linux-stable/kernel/rcu/tasks.h

1361 lines
44 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Task-based RCU implementations.
*
* Copyright (C) 2020 Paul E. McKenney
*/
#ifdef CONFIG_TASKS_RCU_GENERIC
////////////////////////////////////////////////////////////////////////
//
// Generic data structures.
struct rcu_tasks;
typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
typedef void (*pregp_func_t)(void);
typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
typedef void (*postscan_func_t)(struct list_head *hop);
typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
/**
* struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
* @cbs_head: Head of callback list.
* @cbs_tail: Tail pointer for callback list.
* @cbs_wq: Wait queue allowning new callback to get kthread's attention.
* @cbs_lock: Lock protecting callback list.
* @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
* @gp_func: This flavor's grace-period-wait function.
* @gp_state: Grace period's most recent state transition (debugging).
* @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
* @init_fract: Initial backoff sleep interval.
* @gp_jiffies: Time of last @gp_state transition.
* @gp_start: Most recent grace-period start in jiffies.
* @n_gps: Number of grace periods completed since boot.
* @n_ipis: Number of IPIs sent to encourage grace periods to end.
* @n_ipis_fails: Number of IPI-send failures.
* @pregp_func: This flavor's pre-grace-period function (optional).
* @pertask_func: This flavor's per-task scan function (optional).
* @postscan_func: This flavor's post-task scan function (optional).
* @holdouts_func: This flavor's holdout-list scan function (optional).
* @postgp_func: This flavor's post-grace-period function (optional).
* @call_func: This flavor's call_rcu()-equivalent function.
* @name: This flavor's textual name.
* @kname: This flavor's kthread name.
*/
struct rcu_tasks {
struct rcu_head *cbs_head;
struct rcu_head **cbs_tail;
struct wait_queue_head cbs_wq;
raw_spinlock_t cbs_lock;
int gp_state;
int gp_sleep;
int init_fract;
unsigned long gp_jiffies;
unsigned long gp_start;
unsigned long n_gps;
unsigned long n_ipis;
unsigned long n_ipis_fails;
struct task_struct *kthread_ptr;
rcu_tasks_gp_func_t gp_func;
pregp_func_t pregp_func;
pertask_func_t pertask_func;
postscan_func_t postscan_func;
holdouts_func_t holdouts_func;
postgp_func_t postgp_func;
call_rcu_func_t call_func;
char *name;
char *kname;
};
#define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
static struct rcu_tasks rt_name = \
{ \
.cbs_tail = &rt_name.cbs_head, \
.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \
.cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \
.gp_func = gp, \
.call_func = call, \
.name = n, \
.kname = #rt_name, \
}
/* Track exiting tasks in order to allow them to be waited for. */
DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
/* Avoid IPIing CPUs early in the grace period. */
#define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
module_param(rcu_task_ipi_delay, int, 0644);
/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
module_param(rcu_task_stall_timeout, int, 0644);
/* RCU tasks grace-period state for debugging. */
#define RTGS_INIT 0
#define RTGS_WAIT_WAIT_CBS 1
#define RTGS_WAIT_GP 2
#define RTGS_PRE_WAIT_GP 3
#define RTGS_SCAN_TASKLIST 4
#define RTGS_POST_SCAN_TASKLIST 5
#define RTGS_WAIT_SCAN_HOLDOUTS 6
#define RTGS_SCAN_HOLDOUTS 7
#define RTGS_POST_GP 8
#define RTGS_WAIT_READERS 9
#define RTGS_INVOKE_CBS 10
#define RTGS_WAIT_CBS 11
#ifndef CONFIG_TINY_RCU
static const char * const rcu_tasks_gp_state_names[] = {
"RTGS_INIT",
"RTGS_WAIT_WAIT_CBS",
"RTGS_WAIT_GP",
"RTGS_PRE_WAIT_GP",
"RTGS_SCAN_TASKLIST",
"RTGS_POST_SCAN_TASKLIST",
"RTGS_WAIT_SCAN_HOLDOUTS",
"RTGS_SCAN_HOLDOUTS",
"RTGS_POST_GP",
"RTGS_WAIT_READERS",
"RTGS_INVOKE_CBS",
"RTGS_WAIT_CBS",
};
#endif /* #ifndef CONFIG_TINY_RCU */
////////////////////////////////////////////////////////////////////////
//
// Generic code.
/* Record grace-period phase and time. */
static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
{
rtp->gp_state = newstate;
rtp->gp_jiffies = jiffies;
}
#ifndef CONFIG_TINY_RCU
/* Return state name. */
static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
{
int i = data_race(rtp->gp_state); // Let KCSAN detect update races
int j = READ_ONCE(i); // Prevent the compiler from reading twice
if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
return "???";
return rcu_tasks_gp_state_names[j];
}
#endif /* #ifndef CONFIG_TINY_RCU */
// Enqueue a callback for the specified flavor of Tasks RCU.
static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
struct rcu_tasks *rtp)
{
unsigned long flags;
bool needwake;
rhp->next = NULL;
rhp->func = func;
raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
needwake = !rtp->cbs_head;
WRITE_ONCE(*rtp->cbs_tail, rhp);
rtp->cbs_tail = &rhp->next;
raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
/* We can't create the thread unless interrupts are enabled. */
if (needwake && READ_ONCE(rtp->kthread_ptr))
wake_up(&rtp->cbs_wq);
}
// Wait for a grace period for the specified flavor of Tasks RCU.
