_blocks // returns ENOSPC drop_nlink(inode) // won't be updated into disk inode ext4_orphan_add(handle, inode) ext4_orphan_file_add ext4_journal_stop(handle) jbd2_journal_commit_transaction // commit success >> power cut << ext4_fill_super ext4_load_and_init_journal // itable records nlink=1 ext4_orphan_cleanup ext4_process_orphan if (inode->i_nlink) // true, inode won't be deleted Then, allocated inode will be reserved on disk and corresponds to no dentries, so e2fsck reports 'unattached inode' problem. The problem won't happen if orphan file feature is disabled, because ext4_orphan_add() will update disk inode in orphan list mode. There are several places not updating disk inode while putting inode into orphan area, such as ext4_add_nondir(), ext4_symlink() and whiteout in ext4_rename(). Fix it by updating inode into disk in all error branches of these places. Link: https://bugzilla.kernel.org/show_bug.cgi?id=217605 Fixes: 02f310fcf47f ("ext4: Speedup ext4 orphan inode handling") Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20230628132011.650383-1-chengzhihao1@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 13:20:11 +00:00
ext4_mark_inode_dirty(handle, whiteout);
ext4_orphan_add(handle, whiteout);
ext4: fix bug for rename with RENAME_WHITEOUT We got a "deleted inode referenced" warning cross our fsstress test. The bug can be reproduced easily with following steps: cd /dev/shm mkdir test/ fallocate -l 128M img mkfs.ext4 -b 1024 img mount img test/ dd if=/dev/zero of=test/foo bs=1M count=128 mkdir test/dir/ && cd test/dir/ for ((i=0;i<1000;i++)); do touch file$i; done # consume all block cd ~ && renameat2(AT_FDCWD, /dev/shm/test/dir/file1, AT_FDCWD, /dev/shm/test/dir/dst_file, RENAME_WHITEOUT) # ext4_add_entry in ext4_rename will return ENOSPC!! cd /dev/shm/ && umount test/ && mount img test/ && ls -li test/dir/file1 We will get the output: "ls: cannot access 'test/dir/file1': Structure needs cleaning" and the dmesg show: "EXT4-fs error (device loop0): ext4_lookup:1626: inode #2049: comm ls: deleted inode referenced: 139" ext4_rename will create a special inode for whiteout and use this 'ino' to replace the source file's dir entry 'ino'. Once error happens latter(the error above was the ENOSPC return from ext4_add_entry in ext4_rename since all space has been consumed), the cleanup do drop the nlink for whiteout, but forget to restore 'ino' with source file. This will trigger the bug describle as above. Signed-off-by: yangerkun <yangerkun@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: stable@vger.kernel.org Fixes: cd808deced43 ("ext4: support RENAME_WHITEOUT") Link: https://lore.kernel.org/r/20210105062857.3566-1-yangerkun@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2021-01-05 06:28:57 +00:00
}
unlock_new_inode(whiteout);
ext4_journal_stop(handle);
iput(whiteout);
} else {
ext4_journal_stop(handle);
}
release_bh:
ext4: fix bug for rename with RENAME_WHITEOUT We got a "deleted inode referenced" warning cross our fsstress test. The bug can be reproduced easily with following steps: cd /dev/shm mkdir test/ fallocate -l 128M img mkfs.ext4 -b 1024 img mount img test/ dd if=/dev/zero of=test/foo bs=1M count=128 mkdir test/dir/ && cd test/dir/ for ((i=0;i<1000;i++)); do touch file$i; done # consume all block cd ~ && renameat2(AT_FDCWD, /dev/shm/test/dir/file1, AT_FDCWD, /dev/shm/test/dir/dst_file, RENAME_WHITEOUT) # ext4_add_entry in ext4_rename will return ENOSPC!! cd /dev/shm/ && umount test/ && mount img test/ && ls -li test/dir/file1 We will get the output: "ls: cannot access 'test/dir/file1': Structure needs cleaning" and the dmesg show: "EXT4-fs error (device loop0): ext4_lookup:1626: inode #2049: comm ls: deleted inode referenced: 139" ext4_rename will create a special inode for whiteout and use this 'ino' to replace the source file's dir entry 'ino'. Once error happens latter(the error above was the ENOSPC return from ext4_add_entry in ext4_rename since all space has been consumed), the cleanup do drop the nlink for whiteout, but forget to restore 'ino' with source file. This will trigger the bug describle as above. Signed-off-by: yangerkun <yangerkun@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: stable@vger.kernel.org Fixes: cd808deced43 ("ext4: support RENAME_WHITEOUT") Link: https://lore.kernel.org/r/20210105062857.3566-1-yangerkun@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2021-01-05 06:28:57 +00:00
