linux-stable/fs/xfs/linux-2.6/xfs_file.c

969 lines
24 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_trans.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_error.h"
#include "xfs_vnodeops.h"
#include "xfs_da_btree.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include <linux/dcache.h>
static const struct vm_operations_struct xfs_file_vm_ops;
/*
* Locking primitives for read and write IO paths to ensure we consistently use
* and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
*/
static inline void
xfs_rw_ilock(
struct xfs_inode *ip,
int type)
{
if (type & XFS_IOLOCK_EXCL)
mutex_lock(&VFS_I(ip)->i_mutex);
xfs_ilock(ip, type);
}
static inline void
xfs_rw_iunlock(
struct xfs_inode *ip,
int type)
{
xfs_iunlock(ip, type);
if (type & XFS_IOLOCK_EXCL)
mutex_unlock(&VFS_I(ip)->i_mutex);
}
static inline void
xfs_rw_ilock_demote(
struct xfs_inode *ip,
int type)
{
xfs_ilock_demote(ip, type);
if (type & XFS_IOLOCK_EXCL)
mutex_unlock(&VFS_I(ip)->i_mutex);
}
/*
* xfs_iozero
*
* xfs_iozero clears the specified range of buffer supplied,
* and marks all the affected blocks as valid and modified. If
* an affected block is not allocated, it will be allocated. If
* an affected block is not completely overwritten, and is not
* valid before the operation, it will be read from disk before
* being partially zeroed.
*/
STATIC int
xfs_iozero(
struct xfs_inode *ip, /* inode */
loff_t pos, /* offset in file */
size_t count) /* size of data to zero */
{
struct page *page;
struct address_space *mapping;
int status;
mapping = VFS_I(ip)->i_mapping;
do {
unsigned offset, bytes;
void *fsdata;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
bytes = PAGE_CACHE_SIZE - offset;
if (bytes > count)
bytes = count;
status = pagecache_write_begin(NULL, mapping, pos, bytes,
AOP_FLAG_UNINTERRUPTIBLE,
&page, &fsdata);
if (status)
break;
zero_user(page, offset, bytes);
status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
page, fsdata);
WARN_ON(status <= 0); /* can't return less than zero! */
pos += bytes;
count -= bytes;
status = 0;
} while (count);
return (-status);
}
STATIC int
xfs_file_fsync(
struct file *file,
int datasync)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_trans *tp;
int error = 0;
int log_flushed = 0;
trace_xfs_file_fsync(ip);
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -XFS_ERROR(EIO);
xfs_iflags_clear(ip, XFS_ITRUNCATED);
xfs_ioend_wait(ip);
/*
* We always need to make sure that the required inode state is safe on
* disk. The inode might be clean but we still might need to force the
* log because of committed transactions that haven't hit the disk yet.
* Likewise, there could be unflushed non-transactional changes to the
* inode core that have to go to disk and this requires us to issue
* a synchronous transaction to capture these changes correctly.
*
* This code relies on the assumption that if the i_update_core field
* of the inode is clear and the inode is unpinned then it is clean
* and no action is required.
*/
xfs_ilock(ip, XFS_ILOCK_SHARED);
/*
* First check if the VFS inode is marked dirty. All the dirtying
* of non-transactional updates no goes through mark_inode_dirty*,
* which allows us to distinguish beteeen pure timestamp updates
* and i_size updates which need to be caught for fdatasync.
* After that also theck for the dirty state in the XFS inode, which
* might gets cleared when the inode gets written out via the AIL
* or xfs_iflush_cluster.
*/
if (((inode->i_state & I_DIRTY_DATASYNC) ||
((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
ip->i_update_core) {
/*
* Kick off a transaction to log the inode core to get the
* updates. The sync transaction will also force the log.
*/
xfs_iunlock(ip, XFS_ILOCK_SHARED);
tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
error = xfs_trans_reserve(tp, 0,
XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
if (error) {
xfs_trans_cancel(tp, 0);
return -error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
/*
* Note - it's possible that we might have pushed ourselves out
* of the way during trans_reserve which would flush the inode.
* But there's no guarantee that the inode buffer has actually
* gone out yet (it's delwri). Plus the buffer could be pinned
* anyway if it's part of an inode in another recent
* transaction. So we play it safe and fire off the
* transaction anyway.
*/
xfs_trans_ijoin(tp, ip);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
xfs_trans_set_sync(tp);
error = _xfs_trans_commit(tp, 0, &log_flushed);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
} else {
/*
* Timestamps/size haven't changed since last inode flush or
* inode transaction commit. That means either nothing got
* written or a transaction committed which caught the updates.