static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
{
/* Complain if the scheduler has not started. */
RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
"synchronize_rcu_tasks called too soon");
/* Wait for the grace period. */
wait_rcu_gp(rtp->call_func);
}
/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
static int __noreturn rcu_tasks_kthread(void *arg)
{
unsigned long flags;
struct rcu_head *list;
struct rcu_head *next;
struct rcu_tasks *rtp = arg;
/* Run on housekeeping CPUs by default. Sysadm can move if desired. */
housekeeping_affine(current, HK_FLAG_RCU);
WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
/*
* Each pass through the following loop makes one check for
* newly arrived callbacks, and, if there are some, waits for
* one RCU-tasks grace period and then invokes the callbacks.
* This loop is terminated by the system going down. ;-)
*/
for (;;) {
/* Pick up any new callbacks. */
raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
smp_mb__after_spinlock(); // Order updates vs. GP.
list = rtp->cbs_head;
rtp->cbs_head = NULL;
rtp->cbs_tail = &rtp->cbs_head;
raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
/* If there were none, wait a bit and start over. */
if (!list) {
wait_event_interruptible(rtp->cbs_wq,
READ_ONCE(rtp->cbs_head));
if (!rtp->cbs_head) {
WARN_ON(signal_pending(current));
set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
schedule_timeout_idle(HZ/10);
}
continue;
}
// Wait for one grace period.
set_tasks_gp_state(rtp, RTGS_WAIT_GP);
rtp->gp_start = jiffies;
rtp->gp_func(rtp);
rtp->n_gps++;
/* Invoke the callbacks. */
set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
while (list) {
next = list->next;
local_bh_disable();
list->func(list);
local_bh_enable();
list = next;
cond_resched();
}
/* Paranoid sleep to keep this from entering a tight loop */
schedule_timeout_idle(rtp->gp_sleep);
set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
}
}
/* Spawn RCU-tasks grace-period kthread. */
static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
{
struct task_struct *t;
t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
return;
smp_mb(); /* Ensure others see full kthread. */
}
#ifndef CONFIG_TINY_RCU
/*
* Print any non-default Tasks RCU settings.
*/
static void __init rcu_tasks_bootup_oddness(void)
{
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_RCU
pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_RUDE_RCU
pr_info("\tRude variant of Tasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
#ifdef CONFIG_TASKS_TRACE_RCU
pr_info("\tTracing variant of Tasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}
#endif /* #ifndef CONFIG_TINY_RCU */
#ifndef CONFIG_TINY_RCU
/* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
{
pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
rtp->kname,
tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
jiffies - data_race(rtp->gp_jiffies),
data_race(rtp->n_gps),
data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
".k"[!!data_race(rtp->kthread_ptr)],
".C"[!!data_race(rtp->cbs_head)],
s);
}
#endif // #ifndef CONFIG_TINY_RCU
static void exit_tasks_rcu_finish_trace(struct task_struct *t);
#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
////////////////////////////////////////////////////////////////////////
//
// Shared code between task-list-scanning variants of Tasks RCU.
/* Wait for one RCU-tasks grace period. */
static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
{
struct task_struct *g, *t;
unsigned long lastreport;
LIST_HEAD(holdouts);
int fract;
set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
rtp->pregp_func();
/*
* There were callbacks, so we need to wait for an RCU-tasks
* grace period. Start off by scanning the task list for tasks
* that are not already voluntarily blocked. Mark these tasks
* and make a list of them in holdouts.
*/
set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
rcu_read_lock();
for_each_process_thread(g, t)
rtp->pertask_func(t, &holdouts);
rcu_read_unlock();
set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
rtp->postscan_func(&holdouts);
/*
* Each pass through the following loop scans the list of holdout
* tasks, removing any that are no longer holdouts. When the list
* is empty, we are done.
*/
lastreport = jiffies;
// Start off with initial wait and slowly back off to 1 HZ wait.
fract = rtp->init_fract;
while (!list_empty(&holdouts)) {
bool firstreport;
bool needreport;
int rtst;
/* Slowly back off waiting for holdouts */
set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
schedule_timeout_idle(fract);
if (fract < HZ)
fract++;
rtst = READ_ONCE(rcu_task_stall_timeout);
needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
if (needreport)
lastreport = jiffies;
firstreport = true;
WARN_ON(signal_pending(current));
set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
rtp->holdouts_func(&holdouts, needreport, &firstreport);
}
set_tasks_gp_state(rtp, RTGS_POST_GP);
rtp->postgp_func(rtp);
}
#endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
#ifdef CONFIG_TASKS_RCU
////////////////////////////////////////////////////////////////////////
//
// Simple variant of RCU whose quiescent states are voluntary context
// switch, cond_resched_rcu_qs(), user-space execution, and idle.
// As such, grace periods can take one good long time. There are no
// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
// because this implementation is intended to get the system into a safe
// state for some of the manipulations involved in tracing and the like.
// Finally, this implementation does not support high call_rcu_tasks()
// rates from multiple CPUs. If this is required, per-CPU callback lists
// will be needed.