brelse(old.dir_bh);
brelse(old.bh);
brelse(new.bh);
return retval;
}
static int ext4_cross_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
handle_t *handle = NULL;
struct ext4_renament old = {
.dir = old_dir,
.dentry = old_dentry,
.inode = d_inode(old_dentry),
};
struct ext4_renament new = {
.dir = new_dir,
.dentry = new_dentry,
.inode = d_inode(new_dentry),
};
u8 new_file_type;
int retval;
vfs: change inode times to use struct timespec64 struct timespec is not y2038 safe. Transition vfs to use y2038 safe struct timespec64 instead. The change was made with the help of the following cocinelle script. This catches about 80% of the changes. All the header file and logic changes are included in the first 5 rules. The rest are trivial substitutions. I avoid changing any of the function signatures or any other filesystem specific data structures to keep the patch simple for review. The script can be a little shorter by combining different cases. But, this version was sufficient for my usecase. virtual patch @ depends on patch @ identifier now; @@ - struct timespec + struct timespec64 current_time ( ... ) { - struct timespec now = current_kernel_time(); + struct timespec64 now = current_kernel_time64(); ... - return timespec_trunc( + return timespec64_trunc( ... ); } @ depends on patch @ identifier xtime; @@ struct \( iattr \| inode \| kstat \) { ... - struct timespec xtime; + struct timespec64 xtime; ... } @ depends on patch @ identifier t; @@ struct inode_operations { ... int (*update_time) (..., - struct timespec t, + struct timespec64 t, ...); ... } @ depends on patch @ identifier t; identifier fn_update_time =~ "update_time$"; @@ fn_update_time (..., - struct timespec *t, + struct timespec64 *t, ...) { ... } @ depends on patch @ identifier t; @@ lease_get_mtime( ... , - struct timespec *t + struct timespec64 *t ) { ... } @te depends on patch forall@ identifier ts; local idexpression struct inode *inode_node; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn_update_time =~ "update_time$"; identifier fn; expression e, E3; local idexpression struct inode *node1; local idexpression struct inode *node2; local idexpression struct iattr *attr1; local idexpression struct iattr *attr2; local idexpression struct iattr attr; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; @@ ( ( - struct timespec ts; + struct timespec64 ts; | - struct timespec ts = current_time(inode_node); + struct timespec64 ts = current_time(inode_node); ) <+... when != ts ( - timespec_equal(&inode_node->i_xtime, &ts) + timespec64_equal(&inode_node->i_xtime, &ts) | - timespec_equal(&ts, &inode_node->i_xtime) + timespec64_equal(&ts, &inode_node->i_xtime) | - timespec_compare(&inode_node->i_xtime, &ts) + timespec64_compare(&inode_node->i_xtime, &ts) | - timespec_compare(&ts, &inode_node->i_xtime) + timespec64_compare(&ts, &inode_node->i_xtime) | ts = current_time(e) | fn_update_time(..., &ts,...) | inode_node->i_xtime = ts | node1->i_xtime = ts | ts = inode_node->i_xtime | <+... attr1->ia_xtime ...+> = ts | ts = attr1->ia_xtime | ts.tv_sec | ts.tv_nsec | btrfs_set_stack_timespec_sec(..., ts.tv_sec) | btrfs_set_stack_timespec_nsec(..., ts.tv_nsec) | - ts = timespec64_to_timespec( + ts = ... -) | - ts = ktime_to_timespec( + ts = ktime_to_timespec64( ...) | - ts = E3 + ts = timespec_to_timespec64(E3) | - ktime_get_real_ts(&ts) + ktime_get_real_ts64(&ts) | fn(..., - ts + timespec64_to_timespec(ts) ,...) ) ...+> ( <... when != ts - return ts; + return timespec64_to_timespec(ts); ...