* If the latter happened and the transaction hasn't hit the
* disk yet, the inode will be still be pinned. If it is,
* force the log.
*/
if (xfs_ipincount(ip)) {
error = _xfs_log_force_lsn(ip->i_mount,
ip->i_itemp->ili_last_lsn,
XFS_LOG_SYNC, &log_flushed);
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
}
if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) {
/*
* If the log write didn't issue an ordered tag we need
* to flush the disk cache for the data device now.
*/
if (!log_flushed)
xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp);
/*
* If this inode is on the RT dev we need to flush that
* cache as well.
*/
if (XFS_IS_REALTIME_INODE(ip))
xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp);
}
return -error;
}
STATIC ssize_t
xfs_file_aio_read(
struct kiocb *iocb,
const struct iovec *iovp,
unsigned long nr_segs,
loff_t pos)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
size_t size = 0;
ssize_t ret = 0;
int ioflags = 0;
xfs_fsize_t n;
unsigned long seg;
XFS_STATS_INC(xs_read_calls);
BUG_ON(iocb->ki_pos != pos);
if (unlikely(file->f_flags & O_DIRECT))
ioflags |= IO_ISDIRECT;
if (file->f_mode & FMODE_NOCMTIME)
ioflags |= IO_INVIS;
/* START copy & waste from filemap.c */
for (seg = 0; seg < nr_segs; seg++) {
const struct iovec *iv = &iovp[seg];
/*
* If any segment has a negative length, or the cumulative
* length ever wraps negative then return -EINVAL.
*/
size += iv->iov_len;
if (unlikely((ssize_t)(size|iv->iov_len) < 0))
return XFS_ERROR(-EINVAL);
}
/* END copy & waste from filemap.c */
if (unlikely(ioflags & IO_ISDIRECT)) {
xfs_buftarg_t *target =
XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
if ((iocb->ki_pos & target->bt_smask) ||
(size & target->bt_smask)) {
if (iocb->ki_pos == ip->i_size)
return 0;
return -XFS_ERROR(EINVAL);
}
}
n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
if (n <= 0 || size == 0)
return 0;
if (n < size)
size = n;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
if (unlikely(ioflags & IO_ISDIRECT)) {
xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
if (inode->i_mapping->nrpages) {
ret = -xfs_flushinval_pages(ip,
(iocb->ki_pos & PAGE_CACHE_MASK),
-1, FI_REMAPF_LOCKED);
if (ret) {
xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
return ret;
}
}
xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
} else
xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
if (ret > 0)
XFS_STATS_ADD(xs_read_bytes, ret);
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
STATIC ssize_t
xfs_file_splice_read(
struct file *infilp,
loff_t *ppos,
struct pipe_inode_info *pipe,
size_t count,
unsigned int flags)
{
struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
int ioflags = 0;
ssize_t ret;
XFS_STATS_INC(xs_read_calls);
if (infilp->f_mode & FMODE_NOCMTIME)
ioflags |= IO_INVIS;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
if (ret > 0)
XFS_STATS_ADD(xs_read_bytes, ret);
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
STATIC void
xfs_aio_write_isize_update(
struct inode *inode,
loff_t *ppos,
ssize_t bytes_written)
{
struct xfs_inode *ip = XFS_I(inode);
xfs_fsize_t isize = i_size_read(inode);
if (bytes_written > 0)
XFS_STATS_ADD(xs_write_bytes, bytes_written);
if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
*ppos > isize))
*ppos = isize;
if (*ppos > ip->i_size) {
xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
if (*ppos > ip->i_size)
ip->i_size = *ppos;
xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
}
}
/*
* If this was a direct or synchronous I/O that failed (such as ENOSPC) then
* part of the I/O may have been written to disk before the error occured. In
* this case the on-disk file size may have been adjusted beyond the in-memory
* file size and now needs to be truncated back.
*/
STATIC void
xfs_aio_write_newsize_update(
struct xfs_inode *ip)
{
if (ip->i_new_size) {
xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
ip->i_new_size = 0;
if (ip->i_d.di_size > ip->i_size)
ip->i_d.di_size = ip->i_size;
xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
}
}
/*
* xfs_file_splice_write() does not use xfs_rw_ilock() because
* generic_file_splice_write() takes the i_mutex itself. This, in theory,
* couuld cause lock inversions between the aio_write path and the splice path
* if someone is doing concurrent splice(2) based writes and write(2) based
* writes to the same inode. The only real way to fix this is to re-implement
* the generic code here with correct locking orders.