/* Pre-grace-period preparation. */
static void rcu_tasks_pregp_step(void)
{
/*
* Wait for all pre-existing t->on_rq and t->nvcsw transitions
* to complete. Invoking synchronize_rcu() suffices because all
* these transitions occur with interrupts disabled. Without this
* synchronize_rcu(), a read-side critical section that started
* before the grace period might be incorrectly seen as having
* started after the grace period.
*
* This synchronize_rcu() also dispenses with the need for a
* memory barrier on the first store to t->rcu_tasks_holdout,
* as it forces the store to happen after the beginning of the
* grace period.
*/
synchronize_rcu();
}
/* Per-task initial processing. */
static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
{
if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
get_task_struct(t);
t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
WRITE_ONCE(t->rcu_tasks_holdout, true);
list_add(&t->rcu_tasks_holdout_list, hop);
}
}
/* Processing between scanning taskslist and draining the holdout list. */
static void rcu_tasks_postscan(struct list_head *hop)
{
/*
* Wait for tasks that are in the process of exiting. This
* does only part of the job, ensuring that all tasks that were
* previously exiting reach the point where they have disabled
* preemption, allowing the later synchronize_rcu() to finish
* the job.
*/
synchronize_srcu(&tasks_rcu_exit_srcu);
}
/* See if tasks are still holding out, complain if so. */
static void check_holdout_task(struct task_struct *t,
bool needreport, bool *firstreport)
{
int cpu;
if (!READ_ONCE(t->rcu_tasks_holdout) ||
t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
!READ_ONCE(t->on_rq) ||
(IS_ENABLED(CONFIG_NO_HZ_FULL) &&
!is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
WRITE_ONCE(t->rcu_tasks_holdout, false);
list_del_init(&t->rcu_tasks_holdout_list);
put_task_struct(t);
return;
}
rcu_request_urgent_qs_task(t);
if (!needreport)
return;
if (*firstreport) {
pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
*firstreport = false;
}
cpu = task_cpu(t);
pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
t, ".I"[is_idle_task(t)],
"N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
t->rcu_tasks_idle_cpu, cpu);
sched_show_task(t);
}
/* Scan the holdout lists for tasks no longer holding out. */
static void check_all_holdout_tasks(struct list_head *hop,
bool needreport, bool *firstreport)
{
struct task_struct *t, *t1;
list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
check_holdout_task(t, needreport, firstreport);
cond_resched();
}
}
/* Finish off the Tasks-RCU grace period. */
static void rcu_tasks_postgp(struct rcu_tasks *rtp)
{
/*
* Because ->on_rq and ->nvcsw are not guaranteed to have a full
* memory barriers prior to them in the schedule() path, memory
* reordering on other CPUs could cause their RCU-tasks read-side
* critical sections to extend past the end of the grace period.
* However, because these ->nvcsw updates are carried out with
* interrupts disabled, we can use synchronize_rcu() to force the
* needed ordering on all such CPUs.
*
* This synchronize_rcu() also confines all ->rcu_tasks_holdout
* accesses to be within the grace period, avoiding the need for
* memory barriers for ->rcu_tasks_holdout accesses.
*
* In addition, this synchronize_rcu() waits for exiting tasks
* to complete their final preempt_disable() region of execution,
* cleaning up after the synchronize_srcu() above.
*/
synchronize_rcu();
}
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
/**
* call_rcu_tasks() - Queue an RCU for invocation task-based grace period
* @rhp: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_tasks() assumes
* that the read-side critical sections end at a voluntary context
* switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
* or transition to usermode execution. As such, there are no read-side
* primitives analogous to rcu_read_lock() and rcu_read_unlock() because
* this primitive is intended to determine that all tasks have passed
* through a safe state, not so much for data-strcuture synchronization.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
{
call_rcu_tasks_generic(rhp, func, &rcu_tasks);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);
/**
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
*
* Control will return to the caller some time after a full rcu-tasks
* grace period has elapsed, in other words after all currently
* executing rcu-tasks read-side critical sections have elapsed. These
* read-side critical sections are delimited by calls to schedule(),
* cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
*
* This is a very specialized primitive, intended only for a few uses in
* tracing and other situations requiring manipulation of function
* preambles and profiling hooks. The synchronize_rcu_tasks() function
* is not (yet) intended for heavy use from multiple CPUs.
*
* See the description of synchronize_rcu() for more detailed information
* on memory ordering guarantees.
*/
void synchronize_rcu_tasks(void)
{
synchronize_rcu_tasks_generic(&rcu_tasks);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
/**
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
*
* Although the current implementation is guaranteed to wait, it is not
* obligated to, for example, if there are no pending callbacks.