> ) | - timespec_equal(&node1->i_xtime1, &node2->i_xtime2) + timespec64_equal(&node1->i_xtime2, &node2->i_xtime2) | - timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2) + timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2) | - timespec_compare(&node1->i_xtime1, &node2->i_xtime2) + timespec64_compare(&node1->i_xtime1, &node2->i_xtime2) | node1->i_xtime1 = - timespec_trunc(attr1->ia_xtime1, + timespec64_trunc(attr1->ia_xtime1, ...) | - attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2, + attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2, ...) | - ktime_get_real_ts(&attr1->ia_xtime1) + ktime_get_real_ts64(&attr1->ia_xtime1) | - ktime_get_real_ts(&attr.ia_xtime1) + ktime_get_real_ts64(&attr.ia_xtime1) ) @ depends on patch @ struct inode *node; struct iattr *attr; identifier fn; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; expression e; @@ ( - fn(node->i_xtime); + fn(timespec64_to_timespec(node->i_xtime)); | fn(..., - node->i_xtime); + timespec64_to_timespec(node->i_xtime)); | - e = fn(attr->ia_xtime); + e = fn(timespec64_to_timespec(attr->ia_xtime)); ) @ depends on patch forall @ struct inode *node; struct iattr *attr; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); fn (..., - &attr->ia_xtime, + &ts, ...); ) ...+> } @ depends on patch forall @ struct inode *node; struct iattr *attr; struct kstat *stat; identifier ia_xtime =~ "^ia_[acm]time$"; identifier i_xtime =~ "^i_[acm]time$"; identifier xtime =~ "^[acm]time$"; identifier fn, ret; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime); + &ts); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime); + &ts); | + ts = timespec64_to_timespec(stat->xtime); ret = fn (..., - &stat->xtime); + &ts); ) ...+> } @ depends on patch @ struct inode *node; struct inode *node2; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier i_xtime3 =~ "^i_[acm]time$"; struct iattr *attrp; struct iattr *attrp2; struct iattr attr ; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; struct kstat *stat; struct kstat stat1; struct timespec64 ts; identifier xtime =~ "^[acmb]time$"; expression e; @@ ( ( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ; | node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | stat->xtime = node2->i_xtime1; | stat1.xtime = node2->i_xtime1; | ( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ; | ( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2; | - e = node->i_xtime1; + e = timespec64_to_timespec( node->i_xtime1 ); | - e = attrp->ia_xtime1; + e = timespec64_to_timespec( attrp->ia_xtime1 ); | node->i_xtime1 = current_time(...); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | - node->i_xtime1 = e; + node->i_xtime1 = timespec_to_timespec64(e); ) Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Cc: <anton@tuxera.com> Cc: <balbi@kernel.org> Cc: <bfields@fieldses.org> Cc: <darrick.wong@oracle.com> Cc: <dhowells@redhat.com> Cc: <dsterba@suse.com> Cc: <dwmw2@infradead.org> Cc: <hch@lst.de> Cc: <hirofumi@mail.parknet.co.jp> Cc: <hubcap@omnibond.com> Cc: <jack@suse.com> Cc: <jaegeuk@kernel.org> Cc: <jaharkes@cs.cmu.edu> Cc: <jslaby@suse.com> Cc: <keescook@chromium.org> Cc: <mark@fasheh.com> Cc: <miklos@szeredi.hu> Cc: <nico@linaro.org> Cc: <reiserfs-devel@vger.kernel.org> Cc: <richard@nod.at> Cc: <sage@redhat.com> Cc: <sfrench@samba.org> Cc: <swhiteho@redhat.com> Cc: <tj@kernel.org> Cc: <trond.myklebust@primarydata.com> Cc: <tytso@mit.edu> Cc: <viro@zeniv.linux.org.uk>
2018-05-09 02:36:02 +00:00
struct timespec64 ctime;
if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT) &&
!projid_eq(EXT4_I(new_dir)->i_projid,
EXT4_I(old_dentry->d_inode)->i_projid)) ||
(ext4_test_inode_flag(old_dir, EXT4_INODE_PROJINHERIT) &&
!projid_eq(EXT4_I(old_dir)->i_projid,
EXT4_I(new_dentry->d_inode)->i_projid)))
return -EXDEV;
retval = dquot_initialize(old.dir);
if (retval)
return retval;
retval = dquot_initialize(new.dir);
if (retval)
return retval;
old.bh = ext4_find_entry(old.dir, &old.dentry->d_name,
&old.de, &old.inlined);
if (IS_ERR(old.bh))
return PTR_ERR(old.bh);
/*
* Check for inode number is _not_ due to possible IO errors.
