linux-stable/include/uapi/linux/mount.h

140 lines
5 KiB
C
Raw Normal View History

#ifndef _UAPI_LINUX_MOUNT_H
#define _UAPI_LINUX_MOUNT_H
fs: add mount_setattr() This implements the missing mount_setattr() syscall. While the new mount api allows to change the properties of a superblock there is currently no way to change the properties of a mount or a mount tree using file descriptors which the new mount api is based on. In addition the old mount api has the restriction that mount options cannot be applied recursively. This hasn't changed since changing mount options on a per-mount basis was implemented in [1] and has been a frequent request not just for convenience but also for security reasons. The legacy mount syscall is unable to accommodate this behavior without introducing a whole new set of flags because MS_REC | MS_REMOUNT | MS_BIND | MS_RDONLY | MS_NOEXEC | [...] only apply the mount option to the topmost mount. Changing MS_REC to apply to the whole mount tree would mean introducing a significant uapi change and would likely cause significant regressions. The new mount_setattr() syscall allows to recursively clear and set mount options in one shot. Multiple calls to change mount options requesting the same changes are idempotent: int mount_setattr(int dfd, const char *path, unsigned flags, struct mount_attr *uattr, size_t usize); Flags to modify path resolution behavior are specified in the @flags argument. Currently, AT_EMPTY_PATH, AT_RECURSIVE, AT_SYMLINK_NOFOLLOW, and AT_NO_AUTOMOUNT are supported. If useful, additional lookup flags to restrict path resolution as introduced with openat2() might be supported in the future. The mount_setattr() syscall can be expected to grow over time and is designed with extensibility in mind. It follows the extensible syscall pattern we have used with other syscalls such as openat2(), clone3(), sched_{set,get}attr(), and others. The set of mount options is passed in the uapi struct mount_attr which currently has the following layout: struct mount_attr { __u64 attr_set; __u64 attr_clr; __u64 propagation; __u64 userns_fd; }; The @attr_set and @attr_clr members are used to clear and set mount options. This way a user can e.g. request that a set of flags is to be raised such as turning mounts readonly by raising MOUNT_ATTR_RDONLY in @attr_set while at the same time requesting that another set of flags is to be lowered such as removing noexec from a mount tree by specifying MOUNT_ATTR_NOEXEC in @attr_clr. Note, since the MOUNT_ATTR_<atime> values are an enum starting from 0, not a bitmap, users wanting to transition to a different atime setting cannot simply specify the atime setting in @attr_set, but must also specify MOUNT_ATTR__ATIME in the @attr_clr field. So we ensure that MOUNT_ATTR__ATIME can't be partially set in @attr_clr and that @attr_set can't have any atime bits set if MOUNT_ATTR__ATIME isn't set in @attr_clr. The @propagation field lets callers specify the propagation type of a mount tree. Propagation is a single property that has four different settings and as such is not really a flag argument but an enum. Specifically, it would be unclear what setting and clearing propagation settings in combination would amount to. The legacy mount() syscall thus forbids the combination of multiple propagation settings too. The goal is to keep the semantics of mount propagation somewhat simple as they are overly complex as it is. The @userns_fd field lets user specify a user namespace whose idmapping becomes the idmapping of the mount. This is implemented and explained in detail in the next patch. [1]: commit 2e4b7fcd9260 ("[PATCH] r/o bind mounts: honor mount writer counts at remount") Link: https://lore.kernel.org/r/20210121131959.646623-35-christian.brauner@ubuntu.com Cc: David Howells <dhowells@redhat.com> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Cc: linux-api@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:53 +00:00
#include <linux/types.h>
/*
* These are the fs-independent mount-flags: up to 32 flags are supported
*
* Usage of these is restricted within the kernel to core mount(2) code and
* callers of sys_mount() only. Filesystems should be using the SB_*
* equivalent instead.
