linux-stable/drivers/pci/hotplug/shpchp_core.c

367 lines
9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Standard Hot Plug Controller Driver
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
* Copyright (C) 2003-2004 Intel Corporation
*
* All rights reserved.
*
* Send feedback to <greg@kroah.com>, <kristen.c.accardi@intel.com>
*
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/pci.h>
#include "shpchp.h"
/* Global variables */
bool shpchp_debug;
bool shpchp_poll_mode;
int shpchp_poll_time;
#define DRIVER_VERSION "0.4"
#define DRIVER_AUTHOR "Dan Zink <dan.zink@compaq.com>, Greg Kroah-Hartman <greg@kroah.com>, Dely Sy <dely.l.sy@intel.com>"
#define DRIVER_DESC "Standard Hot Plug PCI Controller Driver"
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
module_param(shpchp_debug, bool, 0644);
module_param(shpchp_poll_mode, bool, 0644);
module_param(shpchp_poll_time, int, 0644);
MODULE_PARM_DESC(shpchp_debug, "Debugging mode enabled or not");
MODULE_PARM_DESC(shpchp_poll_mode, "Using polling mechanism for hot-plug events or not");
MODULE_PARM_DESC(shpchp_poll_time, "Polling mechanism frequency, in seconds");
#define SHPC_MODULE_NAME "shpchp"
static int set_attention_status(struct hotplug_slot *slot, u8 value);
static int enable_slot(struct hotplug_slot *slot);
static int disable_slot(struct hotplug_slot *slot);
static int get_power_status(struct hotplug_slot *slot, u8 *value);
static int get_attention_status(struct hotplug_slot *slot, u8 *value);
static int get_latch_status(struct hotplug_slot *slot, u8 *value);
static int get_adapter_status(struct hotplug_slot *slot, u8 *value);
static const struct hotplug_slot_ops shpchp_hotplug_slot_ops = {
.set_attention_status = set_attention_status,
.enable_slot = enable_slot,
.disable_slot = disable_slot,
.get_power_status = get_power_status,
.get_attention_status = get_attention_status,
.get_latch_status = get_latch_status,
.get_adapter_status = get_adapter_status,
};
static int init_slots(struct controller *ctrl)
{
struct slot *slot;
struct hotplug_slot *hotplug_slot;
struct hotplug_slot_info *info;
char name[SLOT_NAME_SIZE];
int retval;
PCI: prevent duplicate slot names Prevent callers of pci_create_slot() from registering slots with duplicate names. This condition occurs most often when PCI hotplug drivers are loaded on platforms with broken firmware that assigns identical names to multiple slots. We now rename these duplicate slots on behalf of the user. If firmware assigns the name N to multiple slots, then: The first registered slot is assigned N The second registered slot is assigned N-1 The third registered slot is assigned N-2 etc. This is the permanent fix mentioned in earlier commits d6a9e9b4 and 167e782e (shpchp/pciehp: Rename duplicate slot name...). We take advantage of the new 'hotplug' parameter in pci_create_slot() to prevent a slot create/rename race between hotplug drivers and detection drivers. Scenario A: hotplug driver detection driver -------------- ---------------- pci_create_slot(hotplug=set) pci_create_slot(hotplug=NULL) The hotplug driver creates the slot with its desired name, and then releases the semaphore. Now, the detection driver tries to create the same slot, but it already exists. We don't care about renaming, so return the existing slot. Scenario B: hotplug driver detection driver -------------- ---------------- pci_create_slot(hotplug=NULL) pci_create_slot(hotplug=set) The detection driver creates the slot with name "X". Then the hotplug driver tries to create the same slot, but wants the name "Y" instead. We detect that we're trying to create the same slot and that we also want a rename, so rename the slot to "Y" and return. Scenario C: hotplug driver hotplug driver -------------- ---------------- pci_create_slot(hotplug=set) pci_create_slot(hotplug=set) Two separate hotplug drivers are attempting to claim the slot and are passing valid hotplug_slot args to pci_create_slot(). We detect that the slot already has a ->hotplug callback, prevent a rename, and return -EBUSY. Cc: kristen.c.accardi@intel.com Cc: matthew@wil.cx Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-10-20 23:41:02 +00:00
int i;
for (i = 0; i < ctrl->num_slots; i++) {
slot = kzalloc(sizeof(*slot), GFP_KERNEL);
