linux-stable/arch/arm64/kernel/cpuidle.c

106 lines
2.3 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* ARM64 CPU idle arch support
*
* Copyright (C) 2014 ARM Ltd.
* Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
*/
#include <linux/acpi.h>
#include <linux/cpuidle.h>
#include <linux/cpu_pm.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/psci.h>
#include <asm/cpuidle.h>
#include <asm/cpu_ops.h>
int arm_cpuidle_init(unsigned int cpu)
{
const struct cpu_operations *ops = get_cpu_ops(cpu);
int ret = -EOPNOTSUPP;
if (ops && ops->cpu_suspend && ops->cpu_init_idle)
ret = ops->cpu_init_idle(cpu);
return ret;
}
arm64: kernel: remove ARM64_CPU_SUSPEND config option ARM64_CPU_SUSPEND config option was introduced to make code providing context save/restore selectable only on platforms requiring power management capabilities. Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which in turn is set by the SUSPEND config option. The introduction of CPU_IDLE for arm64 requires that code configured by ARM64_CPU_SUSPEND (context save/restore) should be compiled in in order to enable the CPU idle driver to rely on CPU operations carrying out context save/restore. The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP) failed dependencies, which is not a clean way of handling the kernel configuration option. For these reasons, this patch removes the ARM64_CPU_SUSPEND config option and makes the context save/restore dependent on CPU_PM, which is selected whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies in the process. This way, code previously configured through ARM64_CPU_SUSPEND is compiled in whenever a power management subsystem requires it to be present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour expected on ARM64 kernels. The cpu_suspend and cpu_init_idle CPU operations are added only if CPU_IDLE is selected, since they are CPU_IDLE specific methods and should be grouped and defined accordingly. PSCI CPU operations are updated to reflect the introduced changes. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-26 18:33:44 +00:00
/**
* arm_cpuidle_suspend() - function to enter a low-power idle state
* @index: argument to pass to CPU suspend operations
arm64: kernel: remove ARM64_CPU_SUSPEND config option ARM64_CPU_SUSPEND config option was introduced to make code providing context save/restore selectable only on platforms requiring power management capabilities. Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which in turn is set by the SUSPEND config option. The introduction of CPU_IDLE for arm64 requires that code configured by ARM64_CPU_SUSPEND (context save/restore) should be compiled in in order to enable the CPU idle driver to rely on CPU operations carrying out context save/restore. The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP) failed dependencies, which is not a clean way of handling the kernel configuration option. For these reasons, this patch removes the ARM64_CPU_SUSPEND config option and makes the context save/restore dependent on CPU_PM, which is selected whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies in the process. This way, code previously configured through ARM64_CPU_SUSPEND is compiled in whenever a power management subsystem requires it to be present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour expected on ARM64 kernels. The cpu_suspend and cpu_init_idle CPU operations are added only if CPU_IDLE is selected, since they are CPU_IDLE specific methods and should be grouped and defined accordingly. PSCI CPU operations are updated to reflect the introduced changes. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-26 18:33:44 +00:00
*
* Return: 0 on success, -EOPNOTSUPP if CPU suspend hook not initialized, CPU
* operations back-end error code otherwise.
*/
int arm_cpuidle_suspend(int index)
arm64: kernel: remove ARM64_CPU_SUSPEND config option ARM64_CPU_SUSPEND config option was introduced to make code providing context save/restore selectable only on platforms requiring power management capabilities. Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which in turn is set by the SUSPEND config option. The introduction of CPU_IDLE for arm64 requires that code configured by ARM64_CPU_SUSPEND (context save/restore) should be compiled in in order to enable the CPU idle driver to rely on CPU operations carrying out context save/restore. The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP) failed dependencies, which is not a clean way of handling the kernel configuration option. For these reasons, this patch removes the ARM64_CPU_SUSPEND config option and makes the context save/restore dependent on CPU_PM, which is selected whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies in the process. This way, code previously configured through ARM64_CPU_SUSPEND is compiled in whenever a power management subsystem requires it to be present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour expected on ARM64 kernels. The cpu_suspend and cpu_init_idle CPU operations are added only if CPU_IDLE is selected, since they are CPU_IDLE specific methods and should be grouped and defined accordingly. PSCI CPU operations are updated to reflect the introduced changes. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-26 18:33:44 +00:00