*/
#define MS_RDONLY 1 /* Mount read-only */
#define MS_NOSUID 2 /* Ignore suid and sgid bits */
#define MS_NODEV 4 /* Disallow access to device special files */
#define MS_NOEXEC 8 /* Disallow program execution */
#define MS_SYNCHRONOUS 16 /* Writes are synced at once */
#define MS_REMOUNT 32 /* Alter flags of a mounted FS */
#define MS_MANDLOCK 64 /* Allow mandatory locks on an FS */
#define MS_DIRSYNC 128 /* Directory modifications are synchronous */
#define MS_NOSYMFOLLOW 256 /* Do not follow symlinks */
#define MS_NOATIME 1024 /* Do not update access times. */
#define MS_NODIRATIME 2048 /* Do not update directory access times */
#define MS_BIND 4096
#define MS_MOVE 8192
#define MS_REC 16384
#define MS_VERBOSE 32768 /* War is peace. Verbosity is silence.
MS_VERBOSE is deprecated. */
#define MS_SILENT 32768
#define MS_POSIXACL (1<<16) /* VFS does not apply the umask */
#define MS_UNBINDABLE (1<<17) /* change to unbindable */
#define MS_PRIVATE (1<<18) /* change to private */
#define MS_SLAVE (1<<19) /* change to slave */
#define MS_SHARED (1<<20) /* change to shared */
#define MS_RELATIME (1<<21) /* Update atime relative to mtime/ctime. */
#define MS_KERNMOUNT (1<<22) /* this is a kern_mount call */
#define MS_I_VERSION (1<<23) /* Update inode I_version field */
#define MS_STRICTATIME (1<<24) /* Always perform atime updates */
#define MS_LAZYTIME (1<<25) /* Update the on-disk [acm]times lazily */
/* These sb flags are internal to the kernel */
#define MS_SUBMOUNT (1<<26)
#define MS_NOREMOTELOCK (1<<27)
#define MS_NOSEC (1<<28)
#define MS_BORN (1<<29)
#define MS_ACTIVE (1<<30)
#define MS_NOUSER (1<<31)
/*
* Superblock flags that can be altered by MS_REMOUNT
*/
#define MS_RMT_MASK (MS_RDONLY|MS_SYNCHRONOUS|MS_MANDLOCK|MS_I_VERSION|\
MS_LAZYTIME)
/*
* Old magic mount flag and mask
*/
#define MS_MGC_VAL 0xC0ED0000
#define MS_MGC_MSK 0xffff0000
/*
* open_tree() flags.
*/
#define OPEN_TREE_CLONE 1 /* Clone the target tree and attach the clone */
#define OPEN_TREE_CLOEXEC O_CLOEXEC /* Close the file on execve() */
/*
* move_mount() flags.
*/
#define MOVE_MOUNT_F_SYMLINKS 0x00000001 /* Follow symlinks on from path */
#define MOVE_MOUNT_F_AUTOMOUNTS 0x00000002 /* Follow automounts on from path */
#define MOVE_MOUNT_F_EMPTY_PATH 0x00000004 /* Empty from path permitted */
#define MOVE_MOUNT_T_SYMLINKS 0x00000010 /* Follow symlinks on to path */
#define MOVE_MOUNT_T_AUTOMOUNTS 0x00000020 /* Follow automounts on to path */
#define MOVE_MOUNT_T_EMPTY_PATH 0x00000040 /* Empty to path permitted */
move_mount: allow to add a mount into an existing group Previously a sharing group (shared and master ids pair) can be only inherited when mount is created via bindmount. This patch adds an ability to add an existing private mount into an existing sharing group. With this functionality one can first create the desired mount tree from only private mounts (without the need to care about undesired mount propagation or mount creation order implied by sharing group dependencies), and next then setup any desired mount sharing between those mounts in tree as needed. This allows CRIU to restore any set of mount namespaces, mount trees and sharing group trees for a container. We have many issues with restoring mounts in CRIU related to sharing groups and propagation: - reverse sharing groups vs mount tree order requires complex mounts reordering