if (!slot) {
retval = -ENOMEM;
goto error;
}
hotplug_slot = kzalloc(sizeof(*hotplug_slot), GFP_KERNEL);
if (!hotplug_slot) {
retval = -ENOMEM;
goto error_slot;
}
slot->hotplug_slot = hotplug_slot;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
retval = -ENOMEM;
goto error_hpslot;
}
hotplug_slot->info = info;
slot->hp_slot = i;
slot->ctrl = ctrl;
slot->bus = ctrl->pci_dev->subordinate->number;
slot->device = ctrl->slot_device_offset + i;
slot->hpc_ops = ctrl->hpc_ops;
slot->number = ctrl->first_slot + (ctrl->slot_num_inc * i);
slot->wq = alloc_workqueue("shpchp-%d", 0, 0, slot->number);
if (!slot->wq) {
retval = -ENOMEM;
goto error_info;
}
mutex_init(&slot->lock);
INIT_DELAYED_WORK(&slot->work, shpchp_queue_pushbutton_work);
/* register this slot with the hotplug pci core */
hotplug_slot->private = slot;
snprintf(name, SLOT_NAME_SIZE, "%d", slot->number);
hotplug_slot->ops = &shpchp_hotplug_slot_ops;
ctrl_dbg(ctrl, "Registering domain:bus:dev=%04x:%02x:%02x hp_slot=%x sun=%x slot_device_offset=%x\n",
pci_domain_nr(ctrl->pci_dev->subordinate),
slot->bus, slot->device, slot->hp_slot, slot->number,
ctrl->slot_device_offset);
PCI: introduce pci_slot Currently, /sys/bus/pci/slots/ only exposes hotplug attributes when a hotplug driver is loaded, but PCI slots have attributes such as address, speed, width, etc. that are not related to hotplug at all. Introduce pci_slot as the primary data structure and kobject model. Hotplug attributes described in hotplug_slot become a secondary structure associated with the pci_slot. This patch only creates the infrastructure that allows the separation of PCI slot attributes and hotplug attributes. In this patch, the PCI hotplug core remains the only user of this infrastructure, and thus, /sys/bus/pci/slots/ will still only become populated when a hotplug driver is loaded. A later patch in this series will add a second user of this new infrastructure and demonstrate splitting the task of exposing pci_slot attributes from hotplug_slot attributes. - Make pci_slot the primary sysfs entity. hotplug_slot becomes a subsidiary structure. o pci_create_slot() creates and registers a slot with the PCI core o pci_slot_add_hotplug() gives it hotplug capability - Change the prototype of pci_hp_register() to take the bus and slot number (on parent bus) as parameters. - Remove all the ->get_address methods since this functionality is now handled by pci_slot directly. [achiang@hp.com: rpaphp-correctly-pci_hp_register-for-empty-pci-slots] Tested-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: make headers_check happy] [akpm@linux-foundation.org: nuther build fix] [akpm@linux-foundation.org: fix typo in #include] Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Matthew Wilcox <matthew@wil.cx> Cc: Greg KH <greg@kroah.com> Cc: Kristen Carlson Accardi <kristen.c.accardi@intel.com> Cc: Len Brown <lenb@kernel.org> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-06-10 21:28:50 +00:00
retval = pci_hp_register(slot->hotplug_slot,
ctrl->pci_dev->subordinate, slot->device, name);
if (retval) {
ctrl_err(ctrl, "pci_hp_register failed with error %d\n",
retval);
goto error_slotwq;
}
get_power_status(hotplug_slot, &info->power_status);
get_attention_status(hotplug_slot, &info->attention_status);
get_latch_status(hotplug_slot, &info->latch_status);
get_adapter_status(hotplug_slot, &info->adapter_status);
list_add(&slot->slot_list, &ctrl->slot_list);
}
return 0;
error_slotwq:
destroy_workqueue(slot->wq);
error_info:
kfree(info);
error_hpslot:
kfree(hotplug_slot);
error_slot:
kfree(slot);
error:
return retval;
}
void cleanup_slots(struct controller *ctrl)
{
struct slot *slot, *next;
list_for_each_entry_safe(slot, next, &ctrl->slot_list, slot_list) {
list_del(&slot->slot_list);
cancel_delayed_work(&slot->work);
destroy_workqueue(slot->wq);
pci_hp_deregister(slot->hotplug_slot);
PCI: hotplug: Demidlayer registration with the core When a hotplug driver calls pci_hp_register(), all steps necessary for registration are carried out in one go, including creation of a kobject and addition to sysfs. That's a problem for pciehp once it's converted to enable/disable the slot exclusively from the IRQ thread: The thread needs to be spawned after creation of the kobject (because it uses the kobject's name), but before addition to sysfs (because it will handle enable/disable requests submitted via sysfs). pci_hp_deregister() does offer a ->release callback that's invoked after deletion from sysfs and before destruction of the kobject. But because pci_hp_register() doesn't offer a counterpart, hotplug drivers' ->probe and ->remove code becomes asymmetric, which is error prone as recently discovered use-after-free bugs in pciehp's ->remove hook have shown. In a sense, this appears to be a case of the midlayer antipattern: "The core thesis of the "midlayer mistake" is that midlayers are bad and should not exist. That common functionality which it is so tempting to put in a midlayer should instead be provided as library routines which can [be] used, augmented, or ignored by each bottom level driver independently. Thus every subsystem that supports multiple implementations (or drivers) should provide a very thin top layer which calls directly into the bottom layer drivers, and a rich library of support code that eases the implementation of those drivers. This library is available to, but not forced upon, those drivers." -- Neil Brown (2009), https://lwn.net/Articles/336262/ The presence of midlayer traits in the PCI hotplug core might be ascribed to its age: When it was introduced in February 2002, the blessings of a library approach might not have been well known: https://git.kernel.org/tglx/history/c/a8a2069f432c For comparison, the driver core does offer split functions for creating a kobject (device_initialize()) and addition to sysfs (device_add()) as an alternative to carrying out everything at once (device_register()). This was introduced in October 2002: https://git.kernel.org/tglx/history/c/8b290eb19962 The odd ->release callback in the PCI hotplug core was added in 2003: https://git.kernel.org/tglx/history/c/69f8d663b595 Clearly, a library approach would not force every hotplug driver to implement a ->release callback, but rather allow the driver to remove the sysfs files, release its data structures and finally destroy the kobject. Alternatively, a driver may choose to remove everything with pci_hp_deregister(), then release its data structures. To this end, offer drivers pci_hp_initialize() and pci_hp_add() as a split-up version of pci_hp_register(). Likewise, offer pci_hp_del() and pci_hp_destroy() as a split-up version of pci_hp_deregister(). Eliminate the ->release callback and move its code into each driver's teardown routine. Declare pci_hp_deregister() void, in keeping with the usual kernel pattern that enablement can fail, but disablement cannot. It only returned an error if the caller passed in a NULL pointer or a slot which has never or is no longer registered or is sharing its name with another slot. Those would be bugs, so WARN about them. Few hotplug drivers actually checked the return value and those that did only printed a useless error message to dmesg. Remove that. For most drivers the conversion was straightforward since it doesn't matter whether the code in the ->release callback is executed before or after destruction of the kobject. But in the case of ibmphp, it was unclear to me whether setting slot_cur->ctrl and slot_cur->bus_on to NULL needs to happen before the kobject is destroyed, so I erred on the side of caution and ensured that the order stays the same. Another nontrivial case is pnv_php, I've found the list and kref logic difficult to understand, however my impression was that it is safe to delete the list element and drop the references until after the kobject is destroyed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> # drivers/platform/x86 Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Scott Murray <scott@spiteful.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Gavin Shan <gwshan@linux.vnet.ibm.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Corentin Chary <corentin.chary@gmail.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Andy Shevchenko <andy@infradead.org>
2018-07-19 22:27:43 +00:00
kfree(slot->hotplug_slot->info);
kfree(slot->hotplug_slot);
kfree(slot);
}
}
/*
* set_attention_status - Turns the Amber LED for a slot on, off or blink
*/
static int set_attention_status(struct hotplug_slot *hotplug_slot, u8 status)
{
struct slot *slot = get_slot(hotplug_slot);
ctrl_dbg(slot->ctrl, "%s: physical_slot = %s\n",
__func__, slot_name(slot));
hotplug_slot->info->attention_status = status;
slot->hpc_ops->set_attention_status(slot, status);
return 0;
}
static int enable_slot(struct hotplug_slot *hotplug_slot)
{
struct slot *slot = get_slot(hotplug_slot);
ctrl_dbg(slot->ctrl, "%s: physical_slot = %s\n",
__func__, slot_name(slot));
return shpchp_sysfs_enable_slot(slot);
}
static int disable_slot(struct hotplug_slot *hotplug_slot)
{
struct slot *slot = get_slot(hotplug_slot);
ctrl_dbg(slot->ctrl, "%s: physical_slot = %s\n",
__func__, slot_name(slot));
return shpchp_sysfs_disable_slot(slot);
}
static int get_power_status(struct hotplug_slot *hotplug_slot, u8 *value)
{
struct slot *slot = get_slot(hotplug_slot);
int retval;
ctrl_dbg(slot->ctrl, "%s: physical_slot = %s\n",
__func__, slot_name(slot));
retval = slot->hpc_ops->get_power_status(slot, value);
if (retval < 0)
*value = hotplug_slot->info->power_status;
return 0;
}
static int get_attention_status(struct hotplug_slot *hotplug_slot, u8 *value)
{
struct slot *slot = get_slot(hotplug_slot);
int retval;
ctrl_dbg(slot->ctrl, "%s: physical_slot = %s\n",
__func__, slot_name(slot));
retval = slot->hpc_ops->get_attention_status(slot, value);
if (retval < 0)
*value = hotplug_slot->info->attention_status;
return 0;
}
static int get_latch_status(struct hotplug_slot *hotplug_slot, u8 *value)
{
struct slot *slot = get_slot(hotplug_slot);
int retval;
ctrl_dbg(slot->ctrl, "%s: physical_slot = %s\n",
__func__, slot_name(slot));
retval = slot->hpc_ops->get_latch_status(slot, value);
if (retval < 0)
*value = hotplug_slot->info->latch_status;
return 0;
}
static int get_adapter_status(struct hotplug_slot *hotplug_slot, u8 *value)
{
struct slot *slot = get_slot(hotplug_slot);
int retval;
ctrl_dbg(slot->ctrl, "%s: physical_slot = %s\n",
__func__, slot_name(slot));
retval = slot->hpc_ops->get_adapter_status(slot, value);
if (retval < 0)
*value = hotplug_slot->info->adapter_status;
return 0;
}
static bool shpc_capable(struct pci_dev *bridge)
{
/*
* It is assumed that AMD GOLAM chips support SHPC but they do not
* have SHPC capability.
*/
if (bridge->vendor == PCI_VENDOR_ID_AMD &&
bridge->device == PCI_DEVICE_ID_AMD_GOLAM_7450)
return true;
if (pci_find_capability(bridge, PCI_CAP_ID_SHPC))
return true;
return false;
}
static int shpc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int rc;
struct controller *ctrl;
if (!shpc_capable(pdev))
return -ENODEV;
if (acpi_get_hp_hw_control_from_firmware(pdev))
return -ENODEV;
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
goto err_out_none;
INIT_LIST_HEAD(&ctrl->slot_list);
rc = shpc_init(ctrl, pdev);
if (rc) {
ctrl_dbg(ctrl, "Controller initialization failed\n");
goto err_out_free_ctrl;
}
pci_set_drvdata(pdev, ctrl);
/* Setup the slot information structures */
rc = init_slots(ctrl);
if (rc) {
ctrl_err(ctrl, "Slot initialization failed\n");
goto err_out_release_ctlr;
}
rc = shpchp_create_ctrl_files(ctrl);
if (rc)
goto err_cleanup_slots;
pdev->shpc_managed = 1;
return 0;
err_cleanup_slots:
cleanup_slots(ctrl);
err_out_release_ctlr:
ctrl->hpc_ops->release_ctlr(ctrl);
err_out_free_ctrl:
kfree(ctrl);
err_out_none:
return -ENODEV;
}
static void shpc_remove(struct pci_dev *dev)
{
struct controller *ctrl = pci_get_drvdata(dev);
dev->shpc_managed = 0;
shpchp_remove_ctrl_files(ctrl);
ctrl->hpc_ops->release_ctlr(ctrl);
kfree(ctrl);
}
static const struct pci_device_id shpcd_pci_tbl[] = {
{PCI_DEVICE_CLASS(((PCI_CLASS_BRIDGE_PCI << 8) | 0x00), ~0)},
{ /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, shpcd_pci_tbl);
static struct pci_driver shpc_driver = {
.name = SHPC_MODULE_NAME,
.id_table = shpcd_pci_tbl,
.probe = shpc_probe,
.remove = shpc_remove,
};
static int __init shpcd_init(void)
{
int retval;
retval = pci_register_driver(&shpc_driver);
dbg("%s: pci_register_driver = %d\n", __func__, retval);
info(DRIVER_DESC " version: " DRIVER_VERSION "\n");
return retval;
}
static void __exit shpcd_cleanup(void)
{
dbg("unload_shpchpd()\n");
pci_unregister_driver(&shpc_driver);
info(DRIVER_DESC " version: " DRIVER_VERSION " unloaded\n");
}
module_init(shpcd_init);
module_exit(shpcd_cleanup);