linux-stable/block/elevator.h

187 lines
5.6 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ELEVATOR_H
#define _ELEVATOR_H
#include <linux/percpu.h>
#include <linux/hashtable.h>
#include "blk-mq.h"
struct io_cq;
struct elevator_type;
struct blk_mq_debugfs_attr;
/*
* Return values from elevator merger
*/
enum elv_merge {
ELEVATOR_NO_MERGE = 0,
ELEVATOR_FRONT_MERGE = 1,
ELEVATOR_BACK_MERGE = 2,
ELEVATOR_DISCARD_MERGE = 3,
};
struct blk_mq_alloc_data;
struct blk_mq_hw_ctx;
struct elevator_mq_ops {
int (*init_sched)(struct request_queue *, struct elevator_type *);
void (*exit_sched)(struct elevator_queue *);
int (*init_hctx)(struct blk_mq_hw_ctx *, unsigned int);
void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
void (*depth_updated)(struct blk_mq_hw_ctx *);
bool (*allow_merge)(struct request_queue *, struct request *, struct bio *);
kyber: fix out of bounds access when preempted __blk_mq_sched_bio_merge() gets the ctx and hctx for the current CPU and passes the hctx to ->bio_merge(). kyber_bio_merge() then gets the ctx for the current CPU again and uses that to get the corresponding Kyber context in the passed hctx. However, the thread may be preempted between the two calls to blk_mq_get_ctx(), and the ctx returned the second time may no longer correspond to the passed hctx. This "works" accidentally most of the time, but it can cause us to read garbage if the second ctx came from an hctx with more ctx's than the first one (i.e., if ctx->index_hw[hctx->type] > hctx->nr_ctx). This manifested as this UBSAN array index out of bounds error reported by Jakub: UBSAN: array-index-out-of-bounds in ../kernel/locking/qspinlock.c:130:9 index 13106 is out of range for type 'long unsigned int [128]' Call Trace: dump_stack+0xa4/0xe5 ubsan_epilogue+0x5/0x40 __ubsan_handle_out_of_bounds.cold.13+0x2a/0x34 queued_spin_lock_slowpath+0x476/0x480 do_raw_spin_lock+0x1c2/0x1d0 kyber_bio_merge+0x112/0x180 blk_mq_submit_bio+0x1f5/0x1100 submit_bio_noacct+0x7b0/0x870 submit_bio+0xc2/0x3a0 btrfs_map_bio+0x4f0/0x9d0 btrfs_submit_data_bio+0x24e/0x310 submit_one_bio+0x7f/0xb0 submit_extent_page+0xc4/0x440 __extent_writepage_io+0x2b8/0x5e0 __extent_writepage+0x28d/0x6e0 extent_write_cache_pages+0x4d7/0x7a0 extent_writepages+0xa2/0x110 do_writepages+0x8f/0x180 __writeback_single_inode+0x99/0x7f0 writeback_sb_inodes+0x34e/0x790 __writeback_inodes_wb+0x9e/0x120 wb_writeback+0x4d2/0x660 wb_workfn+0x64d/0xa10 process_one_work+0x53a/0xa80 worker_thread+0x69/0x5b0 kthread+0x20b/0x240 ret_from_fork+0x1f/0x30 Only Kyber uses the hctx, so fix it by passing the request_queue to ->bio_merge() instead. BFQ and mq-deadline just use that, and Kyber can map the queues itself to avoid the mismatch. Fixes: a6088845c2bf ("block: kyber: make kyber more friendly with merging") Reported-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Omar Sandoval <osandov@fb.com> Link: https://lore.kernel.org/r/c7598605401a48d5cfeadebb678abd10af22b83f.1620691329.git.osandov@fb.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-05-11 00:05:35 +00:00
bool (*bio_merge)(struct request_queue *, struct bio *, unsigned int);
int (*request_merge)(struct request_queue *q, struct request **, struct bio *);
void (*request_merged)(struct request_queue *, struct request *, enum elv_merge);
void (*requests_merged)(struct request_queue *, struct request *, struct request *);
void (*limit_depth)(blk_opf_t, struct blk_mq_alloc_data *);
void (*prepare_request)(struct request *);
void (*finish_request)(struct request *);
void (*insert_requests)(struct blk_mq_hw_ctx *hctx, struct list_head *list,
blk_insert_t flags);
struct request *(*dispatch_request)(struct blk_mq_hw_ctx *);
bool (*has_work)(struct blk_mq_hw_ctx *);
void (*completed_request)(struct request *, u64);
void (*requeue_request)(struct request *);
struct request *(*former_request)(struct request_queue *, struct request *);
struct request *(*next_request)(struct request_queue *, struct request *);
void (*init_icq)(struct io_cq *);
void (*exit_icq)(struct io_cq *);
};
#define ELV_NAME_MAX (16)
struct elv_fs_entry {
struct attribute attr;
ssize_t (*show)(struct elevator_queue *, char *);
ssize_t (*store)(struct elevator_queue *, const char *, size_t);
};
/*
* identifies an elevator type, such as AS or deadline
*/
struct elevator_type
{
/* managed by elevator core */
struct kmem_cache *icq_cache;
/* fields provided by elevator implementation */