which mostly implies also using some temporary mounts (please see https://lkml.org/lkml/2021/3/23/569 for more info) - mount() syscall creates tons of mounts due to propagation - mount re-parenting due to propagation - "Mount Trap" due to propagation - "Non Uniform" propagation, meaning that with different tricks with mount order and temporary children-"lock" mounts one can create mount trees which can't be restored without those tricks (see https://www.linuxplumbersconf.org/event/7/contributions/640/) With this new functionality we can resolve all the problems with propagation at once. Link: https://lore.kernel.org/r/20210715100714.120228-1-ptikhomirov@virtuozzo.com Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Mattias Nissler <mnissler@chromium.org> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: linux-fsdevel@vger.kernel.org Cc: linux-api@vger.kernel.org Cc: lkml <linux-kernel@vger.kernel.org> Co-developed-by: Andrei Vagin <avagin@gmail.com> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Signed-off-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-07-15 10:07:13 +00:00
#define MOVE_MOUNT_SET_GROUP 0x00000100 /* Set sharing group instead */
#define MOVE_MOUNT__MASK 0x00000177
vfs: syscall: Add fsopen() to prepare for superblock creation Provide an fsopen() system call that starts the process of preparing to create a superblock that will then be mountable, using an fd as a context handle. fsopen() is given the name of the filesystem that will be used: int mfd = fsopen(const char *fsname, unsigned int flags); where flags can be 0 or FSOPEN_CLOEXEC. For example: sfd = fsopen("ext4", FSOPEN_CLOEXEC); fsconfig(sfd, FSCONFIG_SET_PATH, "source", "/dev/sda1", AT_FDCWD); fsconfig(sfd, FSCONFIG_SET_FLAG, "noatime", NULL, 0); fsconfig(sfd, FSCONFIG_SET_FLAG, "acl", NULL, 0); fsconfig(sfd, FSCONFIG_SET_FLAG, "user_xattr", NULL, 0); fsconfig(sfd, FSCONFIG_SET_STRING, "sb", "1", 0); fsconfig(sfd, FSCONFIG_CMD_CREATE, NULL, NULL, 0); fsinfo(sfd, NULL, ...); // query new superblock attributes mfd = fsmount(sfd, FSMOUNT_CLOEXEC, MS_RELATIME); move_mount(mfd, "", sfd, AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH); sfd = fsopen("afs", -1); fsconfig(fd, FSCONFIG_SET_STRING, "source", "#grand.central.org:root.cell", 0); fsconfig(fd, FSCONFIG_CMD_CREATE, NULL, NULL, 0); mfd = fsmount(sfd, 0, MS_NODEV); move_mount(mfd, "", sfd, AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH); If an error is reported at any step, an error message may be available to be read() back (ENODATA will be reported if there isn't an error available) in the form: "e <subsys>:<problem>" "e SELinux:Mount on mountpoint not permitted" Once fsmount() has been called, further fsconfig() calls will incur EBUSY, even if the fsmount() fails. read() is still possible to retrieve error information. The fsopen() syscall creates a mount context and hangs it of the fd that it returns. Netlink is not used because it is optional and would make the core VFS dependent on the networking layer and also potentially add network namespace issues. Note that, for the moment, the caller must have SYS_CAP_ADMIN to use fsopen(). Signed-off-by: David Howells <dhowells@redhat.com> cc: linux-api@vger.kernel.org Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-01 23:33:31 +00:00
/*
* fsopen() flags.
*/
#define FSOPEN_CLOEXEC 0x00000001
/*
* fspick() flags.