*/
void rcu_barrier_tasks(void)
{
/* There is only one callback queue, so this is easy. ;-) */
synchronize_rcu_tasks();
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
static int __init rcu_spawn_tasks_kthread(void)
{
rcu_tasks.gp_sleep = HZ / 10;
rcu_tasks.init_fract = HZ / 10;
rcu_tasks.pregp_func = rcu_tasks_pregp_step;
rcu_tasks.pertask_func = rcu_tasks_pertask;
rcu_tasks.postscan_func = rcu_tasks_postscan;
rcu_tasks.holdouts_func = check_all_holdout_tasks;
rcu_tasks.postgp_func = rcu_tasks_postgp;
rcu_spawn_tasks_kthread_generic(&rcu_tasks);
return 0;
}
#if !defined(CONFIG_TINY_RCU)
void show_rcu_tasks_classic_gp_kthread(void)
{
show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
}
EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
#endif // !defined(CONFIG_TINY_RCU)
/* Do the srcu_read_lock() for the above synchronize_srcu(). */
void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
{
preempt_disable();
current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
preempt_enable();
}
/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
{
struct task_struct *t = current;
preempt_disable();
__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
preempt_enable();
exit_tasks_rcu_finish_trace(t);
}
#else /* #ifdef CONFIG_TASKS_RCU */
void exit_tasks_rcu_start(void) { }
void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
#endif /* #else #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_RUDE_RCU
////////////////////////////////////////////////////////////////////////
//
// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
// passing an empty function to schedule_on_each_cpu(). This approach
// provides an asynchronous call_rcu_tasks_rude() API and batching
// of concurrent calls to the synchronous synchronize_rcu_rude() API.
// This sends IPIs far and wide and induces otherwise unnecessary context
// switches on all online CPUs, whether idle or not.
// Empty function to allow workqueues to force a context switch.
static void rcu_tasks_be_rude(struct work_struct *work)
{
}
// Wait for one rude RCU-tasks grace period.
static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
{
rtp->n_ipis += cpumask_weight(cpu_online_mask);
schedule_on_each_cpu(rcu_tasks_be_rude);
}
void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
"RCU Tasks Rude");
/**
* call_rcu_tasks_rude() - Queue a callback rude task-based grace period
* @rhp: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_tasks_rude()
* assumes that the read-side critical sections end at context switch,
* cond_resched_rcu_qs(), or transition to usermode execution. As such,
* there are no read-side primitives analogous to rcu_read_lock() and
* rcu_read_unlock() because this primitive is intended to determine
* that all tasks have passed through a safe state, not so much for
* data-strcuture synchronization.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
{
call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
/**
* synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
*
* Control will return to the caller some time after a rude rcu-tasks
* grace period has elapsed, in other words after all currently
* executing rcu-tasks read-side critical sections have elapsed. These
* read-side critical sections are delimited by calls to schedule(),
* cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
* anyway) cond_resched().
*
* This is a very specialized primitive, intended only for a few uses in
* tracing and other situations requiring manipulation of function preambles
* and profiling hooks. The synchronize_rcu_tasks_rude() function is not
* (yet) intended for heavy use from multiple CPUs.
*
* See the description of synchronize_rcu() for more detailed information
* on memory ordering guarantees.
*/
void synchronize_rcu_tasks_rude(void)
{
synchronize_rcu_tasks_generic(&rcu_tasks_rude);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
/**
* rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
*
* Although the current implementation is guaranteed to wait, it is not
* obligated to, for example, if there are no pending callbacks.
*/
void rcu_barrier_tasks_rude(void)
{
/* There is only one callback queue, so this is easy. ;-) */
synchronize_rcu_tasks_rude();
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
static int __init rcu_spawn_tasks_rude_kthread(void)
{
rcu_tasks_rude.gp_sleep = HZ / 10;
rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
return 0;
}
#if !defined(CONFIG_TINY_RCU)
void show_rcu_tasks_rude_gp_kthread(void)
{
show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
}
EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
#endif // !defined(CONFIG_TINY_RCU)
#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
////////////////////////////////////////////////////////////////////////
//
// Tracing variant of Tasks RCU. This variant is designed to be used
// to protect tracing hooks, including those of BPF. This variant
// therefore:
//
// 1. Has explicit read-side markers to allow finite grace periods
// in the face of in-kernel loops for PREEMPT=n builds.
//
// 2. Protects code in the idle loop, exception entry/exit, and
// CPU-hotplug code paths, similar to the capabilities of SRCU.
//
// 3. Avoids expensive read-side instruction, having overhead similar
// to that of Preemptible RCU.
//
// There are of course downsides. The grace-period code can send IPIs to
// CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
// It is necessary to scan the full tasklist, much as for Tasks RCU. There
// is a single callback queue guarded by a single lock, again, much as for
// Tasks RCU. If needed, these downsides can be at least partially remedied.
//
// Perhaps most important, this variant of RCU does not affect the vanilla
// flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
// readers can operate from idle, offline, and exception entry/exit in no
// way allows rcu_preempt and rcu_sched readers to also do so.
//
// The implementation uses rcu_tasks_wait_gp(), which relies on function
// pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread()
// function sets these function pointers up so that rcu_tasks_wait_gp()
// invokes these functions in this order:
//
// rcu_tasks_trace_pregp_step():
// Initialize the count of readers and block CPU-hotplug operations.
// rcu_tasks_trace_pertask(), invoked on every non-idle task:
// Initialize per-task state and attempt to identify an immediate
// quiescent state for that task, or, failing that, attempt to
// set that task's .need_qs flag so that task's next outermost
// rcu_read_unlock_trace() will report the quiescent state (in which
// case the count of readers is incremented). If both attempts fail,
// the task is added to a "holdout" list.
