linux-stable/arch/powerpc/kernel/mce.c

765 lines
20 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
/*
* Machine check exception handling.
*
* Copyright 2013 IBM Corporation
* Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
*/
#undef DEBUG
#define pr_fmt(fmt) "mce: " fmt
#include <linux/hardirq.h>
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/export.h>
#include <linux/irq_work.h>
#include <linux/extable.h>
#include <linux/ftrace.h>
#include <linux/memblock.h>
#include <linux/of.h>
#include <asm/interrupt.h>
#include <asm/machdep.h>
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
#include <asm/mce.h>
#include <asm/nmi.h>
#include <asm/asm-prototypes.h>
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
#include "setup.h"
static void machine_check_process_queued_event(struct irq_work *work);
static void machine_check_ue_irq_work(struct irq_work *work);
static void machine_check_ue_event(struct machine_check_event *evt);
static void machine_process_ue_event(struct work_struct *work);
static struct irq_work mce_event_process_work = {
.func = machine_check_process_queued_event,
};
static struct irq_work mce_ue_event_irq_work = {
.func = machine_check_ue_irq_work,
};
static DECLARE_WORK(mce_ue_event_work, machine_process_ue_event);
static BLOCKING_NOTIFIER_HEAD(mce_notifier_list);
int mce_register_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&mce_notifier_list, nb);
}
EXPORT_SYMBOL_GPL(mce_register_notifier);
int mce_unregister_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&mce_notifier_list, nb);
}
EXPORT_SYMBOL_GPL(mce_unregister_notifier);
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
static void mce_set_error_info(struct machine_check_event *mce,
struct mce_error_info *mce_err)
{
mce->error_type = mce_err->error_type;
switch (mce_err->error_type) {
case MCE_ERROR_TYPE_UE:
mce->u.ue_error.ue_error_type = mce_err->u.ue_error_type;
break;
case MCE_ERROR_TYPE_SLB:
mce->u.slb_error.slb_error_type = mce_err->u.slb_error_type;
break;
case MCE_ERROR_TYPE_ERAT:
mce->u.erat_error.erat_error_type = mce_err->u.erat_error_type;
break;
case MCE_ERROR_TYPE_TLB:
mce->u.tlb_error.tlb_error_type = mce_err->u.tlb_error_type;
break;
case MCE_ERROR_TYPE_USER:
mce->u.user_error.user_error_type = mce_err->u.user_error_type;
break;
case MCE_ERROR_TYPE_RA:
mce->u.ra_error.ra_error_type = mce_err->u.ra_error_type;
break;
case MCE_ERROR_TYPE_LINK:
mce->u.link_error.link_error_type = mce_err->u.link_error_type;
break;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
case MCE_ERROR_TYPE_UNKNOWN:
default:
break;
}
}
/*
* Decode and save high level MCE information into per cpu buffer which
* is an array of machine_check_event structure.
*/
void save_mce_event(struct pt_regs *regs, long handled,
struct mce_error_info *mce_err,
uint64_t nip, uint64_t addr, uint64_t phys_addr)
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
{
int index = local_paca->mce_info->mce_nest_count++;
struct machine_check_event *mce;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
mce = &local_paca->mce_info->mce_event[index];
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
/*
* Return if we don't have enough space to log mce event.
* mce_nest_count may go beyond MAX_MC_EVT but that's ok,
* the check below will stop buffer overrun.
*/
if (index >= MAX_MC_EVT)
return;
/* Populate generic machine check info */
mce->version = MCE_V1;
mce->srr0 = nip;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
mce->srr1 = regs->msr;
mce->gpr3 = regs->gpr[3];
mce->in_use = 1;
mce->cpu = get_paca()->paca_index;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
/* Mark it recovered if we have handled it and MSR(RI=1). */
if (handled && (regs->msr & MSR_RI))
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
mce->disposition = MCE_DISPOSITION_RECOVERED;
else
mce->disposition = MCE_DISPOSITION_NOT_RECOVERED;
mce->initiator = mce_err->initiator;
mce->severity = mce_err->severity;
mce->sync_error = mce_err->sync_error;
powerpc/powernv/mce: Print additional information about MCE error. Print more information about MCE error whether it is an hardware or software error. Some of the MCE errors can be easily categorized as hardware or software errors e.g. UEs are due to hardware error, where as error triggered due to invalid usage of tlbie is a pure software bug. But not all the MCE errors can be easily categorize into either software or hardware. There are errors like multihit errors which are usually result of a software bug, but in some rare cases a hardware failure can cause a multihit error. In past, we have seen case where after replacing faulty chip, multihit errors stopped occurring. Same with parity errors, which are usually due to faulty hardware but there are chances where multihit can also cause an parity error. Such errors are difficult to determine what really caused it. Hence this patch classifies MCE errors into following four categorize: 1. Hardware error: UE and Link timeout failure errors. 2. Probable hardware error (some chance of software cause) SLB/ERAT/TLB Parity errors. 3. Software error Invalid tlbie form. 4. Probable software error (some chance of hardware cause) SLB/ERAT/TLB Multihit errors. Sample output: MCE: CPU80: machine check (Warning) Guest SLB Multihit DAR: 000001001b6e0320 [Recovered] MCE: CPU80: PID: 24765 Comm: qemu-system-ppc Guest NIP: [00007fffa309dc60] MCE: CPU80: Probable Software error (some chance of hardware cause) Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-29 18:16:02 +00:00
mce->error_class = mce_err->error_class;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
/*
* Populate the mce error_type and type-specific error_type.
*/
mce_set_error_info(mce, mce_err);
if (mce->error_type == MCE_ERROR_TYPE_UE)
mce->u.ue_error.ignore_event = mce_err->ignore_event;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
if (!addr)
return;
if (mce->error_type == MCE_ERROR_TYPE_TLB) {
mce->u.tlb_error.effective_address_provided = true;
mce->u.tlb_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_SLB) {
mce->u.slb_error.effective_address_provided = true;
mce->u.slb_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_ERAT) {
mce->u.erat_error.effective_address_provided = true;
mce->u.erat_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_USER) {
mce->u.user_error.effective_address_provided = true;
mce->u.user_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_RA) {
mce->u.ra_error.effective_address_provided = true;
mce->u.ra_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_LINK) {
mce->u.link_error.effective_address_provided = true;
mce->u.link_error.effective_address = addr;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
} else if (mce->error_type == MCE_ERROR_TYPE_UE) {
mce->u.ue_error.effective_address_provided = true;
mce->u.ue_error.effective_address = addr;
if (phys_addr != ULONG_MAX) {
mce->u.ue_error.physical_address_provided = true;
mce->u.ue_error.physical_address = phys_addr;
machine_check_ue_event(mce);
}
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
}
return;
}
/*
* get_mce_event:
* mce Pointer to machine_check_event structure to be filled.
* release Flag to indicate whether to free the event slot or not.
* 0 <= do not release the mce event. Caller will invoke
* release_mce_event() once event has been consumed.
* 1 <= release the slot.
*
* return 1 = success
* 0 = failure
*
* get_mce_event() will be called by platform specific machine check
* handle routine and in KVM.
* When we call get_mce_event(), we are still in interrupt context and
* preemption will not be scheduled until ret_from_expect() routine
* is called.
*/
int get_mce_event(struct machine_check_event *mce, bool release)
{
int index = local_paca->mce_info->mce_nest_count - 1;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
struct machine_check_event *mc_evt;
int ret = 0;
/* Sanity check */
if (index < 0)
return ret;
/* Check if we have MCE info to process. */
if (index < MAX_MC_EVT) {
mc_evt = &local_paca->mce_info->mce_event[index];
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
/* Copy the event structure and release the original */
if (mce)
*mce = *mc_evt;
if (release)
mc_evt->in_use = 0;
ret = 1;
}
/* Decrement the count to free the slot. */
if (release)
local_paca->mce_info->mce_nest_count--;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 14:35:40 +00:00
return ret;
}
void release_mce_event(void)
{
get_mce_event(NULL, true);
}
static void machine_check_ue_irq_work(struct irq_work *work)
{
schedule_work(&mce_ue_event_work);
}
/*
* Queue up the MCE event which then can be handled later.
*/
static void machine_check_ue_event(struct machine_check_event *evt)
{
int index;
index = local_paca->mce_info->mce_ue_count++;
/* If queue is full, just return for now. */
if (index >= MAX_MC_EVT) {
local_paca->mce_info->mce_ue_count--;
return;
}
memcpy(&local_paca->mce_info->mce_ue_event_queue[index],
evt, sizeof(*evt));
/* Queue work to process this event later. */
irq_work_queue(&mce_ue_event_irq_work);
}
/*
* Queue up the MCE event which then can be handled later.
*/
void machine_check_queue_event(void)
{
int index;
struct machine_check_event evt;
powerpc/mce: Fix access error in mce handler We queue an irq work for deferred processing of mce event in realmode mce handler, where translation is disabled. Queuing of the work may result in accessing memory outside RMO region, such access needs the translation to be enabled for an LPAR running with hash mmu else the kernel crashes. After enabling translation in mce_handle_error() we used to leave it enabled to avoid crashing here, but now with the commit 74c3354bc1d89 ("powerpc/pseries/mce: restore msr before returning from handler") we are restoring the MSR to disable translation. Hence to fix this enable the translation before queuing the work. Without this change following trace is seen on injecting SLB multihit in an LPAR running with hash mmu. Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries CPU: 5 PID: 1883 Comm: insmod Tainted: G OE 5.14.0-mce+ #137 NIP: c000000000735d60 LR: c000000000318640 CTR: 0000000000000000 REGS: c00000001ebff9a0 TRAP: 0300 Tainted: G OE (5.14.0-mce+) MSR: 8000000000001003 <SF,ME,RI,LE> CR: 28008228 XER: 00000001 CFAR: c00000000031863c DAR: c00000027fa8fe08 DSISR: 40000000 IRQMASK: 0 ... NIP llist_add_batch+0x0/0x40 LR __irq_work_queue_local+0x70/0xc0 Call Trace: 0xc00000001ebffc0c (unreliable) irq_work_queue+0x40/0x70 machine_check_queue_event+0xbc/0xd0 machine_check_early_common+0x16c/0x1f4 Fixes: 74c3354bc1d89 ("powerpc/pseries/mce: restore msr before returning from handler") Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com> [mpe: Fix comment formatting, trim oops in change log for readability] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210909064330.312432-1-ganeshgr@linux.ibm.com
2021-09-09 06:43:30 +00:00
unsigned long msr;
if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
return;
index = local_paca->mce_info->mce_queue_count++;
/* If queue is full, just return for now. */
if (index >= MAX_MC_EVT) {
local_paca->mce_info->mce_queue_count--;
return;
}
memcpy(&local_paca->mce_info->mce_event_queue[index],
&evt, sizeof(evt));
powerpc/mce: Fix access error in mce handler We queue an irq work for deferred processing of mce event in realmode mce handler, where translation is disabled. Queuing of the work may result in accessing memory outside RMO region, such access needs the translation to be enabled for an LPAR running with hash mmu else the kernel crashes. After enabling translation in mce_handle_error() we used to leave it enabled to avoid crashing here, but now with the commit 74c3354bc1d89 ("powerpc/pseries/mce: restore msr before returning from handler") we are restoring the MSR to disable translation. Hence to fix this enable the translation before queuing the work. Without this change following trace is seen on injecting SLB multihit in an LPAR running with hash mmu. Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries CPU: 5 PID: 1883 Comm: insmod Tainted: G OE 5.14.0-mce+ #137 NIP: c000000000735d60 LR: c000000000318640 CTR: 0000000000000000 REGS: c00000001ebff9a0 TRAP: 0300 Tainted: G OE (5.14.0-mce+) MSR: 8000000000001003 <SF,ME,RI,LE> CR: 28008228 XER: 00000001 CFAR: c00000000031863c DAR: c00000027fa8fe08 DSISR: 40000000 IRQMASK: 0 ... NIP llist_add_batch+0x0/0x40 LR __irq_work_queue_local+0x70/0xc0 Call Trace: 0xc00000001ebffc0c (unreliable) irq_work_queue+0x40/0x70 machine_check_queue_event+0xbc/0xd0 machine_check_early_common+0x16c/0x1f4 Fixes: 74c3354bc1d89 ("powerpc/pseries/mce: restore msr before returning from handler") Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com> [mpe: Fix comment formatting, trim oops in change log for readability] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210909064330.312432-1-ganeshgr@linux.ibm.com
2021-09-09 06:43:30 +00:00
/*
* Queue irq work to process this event later. Before
* queuing the work enable translation for non radix LPAR,
* as irq_work_queue may try to access memory outside RMO
* region.
*/
if (!radix_enabled() && firmware_has_feature(FW_FEATURE_LPAR)) {
msr = mfmsr();
mtmsr(msr | MSR_IR | MSR_DR);
irq_work_queue(&mce_event_process_work);
mtmsr(msr);
} else {
irq_work_queue(&mce_event_process_work);
}
}
void mce_common_process_ue(struct pt_regs *regs,
struct mce_error_info *mce_err)
{
const struct exception_table_entry *entry;
entry = search_kernel_exception_table(regs->nip);
if (entry) {
mce_err->ignore_event = true;
regs_set_return_ip(regs, extable_fixup(entry));
}
}
/*
* process pending MCE event from the mce event queue. This function will be
* called during syscall exit.
*/
static void machine_process_ue_event(struct work_struct *work)
{
int index;
struct machine_check_event *evt;
while (local_paca->mce_info->mce_ue_count > 0) {
index = local_paca->mce_info->mce_ue_count - 1;
evt = &local_paca->mce_info->mce_ue_event_queue[index];
blocking_notifier_call_chain(&mce_notifier_list, 0, evt);
#ifdef CONFIG_MEMORY_FAILURE
/*
* This should probably queued elsewhere, but
* oh! well
*
* Don't report this machine check because the caller has a
* asked us to ignore the event, it has a fixup handler which
* will do the appropriate error handling and reporting.
*/
if (evt->error_type == MCE_ERROR_TYPE_UE) {
if (evt->u.ue_error.ignore_event) {
local_paca->mce_info->mce_ue_count--;
continue;
}
if (evt->u.ue_error.physical_address_provided) {
unsigned long pfn;
pfn = evt->u.ue_error.physical_address >>
PAGE_SHIFT;
Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull siginfo cleanups from Eric Biederman: "Long ago when 2.4 was just a testing release copy_siginfo_to_user was made to copy individual fields to userspace, possibly for efficiency and to ensure initialized values were not copied to userspace. Unfortunately the design was complex, it's assumptions unstated, and humans are fallible and so while it worked much of the time that design failed to ensure unitialized memory is not copied to userspace. This set of changes is part of a new design to clean up siginfo and simplify things, and hopefully make the siginfo handling robust enough that a simple inspection of the code can be made to ensure we don't copy any unitializied fields to userspace. The design is to unify struct siginfo and struct compat_siginfo into a single definition that is shared between all architectures so that anyone adding to the set of information shared with struct siginfo can see the whole picture. Hopefully ensuring all future si_code assignments are arch independent. The design is to unify copy_siginfo_to_user32 and copy_siginfo_from_user32 so that those function are complete and cope with all of the different cases documented in signinfo_layout. I don't think there was a single implementation of either of those functions that was complete and correct before my changes unified them. The design is to introduce a series of helpers including force_siginfo_fault that take the values that are needed in struct siginfo and build the siginfo structure for their callers. Ensuring struct siginfo is built correctly. The remaining work for 4.17 (unless someone thinks it is post -rc1 material) is to push usage of those helpers down into the architectures so that architecture specific code will not need to deal with the fiddly work of intializing struct siginfo, and then when struct siginfo is guaranteed to be fully initialized change copy siginfo_to_user into a simple wrapper around copy_to_user. Further there is work in progress on the issues that have been documented requires arch specific knowledge to sort out. The changes below fix or at least document all of the issues that have been found with siginfo generation. Then proceed to unify struct siginfo the 32 bit helpers that copy siginfo to and from userspace, and generally clean up anything that is not arch specific with regards to siginfo generation. It is a lot but with the unification you can of siginfo you can already see the code reduction in the kernel" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (45 commits) signal/memory-failure: Use force_sig_mceerr and send_sig_mceerr mm/memory_failure: Remove unused trapno from memory_failure signal/ptrace: Add force_sig_ptrace_errno_trap and use it where needed signal/powerpc: Remove unnecessary signal_code parameter of do_send_trap signal: Helpers for faults with specialized siginfo layouts signal: Add send_sig_fault and force_sig_fault signal: Replace memset(info,...) with clear_siginfo for clarity signal: Don't use structure initializers for struct siginfo signal/arm64: Better isolate the COMPAT_TASK portion of ptrace_hbptriggered ptrace: Use copy_siginfo in setsiginfo and getsiginfo signal: Unify and correct copy_siginfo_to_user32 signal: Remove the code to clear siginfo before calling copy_siginfo_from_user32 signal: Unify and correct copy_siginfo_from_user32 signal/blackfin: Remove pointless UID16_SIGINFO_COMPAT_NEEDED signal/blackfin: Move the blackfin specific si_codes to asm-generic/siginfo.h signal/tile: Move the tile specific si_codes to asm-generic/siginfo.h signal/frv: Move the frv specific si_codes to asm-generic/siginfo.h signal/ia64: Move the ia64 specific si_codes to asm-generic/siginfo.h signal/powerpc: Remove redefinition of NSIGTRAP on powerpc signal: Move addr_lsb into the _sigfault union for clarity ...
2018-01-30 22:18:52 +00:00
memory_failure(pfn, 0);
} else
pr_warn("Failed to identify bad address from "
"where the uncorrectable error (UE) "
"was generated\n");
}
#endif
local_paca->mce_info->mce_ue_count--;
}
}
/*
* process pending MCE event from the mce event queue. This function will be
* called during syscall exit.
*/
static void machine_check_process_queued_event(struct irq_work *work)
{
int index;
struct machine_check_event *evt;
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
/*
* For now just print it to console.
* TODO: log this error event to FSP or nvram.
*/
while (local_paca->mce_info->mce_queue_count > 0) {
index = local_paca->mce_info->mce_queue_count - 1;
evt = &local_paca->mce_info->mce_event_queue[index];
if (evt->error_type == MCE_ERROR_TYPE_UE &&
evt->u.ue_error.ignore_event) {
local_paca->mce_info->mce_queue_count--;
continue;
}
machine_check_print_event_info(evt, false, false);
local_paca->mce_info->mce_queue_count--;
}
}
void machine_check_print_event_info(struct machine_check_event *evt,
bool user_mode, bool in_guest)
{
const char *level, *sevstr, *subtype, *err_type, *initiator;
uint64_t ea = 0, pa = 0;
int n = 0;
char dar_str[50];
char pa_str[50];
static const char *mc_ue_types[] = {
"Indeterminate",
"Instruction fetch",
"Page table walk ifetch",
"Load/Store",
"Page table walk Load/Store",
};
static const char *mc_slb_types[] = {
"Indeterminate",
"Parity",
"Multihit",
};
static const char *mc_erat_types[] = {
"Indeterminate",
"Parity",
"Multihit",
};
static const char *mc_tlb_types[] = {
"Indeterminate",
"Parity",
"Multihit",
};
static const char *mc_user_types[] = {
"Indeterminate",
"tlbie(l) invalid",
"scv invalid",
};
static const char *mc_ra_types[] = {
"Indeterminate",
"Instruction fetch (bad)",
"Instruction fetch (foreign)",
"Page table walk ifetch (bad)",
"Page table walk ifetch (foreign)",
"Load (bad)",
"Store (bad)",
"Page table walk Load/Store (bad)",
"Page table walk Load/Store (foreign)",
"Load/Store (foreign)",
};
static const char *mc_link_types[] = {
"Indeterminate",
"Instruction fetch (timeout)",
"Page table walk ifetch (timeout)",
"Load (timeout)",
"Store (timeout)",
"Page table walk Load/Store (timeout)",
};
powerpc/powernv/mce: Print additional information about MCE error. Print more information about MCE error whether it is an hardware or software error. Some of the MCE errors can be easily categorized as hardware or software errors e.g. UEs are due to hardware error, where as error triggered due to invalid usage of tlbie is a pure software bug. But not all the MCE errors can be easily categorize into either software or hardware. There are errors like multihit errors which are usually result of a software bug, but in some rare cases a hardware failure can cause a multihit error. In past, we have seen case where after replacing faulty chip, multihit errors stopped occurring. Same with parity errors, which are usually due to faulty hardware but there are chances where multihit can also cause an parity error. Such errors are difficult to determine what really caused it. Hence this patch classifies MCE errors into following four categorize: 1. Hardware error: UE and Link timeout failure errors. 2. Probable hardware error (some chance of software cause) SLB/ERAT/TLB Parity errors. 3. Software error Invalid tlbie form. 4. Probable software error (some chance of hardware cause) SLB/ERAT/TLB Multihit errors. Sample output: MCE: CPU80: machine check (Warning) Guest SLB Multihit DAR: 000001001b6e0320 [Recovered] MCE: CPU80: PID: 24765 Comm: qemu-system-ppc Guest NIP: [00007fffa309dc60] MCE: CPU80: Probable Software error (some chance of hardware cause) Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-29 18:16:02 +00:00
static const char *mc_error_class[] = {
"Unknown",
"Hardware error",
"Probable Hardware error (some chance of software cause)",
"Software error",
"Probable Software error (some chance of hardware cause)",
};
/* Print things out */
if (evt->version != MCE_V1) {
pr_err("Machine Check Exception, Unknown event version %d !\n",
evt->version);
return;
}
switch (evt->severity) {
case MCE_SEV_NO_ERROR:
level = KERN_INFO;
sevstr = "Harmless";
break;
case MCE_SEV_WARNING:
level = KERN_WARNING;
sevstr = "Warning";
break;
case MCE_SEV_SEVERE:
level = KERN_ERR;
sevstr = "Severe";
break;
case MCE_SEV_FATAL:
default:
level = KERN_ERR;
sevstr = "Fatal";
break;
}
switch(evt->initiator) {
case MCE_INITIATOR_CPU:
initiator = "CPU";
break;
case MCE_INITIATOR_PCI:
initiator = "PCI";
break;
case MCE_INITIATOR_ISA:
initiator = "ISA";
break;
case MCE_INITIATOR_MEMORY:
initiator = "Memory";
break;
case MCE_INITIATOR_POWERMGM:
initiator = "Power Management";
break;
case MCE_INITIATOR_UNKNOWN:
default:
initiator = "Unknown";
break;
}
switch (evt->error_type) {
case MCE_ERROR_TYPE_UE:
err_type = "UE";
subtype = evt->u.ue_error.ue_error_type <
ARRAY_SIZE(mc_ue_types) ?
mc_ue_types[evt->u.ue_error.ue_error_type]
: "Unknown";
if (evt->u.ue_error.effective_address_provided)
ea = evt->u.ue_error.effective_address;
if (evt->u.ue_error.physical_address_provided)
pa = evt->u.ue_error.physical_address;
break;
case MCE_ERROR_TYPE_SLB:
err_type = "SLB";
subtype = evt->u.slb_error.slb_error_type <
ARRAY_SIZE(mc_slb_types) ?
mc_slb_types[evt->u.slb_error.slb_error_type]
: "Unknown";
if (evt->u.slb_error.effective_address_provided)
ea = evt->u.slb_error.effective_address;
break;
case MCE_ERROR_TYPE_ERAT:
err_type = "ERAT";
subtype = evt->u.erat_error.erat_error_type <
ARRAY_SIZE(mc_erat_types) ?
mc_erat_types[evt->u.erat_error.erat_error_type]
: "Unknown";
if (evt->u.erat_error.effective_address_provided)
ea = evt->u.erat_error.effective_address;
break;
case MCE_ERROR_TYPE_TLB:
err_type = "TLB";
subtype = evt->u.tlb_error.tlb_error_type <
ARRAY_SIZE(mc_tlb_types) ?
mc_tlb_types[evt->u.tlb_error.tlb_error_type]
: "Unknown";
if (evt->u.tlb_error.effective_address_provided)
ea = evt->u.tlb_error.effective_address;
break;
case MCE_ERROR_TYPE_USER:
err_type = "User";
subtype = evt->u.user_error.user_error_type <
ARRAY_SIZE(mc_user_types) ?
mc_user_types[evt->u.user_error.user_error_type]
: "Unknown";
if (evt->u.user_error.effective_address_provided)
ea = evt->u.user_error.effective_address;
break;
case MCE_ERROR_TYPE_RA:
err_type = "Real address";
subtype = evt->u.ra_error.ra_error_type <
ARRAY_SIZE(mc_ra_types) ?
mc_ra_types[evt->u.ra_error.ra_error_type]
: "Unknown";
if (evt->u.ra_error.effective_address_provided)
ea = evt->u.ra_error.effective_address;
break;
case MCE_ERROR_TYPE_LINK:
err_type = "Link";
subtype = evt->u.link_error.link_error_type <
ARRAY_SIZE(mc_link_types) ?
mc_link_types[evt->u.link_error.link_error_type]
: "Unknown";
if (evt->u.link_error.effective_address_provided)
ea = evt->u.link_error.effective_address;
break;
case MCE_ERROR_TYPE_DCACHE:
err_type = "D-Cache";
subtype = "Unknown";
break;
case MCE_ERROR_TYPE_ICACHE:
err_type = "I-Cache";
subtype = "Unknown";
break;
default:
case MCE_ERROR_TYPE_UNKNOWN:
err_type = "Unknown";
subtype = "";
break;
}
dar_str[0] = pa_str[0] = '\0';
if (ea && evt->srr0 != ea) {
/* Load/Store address */
n = sprintf(dar_str, "DAR: %016llx ", ea);
if (pa)
sprintf(dar_str + n, "paddr: %016llx ", pa);
} else if (pa) {
sprintf(pa_str, " paddr: %016llx", pa);
}
printk("%sMCE: CPU%d: machine check (%s) %s %s %s %s[%s]\n",
level, evt->cpu, sevstr, in_guest ? "Guest" : "",
err_type, subtype, dar_str,
evt->disposition == MCE_DISPOSITION_RECOVERED ?
"Recovered" : "Not recovered");
if (in_guest || user_mode) {
printk("%sMCE: CPU%d: PID: %d Comm: %s %sNIP: [%016llx]%s\n",
level, evt->cpu, current->pid, current->comm,
in_guest ? "Guest " : "", evt->srr0, pa_str);
} else {
printk("%sMCE: CPU%d: NIP: [%016llx] %pS%s\n",
level, evt->cpu, evt->srr0, (void *)evt->srr0, pa_str);
}
powerpc/powernv/mce: Print additional information about MCE error. Print more information about MCE error whether it is an hardware or software error. Some of the MCE errors can be easily categorized as hardware or software errors e.g. UEs are due to hardware error, where as error triggered due to invalid usage of tlbie is a pure software bug. But not all the MCE errors can be easily categorize into either software or hardware. There are errors like multihit errors which are usually result of a software bug, but in some rare cases a hardware failure can cause a multihit error. In past, we have seen case where after replacing faulty chip, multihit errors stopped occurring. Same with parity errors, which are usually due to faulty hardware but there are chances where multihit can also cause an parity error. Such errors are difficult to determine what really caused it. Hence this patch classifies MCE errors into following four categorize: 1. Hardware error: UE and Link timeout failure errors. 2. Probable hardware error (some chance of software cause) SLB/ERAT/TLB Parity errors. 3. Software error Invalid tlbie form. 4. Probable software error (some chance of hardware cause) SLB/ERAT/TLB Multihit errors. Sample output: MCE: CPU80: machine check (Warning) Guest SLB Multihit DAR: 000001001b6e0320 [Recovered] MCE: CPU80: PID: 24765 Comm: qemu-system-ppc Guest NIP: [00007fffa309dc60] MCE: CPU80: Probable Software error (some chance of hardware cause) Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-29 18:16:02 +00:00
printk("%sMCE: CPU%d: Initiator %s\n", level, evt->cpu, initiator);
powerpc/powernv/mce: Print additional information about MCE error. Print more information about MCE error whether it is an hardware or software error. Some of the MCE errors can be easily categorized as hardware or software errors e.g. UEs are due to hardware error, where as error triggered due to invalid usage of tlbie is a pure software bug. But not all the MCE errors can be easily categorize into either software or hardware. There are errors like multihit errors which are usually result of a software bug, but in some rare cases a hardware failure can cause a multihit error. In past, we have seen case where after replacing faulty chip, multihit errors stopped occurring. Same with parity errors, which are usually due to faulty hardware but there are chances where multihit can also cause an parity error. Such errors are difficult to determine what really caused it. Hence this patch classifies MCE errors into following four categorize: 1. Hardware error: UE and Link timeout failure errors. 2. Probable hardware error (some chance of software cause) SLB/ERAT/TLB Parity errors. 3. Software error Invalid tlbie form. 4. Probable software error (some chance of hardware cause) SLB/ERAT/TLB Multihit errors. Sample output: MCE: CPU80: machine check (Warning) Guest SLB Multihit DAR: 000001001b6e0320 [Recovered] MCE: CPU80: PID: 24765 Comm: qemu-system-ppc Guest NIP: [00007fffa309dc60] MCE: CPU80: Probable Software error (some chance of hardware cause) Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-29 18:16:02 +00:00
subtype = evt->error_class < ARRAY_SIZE(mc_error_class) ?
mc_error_class[evt->error_class] : "Unknown";
printk("%sMCE: CPU%d: %s\n", level, evt->cpu, subtype);
#ifdef CONFIG_PPC_BOOK3S_64
/* Display faulty slb contents for SLB errors. */
if (evt->error_type == MCE_ERROR_TYPE_SLB && !in_guest)
slb_dump_contents(local_paca->mce_faulty_slbs);
#endif
}
EXPORT_SYMBOL_GPL(machine_check_print_event_info);
/*
* This function is called in real mode. Strictly no printk's please.
*
* regs->nip and regs->msr contains srr0 and ssr1.
*/
DEFINE_INTERRUPT_HANDLER_NMI(machine_check_early)
{
long handled = 0;
hv_nmi_check_nonrecoverable(regs);
/*
* See if platform is capable of handling machine check.
*/
if (ppc_md.machine_check_early)
handled = ppc_md.machine_check_early(regs);
return handled;
}
KVM: PPC: Book3S HV: Improve handling of debug-trigger HMIs on POWER9 Hypervisor maintenance interrupts (HMIs) are generated by various causes, signalled by bits in the hypervisor maintenance exception register (HMER). In most cases calling OPAL to handle the interrupt is the correct thing to do, but the "debug trigger" HMIs signalled by PPC bit 17 (bit 46) of HMER are used to invoke software workarounds for hardware bugs, and OPAL does not have any code to handle this cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips to work around a hardware bug in executing vector load instructions to cache inhibited memory. In POWER9 DD2.2 chips, it is generated when conditions are detected relating to threads being in TM (transactional memory) suspended mode when the core SMT configuration needs to be reconfigured. The kernel currently has code to detect the vector CI load condition, but only when the HMI occurs in the host, not when it occurs in a guest. If a HMI occurs in the guest, it is always passed to OPAL, and then we always re-sync the timebase, because the HMI cause might have been a timebase error, for which OPAL would re-sync the timebase, thus removing the timebase offset which KVM applied for the guest. Since we don't know what OPAL did, we don't know whether to subtract the timebase offset from the timebase, so instead we re-sync the timebase. This adds code to determine explicitly what the cause of a debug trigger HMI will be. This is based on a new device-tree property under the CPU nodes called ibm,hmi-special-triggers, if it is present, or otherwise based on the PVR (processor version register). The handling of debug trigger HMIs is pulled out into a separate function which can be called from the KVM guest exit code. If this function handles and clears the HMI, and no other HMI causes remain, then we skip calling OPAL and we proceed to subtract the guest timebase offset from the timebase. The overall handling for HMIs that occur in the host (i.e. not in a KVM guest) is largely unchanged, except that we now don't set the flag for the vector CI load workaround on DD2.2 processors. This also removes a BUG_ON in the KVM code. BUG_ON is generally not useful in KVM guest entry/exit code since it is difficult to handle the resulting trap gracefully. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-17 09:51:13 +00:00
/* Possible meanings for HMER_DEBUG_TRIG bit being set on POWER9 */
static enum {
DTRIG_UNKNOWN,
DTRIG_VECTOR_CI, /* need to emulate vector CI load instr */
DTRIG_SUSPEND_ESCAPE, /* need to escape from TM suspend mode */
} hmer_debug_trig_function;
static int init_debug_trig_function(void)
{
KVM: PPC: Book3S HV: Improve handling of debug-trigger HMIs on POWER9 Hypervisor maintenance interrupts (HMIs) are generated by various causes, signalled by bits in the hypervisor maintenance exception register (HMER). In most cases calling OPAL to handle the interrupt is the correct thing to do, but the "debug trigger" HMIs signalled by PPC bit 17 (bit 46) of HMER are used to invoke software workarounds for hardware bugs, and OPAL does not have any code to handle this cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips to work around a hardware bug in executing vector load instructions to cache inhibited memory. In POWER9 DD2.2 chips, it is generated when conditions are detected relating to threads being in TM (transactional memory) suspended mode when the core SMT configuration needs to be reconfigured. The kernel currently has code to detect the vector CI load condition, but only when the HMI occurs in the host, not when it occurs in a guest. If a HMI occurs in the guest, it is always passed to OPAL, and then we always re-sync the timebase, because the HMI cause might have been a timebase error, for which OPAL would re-sync the timebase, thus removing the timebase offset which KVM applied for the guest. Since we don't know what OPAL did, we don't know whether to subtract the timebase offset from the timebase, so instead we re-sync the timebase. This adds code to determine explicitly what the cause of a debug trigger HMI will be. This is based on a new device-tree property under the CPU nodes called ibm,hmi-special-triggers, if it is present, or otherwise based on the PVR (processor version register). The handling of debug trigger HMIs is pulled out into a separate function which can be called from the KVM guest exit code. If this function handles and clears the HMI, and no other HMI causes remain, then we skip calling OPAL and we proceed to subtract the guest timebase offset from the timebase. The overall handling for HMIs that occur in the host (i.e. not in a KVM guest) is largely unchanged, except that we now don't set the flag for the vector CI load workaround on DD2.2 processors. This also removes a BUG_ON in the KVM code. BUG_ON is generally not useful in KVM guest entry/exit code since it is difficult to handle the resulting trap gracefully. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-17 09:51:13 +00:00
int pvr;
struct device_node *cpun;
struct property *prop = NULL;
const char *str;
/* First look in the device tree */
preempt_disable();
cpun = of_get_cpu_node(smp_processor_id(), NULL);
if (cpun) {
of_property_for_each_string(cpun, "ibm,hmi-special-triggers",
prop, str) {
if (strcmp(str, "bit17-vector-ci-load") == 0)
hmer_debug_trig_function = DTRIG_VECTOR_CI;
else if (strcmp(str, "bit17-tm-suspend-escape") == 0)
hmer_debug_trig_function = DTRIG_SUSPEND_ESCAPE;
}
KVM: PPC: Book3S HV: Improve handling of debug-trigger HMIs on POWER9 Hypervisor maintenance interrupts (HMIs) are generated by various causes, signalled by bits in the hypervisor maintenance exception register (HMER). In most cases calling OPAL to handle the interrupt is the correct thing to do, but the "debug trigger" HMIs signalled by PPC bit 17 (bit 46) of HMER are used to invoke software workarounds for hardware bugs, and OPAL does not have any code to handle this cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips to work around a hardware bug in executing vector load instructions to cache inhibited memory. In POWER9 DD2.2 chips, it is generated when conditions are detected relating to threads being in TM (transactional memory) suspended mode when the core SMT configuration needs to be reconfigured. The kernel currently has code to detect the vector CI load condition, but only when the HMI occurs in the host, not when it occurs in a guest. If a HMI occurs in the guest, it is always passed to OPAL, and then we always re-sync the timebase, because the HMI cause might have been a timebase error, for which OPAL would re-sync the timebase, thus removing the timebase offset which KVM applied for the guest. Since we don't know what OPAL did, we don't know whether to subtract the timebase offset from the timebase, so instead we re-sync the timebase. This adds code to determine explicitly what the cause of a debug trigger HMI will be. This is based on a new device-tree property under the CPU nodes called ibm,hmi-special-triggers, if it is present, or otherwise based on the PVR (processor version register). The handling of debug trigger HMIs is pulled out into a separate function which can be called from the KVM guest exit code. If this function handles and clears the HMI, and no other HMI causes remain, then we skip calling OPAL and we proceed to subtract the guest timebase offset from the timebase. The overall handling for HMIs that occur in the host (i.e. not in a KVM guest) is largely unchanged, except that we now don't set the flag for the vector CI load workaround on DD2.2 processors. This also removes a BUG_ON in the KVM code. BUG_ON is generally not useful in KVM guest entry/exit code since it is difficult to handle the resulting trap gracefully. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-17 09:51:13 +00:00
of_node_put(cpun);
}
preempt_enable();
/* If we found the property, don't look at PVR */
if (prop)
goto out;
pvr = mfspr(SPRN_PVR);
/* Check for POWER9 Nimbus (scale-out) */
if ((PVR_VER(pvr) == PVR_POWER9) && (pvr & 0xe000) == 0) {
/* DD2.2 and later */
if ((pvr & 0xfff) >= 0x202)
hmer_debug_trig_function = DTRIG_SUSPEND_ESCAPE;
/* DD2.0 and DD2.1 - used for vector CI load emulation */
else if ((pvr & 0xfff) >= 0x200)
hmer_debug_trig_function = DTRIG_VECTOR_CI;
}
out:
switch (hmer_debug_trig_function) {
case DTRIG_VECTOR_CI:
pr_debug("HMI debug trigger used for vector CI load\n");
break;
case DTRIG_SUSPEND_ESCAPE:
pr_debug("HMI debug trigger used for TM suspend escape\n");
break;
default:
break;
}
KVM: PPC: Book3S HV: Improve handling of debug-trigger HMIs on POWER9 Hypervisor maintenance interrupts (HMIs) are generated by various causes, signalled by bits in the hypervisor maintenance exception register (HMER). In most cases calling OPAL to handle the interrupt is the correct thing to do, but the "debug trigger" HMIs signalled by PPC bit 17 (bit 46) of HMER are used to invoke software workarounds for hardware bugs, and OPAL does not have any code to handle this cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips to work around a hardware bug in executing vector load instructions to cache inhibited memory. In POWER9 DD2.2 chips, it is generated when conditions are detected relating to threads being in TM (transactional memory) suspended mode when the core SMT configuration needs to be reconfigured. The kernel currently has code to detect the vector CI load condition, but only when the HMI occurs in the host, not when it occurs in a guest. If a HMI occurs in the guest, it is always passed to OPAL, and then we always re-sync the timebase, because the HMI cause might have been a timebase error, for which OPAL would re-sync the timebase, thus removing the timebase offset which KVM applied for the guest. Since we don't know what OPAL did, we don't know whether to subtract the timebase offset from the timebase, so instead we re-sync the timebase. This adds code to determine explicitly what the cause of a debug trigger HMI will be. This is based on a new device-tree property under the CPU nodes called ibm,hmi-special-triggers, if it is present, or otherwise based on the PVR (processor version register). The handling of debug trigger HMIs is pulled out into a separate function which can be called from the KVM guest exit code. If this function handles and clears the HMI, and no other HMI causes remain, then we skip calling OPAL and we proceed to subtract the guest timebase offset from the timebase. The overall handling for HMIs that occur in the host (i.e. not in a KVM guest) is largely unchanged, except that we now don't set the flag for the vector CI load workaround on DD2.2 processors. This also removes a BUG_ON in the KVM code. BUG_ON is generally not useful in KVM guest entry/exit code since it is difficult to handle the resulting trap gracefully. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-17 09:51:13 +00:00
return 0;
}
__initcall(init_debug_trig_function);
/*
* Handle HMIs that occur as a result of a debug trigger.
* Return values:
* -1 means this is not a HMI cause that we know about
* 0 means no further handling is required
* 1 means further handling is required
*/
long hmi_handle_debugtrig(struct pt_regs *regs)
{
unsigned long hmer = mfspr(SPRN_HMER);
long ret = 0;
/* HMER_DEBUG_TRIG bit is used for various workarounds on P9 */
if (!((hmer & HMER_DEBUG_TRIG)
&& hmer_debug_trig_function != DTRIG_UNKNOWN))
return -1;
hmer &= ~HMER_DEBUG_TRIG;
/* HMER is a write-AND register */
mtspr(SPRN_HMER, ~HMER_DEBUG_TRIG);
switch (hmer_debug_trig_function) {
case DTRIG_VECTOR_CI:
/*
* Now to avoid problems with soft-disable we
* only do the emulation if we are coming from
* host user space
*/
if (regs && user_mode(regs))
ret = local_paca->hmi_p9_special_emu = 1;
break;
default:
break;
}
/*
* See if any other HMI causes remain to be handled
*/
if (hmer & mfspr(SPRN_HMEER))
return -1;
return ret;
}
/*
* Return values:
*/
DEFINE_INTERRUPT_HANDLER_NMI(hmi_exception_realmode)
KVM: PPC: Book3S HV: Improve handling of debug-trigger HMIs on POWER9 Hypervisor maintenance interrupts (HMIs) are generated by various causes, signalled by bits in the hypervisor maintenance exception register (HMER). In most cases calling OPAL to handle the interrupt is the correct thing to do, but the "debug trigger" HMIs signalled by PPC bit 17 (bit 46) of HMER are used to invoke software workarounds for hardware bugs, and OPAL does not have any code to handle this cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips to work around a hardware bug in executing vector load instructions to cache inhibited memory. In POWER9 DD2.2 chips, it is generated when conditions are detected relating to threads being in TM (transactional memory) suspended mode when the core SMT configuration needs to be reconfigured. The kernel currently has code to detect the vector CI load condition, but only when the HMI occurs in the host, not when it occurs in a guest. If a HMI occurs in the guest, it is always passed to OPAL, and then we always re-sync the timebase, because the HMI cause might have been a timebase error, for which OPAL would re-sync the timebase, thus removing the timebase offset which KVM applied for the guest. Since we don't know what OPAL did, we don't know whether to subtract the timebase offset from the timebase, so instead we re-sync the timebase. This adds code to determine explicitly what the cause of a debug trigger HMI will be. This is based on a new device-tree property under the CPU nodes called ibm,hmi-special-triggers, if it is present, or otherwise based on the PVR (processor version register). The handling of debug trigger HMIs is pulled out into a separate function which can be called from the KVM guest exit code. If this function handles and clears the HMI, and no other HMI causes remain, then we skip calling OPAL and we proceed to subtract the guest timebase offset from the timebase. The overall handling for HMIs that occur in the host (i.e. not in a KVM guest) is largely unchanged, except that we now don't set the flag for the vector CI load workaround on DD2.2 processors. This also removes a BUG_ON in the KVM code. BUG_ON is generally not useful in KVM guest entry/exit code since it is difficult to handle the resulting trap gracefully. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-17 09:51:13 +00:00
{
int ret;
local_paca->hmi_irqs++;
KVM: PPC: Book3S HV: Improve handling of debug-trigger HMIs on POWER9 Hypervisor maintenance interrupts (HMIs) are generated by various causes, signalled by bits in the hypervisor maintenance exception register (HMER). In most cases calling OPAL to handle the interrupt is the correct thing to do, but the "debug trigger" HMIs signalled by PPC bit 17 (bit 46) of HMER are used to invoke software workarounds for hardware bugs, and OPAL does not have any code to handle this cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips to work around a hardware bug in executing vector load instructions to cache inhibited memory. In POWER9 DD2.2 chips, it is generated when conditions are detected relating to threads being in TM (transactional memory) suspended mode when the core SMT configuration needs to be reconfigured. The kernel currently has code to detect the vector CI load condition, but only when the HMI occurs in the host, not when it occurs in a guest. If a HMI occurs in the guest, it is always passed to OPAL, and then we always re-sync the timebase, because the HMI cause might have been a timebase error, for which OPAL would re-sync the timebase, thus removing the timebase offset which KVM applied for the guest. Since we don't know what OPAL did, we don't know whether to subtract the timebase offset from the timebase, so instead we re-sync the timebase. This adds code to determine explicitly what the cause of a debug trigger HMI will be. This is based on a new device-tree property under the CPU nodes called ibm,hmi-special-triggers, if it is present, or otherwise based on the PVR (processor version register). The handling of debug trigger HMIs is pulled out into a separate function which can be called from the KVM guest exit code. If this function handles and clears the HMI, and no other HMI causes remain, then we skip calling OPAL and we proceed to subtract the guest timebase offset from the timebase. The overall handling for HMIs that occur in the host (i.e. not in a KVM guest) is largely unchanged, except that we now don't set the flag for the vector CI load workaround on DD2.2 processors. This also removes a BUG_ON in the KVM code. BUG_ON is generally not useful in KVM guest entry/exit code since it is difficult to handle the resulting trap gracefully. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-17 09:51:13 +00:00
ret = hmi_handle_debugtrig(regs);
if (ret >= 0)
return ret;
wait_for_subcore_guest_exit();
if (ppc_md.hmi_exception_early)
ppc_md.hmi_exception_early(regs);
wait_for_tb_resync();
return 1;
}
void __init mce_init(void)
{
struct mce_info *mce_info;
u64 limit;
int i;
limit = min(ppc64_bolted_size(), ppc64_rma_size);
for_each_possible_cpu(i) {
mce_info = memblock_alloc_try_nid(sizeof(*mce_info),
__alignof__(*mce_info),
MEMBLOCK_LOW_LIMIT,
limit, cpu_to_node(i));
if (!mce_info)
goto err;
paca_ptrs[i]->mce_info = mce_info;
}
return;
err:
panic("Failed to allocate memory for MCE event data\n");
}