*/
#define FSPICK_CLOEXEC 0x00000001
#define FSPICK_SYMLINK_NOFOLLOW 0x00000002
#define FSPICK_NO_AUTOMOUNT 0x00000004
#define FSPICK_EMPTY_PATH 0x00000008
vfs: syscall: Add fsconfig() for configuring and managing a context Add a syscall for configuring a filesystem creation context and triggering actions upon it, to be used in conjunction with fsopen, fspick and fsmount. long fsconfig(int fs_fd, unsigned int cmd, const char *key, const void *value, int aux); Where fs_fd indicates the context, cmd indicates the action to take, key indicates the parameter name for parameter-setting actions and, if needed, value points to a buffer containing the value and aux can give more information for the value. The following command IDs are proposed: (*) FSCONFIG_SET_FLAG: No value is specified. The parameter must be boolean in nature. The key may be prefixed with "no" to invert the setting. value must be NULL and aux must be 0. (*) FSCONFIG_SET_STRING: A string value is specified. The parameter can be expecting boolean, integer, string or take a path. A conversion to an appropriate type will be attempted (which may include looking up as a path). value points to a NUL-terminated string and aux must be 0. (*) FSCONFIG_SET_BINARY: A binary blob is specified. value points to the blob and aux indicates its size. The parameter must be expecting a blob. (*) FSCONFIG_SET_PATH: A non-empty path is specified. The parameter must be expecting a path object. value points to a NUL-terminated string that is the path and aux is a file descriptor at which to start a relative lookup or AT_FDCWD. (*) FSCONFIG_SET_PATH_EMPTY: As fsconfig_set_path, but with AT_EMPTY_PATH implied. (*) FSCONFIG_SET_FD: An open file descriptor is specified. value must be NULL and aux indicates the file descriptor. (*) FSCONFIG_CMD_CREATE: Trigger superblock creation. (*) FSCONFIG_CMD_RECONFIGURE: Trigger superblock reconfiguration. For the "set" command IDs, the idea is that the file_system_type will point to a list of parameters and the types of value that those parameters expect to take. The core code can then do the parse and argument conversion and then give the LSM and FS a cooked option or array of options to use. Source specification is also done the same way same way, using special keys "source", "source1", "source2", etc.. [!] Note that, for the moment, the key and value are just glued back together and handed to the filesystem. Every filesystem that uses options uses match_token() and co. to do this, and this will need to be changed - but not all at once. Example usage: fd = fsopen("ext4", FSOPEN_CLOEXEC); fsconfig(fd, fsconfig_set_path, "source", "/dev/sda1", AT_FDCWD); fsconfig(fd, fsconfig_set_path_empty, "journal_path", "", journal_fd); fsconfig(fd, fsconfig_set_fd, "journal_fd", "", journal_fd); fsconfig(fd, fsconfig_set_flag, "user_xattr", NULL, 0); fsconfig(fd, fsconfig_set_flag, "noacl", NULL, 0); fsconfig(fd, fsconfig_set_string, "sb", "1", 0); fsconfig(fd, fsconfig_set_string, "errors", "continue", 0); fsconfig(fd, fsconfig_set_string, "data", "journal", 0); fsconfig(fd, fsconfig_set_string, "context", "unconfined_u:...", 0); fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0); mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC); or: fd = fsopen("ext4", FSOPEN_CLOEXEC); fsconfig(fd, fsconfig_set_string, "source", "/dev/sda1", 0); fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0); mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC); or: fd = fsopen("afs", FSOPEN_CLOEXEC); fsconfig(fd, fsconfig_set_string, "source", "#grand.central.org:root.cell", 0); fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0); mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC); or: fd = fsopen("jffs2", FSOPEN_CLOEXEC); fsconfig(fd, fsconfig_set_string, "source", "mtd0", 0); fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0); mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC); Signed-off-by: David Howells <dhowells@redhat.com> cc: linux-api@vger.kernel.org Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-01 23:36:09 +00:00
/*
* The type of fsconfig() call made.