* We might rmdir the source, keep it as pwd of some process
* and merrily kill the link to whatever was created under the
* same name. Goodbye sticky bit ;-<
*/
retval = -ENOENT;
if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino)
goto end_rename;
new.bh = ext4_find_entry(new.dir, &new.dentry->d_name,
&new.de, &new.inlined);
if (IS_ERR(new.bh)) {
retval = PTR_ERR(new.bh);
new.bh = NULL;
goto end_rename;
}
/* RENAME_EXCHANGE case: old *and* new must both exist */
if (!new.bh || le32_to_cpu(new.de->inode) != new.inode->i_ino)
goto end_rename;
handle = ext4_journal_start(old.dir, EXT4_HT_DIR,
(2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) +
2 * EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2));
if (IS_ERR(handle)) {
retval = PTR_ERR(handle);
handle = NULL;
goto end_rename;
}
if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir))
ext4_handle_sync(handle);
if (S_ISDIR(old.inode->i_mode)) {
old.is_dir = true;
retval = ext4_rename_dir_prepare(handle, &old);
if (retval)
goto end_rename;
}
if (S_ISDIR(new.inode->i_mode)) {
new.is_dir = true;
retval = ext4_rename_dir_prepare(handle, &new);
if (retval)
goto end_rename;
}
/*
* Other than the special case of overwriting a directory, parents'
* nlink only needs to be modified if this is a cross directory rename.
*/
if (old.dir != new.dir && old.is_dir != new.is_dir) {
old.dir_nlink_delta = old.is_dir ? -1 : 1;
new.dir_nlink_delta = -old.dir_nlink_delta;
retval = -EMLINK;
if ((old.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(old.dir)) ||
(new.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(new.dir)))
goto end_rename;
}
new_file_type = new.de->file_type;
retval = ext4_setent(handle, &new, old.inode->i_ino, old.de->file_type);
if (retval)
goto end_rename;
retval = ext4_setent(handle, &old, new.inode->i_ino, new_file_type);
if (retval)
goto end_rename;
/*
* Like most other Unix systems, set the ctime for inodes on a
* rename.
*/
ctime = current_time(old.inode);
old.inode->i_ctime = ctime;
new.inode->i_ctime = ctime;
retval = ext4_mark_inode_dirty(handle, old.inode);
if (unlikely(retval))
goto end_rename;
retval = ext4_mark_inode_dirty(handle, new.inode);
if (unlikely(retval))
goto end_rename;
ext4_fc_mark_ineligible(new.inode->i_sb,
EXT4_FC_REASON_CROSS_RENAME, handle);
if (old.dir_bh) {
retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino);
if (retval)
goto end_rename;
}
if (new.dir_bh) {
retval = ext4_rename_dir_finish(handle, &new, old.dir->i_ino);
if (retval)
goto end_rename;
}
ext4_update_dir_count(handle, &old);
ext4_update_dir_count(handle, &new);
retval = 0;
end_rename:
brelse(old.dir_bh);
brelse(new.dir_bh);
brelse(old.bh);
brelse(new.bh);
if (handle)
ext4_journal_stop(handle);
return retval;
}
static int ext4_rename2(struct user_namespace *mnt_userns,
struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
int err;
if (unlikely(ext4_forced_shutdown(EXT4_SB(old_dir->i_sb))))
return -EIO;
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
return -EINVAL;
err = fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry,
flags);
if (err)
return err;
if (flags & RENAME_EXCHANGE) {
return ext4_cross_rename(old_dir, old_dentry,
new_dir, new_dentry);
}
ext4: support idmapped mounts Enable idmapped mounts for ext4. All dedicated helpers we need for this exist. So this basically just means we're passing down the user_namespace argument from the VFS methods to the relevant helpers. Let's create simple example where we idmap an ext4 filesystem: root@f2-vm:~# truncate -s 5G ext4.img root@f2-vm:~# mkfs.ext4 ./ext4.img mke2fs 1.45.5 (07-Jan-2020) Discarding device blocks: done Creating filesystem with 1310720 4k blocks and 327680 inodes Filesystem UUID: 3fd91794-c6ca-4b0f-9964-289a000919cf Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done root@f2-vm:~# losetup -f --show ./ext4.img /dev/loop0 root@f2-vm:~# mount /dev/loop0 /mnt root@f2-vm:~# ls -al /mnt/ total 24 drwxr-xr-x 3 root root 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 root