// rcu_tasks_trace_postscan():
// Initialize state and attempt to identify an immediate quiescent
// state as above (but only for idle tasks), unblock CPU-hotplug
// operations, and wait for an RCU grace period to avoid races with
// tasks that are in the process of exiting.
// check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
// Scans the holdout list, attempting to identify a quiescent state
// for each task on the list. If there is a quiescent state, the
// corresponding task is removed from the holdout list.
// rcu_tasks_trace_postgp():
// Wait for the count of readers do drop to zero, reporting any stalls.
// Also execute full memory barriers to maintain ordering with code
// executing after the grace period.
//
// The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
//
// Pre-grace-period update-side code is ordered before the grace
// period via the ->cbs_lock and barriers in rcu_tasks_kthread().
// Pre-grace-period read-side code is ordered before the grace period by
// atomic_dec_and_test() of the count of readers (for IPIed readers) and by
// scheduler context-switch ordering (for locked-down non-running readers).
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
// The lockdep state must be outside of #ifdef to be useful.
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_trace_key;
struct lockdep_map rcu_trace_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
#ifdef CONFIG_TASKS_TRACE_RCU
static atomic_t trc_n_readers_need_end; // Number of waited-for readers.
static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks.
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
// Record outstanding IPIs to each CPU. No point in sending two...
static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
// The number of detections of task quiescent state relying on
// heavyweight readers executing explicit memory barriers.
static unsigned long n_heavy_reader_attempts;
static unsigned long n_heavy_reader_updates;
static unsigned long n_heavy_reader_ofl_updates;
void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
"RCU Tasks Trace");
/*
* This irq_work handler allows rcu_read_unlock_trace() to be invoked
* while the scheduler locks are held.
*/
static void rcu_read_unlock_iw(struct irq_work *iwp)
{
wake_up(&trc_wait);
}
static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
/* If we are the last reader, wake up the grace-period kthread. */
void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
{
int nq = t->trc_reader_special.b.need_qs;
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
t->trc_reader_special.b.need_mb)
smp_mb(); // Pairs with update-side barriers.
// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
if (nq)
WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
WRITE_ONCE(t->trc_reader_nesting, nesting);
if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
irq_work_queue(&rcu_tasks_trace_iw);
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
}
EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
/* Add a task to the holdout list, if it is not already on the list. */
static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
{
if (list_empty(&t->trc_holdout_list)) {
get_task_struct(t);
list_add(&t->trc_holdout_list, bhp);
}
}
/* Remove a task from the holdout list, if it is in fact present. */
static void trc_del_holdout(struct task_struct *t)
{
if (!list_empty(&t->trc_holdout_list)) {
list_del_init(&t->trc_holdout_list);
put_task_struct(t);
}
}
/* IPI handler to check task state. */
static void trc_read_check_handler(void *t_in)
{
struct task_struct *t = current;
struct task_struct *texp = t_in;
// If the task is no longer running on this CPU, leave.
if (unlikely(texp != t)) {
if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
wake_up(&trc_wait);
goto reset_ipi; // Already on holdout list, so will check later.
}
// If the task is not in a read-side critical section, and
// if this is the last reader, awaken the grace-period kthread.
if (likely(!t->trc_reader_nesting)) {
if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
wake_up(&trc_wait);
// Mark as checked after decrement to avoid false
// positives on the above WARN_ON_ONCE().
WRITE_ONCE(t->trc_reader_checked, true);
goto reset_ipi;
}
rcu-tasks: Fix grace-period/unlock race in RCU Tasks Trace The more intense grace-period processing resulting from the 50x RCU Tasks Trace grace-period speedups exposed the following race condition: o Task A running on CPU 0 executes rcu_read_lock_trace(), entering a read-side critical section. o When Task A eventually invokes rcu_read_unlock_trace() to exit its read-side critical section, this function notes that the ->trc_reader_special.s flag is zero and and therefore invoke wil set ->trc_reader_nesting to zero using WRITE_ONCE(). But before that happens... o The RCU Tasks Trace grace-period kthread running on some other CPU interrogates Task A, but this fails because this task is currently running. This kthread therefore sends an IPI to CPU 0. o CPU 0 receives the IPI, and thus invokes trc_read_check_handler(). Because Task A has not yet cleared its ->trc_reader_nesting counter, this function sees that Task A is still within its read-side critical section. This function therefore sets the ->trc_reader_nesting.b.need_qs flag, AKA the .need_qs flag. Except that Task A has already checked the .need_qs flag, which is part of the ->trc_reader_special.s flag. The .need_qs flag therefore remains set until Task A's next rcu_read_unlock_trace(). o Task A now invokes synchronize_rcu_tasks_trace(), which cannot start a new grace period until the current grace period completes. And thus cannot return until after that time. But Task A's .need_qs flag is still set, which prevents the current grace period from completing. And because Task A is blocked, it will never execute rcu_read_unlock_trace() until its call to synchronize_rcu_tasks_trace() returns. We are therefore deadlocked. This race is improbable, but 80 hours of rcutorture made it happen twice. The race was possible before the grace-period speedup, but roughly 50x less probable. Several thousand hours of rcutorture would have been necessary to have a reasonable chance of making this happen before this 50x speedup. This commit therefore eliminates this deadlock by setting ->trc_reader_nesting to a large negative number before checking the .need_qs and zeroing (or decrementing with respect to its initial value) ->trc_reader_nesting. For its part, the IPI handler's trc_read_check_handler() function adds a check for negative values, deferring evaluation of the task in this case. Taken together, these changes avoid this deadlock scenario. Fixes: 276c410448db ("rcu-tasks: Split ->trc_reader_need_end") Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: <bpf@vger.kernel.org> Cc: <stable@vger.kernel.org> # 5.7.x Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-09-14 22:44:37 +00:00
// If we are racing with an rcu_read_unlock_trace(), try again later.