{
int cpu = smp_processor_id();
const struct cpu_operations *ops = get_cpu_ops(cpu);
arm64: kernel: remove ARM64_CPU_SUSPEND config option ARM64_CPU_SUSPEND config option was introduced to make code providing context save/restore selectable only on platforms requiring power management capabilities. Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which in turn is set by the SUSPEND config option. The introduction of CPU_IDLE for arm64 requires that code configured by ARM64_CPU_SUSPEND (context save/restore) should be compiled in in order to enable the CPU idle driver to rely on CPU operations carrying out context save/restore. The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP) failed dependencies, which is not a clean way of handling the kernel configuration option. For these reasons, this patch removes the ARM64_CPU_SUSPEND config option and makes the context save/restore dependent on CPU_PM, which is selected whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies in the process. This way, code previously configured through ARM64_CPU_SUSPEND is compiled in whenever a power management subsystem requires it to be present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour expected on ARM64 kernels. The cpu_suspend and cpu_init_idle CPU operations are added only if CPU_IDLE is selected, since they are CPU_IDLE specific methods and should be grouped and defined accordingly. PSCI CPU operations are updated to reflect the introduced changes. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-26 18:33:44 +00:00
return ops->cpu_suspend(index);
arm64: kernel: remove ARM64_CPU_SUSPEND config option ARM64_CPU_SUSPEND config option was introduced to make code providing context save/restore selectable only on platforms requiring power management capabilities. Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which in turn is set by the SUSPEND config option. The introduction of CPU_IDLE for arm64 requires that code configured by ARM64_CPU_SUSPEND (context save/restore) should be compiled in in order to enable the CPU idle driver to rely on CPU operations carrying out context save/restore. The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP) failed dependencies, which is not a clean way of handling the kernel configuration option. For these reasons, this patch removes the ARM64_CPU_SUSPEND config option and makes the context save/restore dependent on CPU_PM, which is selected whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies in the process. This way, code previously configured through ARM64_CPU_SUSPEND is compiled in whenever a power management subsystem requires it to be present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour expected on ARM64 kernels. The cpu_suspend and cpu_init_idle CPU operations are added only if CPU_IDLE is selected, since they are CPU_IDLE specific methods and should be grouped and defined accordingly. PSCI CPU operations are updated to reflect the introduced changes. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-26 18:33:44 +00:00
}
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#define ARM64_LPI_IS_RETENTION_STATE(arch_flags) (!(arch_flags))
PSCI: cpuidle: Refactor CPU suspend power_state parameter handling Current PSCI code handles idle state entry through the psci_cpu_suspend_enter() API, that takes an idle state index as a parameter and convert the index into a previously initialized power_state parameter before calling the PSCI.CPU_SUSPEND() with it. This is unwieldly, since it forces the PSCI firmware layer to keep track of power_state parameter for every idle state so that the index->power_state conversion can be made in the PSCI firmware layer instead of the CPUidle driver implementations. Move the power_state handling out of drivers/firmware/psci into the respective ACPI/DT PSCI CPUidle backends and convert the psci_cpu_suspend_enter() API to get the power_state parameter as input, which makes it closer to its firmware interface PSCI.CPU_SUSPEND() API. A notable side effect is that the PSCI ACPI/DT CPUidle backends now can directly handle (and if needed update) power_state parameters before handing them over to the PSCI firmware interface to trigger PSCI.CPU_SUSPEND() calls. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Will Deacon <will@kernel.org>
2019-08-09 11:03:12 +00:00
static int psci_acpi_cpu_init_idle(unsigned int cpu)
{
int i, count;
struct acpi_lpi_state *lpi;
struct acpi_processor *pr = per_cpu(processors, cpu);
/*
* If the PSCI cpu_suspend function hook has not been initialized
* idle states must not be enabled, so bail out
*/
if (!psci_ops.cpu_suspend)
return -EOPNOTSUPP;
if (unlikely(!pr || !pr->flags.has_lpi))
return -EINVAL;
count = pr->power.count - 1;
if (count <= 0)
return -ENODEV;
for (i = 0; i < count; i++) {
u32 state;
lpi = &pr->power.lpi_states[i + 1];
/*
* Only bits[31:0] represent a PSCI power_state while
* bits[63:32] must be 0x0 as per ARM ACPI FFH Specification
*/
state = lpi->address;
if (!psci_power_state_is_valid(state)) {
