linux-stable/include/linux/coredump.h

55 lines
1.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_COREDUMP_H
#define _LINUX_COREDUMP_H
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <asm/siginfo.h>
#ifdef CONFIG_COREDUMP
binfmt_elf, binfmt_elf_fdpic: use a VMA list snapshot In both binfmt_elf and binfmt_elf_fdpic, use a new helper dump_vma_snapshot() to take a snapshot of the VMA list (including the gate VMA, if we have one) while protected by the mmap_lock, and then use that snapshot instead of walking the VMA list without locking. An alternative approach would be to keep the mmap_lock held across the entire core dumping operation; however, keeping the mmap_lock locked while we may be blocked for an unbounded amount of time (e.g. because we're dumping to a FUSE filesystem or so) isn't really optimal; the mmap_lock blocks things like the ->release handler of userfaultfd, and we don't really want critical system daemons to grind to a halt just because someone "gifted" them SCM_RIGHTS to an eternally-locked userfaultfd, or something like that. Since both the normal ELF code and the FDPIC ELF code need this functionality (and if any other binfmt wants to add coredump support in the future, they'd probably need it, too), implement this with a common helper in fs/coredump.c. A downside of this approach is that we now need a bigger amount of kernel memory per userspace VMA in the normal ELF case, and that we need O(n) kernel memory in the FDPIC ELF case at all; but 40 bytes per VMA shouldn't be terribly bad. There currently is a data race between stack expansion and anything that reads ->vm_start or ->vm_end under the mmap_lock held in read mode; to mitigate that for core dumping, take the mmap_lock in write mode when taking a snapshot of the VMA hierarchy. (If we only took the mmap_lock in read mode, we could end up with a corrupted core dump if someone does get_user_pages_remote() concurrently. Not really a major problem, but taking the mmap_lock either way works here, so we might as well avoid the issue.) (This doesn't do anything about the existing data races with stack expansion in other mm code.) Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hugh Dickins <hughd@google.com> Link: http://lkml.kernel.org/r/20200827114932.3572699-6-jannh@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:12:54 +00:00
struct core_vma_metadata {
unsigned long start, end;
unsigned long flags;
unsigned long dump_size;
unsigned long pgoff;
struct file *file;
binfmt_elf, binfmt_elf_fdpic: use a VMA list snapshot In both binfmt_elf and binfmt_elf_fdpic, use a new helper dump_vma_snapshot() to take a snapshot of the VMA list (including the gate VMA, if we have one) while protected by the mmap_lock, and then use that snapshot instead of walking the VMA list without locking. An alternative approach would be to keep the mmap_lock held across the entire core dumping operation; however, keeping the mmap_lock locked while we may be blocked for an unbounded amount of time (e.g. because we're dumping to a FUSE filesystem or so) isn't really optimal; the mmap_lock blocks things like the ->release handler of userfaultfd, and we don't really want critical system daemons to grind to a halt just because someone "gifted" them SCM_RIGHTS to an eternally-locked userfaultfd, or something like that. Since both the normal ELF code and the FDPIC ELF code need this functionality (and if any other binfmt wants to add coredump support in the future, they'd probably need it, too), implement this with a common helper in fs/coredump.c. A downside of this approach is that we now need a bigger amount of kernel memory per userspace VMA in the normal ELF case, and that we need O(n) kernel memory in the FDPIC ELF case at all; but 40 bytes per VMA shouldn't be terribly bad. There currently is a data race between stack expansion and anything that reads ->vm_start or ->vm_end under the mmap_lock held in read mode; to mitigate that for core dumping, take the mmap_lock in write mode when taking a snapshot of the VMA hierarchy. (If we only took the mmap_lock in read mode, we could end up with a corrupted core dump if someone does get_user_pages_remote() concurrently. Not really a major problem, but taking the mmap_lock either way works here, so we might as well avoid the issue.) (This doesn't do anything about the existing data races with stack expansion in other mm code.) Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hugh Dickins <hughd@google.com> Link: http://lkml.kernel.org/r/20200827114932.3572699-6-jannh@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:12:54 +00:00
};
struct coredump_params {
const kernel_siginfo_t *siginfo;
struct file *file;
unsigned long limit;
unsigned long mm_flags;
int cpu;
loff_t written;
loff_t pos;
loff_t to_skip;
int vma_count;
size_t vma_data_size;
struct core_vma_metadata *vma_meta;
};
/*
* These are the only things you should do on a core-file: use only these
* functions to write out all the necessary info.
*/
extern void dump_skip_to(struct coredump_params *cprm, unsigned long to);
extern void dump_skip(struct coredump_params *cprm, size_t nr);
extern int dump_emit(struct coredump_params *cprm, const void *addr, int nr);
extern int dump_align(struct coredump_params *cprm, int align);
int dump_user_range(struct coredump_params *cprm, unsigned long start,
unsigned long len);
extern void do_coredump(const kernel_siginfo_t *siginfo);
#else
static inline void do_coredump(const kernel_siginfo_t *siginfo) {}
#endif
#if defined(CONFIG_COREDUMP) && defined(CONFIG_SYSCTL)
extern void validate_coredump_safety(void);
#else
static inline void validate_coredump_safety(void) {}
#endif
#endif /* _LINUX_COREDUMP_H */