if (unlikely(t->trc_reader_nesting < 0)) {
if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
wake_up(&trc_wait);
goto reset_ipi;
}
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
WRITE_ONCE(t->trc_reader_checked, true);
// Get here if the task is in a read-side critical section. Set
// its state so that it will awaken the grace-period kthread upon
// exit from that critical section.
WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
reset_ipi:
// Allow future IPIs to be sent on CPU and for task.
// Also order this IPI handler against any later manipulations of
// the intended task.
smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
}
/* Callback function for scheduler to check locked-down task. */
static bool trc_inspect_reader(struct task_struct *t, void *arg)
{
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
int cpu = task_cpu(t);
bool in_qs = false;
bool ofl = cpu_is_offline(cpu);
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
if (task_curr(t)) {
WARN_ON_ONCE(ofl && !is_idle_task(t));
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
// If no chance of heavyweight readers, do it the hard way.
if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
return false;
// If heavyweight readers are enabled on the remote task,
// we can inspect its state despite its currently running.
// However, we cannot safely change its state.
n_heavy_reader_attempts++;
if (!ofl && // Check for "running" idle tasks on offline CPUs.
!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
return false; // No quiescent state, do it the hard way.
n_heavy_reader_updates++;
if (ofl)
n_heavy_reader_ofl_updates++;
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
in_qs = true;
} else {
in_qs = likely(!t->trc_reader_nesting);
}
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
// Mark as checked. Because this is called from the grace-period
// kthread, also remove the task from the holdout list.
t->trc_reader_checked = true;
trc_del_holdout(t);
rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built Systems running CPU-bound real-time task do not want IPIs sent to CPUs executing nohz_full userspace tasks. Battery-powered systems don't want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks trace can and will send such IPIs in some cases. Both of these situations occur only when the target CPU is in RCU dyntick-idle mode, in other words, when RCU is not watching the target CPU. This suggests that CPUs in dyntick-idle mode should use memory barriers in outermost invocations of rcu_read_lock_trace() and rcu_read_unlock_trace(), which would allow the RCU tasks trace grace period to directly read out the target CPU's read-side state. One challenge is that RCU tasks trace is not targeting a specific CPU, but rather a task. And that task could switch from one CPU to another at any time. This commit therefore uses try_invoke_on_locked_down_task() and checks for task_curr() in trc_inspect_reader_notrunning(). When this condition holds, the target task is running and cannot move. If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs() function can be used to check if the specified integer (in this case, t->trc_reader_nesting) is zero while the target CPU remains in that same dyntick-idle sojourn. If so, the target task is in a quiescent state. If not, trc_read_check_handler() must indicate failure so that the grace-period kthread can take appropriate action or retry after an appropriate delay, as the case may be. With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given CPU remains idle or a given task continues executing in nohz_full mode, the RCU tasks trace grace-period kthread will detect this without the need to send an IPI. Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 22:33:12 +00:00
if (in_qs)
return true; // Already in quiescent state, done!!!
// The task is in a read-side critical section, so set up its
// state so that it will awaken the grace-period kthread upon exit
// from that critical section.
atomic_inc(&trc_n_readers_need_end); // One more to wait on.
WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
return true;
}
/* Attempt to extract the state for the specified task. */
static void trc_wait_for_one_reader(struct task_struct *t,
struct list_head *bhp)
{
int cpu;
// If a previous IPI is still in flight, let it complete.
if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
return;
// The current task had better be in a quiescent state.
if (t == current) {
t->trc_reader_checked = true;
trc_del_holdout(t);
WARN_ON_ONCE(t->trc_reader_nesting);
return;
}
// Attempt to nail down the task for inspection.
get_task_struct(t);
if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
put_task_struct(t);
return;
}
put_task_struct(t);
// If currently running, send an IPI, either way, add to list.
trc_add_holdout(t, bhp);
if (task_curr(t) &&
time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
// The task is currently running, so try IPIing it.
cpu = task_cpu(t);
// If there is already an IPI outstanding, let it happen.
if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
return;
atomic_inc(&trc_n_readers_need_end);
per_cpu(trc_ipi_to_cpu, cpu) = true;
t->trc_ipi_to_cpu = cpu;
rcu_tasks_trace.n_ipis++;
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
if (smp_call_function_single(cpu,
trc_read_check_handler, t, 0)) {
// Just in case there is some other reason for
// failure than the target CPU being offline.
rcu_tasks_trace.n_ipis_fails++;
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
per_cpu(trc_ipi_to_cpu, cpu) = false;
t->trc_ipi_to_cpu = cpu;
if (atomic_dec_and_test(&trc_n_readers_need_end)) {
WARN_ON_ONCE(1);
wake_up(&trc_wait);
}
}
}
}
/* Initialize for a new RCU-tasks-trace grace period. */
static void rcu_tasks_trace_pregp_step(void)
{
int cpu;
// Allow for fast-acting IPIs.
atomic_set(&trc_n_readers_need_end, 1);
// There shouldn't be any old IPIs, but...
for_each_possible_cpu(cpu)
WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
// Disable CPU hotplug across the tasklist scan.