*/
STATIC ssize_t
xfs_file_splice_write(
struct pipe_inode_info *pipe,
struct file *outfilp,
loff_t *ppos,
size_t count,
unsigned int flags)
{
struct inode *inode = outfilp->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
xfs_fsize_t new_size;
int ioflags = 0;
ssize_t ret;
XFS_STATS_INC(xs_write_calls);
if (outfilp->f_mode & FMODE_NOCMTIME)
ioflags |= IO_INVIS;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
xfs_ilock(ip, XFS_IOLOCK_EXCL);
new_size = *ppos + count;
xfs_ilock(ip, XFS_ILOCK_EXCL);
if (new_size > ip->i_size)
ip->i_new_size = new_size;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
xfs_aio_write_isize_update(inode, ppos, ret);
xfs_aio_write_newsize_update(ip);
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return ret;
}
/*
* This routine is called to handle zeroing any space in the last
* block of the file that is beyond the EOF. We do this since the
* size is being increased without writing anything to that block
* and we don't want anyone to read the garbage on the disk.
*/
STATIC int /* error (positive) */
xfs_zero_last_block(
xfs_inode_t *ip,
xfs_fsize_t offset,
xfs_fsize_t isize)
{
xfs_fileoff_t last_fsb;
xfs_mount_t *mp = ip->i_mount;
int nimaps;
int zero_offset;
int zero_len;
int error = 0;
xfs_bmbt_irec_t imap;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
zero_offset = XFS_B_FSB_OFFSET(mp, isize);
if (zero_offset == 0) {
/*
* There are no extra bytes in the last block on disk to
* zero, so return.
*/
return 0;
}
last_fsb = XFS_B_TO_FSBT(mp, isize);
nimaps = 1;
error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
&nimaps, NULL);
if (error) {
return error;
}
ASSERT(nimaps > 0);
/*
* If the block underlying isize is just a hole, then there
* is nothing to zero.
*/
if (imap.br_startblock == HOLESTARTBLOCK) {
return 0;
}
/*
* Zero the part of the last block beyond the EOF, and write it
* out sync. We need to drop the ilock while we do this so we
* don't deadlock when the buffer cache calls back to us.
*/
xfs_iunlock(ip, XFS_ILOCK_EXCL);
zero_len = mp->m_sb.sb_blocksize - zero_offset;
if (isize + zero_len > offset)
zero_len = offset - isize;
error = xfs_iozero(ip, isize, zero_len);
xfs_ilock(ip, XFS_ILOCK_EXCL);
ASSERT(error >= 0);
return error;
}
/*
* Zero any on disk space between the current EOF and the new,
* larger EOF. This handles the normal case of zeroing the remainder
* of the last block in the file and the unusual case of zeroing blocks
* out beyond the size of the file. This second case only happens
* with fixed size extents and when the system crashes before the inode
* size was updated but after blocks were allocated. If fill is set,
* then any holes in the range are filled and zeroed. If not, the holes
* are left alone as holes.
*/
int /* error (positive) */
xfs_zero_eof(
xfs_inode_t *ip,
xfs_off_t offset, /* starting I/O offset */
xfs_fsize_t isize) /* current inode size */
{
xfs_mount_t *mp = ip->i_mount;
xfs_fileoff_t start_zero_fsb;
xfs_fileoff_t end_zero_fsb;
xfs_fileoff_t zero_count_fsb;
xfs_fileoff_t last_fsb;
xfs_fileoff_t zero_off;
xfs_fsize_t zero_len;
int nimaps;
int error = 0;
xfs_bmbt_irec_t imap;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ASSERT(offset > isize);
/*
* First handle zeroing the block on which isize resides.
* We only zero a part of that block so it is handled specially.
*/
error = xfs_zero_last_block(ip, offset, isize);
if (error) {
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
return error;
}
/*
* Calculate the range between the new size and the old
* where blocks needing to be zeroed may exist. To get the
* block where the last byte in the file currently resides,
* we need to subtract one from the size and truncate back
* to a block boundary. We subtract 1 in case the size is
* exactly on a block boundary.
*/
last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
if (last_fsb == end_zero_fsb) {
/*
* The size was only incremented on its last block.
* We took care of that above, so just return.
*/
return 0;
}
ASSERT(start_zero_fsb <= end_zero_fsb);
while (start_zero_fsb <= end_zero_fsb) {
nimaps = 1;
zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
0, NULL, 0, &imap, &nimaps, NULL);
if (error) {
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
return error;
}
ASSERT(nimaps > 0);
if (imap.br_state == XFS_EXT_UNWRITTEN ||
imap.br_startblock == HOLESTARTBLOCK) {
/*
* This loop handles initializing pages that were
* partially initialized by the code below this
* loop. It basically zeroes the part of the page
* that sits on a hole and sets the page as P_HOLE
* and calls remapf if it is a mapped file.