struct elevator_mq_ops ops;
block, cfq: move icq creation and rq->elv.icq association to block core Now block layer knows everything necessary to create and associate icq's with requests. Move ioc_create_icq() to blk-ioc.c and update get_request() such that, if elevator_type->icq_size is set, requests are automatically associated with their matching icq's before elv_set_request(). io_context reference is also managed by block core on request alloc/free. * Only ioprio/cgroup changed handling remains from cfq_get_cic(). Collapsed into cfq_set_request(). * This removes queue kicking on icq allocation failure (for now). As icq allocation failure is rare and the only effect of queue kicking achieved was possibily accelerating queue processing, this change shouldn't be noticeable. There is a larger underlying problem. Unlike request allocation, icq allocation is not guaranteed to succeed eventually after retries. The number of icq is unbound and thus mempool can't be the solution either. This effectively adds allocation dependency on memory free path and thus possibility of deadlock. This usually wouldn't happen because icq allocation is not a hot path and, even when the condition triggers, it's highly unlikely that none of the writeback workers already has icq. However, this is still possible especially if elevator is being switched under high memory pressure, so we better get it fixed. Probably the only solution is just bypassing elevator and appending to dispatch queue on any elevator allocation failure. * Comment added to explain how icq's are managed and synchronized. This completes cleanup of io_context interface. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 23:33:42 +00:00
size_t icq_size; /* see iocontext.h */
size_t icq_align; /* ditto */
struct elv_fs_entry *elevator_attrs;
const char *elevator_name;
const char *elevator_alias;
block: Introduce elevator features Introduce the definition of elevator features through the elevator_features flags in the elevator_type structure. Each flag can represent a feature supported by an elevator. The first feature defined by this patch is support for zoned block device sequential write constraint with the flag ELEVATOR_F_ZBD_SEQ_WRITE, which is implemented by the mq-deadline elevator using zone write locking. Other possible features are IO priorities, write hints, latency targets or single-LUN dual-actuator disks (for which the elevator could maintain one LBA ordered list per actuator). The required_elevator_features field is also added to the request_queue structure to allow a device driver to specify elevator feature flags that an elevator must support for the correct operation of the device (e.g. device drivers for zoned block devices can have the ELEVATOR_F_ZBD_SEQ_WRITE flag as a required feature). The helper function blk_queue_required_elevator_features() is defined for setting this new field. With these two new fields in place, the elevator functions elevator_match() and elevator_find() are modified to allow a user to set only an elevator with a set of features that satisfies the device required features. Elevators not matching the device requirements are not shown in the device sysfs queue/scheduler file to prevent their use. The "none" elevator can always be selected as before. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-09-05 09:51:31 +00:00
const unsigned int elevator_features;
struct module *elevator_owner;
#ifdef CONFIG_BLK_DEBUG_FS
const struct blk_mq_debugfs_attr *queue_debugfs_attrs;
const struct blk_mq_debugfs_attr *hctx_debugfs_attrs;
#endif
/* managed by elevator core */
char icq_cache_name[ELV_NAME_MAX + 6]; /* elvname + "_io_cq" */
struct list_head list;
};
static inline bool elevator_tryget(struct elevator_type *e)
{
return try_module_get(e->elevator_owner);
}
static inline void __elevator_get(struct elevator_type *e)
{
__module_get(e->elevator_owner);
}
static inline void elevator_put(struct elevator_type *e)
{
module_put(e->elevator_owner);
}
#define ELV_HASH_BITS 6
void elv_rqhash_del(struct request_queue *q, struct request *rq);
void elv_rqhash_add(struct request_queue *q, struct request *rq);
void elv_rqhash_reposition(struct request_queue *q, struct request *rq);
struct request *elv_rqhash_find(struct request_queue *q, sector_t offset);
/*
* each queue has an elevator_queue associated with it
*/
struct elevator_queue
{