root 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped1 where we map uid and gid # 0 to uid and gid 1000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:1000:1 /mnt/ /idmapped1/ root@f2-vm:/# ls -al /idmapped1/ total 24 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 13:34 . drwxr-xr-x 30 root root 4096 Oct 28 13:22 .. drwx------ 2 ubuntu ubuntu 16384 Oct 28 13:34 lost+found # Let's create an idmapped mount at /idmapped2 where we map uid and gid # 0 to uid and gid 2000 root@f2-vm:/# ./mount-idmapped --map-mount b:0:2000:1 /mnt/ /idmapped2/ root@f2-vm:/# ls -al /idmapped2/ total 24 drwxr-xr-x 3 2000 2000 4096 Oct 28 13:34 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. drwx------ 2 2000 2000 16384 Oct 28 13:34 lost+found Let's create another example where we idmap the rootfs filesystem without a mapping for uid 0 and gid 0: # Create an idmapped mount of for a full POSIX range of rootfs under # /mnt but without a mapping for uid 0 to reduce attack surface root@f2-vm:/# ./mount-idmapped --map-mount b:1:1:65536 / /mnt/ # Since we don't have a mapping for uid and gid 0 all files owned by # uid and gid 0 should show up as uid and gid 65534: root@f2-vm:/# ls -al /mnt/ total 664 drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 . drwxr-xr-x 31 root root 4096 Oct 28 13:39 .. lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 bin -> usr/bin drwxr-xr-x 4 nobody nogroup 4096 Oct 28 13:17 boot drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:48 dev drwxr-xr-x 81 nobody nogroup 4096 Oct 28 04:00 etc drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 home lrwxrwxrwx 1 nobody nogroup 7 Aug 25 07:44 lib -> usr/lib lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib32 -> usr/lib32 lrwxrwxrwx 1 nobody nogroup 9 Aug 25 07:44 lib64 -> usr/lib64 lrwxrwxrwx 1 nobody nogroup 10 Aug 25 07:44 libx32 -> usr/libx32 drwx------ 2 nobody nogroup 16384 Aug 25 07:47 lost+found drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 media drwxr-xr-x 31 nobody nogroup 4096 Oct 28 13:39 mnt drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 opt drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 proc drwx--x--x 6 nobody nogroup 4096 Oct 28 13:34 root drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:46 run lrwxrwxrwx 1 nobody nogroup 8 Aug 25 07:44 sbin -> usr/sbin drwxr-xr-x 2 nobody nogroup 4096 Aug 25 07:44 srv drwxr-xr-x 2 nobody nogroup 4096 Apr 15 2020 sys drwxrwxrwt 10 nobody nogroup 4096 Oct 28 13:19 tmp drwxr-xr-x 14 nobody nogroup 4096 Oct 20 13:00 usr drwxr-xr-x 12 nobody nogroup 4096 Aug 25 07:45 var # Since we do have a mapping for uid and gid 1000 all files owned by # uid and gid 1000 should simply show up as uid and gid 1000: root@f2-vm:/# ls -al /mnt/home/ubuntu/ total 40 drwxr-xr-x 3 ubuntu ubuntu 4096 Oct 28 00:43 . drwxr-xr-x 4 nobody nogroup 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 2936 Oct 28 12:26 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo Link: https://lore.kernel.org/r/20210121131959.646623-39-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-ext4@vger.kernel.org Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:57 +00:00
return ext4_rename(mnt_userns, old_dir, old_dentry, new_dir, new_dentry, flags);
}
/*
* directories can handle most operations...
*/
const struct inode_operations ext4_dir_inode_operations = {
.create = ext4_create,
.lookup = ext4_lookup,
.link = ext4_link,
.unlink = ext4_unlink,
.symlink = ext4_symlink,
.mkdir = ext4_mkdir,
.rmdir = ext4_rmdir,
.mknod = ext4_mknod,
.tmpfile = ext4_tmpfile,
.rename = ext4_rename2,
.setattr = ext4_setattr,
.getattr = ext4_getattr,
.listxattr = ext4_listxattr,
.get_acl = ext4_get_acl,
.set_acl = ext4_set_acl,
.fiemap = ext4_fiemap,
.fileattr_get = ext4_fileattr_get,
.fileattr_set = ext4_fileattr_set,
};
const struct inode_operations ext4_special_inode_operations = {
.setattr = ext4_setattr,
.getattr = ext4_getattr,
.listxattr = ext4_listxattr,
.get_acl = ext4_get_acl,
.set_acl = ext4_set_acl,
};