*/
enum fsconfig_command {
FSCONFIG_SET_FLAG = 0, /* Set parameter, supplying no value */
FSCONFIG_SET_STRING = 1, /* Set parameter, supplying a string value */
FSCONFIG_SET_BINARY = 2, /* Set parameter, supplying a binary blob value */
FSCONFIG_SET_PATH = 3, /* Set parameter, supplying an object by path */
FSCONFIG_SET_PATH_EMPTY = 4, /* Set parameter, supplying an object by (empty) path */
FSCONFIG_SET_FD = 5, /* Set parameter, supplying an object by fd */
FSCONFIG_CMD_CREATE = 6, /* Invoke superblock creation */
FSCONFIG_CMD_RECONFIGURE = 7, /* Invoke superblock reconfiguration */
};
/*
* fsmount() flags.
*/
#define FSMOUNT_CLOEXEC 0x00000001
/*
* Mount attributes.
*/
#define MOUNT_ATTR_RDONLY 0x00000001 /* Mount read-only */
#define MOUNT_ATTR_NOSUID 0x00000002 /* Ignore suid and sgid bits */
#define MOUNT_ATTR_NODEV 0x00000004 /* Disallow access to device special files */
#define MOUNT_ATTR_NOEXEC 0x00000008 /* Disallow program execution */
#define MOUNT_ATTR__ATIME 0x00000070 /* Setting on how atime should be updated */
#define MOUNT_ATTR_RELATIME 0x00000000 /* - Update atime relative to mtime/ctime. */
#define MOUNT_ATTR_NOATIME 0x00000010 /* - Do not update access times. */
#define MOUNT_ATTR_STRICTATIME 0x00000020 /* - Always perform atime updates */
#define MOUNT_ATTR_NODIRATIME 0x00000080 /* Do not update directory access times */
fs: introduce MOUNT_ATTR_IDMAP Introduce a new mount bind mount property to allow idmapping mounts. The MOUNT_ATTR_IDMAP flag can be set via the new mount_setattr() syscall together with a file descriptor referring to a user namespace. The user namespace referenced by the namespace file descriptor will be attached to the bind mount. All interactions with the filesystem going through that mount will be mapped according to the mapping specified in the user namespace attached to it. Using user namespaces to mark mounts means we can reuse all the existing infrastructure in the kernel that already exists to handle idmappings and can also use this for permission checking to allow unprivileged user to create idmapped mounts in the future. Idmapping a mount is decoupled from the caller's user and mount namespace. This means idmapped mounts can be created in the initial user namespace which is an important use-case for systemd-homed, portable usb-sticks between systems, sharing data between the initial user namespace and unprivileged containers, and other use-cases that have been brought up. For example, assume a home directory where all files are owned by uid and gid 1000 and the home directory is brought to a new laptop where the user has id 12345. The system administrator can simply create a mount of this home directory with a mapping of 1000:12345:1 and other mappings to indicate the ids should be kept. (With this it is e.g. also possible to create idmapped mounts on the host with an identity mapping 1:1:100000 where the root user is not mapped. A user with root access that e.g. has been pivot rooted into such a mount on the host will be not be able to execute, read, write, or create files as root.) Given that mapping a mount is decoupled from the caller's user namespace a sufficiently privileged process such as a container manager can set up an idmapped mount for the container and the container can simply pivot root to it. There's no need for the container to do anything. The mount will appear correctly mapped independent of the user namespace the container uses. This means we don't need to mark a mount as idmappable. In order to create an idmapped mount the caller must currently be privileged in the user namespace of the superblock the mount belongs to. Once a mount has been idmapped we don't allow it to change its mapping. This keeps permission checking and life-cycle management simple. Users wanting to change the idmapped can always create a new detached mount with a different idmapping. Link: https://lore.kernel.org/r/20210121131959.646623-36-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Mauricio Vásquez Bernal <mauricio@kinvolk.io> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:54 +00:00
#define MOUNT_ATTR_IDMAP 0x00100000 /* Idmap mount to @userns_fd in struct mount_attr. */