*/
start_zero_fsb = imap.br_startoff + imap.br_blockcount;
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
continue;
}
/*
* There are blocks we need to zero.
* Drop the inode lock while we're doing the I/O.
* We'll still have the iolock to protect us.
*/
xfs_iunlock(ip, XFS_ILOCK_EXCL);
zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
if ((zero_off + zero_len) > offset)
zero_len = offset - zero_off;
error = xfs_iozero(ip, zero_off, zero_len);
if (error) {
goto out_lock;
}
start_zero_fsb = imap.br_startoff + imap.br_blockcount;
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
xfs_ilock(ip, XFS_ILOCK_EXCL);
}
return 0;
out_lock:
xfs_ilock(ip, XFS_ILOCK_EXCL);
ASSERT(error >= 0);
return error;
}
STATIC ssize_t
xfs_file_aio_write(
struct kiocb *iocb,
const struct iovec *iovp,
unsigned long nr_segs,
loff_t pos)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t ret = 0;
int ioflags = 0;
xfs_fsize_t new_size;
int iolock;
size_t ocount = 0, count;
XFS_STATS_INC(xs_write_calls);
BUG_ON(iocb->ki_pos != pos);
if (unlikely(file->f_flags & O_DIRECT))
ioflags |= IO_ISDIRECT;
if (file->f_mode & FMODE_NOCMTIME)
ioflags |= IO_INVIS;
ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
if (ret)
return ret;
count = ocount;
if (count == 0)
return 0;
xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
relock:
if (ioflags & IO_ISDIRECT) {
iolock = XFS_IOLOCK_SHARED;
} else {
iolock = XFS_IOLOCK_EXCL;
}
start:
xfs_rw_ilock(ip, XFS_ILOCK_EXCL|iolock);
ret = generic_write_checks(file, &pos, &count,
S_ISBLK(inode->i_mode));
if (ret) {
xfs_rw_iunlock(ip, XFS_ILOCK_EXCL|iolock);
return ret;
}
if (ioflags & IO_ISDIRECT) {
xfs_buftarg_t *target =
XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
if ((pos & target->bt_smask) || (count & target->bt_smask)) {
xfs_rw_iunlock(ip, XFS_ILOCK_EXCL|iolock);
return XFS_ERROR(-EINVAL);
}
/*
* For direct I/O, if there are cached pages or we're extending
* the file, we need IOLOCK_EXCL until we're sure the bytes at
* the new EOF have been zeroed and/or the cached pages are
* flushed out. Upgrade the I/O lock and start again.
*/
if (iolock != XFS_IOLOCK_EXCL &&
(mapping->nrpages || pos > ip->i_size)) {
xfs_rw_iunlock(ip, XFS_ILOCK_EXCL|iolock);
iolock = XFS_IOLOCK_EXCL;
goto start;
}
}
new_size = pos + count;
if (new_size > ip->i_size)
ip->i_new_size = new_size;
if (likely(!(ioflags & IO_INVIS)))
file_update_time(file);
/*
* If the offset is beyond the size of the file, we have a couple
* of things to do. First, if there is already space allocated
* we need to either create holes or zero the disk or ...
*
* If there is a page where the previous size lands, we need
* to zero it out up to the new size.
*/
if (pos > ip->i_size) {
ret = -xfs_zero_eof(ip, pos, ip->i_size);
if (ret) {
xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
goto out_unlock_internal;
}
}
xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
/*
* If we're writing the file then make sure to clear the
* setuid and setgid bits if the process is not being run
* by root. This keeps people from modifying setuid and
* setgid binaries.
*/
ret = file_remove_suid(file);
if (unlikely(ret))
goto out_unlock_internal;
/* We can write back this queue in page reclaim */
current->backing_dev_info = mapping->backing_dev_info;
if ((ioflags & IO_ISDIRECT)) {
if (mapping->nrpages) {
WARN_ON(iolock != XFS_IOLOCK_EXCL);
ret = -xfs_flushinval_pages(ip,
(pos & PAGE_CACHE_MASK),
-1, FI_REMAPF_LOCKED);
if (ret)
goto out_unlock_internal;
}
if (iolock == XFS_IOLOCK_EXCL) {
/* demote the lock now the cached pages are gone */
xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
iolock = XFS_IOLOCK_SHARED;
}
trace_xfs_file_direct_write(ip, count, iocb->ki_pos, ioflags);
ret = generic_file_direct_write(iocb, iovp,
&nr_segs, pos, &iocb->ki_pos, count, ocount);
/*
* direct-io write to a hole: fall through to buffered I/O
* for completing the rest of the request.