// This also waits for all readers in CPU-hotplug code paths.
cpus_read_lock();
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
}
/* Do first-round processing for the specified task. */
static void rcu_tasks_trace_pertask(struct task_struct *t,
struct list_head *hop)
{
// During early boot when there is only the one boot CPU, there
// is no idle task for the other CPUs. Just return.
if (unlikely(t == NULL))
return;
WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
WRITE_ONCE(t->trc_reader_checked, false);
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
t->trc_ipi_to_cpu = -1;
trc_wait_for_one_reader(t, hop);
}
/*
* Do intermediate processing between task and holdout scans and
* pick up the idle tasks.
*/
static void rcu_tasks_trace_postscan(struct list_head *hop)
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
{
int cpu;
for_each_possible_cpu(cpu)
rcu_tasks_trace_pertask(idle_task(cpu), hop);
// Re-enable CPU hotplug now that the tasklist scan has completed.
cpus_read_unlock();
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
// Wait for late-stage exiting tasks to finish exiting.
// These might have passed the call to exit_tasks_rcu_finish().
synchronize_rcu();
// Any tasks that exit after this point will set ->trc_reader_checked.
}
/* Show the state of a task stalling the current RCU tasks trace GP. */
static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
{
int cpu;
if (*firstreport) {
pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
*firstreport = false;
}
// FIXME: This should attempt to use try_invoke_on_nonrunning_task().
cpu = task_cpu(t);
pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
t->pid,
".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
".i"[is_idle_task(t)],
".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
t->trc_reader_nesting,
" N"[!!t->trc_reader_special.b.need_qs],
cpu);
sched_show_task(t);
}
/* List stalled IPIs for RCU tasks trace. */
static void show_stalled_ipi_trace(void)
{
int cpu;
for_each_possible_cpu(cpu)
if (per_cpu(trc_ipi_to_cpu, cpu))
pr_alert("\tIPI outstanding to CPU %d\n", cpu);
}
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
/* Do one scan of the holdout list. */
static void check_all_holdout_tasks_trace(struct list_head *hop,
bool needreport, bool *firstreport)
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
{
struct task_struct *g, *t;
// Disable CPU hotplug across the holdout list scan.
cpus_read_lock();
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
// If safe and needed, try to check the current task.
if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
!READ_ONCE(t->trc_reader_checked))
trc_wait_for_one_reader(t, hop);
// If check succeeded, remove this task from the list.
if (READ_ONCE(t->trc_reader_checked))
trc_del_holdout(t);
else if (needreport)
show_stalled_task_trace(t, firstreport);
}
// Re-enable CPU hotplug now that the holdout list scan has completed.
cpus_read_unlock();
if (needreport) {
if (firstreport)
pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
show_stalled_ipi_trace();
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
}
}
/* Wait for grace period to complete and provide ordering. */
static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
{
bool firstreport;
struct task_struct *g, *t;
LIST_HEAD(holdouts);
long ret;
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
// Remove the safety count.
smp_mb__before_atomic(); // Order vs. earlier atomics
atomic_dec(&trc_n_readers_need_end);
smp_mb__after_atomic(); // Order vs. later atomics
// Wait for readers.
set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
for (;;) {
ret = wait_event_idle_exclusive_timeout(
trc_wait,
atomic_read(&trc_n_readers_need_end) == 0,
READ_ONCE(rcu_task_stall_timeout));
if (ret)
break; // Count reached zero.
// Stall warning time, so make a list of the offenders.
rcu_read_lock();
for_each_process_thread(g, t)
if (READ_ONCE(t->trc_reader_special.b.need_qs))
trc_add_holdout(t, &holdouts);
rcu_read_unlock();
firstreport = true;
list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
if (READ_ONCE(t->trc_reader_special.b.need_qs))
show_stalled_task_trace(t, &firstreport);
trc_del_holdout(t); // Release task_struct reference.
}
if (firstreport)
pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
show_stalled_ipi_trace();
pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
}
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
smp_mb(); // Caller's code must be ordered after wakeup.
// Pairs with pretty much every ordering primitive.
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
}
/* Report any needed quiescent state for this exiting task. */
static void exit_tasks_rcu_finish_trace(struct task_struct *t)
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
{
WRITE_ONCE(t->trc_reader_checked, true);
WARN_ON_ONCE(t->trc_reader_nesting);
WRITE_ONCE(t->trc_reader_nesting, 0);
if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
rcu_read_unlock_trace_special(t, 0);
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
}
/**
* call_rcu_tasks_trace() - Queue a callback trace task-based grace period
* @rhp: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_tasks_trace()
* assumes that the read-side critical sections end at context switch,
* cond_resched_rcu_qs(), or transition to usermode execution. As such,
* there are no read-side primitives analogous to rcu_read_lock() and
* rcu_read_unlock() because this primitive is intended to determine
* that all tasks have passed through a safe state, not so much for
* data-strcuture synchronization.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
{
call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
/**
* synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
*
* Control will return to the caller some time after a trace rcu-tasks
* grace period has elapsed, in other words after all currently executing
* rcu-tasks read-side critical sections have elapsed. These read-side
* critical sections are delimited by calls to rcu_read_lock_trace()
* and rcu_read_unlock_trace().