#define MOUNT_ATTR_NOSYMFOLLOW 0x00200000 /* Do not follow symlinks */
fs: add mount_setattr() This implements the missing mount_setattr() syscall. While the new mount api allows to change the properties of a superblock there is currently no way to change the properties of a mount or a mount tree using file descriptors which the new mount api is based on. In addition the old mount api has the restriction that mount options cannot be applied recursively. This hasn't changed since changing mount options on a per-mount basis was implemented in [1] and has been a frequent request not just for convenience but also for security reasons. The legacy mount syscall is unable to accommodate this behavior without introducing a whole new set of flags because MS_REC | MS_REMOUNT | MS_BIND | MS_RDONLY | MS_NOEXEC | [...] only apply the mount option to the topmost mount. Changing MS_REC to apply to the whole mount tree would mean introducing a significant uapi change and would likely cause significant regressions. The new mount_setattr() syscall allows to recursively clear and set mount options in one shot. Multiple calls to change mount options requesting the same changes are idempotent: int mount_setattr(int dfd, const char *path, unsigned flags, struct mount_attr *uattr, size_t usize); Flags to modify path resolution behavior are specified in the @flags argument. Currently, AT_EMPTY_PATH, AT_RECURSIVE, AT_SYMLINK_NOFOLLOW, and AT_NO_AUTOMOUNT are supported. If useful, additional lookup flags to restrict path resolution as introduced with openat2() might be supported in the future. The mount_setattr() syscall can be expected to grow over time and is designed with extensibility in mind. It follows the extensible syscall pattern we have used with other syscalls such as openat2(), clone3(), sched_{set,get}attr(), and others. The set of mount options is passed in the uapi struct mount_attr which currently has the following layout: struct mount_attr { __u64 attr_set; __u64 attr_clr; __u64 propagation; __u64 userns_fd; }; The @attr_set and @attr_clr members are used to clear and set mount options. This way a user can e.g. request that a set of flags is to be raised such as turning mounts readonly by raising MOUNT_ATTR_RDONLY in @attr_set while at the same time requesting that another set of flags is to be lowered such as removing noexec from a mount tree by specifying MOUNT_ATTR_NOEXEC in @attr_clr. Note, since the MOUNT_ATTR_<atime> values are an enum starting from 0, not a bitmap, users wanting to transition to a different atime setting cannot simply specify the atime setting in @attr_set, but must also specify MOUNT_ATTR__ATIME in the @attr_clr field. So we ensure that MOUNT_ATTR__ATIME can't be partially set in @attr_clr and that @attr_set can't have any atime bits set if MOUNT_ATTR__ATIME isn't set in @attr_clr. The @propagation field lets callers specify the propagation type of a mount tree. Propagation is a single property that has four different settings and as such is not really a flag argument but an enum. Specifically, it would be unclear what setting and clearing propagation settings in combination would amount to. The legacy mount() syscall thus forbids the combination of multiple propagation settings too. The goal is to keep the semantics of mount propagation somewhat simple as they are overly complex as it is. The @userns_fd field lets user specify a user namespace whose idmapping becomes the idmapping of the mount. This is implemented and explained in detail in the next patch. [1]: commit 2e4b7fcd9260 ("[PATCH] r/o bind mounts: honor mount writer counts at remount") Link: https://lore.kernel.org/r/20210121131959.646623-35-christian.brauner@ubuntu.com Cc: David Howells <dhowells@redhat.com> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Cc: linux-api@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 13:19:53 +00:00
/*
* mount_setattr()
*/
struct mount_attr {
__u64 attr_set;
__u64 attr_clr;
__u64 propagation;
__u64 userns_fd;
};
/* List of all mount_attr versions. */
#define MOUNT_ATTR_SIZE_VER0 32 /* sizeof first published struct */
#endif /* _UAPI_LINUX_MOUNT_H */