struct elevator_type *type;
void *elevator_data;
struct kobject kobj;
struct mutex sysfs_lock;
unsigned long flags;
DECLARE_HASHTABLE(hash, ELV_HASH_BITS);
};
#define ELEVATOR_FLAG_REGISTERED 0
#define ELEVATOR_FLAG_DISABLE_WBT 1
/*
* block elevator interface
*/
extern enum elv_merge elv_merge(struct request_queue *, struct request **,
struct bio *);
extern void elv_merge_requests(struct request_queue *, struct request *,
struct request *);
extern void elv_merged_request(struct request_queue *, struct request *,
enum elv_merge);
extern bool elv_attempt_insert_merge(struct request_queue *, struct request *,
struct list_head *);
extern struct request *elv_former_request(struct request_queue *, struct request *);
extern struct request *elv_latter_request(struct request_queue *, struct request *);
void elevator_init_mq(struct request_queue *q);
/*
* io scheduler registration
*/
extern int elv_register(struct elevator_type *);
extern void elv_unregister(struct elevator_type *);
/*
* io scheduler sysfs switching
*/
extern ssize_t elv_iosched_show(struct request_queue *, char *);
extern ssize_t elv_iosched_store(struct request_queue *, const char *, size_t);
block: do not merge requests without consulting with io scheduler Before merging a bio into an existing request, io scheduler is called to get its approval first. However, the requests that come from a plug flush may get merged by block layer without consulting with io scheduler. In case of CFQ, this can cause fairness problems. For instance, if a request gets merged into a low weight cgroup's request, high weight cgroup now will depend on low weight cgroup to get scheduled. If high weigt cgroup needs that io request to complete before submitting more requests, then it will also lose its timeslice. Following script demonstrates the problem. Group g1 has a low weight, g2 and g3 have equal high weights but g2's requests are adjacent to g1's requests so they are subject to merging. Due to these merges, g2 gets poor disk time allocation. cat > cfq-merge-repro.sh << "EOF" #!/bin/bash set -e IO_ROOT=/mnt-cgroup/io mkdir -p $IO_ROOT if ! mount | grep -qw $IO_ROOT; then mount -t cgroup none -oblkio $IO_ROOT fi cd $IO_ROOT for i in g1 g2 g3; do if [ -d $i ]; then rmdir $i fi done mkdir g1 && echo 10 > g1/blkio.weight mkdir g2 && echo 495 > g2/blkio.weight mkdir g3 && echo 495 > g3/blkio.weight RUNTIME=10 (echo $BASHPID > g1/cgroup.procs && fio --readonly --name name1 --filename /dev/sdb \ --rw read --size 64k --bs 64k --time_based \ --runtime=$RUNTIME --offset=0k &> /dev/null)& (echo $BASHPID > g2/cgroup.procs && fio --readonly --name name1 --filename /dev/sdb \ --rw read --size 64k --bs 64k --time_based \ --runtime=$RUNTIME --offset=64k &> /dev/null)& (echo $BASHPID > g3/cgroup.procs && fio --readonly --name name1 --filename /dev/sdb \ --rw read --size 64k --bs 64k --time_based \ --runtime=$RUNTIME --offset=256k &> /dev/null)& sleep $((RUNTIME+1)) for i in g1 g2 g3; do echo ---- $i ---- cat $i/blkio.time done EOF # ./cfq-merge-repro.sh ---- g1 ---- 8:16 162 ---- g2 ---- 8:16 165 ---- g3 ---- 8:16 686 After applying the patch: # ./cfq-merge-repro.sh ---- g1 ---- 8:16 90 ---- g2 ---- 8:16 445 ---- g3 ---- 8:16 471 Signed-off-by: Tahsin Erdogan <tahsin@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-07-07 18:48:22 +00:00
extern bool elv_bio_merge_ok(struct request *, struct bio *);
extern struct elevator_queue *elevator_alloc(struct request_queue *,
struct elevator_type *);
/*
* Helper functions.
*/
extern struct request *elv_rb_former_request(struct request_queue *, struct request *);
extern struct request *elv_rb_latter_request(struct request_queue *, struct request *);
/*
* rb support functions.
*/
extern void elv_rb_add(struct rb_root *, struct request *);
extern void elv_rb_del(struct rb_root *, struct request *);
extern struct request *elv_rb_find(struct rb_root *, sector_t);
/*
* Insertion selection
*/
#define ELEVATOR_INSERT_FRONT 1
#define ELEVATOR_INSERT_BACK 2
#define ELEVATOR_INSERT_SORT 3
#define ELEVATOR_INSERT_REQUEUE 4
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 11:43:54 +00:00
#define ELEVATOR_INSERT_FLUSH 5
#define ELEVATOR_INSERT_SORT_MERGE 6
#define rb_entry_rq(node) rb_entry((node), struct request, rb_node)
#define rq_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
#define rq_fifo_clear(rq) list_del_init(&(rq)->queuelist)
#endif /* _ELEVATOR_H */