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
*
* This is a very specialized primitive, intended only for a few uses in
* tracing and other situations requiring manipulation of function preambles
* and profiling hooks. The synchronize_rcu_tasks_trace() function is not
* (yet) intended for heavy use from multiple CPUs.
*
* See the description of synchronize_rcu() for more detailed information
* on memory ordering guarantees.
*/
void synchronize_rcu_tasks_trace(void)
{
RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
synchronize_rcu_tasks_generic(&rcu_tasks_trace);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
/**
* rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
*
* Although the current implementation is guaranteed to wait, it is not
* obligated to, for example, if there are no pending callbacks.
*/
void rcu_barrier_tasks_trace(void)
{
/* There is only one callback queue, so this is easy. ;-) */
synchronize_rcu_tasks_trace();
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
static int __init rcu_spawn_tasks_trace_kthread(void)
{
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
rcu_tasks_trace.gp_sleep = HZ / 10;
rcu_tasks_trace.init_fract = HZ / 10;
} else {
rcu_tasks_trace.gp_sleep = HZ / 200;
if (rcu_tasks_trace.gp_sleep <= 0)
rcu_tasks_trace.gp_sleep = 1;
rcu_tasks_trace.init_fract = HZ / 200;
if (rcu_tasks_trace.init_fract <= 0)
rcu_tasks_trace.init_fract = 1;
}
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
return 0;
}
#if !defined(CONFIG_TINY_RCU)
void show_rcu_tasks_trace_gp_kthread(void)
{
char buf[64];
sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
data_race(n_heavy_reader_ofl_updates),
data_race(n_heavy_reader_updates),
data_race(n_heavy_reader_attempts));
show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
}
EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
#endif // !defined(CONFIG_TINY_RCU)
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
#else /* #ifdef CONFIG_TASKS_TRACE_RCU */
static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 02:56:53 +00:00
#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
#ifndef CONFIG_TINY_RCU
void show_rcu_tasks_gp_kthreads(void)
{
show_rcu_tasks_classic_gp_kthread();
show_rcu_tasks_rude_gp_kthread();
show_rcu_tasks_trace_gp_kthread();
}
#endif /* #ifndef CONFIG_TINY_RCU */
#ifdef CONFIG_PROVE_RCU
struct rcu_tasks_test_desc {
struct rcu_head rh;
const char *name;
bool notrun;
};
static struct rcu_tasks_test_desc tests[] = {
{
.name = "call_rcu_tasks()",
/* If not defined, the test is skipped. */
.notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
},
{
.name = "call_rcu_tasks_rude()",
/* If not defined, the test is skipped. */
.notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
},
{
.name = "call_rcu_tasks_trace()",
/* If not defined, the test is skipped. */
.notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
}
};
static void test_rcu_tasks_callback(struct rcu_head *rhp)
{
struct rcu_tasks_test_desc *rttd =
container_of(rhp, struct rcu_tasks_test_desc, rh);
pr_info("Callback from %s invoked.\n", rttd->name);
rttd->notrun = true;
}
static void rcu_tasks_initiate_self_tests(void)
{
pr_info("Running RCU-tasks wait API self tests\n");
#ifdef CONFIG_TASKS_RCU
synchronize_rcu_tasks();
call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
#endif
#ifdef CONFIG_TASKS_RUDE_RCU
synchronize_rcu_tasks_rude();
call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
#endif
#ifdef CONFIG_TASKS_TRACE_RCU
synchronize_rcu_tasks_trace();
call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
#endif
}
static int rcu_tasks_verify_self_tests(void)
{
int ret = 0;
int i;
for (i = 0; i < ARRAY_SIZE(tests); i++) {
if (!tests[i].notrun) { // still hanging.
pr_err("%s has been failed.\n", tests[i].name);
ret = -1;
}
}
if (ret)
WARN_ON(1);
return ret;
}
late_initcall(rcu_tasks_verify_self_tests);
#else /* #ifdef CONFIG_PROVE_RCU */
static void rcu_tasks_initiate_self_tests(void) { }
#endif /* #else #ifdef CONFIG_PROVE_RCU */
void __init rcu_init_tasks_generic(void)
{
#ifdef CONFIG_TASKS_RCU
rcu_spawn_tasks_kthread();
#endif
#ifdef CONFIG_TASKS_RUDE_RCU
rcu_spawn_tasks_rude_kthread();
#endif
#ifdef CONFIG_TASKS_TRACE_RCU
rcu_spawn_tasks_trace_kthread();
#endif
// Run the self-tests.
rcu_tasks_initiate_self_tests();
}
#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
static inline void rcu_tasks_bootup_oddness(void) {}
void show_rcu_tasks_gp_kthreads(void) {}
#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */