linux-stable/mm/mmzone.c

116 lines
2.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/mmzone.c
*
* management codes for pgdats, zones and page flags
*/
#include <linux/stddef.h>
[ARM] Double check memmap is actually valid with a memmap has unexpected holes V2 pfn_valid() is meant to be able to tell if a given PFN has valid memmap associated with it or not. In FLATMEM, it is expected that holes always have valid memmap as long as there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed that a valid section has a memmap for the entire section. However, ARM and maybe other embedded architectures in the future free memmap backing holes to save memory on the assumption the memmap is never used. The page_zone linkages are then broken even though pfn_valid() returns true. A walker of the full memmap must then do this additional check to ensure the memmap they are looking at is sane by making sure the zone and PFN linkages are still valid. This is expensive, but walkers of the full memmap are extremely rare. This was caught before for FLATMEM and hacked around but it hits again for SPARSEMEM because the page_zone linkages can look ok where the PFN linkages are totally screwed. This looks like a hatchet job but the reality is that any clean solution would end up consumning all the memory saved by punching these unexpected holes in the memmap. For example, we tried marking the memmap within the section invalid but the section size exceeds the size of the hole in most cases so pfn_valid() starts returning false where valid memmap exists. Shrinking the size of the section would increase memory consumption offsetting the gains. This patch identifies when an architecture is punching unexpected holes in the memmap that the memory model cannot automatically detect and sets ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx which is the model sub-architecture this has been reported on but may expand later. When set, walkers of the full memmap must call memmap_valid_within() for each PFN and passing in what it expects the page and zone to be for that PFN. If it finds the linkages to be broken, it assumes the memmap is invalid for that PFN. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-05-13 16:34:48 +00:00
#include <linux/mm.h>
#include <linux/mmzone.h>
struct pglist_data *first_online_pgdat(void)
{
return NODE_DATA(first_online_node);
}
struct pglist_data *next_online_pgdat(struct pglist_data *pgdat)
{
int nid = next_online_node(pgdat->node_id);
if (nid == MAX_NUMNODES)
return NULL;
return NODE_DATA(nid);
}
/*
* next_zone - helper magic for for_each_zone()
*/
struct zone *next_zone(struct zone *zone)
{
pg_data_t *pgdat = zone->zone_pgdat;
if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
zone++;
else {
pgdat = next_online_pgdat(pgdat);
if (pgdat)
zone = pgdat->node_zones;
else
zone = NULL;
}
return zone;
}
static inline int zref_in_nodemask(struct zoneref *zref, nodemask_t *nodes)
{
#ifdef CONFIG_NUMA
return node_isset(zonelist_node_idx(zref), *nodes);
#else
return 1;
#endif /* CONFIG_NUMA */
}
/* Returns the next zone at or below highest_zoneidx in a zonelist */
mm, page_alloc: inline the fast path of the zonelist iterator The page allocator iterates through a zonelist for zones that match the addressing limitations and nodemask of the caller but many allocations will not be restricted. Despite this, there is always functional call overhead which builds up. This patch inlines the optimistic basic case and only calls the iterator function for the complex case. A hindrance was the fact that cpuset_current_mems_allowed is used in the fastpath as the allowed nodemask even though all nodes are allowed on most systems. The patch handles this by only considering cpuset_current_mems_allowed if a cpuset exists. As well as being faster in the fast-path, this removes some junk in the slowpath. The performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 statinline-v1r20 optiter-v1r20 Min alloc-odr0-1 412.00 ( 0.00%) 382.00 ( 7.28%) Min alloc-odr0-2 301.00 ( 0.00%) 282.00 ( 6.31%) Min alloc-odr0-4 247.00 ( 0.00%) 233.00 ( 5.67%) Min alloc-odr0-8 215.00 ( 0.00%) 203.00 ( 5.58%) Min alloc-odr0-16 199.00 ( 0.00%) 188.00 ( 5.53%) Min alloc-odr0-32 191.00 ( 0.00%) 182.00 ( 4.71%) Min alloc-odr0-64 187.00 ( 0.00%) 177.00 ( 5.35%) Min alloc-odr0-128 185.00 ( 0.00%) 175.00 ( 5.41%) Min alloc-odr0-256 193.00 ( 0.00%) 184.00 ( 4.66%) Min alloc-odr0-512 207.00 ( 0.00%) 197.00 ( 4.83%) Min alloc-odr0-1024 213.00 ( 0.00%) 203.00 ( 4.69%) Min alloc-odr0-2048 220.00 ( 0.00%) 209.00 ( 5.00%) Min alloc-odr0-4096 226.00 ( 0.00%) 214.00 ( 5.31%) Min alloc-odr0-8192 229.00 ( 0.00%) 218.00 ( 4.80%) Min alloc-odr0-16384 229.00 ( 0.00%) 219.00 ( 4.37%) perf indicated that next_zones_zonelist disappeared in the profile and __next_zones_zonelist did not appear. This is expected as the micro-benchmark would hit the inlined fast-path every time. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 00:13:30 +00:00
struct zoneref *__next_zones_zonelist(struct zoneref *z,
enum zone_type highest_zoneidx,
nodemask_t *nodes)
{
/*
* Find the next suitable zone to use for the allocation.
* Only filter based on nodemask if it's set
*/
mm/mmzone.c: swap likely to unlikely as code logic is different for next_zones_zonelist() Commit 682a3385e773 ("mm, page_alloc: inline the fast path of the zonelist iterator") changed how next_zones_zonelist() is called, by adding a static inline function to do the fast path. This function adds: if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) return z; return __next_zones_zonelist(z, highest_zoneidx, nodes); Where __next_zones_zonelist() is only called when nodes is not NULL or zonelist_zone_idx(z) is less than highest_zoneidx. The original next_zone_zonelist() was converted to __next_zones_zonelist() but it still maintained: if (likely(nodes == NULL)) Which is now actually a very unlikely, as it is only called with nodes equal to NULL when zonelist_zone_idx(z) is greater than highest_zoneidx. Before this commit, this if had this statistic: correct incorrect % Function File Line ------- --------- - -------- ---- ---- 837895 446078 34 next_zones_zonelist mmzone.c 63 After this commit, it has: correct incorrect % Function File Line ------- --------- - -------- ---- ---- 10 173840 99 __next_zones_zonelist mmzone.c 63 Thus, the if statement is now much more unlikely than it ever was as a likely. Link: http://lkml.kernel.org/r/20170105200102.77989567@gandalf.local.home Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 23:44:47 +00:00
if (unlikely(nodes == NULL))
while (zonelist_zone_idx(z) > highest_zoneidx)
z++;
else
while (zonelist_zone_idx(z) > highest_zoneidx ||
(z->zone && !zref_in_nodemask(z, nodes)))
z++;
return z;
}
[ARM] Double check memmap is actually valid with a memmap has unexpected holes V2 pfn_valid() is meant to be able to tell if a given PFN has valid memmap associated with it or not. In FLATMEM, it is expected that holes always have valid memmap as long as there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed that a valid section has a memmap for the entire section. However, ARM and maybe other embedded architectures in the future free memmap backing holes to save memory on the assumption the memmap is never used. The page_zone linkages are then broken even though pfn_valid() returns true. A walker of the full memmap must then do this additional check to ensure the memmap they are looking at is sane by making sure the zone and PFN linkages are still valid. This is expensive, but walkers of the full memmap are extremely rare. This was caught before for FLATMEM and hacked around but it hits again for SPARSEMEM because the page_zone linkages can look ok where the PFN linkages are totally screwed. This looks like a hatchet job but the reality is that any clean solution would end up consumning all the memory saved by punching these unexpected holes in the memmap. For example, we tried marking the memmap within the section invalid but the section size exceeds the size of the hole in most cases so pfn_valid() starts returning false where valid memmap exists. Shrinking the size of the section would increase memory consumption offsetting the gains. This patch identifies when an architecture is punching unexpected holes in the memmap that the memory model cannot automatically detect and sets ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx which is the model sub-architecture this has been reported on but may expand later. When set, walkers of the full memmap must call memmap_valid_within() for each PFN and passing in what it expects the page and zone to be for that PFN. If it finds the linkages to be broken, it assumes the memmap is invalid for that PFN. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-05-13 16:34:48 +00:00
#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
bool memmap_valid_within(unsigned long pfn,
[ARM] Double check memmap is actually valid with a memmap has unexpected holes V2 pfn_valid() is meant to be able to tell if a given PFN has valid memmap associated with it or not. In FLATMEM, it is expected that holes always have valid memmap as long as there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed that a valid section has a memmap for the entire section. However, ARM and maybe other embedded architectures in the future free memmap backing holes to save memory on the assumption the memmap is never used. The page_zone linkages are then broken even though pfn_valid() returns true. A walker of the full memmap must then do this additional check to ensure the memmap they are looking at is sane by making sure the zone and PFN linkages are still valid. This is expensive, but walkers of the full memmap are extremely rare. This was caught before for FLATMEM and hacked around but it hits again for SPARSEMEM because the page_zone linkages can look ok where the PFN linkages are totally screwed. This looks like a hatchet job but the reality is that any clean solution would end up consumning all the memory saved by punching these unexpected holes in the memmap. For example, we tried marking the memmap within the section invalid but the section size exceeds the size of the hole in most cases so pfn_valid() starts returning false where valid memmap exists. Shrinking the size of the section would increase memory consumption offsetting the gains. This patch identifies when an architecture is punching unexpected holes in the memmap that the memory model cannot automatically detect and sets ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx which is the model sub-architecture this has been reported on but may expand later. When set, walkers of the full memmap must call memmap_valid_within() for each PFN and passing in what it expects the page and zone to be for that PFN. If it finds the linkages to be broken, it assumes the memmap is invalid for that PFN. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-05-13 16:34:48 +00:00
struct page *page, struct zone *zone)
{
if (page_to_pfn(page) != pfn)
return false;
[ARM] Double check memmap is actually valid with a memmap has unexpected holes V2 pfn_valid() is meant to be able to tell if a given PFN has valid memmap associated with it or not. In FLATMEM, it is expected that holes always have valid memmap as long as there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed that a valid section has a memmap for the entire section. However, ARM and maybe other embedded architectures in the future free memmap backing holes to save memory on the assumption the memmap is never used. The page_zone linkages are then broken even though pfn_valid() returns true. A walker of the full memmap must then do this additional check to ensure the memmap they are looking at is sane by making sure the zone and PFN linkages are still valid. This is expensive, but walkers of the full memmap are extremely rare. This was caught before for FLATMEM and hacked around but it hits again for SPARSEMEM because the page_zone linkages can look ok where the PFN linkages are totally screwed. This looks like a hatchet job but the reality is that any clean solution would end up consumning all the memory saved by punching these unexpected holes in the memmap. For example, we tried marking the memmap within the section invalid but the section size exceeds the size of the hole in most cases so pfn_valid() starts returning false where valid memmap exists. Shrinking the size of the section would increase memory consumption offsetting the gains. This patch identifies when an architecture is punching unexpected holes in the memmap that the memory model cannot automatically detect and sets ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx which is the model sub-architecture this has been reported on but may expand later. When set, walkers of the full memmap must call memmap_valid_within() for each PFN and passing in what it expects the page and zone to be for that PFN. If it finds the linkages to be broken, it assumes the memmap is invalid for that PFN. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-05-13 16:34:48 +00:00
if (page_zone(page) != zone)
return false;
[ARM] Double check memmap is actually valid with a memmap has unexpected holes V2 pfn_valid() is meant to be able to tell if a given PFN has valid memmap associated with it or not. In FLATMEM, it is expected that holes always have valid memmap as long as there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed that a valid section has a memmap for the entire section. However, ARM and maybe other embedded architectures in the future free memmap backing holes to save memory on the assumption the memmap is never used. The page_zone linkages are then broken even though pfn_valid() returns true. A walker of the full memmap must then do this additional check to ensure the memmap they are looking at is sane by making sure the zone and PFN linkages are still valid. This is expensive, but walkers of the full memmap are extremely rare. This was caught before for FLATMEM and hacked around but it hits again for SPARSEMEM because the page_zone linkages can look ok where the PFN linkages are totally screwed. This looks like a hatchet job but the reality is that any clean solution would end up consumning all the memory saved by punching these unexpected holes in the memmap. For example, we tried marking the memmap within the section invalid but the section size exceeds the size of the hole in most cases so pfn_valid() starts returning false where valid memmap exists. Shrinking the size of the section would increase memory consumption offsetting the gains. This patch identifies when an architecture is punching unexpected holes in the memmap that the memory model cannot automatically detect and sets ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx which is the model sub-architecture this has been reported on but may expand later. When set, walkers of the full memmap must call memmap_valid_within() for each PFN and passing in what it expects the page and zone to be for that PFN. If it finds the linkages to be broken, it assumes the memmap is invalid for that PFN. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-05-13 16:34:48 +00:00
return true;
[ARM] Double check memmap is actually valid with a memmap has unexpected holes V2 pfn_valid() is meant to be able to tell if a given PFN has valid memmap associated with it or not. In FLATMEM, it is expected that holes always have valid memmap as long as there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed that a valid section has a memmap for the entire section. However, ARM and maybe other embedded architectures in the future free memmap backing holes to save memory on the assumption the memmap is never used. The page_zone linkages are then broken even though pfn_valid() returns true. A walker of the full memmap must then do this additional check to ensure the memmap they are looking at is sane by making sure the zone and PFN linkages are still valid. This is expensive, but walkers of the full memmap are extremely rare. This was caught before for FLATMEM and hacked around but it hits again for SPARSEMEM because the page_zone linkages can look ok where the PFN linkages are totally screwed. This looks like a hatchet job but the reality is that any clean solution would end up consumning all the memory saved by punching these unexpected holes in the memmap. For example, we tried marking the memmap within the section invalid but the section size exceeds the size of the hole in most cases so pfn_valid() starts returning false where valid memmap exists. Shrinking the size of the section would increase memory consumption offsetting the gains. This patch identifies when an architecture is punching unexpected holes in the memmap that the memory model cannot automatically detect and sets ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx which is the model sub-architecture this has been reported on but may expand later. When set, walkers of the full memmap must call memmap_valid_within() for each PFN and passing in what it expects the page and zone to be for that PFN. If it finds the linkages to be broken, it assumes the memmap is invalid for that PFN. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-05-13 16:34:48 +00:00
}
#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
memcg: fix hotplugged memory zone oops When MEMCG is configured on (even when it's disabled by boot option), when adding or removing a page to/from its lru list, the zone pointer used for stats updates is nowadays taken from the struct lruvec. (On many configurations, calculating zone from page is slower.) But we have no code to update all the lruvecs (per zone, per memcg) when a memory node is hotadded. Here's an extract from the oops which results when running numactl to bind a program to a newly onlined node: BUG: unable to handle kernel NULL pointer dereference at 0000000000000f60 IP: __mod_zone_page_state+0x9/0x60 Pid: 1219, comm: numactl Not tainted 3.6.0-rc5+ #180 Bochs Bochs Process numactl (pid: 1219, threadinfo ffff880039abc000, task ffff8800383c4ce0) Call Trace: __pagevec_lru_add_fn+0xdf/0x140 pagevec_lru_move_fn+0xb1/0x100 __pagevec_lru_add+0x1c/0x30 lru_add_drain_cpu+0xa3/0x130 lru_add_drain+0x2f/0x40 ... The natural solution might be to use a memcg callback whenever memory is hotadded; but that solution has not been scoped out, and it happens that we do have an easy location at which to update lruvec->zone. The lruvec pointer is discovered either by mem_cgroup_zone_lruvec() or by mem_cgroup_page_lruvec(), and both of those do know the right zone. So check and set lruvec->zone in those; and remove the inadequate attempt to set lruvec->zone from lruvec_init(), which is called before NODE_DATA(node) has been allocated in such cases. Ah, there was one exceptionr. For no particularly good reason, mem_cgroup_force_empty_list() has its own code for deciding lruvec. Change it to use the standard mem_cgroup_zone_lruvec() and mem_cgroup_get_lru_size() too. In fact it was already safe against such an oops (the lru lists in danger could only be empty), but we're better proofed against future changes this way. I've marked this for stable (3.6) since we introduced the problem in 3.5 (now closed to stable); but I have no idea if this is the only fix needed to get memory hotadd working with memcg in 3.6, and received no answer when I enquired twice before. Reported-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-11-16 22:14:54 +00:00
void lruvec_init(struct lruvec *lruvec)
{
enum lru_list lru;
memset(lruvec, 0, sizeof(struct lruvec));
for_each_lru(lru)
INIT_LIST_HEAD(&lruvec->lists[lru]);
}
#if defined(CONFIG_NUMA_BALANCING) && !defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS)
int page_cpupid_xchg_last(struct page *page, int cpupid)
{
unsigned long old_flags, flags;
int last_cpupid;
do {
old_flags = flags = page->flags;
last_cpupid = page_cpupid_last(page);
flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
} while (unlikely(cmpxchg(&page->flags, old_flags, flags) != old_flags));
return last_cpupid;
}
#endif