pr_warn("Invalid PSCI power state %#x\n", state);
return -EINVAL;
}
}
return 0;
}
int acpi_processor_ffh_lpi_probe(unsigned int cpu)
{
PSCI: cpuidle: Refactor CPU suspend power_state parameter handling Current PSCI code handles idle state entry through the psci_cpu_suspend_enter() API, that takes an idle state index as a parameter and convert the index into a previously initialized power_state parameter before calling the PSCI.CPU_SUSPEND() with it. This is unwieldly, since it forces the PSCI firmware layer to keep track of power_state parameter for every idle state so that the index->power_state conversion can be made in the PSCI firmware layer instead of the CPUidle driver implementations. Move the power_state handling out of drivers/firmware/psci into the respective ACPI/DT PSCI CPUidle backends and convert the psci_cpu_suspend_enter() API to get the power_state parameter as input, which makes it closer to its firmware interface PSCI.CPU_SUSPEND() API. A notable side effect is that the PSCI ACPI/DT CPUidle backends now can directly handle (and if needed update) power_state parameters before handing them over to the PSCI firmware interface to trigger PSCI.CPU_SUSPEND() calls. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Will Deacon <will@kernel.org>
2019-08-09 11:03:12 +00:00
return psci_acpi_cpu_init_idle(cpu);
}
int acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
{
PSCI: cpuidle: Refactor CPU suspend power_state parameter handling Current PSCI code handles idle state entry through the psci_cpu_suspend_enter() API, that takes an idle state index as a parameter and convert the index into a previously initialized power_state parameter before calling the PSCI.CPU_SUSPEND() with it. This is unwieldly, since it forces the PSCI firmware layer to keep track of power_state parameter for every idle state so that the index->power_state conversion can be made in the PSCI firmware layer instead of the CPUidle driver implementations. Move the power_state handling out of drivers/firmware/psci into the respective ACPI/DT PSCI CPUidle backends and convert the psci_cpu_suspend_enter() API to get the power_state parameter as input, which makes it closer to its firmware interface PSCI.CPU_SUSPEND() API. A notable side effect is that the PSCI ACPI/DT CPUidle backends now can directly handle (and if needed update) power_state parameters before handing them over to the PSCI firmware interface to trigger PSCI.CPU_SUSPEND() calls. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Will Deacon <will@kernel.org>
2019-08-09 11:03:12 +00:00
u32 state = lpi->address;
if (ARM64_LPI_IS_RETENTION_STATE(lpi->arch_flags))
PSCI: cpuidle: Refactor CPU suspend power_state parameter handling Current PSCI code handles idle state entry through the psci_cpu_suspend_enter() API, that takes an idle state index as a parameter and convert the index into a previously initialized power_state parameter before calling the PSCI.CPU_SUSPEND() with it. This is unwieldly, since it forces the PSCI firmware layer to keep track of power_state parameter for every idle state so that the index->power_state conversion can be made in the PSCI firmware layer instead of the CPUidle driver implementations. Move the power_state handling out of drivers/firmware/psci into the respective ACPI/DT PSCI CPUidle backends and convert the psci_cpu_suspend_enter() API to get the power_state parameter as input, which makes it closer to its firmware interface PSCI.CPU_SUSPEND() API. A notable side effect is that the PSCI ACPI/DT CPUidle backends now can directly handle (and if needed update) power_state parameters before handing them over to the PSCI firmware interface to trigger PSCI.CPU_SUSPEND() calls. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Will Deacon <will@kernel.org>
2019-08-09 11:03:12 +00:00
return CPU_PM_CPU_IDLE_ENTER_RETENTION_PARAM(psci_cpu_suspend_enter,
lpi->index, state);
else
PSCI: cpuidle: Refactor CPU suspend power_state parameter handling Current PSCI code handles idle state entry through the psci_cpu_suspend_enter() API, that takes an idle state index as a parameter and convert the index into a previously initialized power_state parameter before calling the PSCI.CPU_SUSPEND() with it. This is unwieldly, since it forces the PSCI firmware layer to keep track of power_state parameter for every idle state so that the index->power_state conversion can be made in the PSCI firmware layer instead of the CPUidle driver implementations. Move the power_state handling out of drivers/firmware/psci into the respective ACPI/DT PSCI CPUidle backends and convert the psci_cpu_suspend_enter() API to get the power_state parameter as input, which makes it closer to its firmware interface PSCI.CPU_SUSPEND() API. A notable side effect is that the PSCI ACPI/DT CPUidle backends now can directly handle (and if needed update) power_state parameters before handing them over to the PSCI firmware interface to trigger PSCI.CPU_SUSPEND() calls. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Will Deacon <will@kernel.org>
2019-08-09 11:03:12 +00:00
return CPU_PM_CPU_IDLE_ENTER_PARAM(psci_cpu_suspend_enter,
lpi->index, state);
}
#endif