*/
if (ret >= 0 && ret != count) {
XFS_STATS_ADD(xs_write_bytes, ret);
pos += ret;
count -= ret;
ioflags &= ~IO_ISDIRECT;
xfs_rw_iunlock(ip, iolock);
goto relock;
}
} else {
int enospc = 0;
write_retry:
trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, ioflags);
ret = generic_file_buffered_write(iocb, iovp, nr_segs,
pos, &iocb->ki_pos, count, ret);
/*
* if we just got an ENOSPC, flush the inode now we
* aren't holding any page locks and retry *once*
*/
if (ret == -ENOSPC && !enospc) {
ret = xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
if (ret)
goto out_unlock_internal;
enospc = 1;
goto write_retry;
}
}
current->backing_dev_info = NULL;
xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
if (ret <= 0)
goto out_unlock_internal;
/* Handle various SYNC-type writes */
if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
loff_t end = pos + ret - 1;
int error, error2;
xfs_rw_iunlock(ip, iolock);
error = filemap_write_and_wait_range(mapping, pos, end);
xfs_rw_ilock(ip, iolock);
error2 = -xfs_file_fsync(file,
(file->f_flags & __O_SYNC) ? 0 : 1);
if (error)
ret = error;
else if (error2)
ret = error2;
}
out_unlock_internal:
xfs_aio_write_newsize_update(ip);
xfs_rw_iunlock(ip, iolock);
return ret;
}
STATIC int
xfs_file_open(
struct inode *inode,
struct file *file)
{
if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
return -EFBIG;
if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
return -EIO;
return 0;
}
STATIC int
xfs_dir_open(
struct inode *inode,
struct file *file)
{
struct xfs_inode *ip = XFS_I(inode);
int mode;
int error;
error = xfs_file_open(inode, file);
if (error)
return error;
/*
* If there are any blocks, read-ahead block 0 as we're almost
* certain to have the next operation be a read there.
*/
mode = xfs_ilock_map_shared(ip);
if (ip->i_d.di_nextents > 0)
xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
xfs_iunlock(ip, mode);
return 0;
}
STATIC int
xfs_file_release(
struct inode *inode,
struct file *filp)
{
return -xfs_release(XFS_I(inode));
}
STATIC int
xfs_file_readdir(
struct file *filp,
void *dirent,
filldir_t filldir)
{
struct inode *inode = filp->f_path.dentry->d_inode;
xfs_inode_t *ip = XFS_I(inode);
int error;
size_t bufsize;
/*
* The Linux API doesn't pass down the total size of the buffer
* we read into down to the filesystem. With the filldir concept
* it's not needed for correct information, but the XFS dir2 leaf
* code wants an estimate of the buffer size to calculate it's
* readahead window and size the buffers used for mapping to
* physical blocks.
*
* Try to give it an estimate that's good enough, maybe at some
* point we can change the ->readdir prototype to include the
* buffer size. For now we use the current glibc buffer size.
*/
bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
error = xfs_readdir(ip, dirent, bufsize,
(xfs_off_t *)&filp->f_pos, filldir);
if (error)
return -error;
return 0;
}
STATIC int
xfs_file_mmap(
struct file *filp,
struct vm_area_struct *vma)
{
vma->vm_ops = &xfs_file_vm_ops;
vma->vm_flags |= VM_CAN_NONLINEAR;
file_accessed(filp);
return 0;
}
/*
* mmap()d file has taken write protection fault and is being made
* writable. We can set the page state up correctly for a writable
* page, which means we can do correct delalloc accounting (ENOSPC
* checking!) and unwritten extent mapping.
*/
STATIC int
xfs_vm_page_mkwrite(
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
return block_page_mkwrite(vma, vmf, xfs_get_blocks);
}
const struct file_operations xfs_file_operations = {
.llseek = generic_file_llseek,
.read = do_sync_read,
.write = do_sync_write,
.aio_read = xfs_file_aio_read,
.aio_write = xfs_file_aio_write,
.splice_read = xfs_file_splice_read,
.splice_write = xfs_file_splice_write,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.mmap = xfs_file_mmap,
.open = xfs_file_open,
.release = xfs_file_release,
.fsync = xfs_file_fsync,
};
const struct file_operations xfs_dir_file_operations = {
.open = xfs_dir_open,
.read = generic_read_dir,
.readdir = xfs_file_readdir,
.llseek = generic_file_llseek,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.fsync = xfs_file_fsync,
};
static const struct vm_operations_struct xfs_file_vm_ops = {
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
.fault = filemap_fault,
.page_mkwrite = xfs_vm_page_mkwrite,
};