linux-stable/drivers/staging/pi433/rf69.c

1031 lines
30 KiB
C
Raw Normal View History

/*
* abstraction of the spi interface of HopeRf rf69 radio module
*
* Copyright (C) 2016 Wolf-Entwicklungen
* Marcus Wolf <linux@wolf-entwicklungen.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* enable prosa debug info */
#undef DEBUG
/* enable print of values on reg access */
#undef DEBUG_VALUES
/* enable print of values on fifo access */
#undef DEBUG_FIFO_ACCESS
#include <linux/types.h>
#include <linux/spi/spi.h>
#include "rf69.h"
#include "rf69_registers.h"
#define F_OSC 32000000 /* in Hz */
#define FIFO_SIZE 66 /* in byte */
/*-------------------------------------------------------------------------*/
static int rf69_set_bit(struct spi_device *spi, u8 reg, u8 mask)
{
u8 tmp;
tmp = rf69_read_reg(spi, reg);
tmp = tmp | mask;
return rf69_write_reg(spi, reg, tmp);
}
static int rf69_clear_bit(struct spi_device *spi, u8 reg, u8 mask)
{
u8 tmp;
tmp = rf69_read_reg(spi, reg);
tmp = tmp & ~mask;
return rf69_write_reg(spi, reg, tmp);
}
static inline int rf69_read_mod_write(struct spi_device *spi, u8 reg, u8 mask, u8 value)
{
u8 tmp;
tmp = rf69_read_reg(spi, reg);
tmp = (tmp & ~mask) | value;
return rf69_write_reg(spi, reg, tmp);
}
/*-------------------------------------------------------------------------*/
int rf69_set_mode(struct spi_device *spi, enum mode mode)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: mode");
#endif
switch (mode) {
case transmit: return rf69_read_mod_write(spi, REG_OPMODE, MASK_OPMODE_MODE, OPMODE_MODE_TRANSMIT);
case receive: return rf69_read_mod_write(spi, REG_OPMODE, MASK_OPMODE_MODE, OPMODE_MODE_RECEIVE);
case synthesizer: return rf69_read_mod_write(spi, REG_OPMODE, MASK_OPMODE_MODE, OPMODE_MODE_SYNTHESIZER);
case standby: return rf69_read_mod_write(spi, REG_OPMODE, MASK_OPMODE_MODE, OPMODE_MODE_STANDBY);
case mode_sleep: return rf69_read_mod_write(spi, REG_OPMODE, MASK_OPMODE_MODE, OPMODE_MODE_SLEEP);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
// we are using packet mode, so this check is not really needed
// but waiting for mode ready is necessary when going from sleep because the FIFO may not be immediately available from previous mode
//while (_mode == RF69_MODE_SLEEP && (READ_REG(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // Wait for ModeReady
}
int rf69_set_data_mode(struct spi_device *spi, u8 data_mode)
{
return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODE, data_mode);
}
int rf69_set_modulation(struct spi_device *spi, enum modulation modulation)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: modulation");
#endif
switch (modulation) {
case OOK: return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODULATION_TYPE, DATAMODUL_MODULATION_TYPE_OOK);
case FSK: return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODULATION_TYPE, DATAMODUL_MODULATION_TYPE_FSK);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
enum modulation rf69_get_modulation(struct spi_device *spi)
{
u8 currentValue;
#ifdef DEBUG
dev_dbg(&spi->dev, "get: mode");
#endif
currentValue = rf69_read_reg(spi, REG_DATAMODUL);
switch (currentValue & MASK_DATAMODUL_MODULATION_TYPE >> 3) { // TODO improvement: change 3 to define
case DATAMODUL_MODULATION_TYPE_OOK: return OOK;
case DATAMODUL_MODULATION_TYPE_FSK: return FSK;
default: return UNDEF;
}
}
int rf69_set_modulation_shaping(struct spi_device *spi,
enum mod_shaping mod_shaping)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: mod shaping");
#endif
switch (rf69_get_modulation(spi)) {
case FSK:
switch (mod_shaping) {
case SHAPING_OFF: return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODULATION_SHAPE, DATAMODUL_MODULATION_SHAPE_NONE);
case SHAPING_1_0: return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODULATION_SHAPE, DATAMODUL_MODULATION_SHAPE_1_0);
case SHAPING_0_5: return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODULATION_SHAPE, DATAMODUL_MODULATION_SHAPE_0_3);
case SHAPING_0_3: return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODULATION_SHAPE, DATAMODUL_MODULATION_SHAPE_0_5);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
case OOK:
switch (mod_shaping) {
case SHAPING_OFF: return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODULATION_SHAPE, DATAMODUL_MODULATION_SHAPE_NONE);
case SHAPING_BR: return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODULATION_SHAPE, DATAMODUL_MODULATION_SHAPE_BR);
case SHAPING_2BR: return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODULATION_SHAPE, DATAMODUL_MODULATION_SHAPE_2BR);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
default:
dev_dbg(&spi->dev, "set: modulation undefined");
return -EINVAL;
}
}
int rf69_set_bit_rate(struct spi_device *spi, u16 bitRate)
{
int retval;
u32 bitRate_min;
u32 bitRate_reg;
u8 msb;
u8 lsb;
#ifdef DEBUG
dev_dbg(&spi->dev, "set: bit rate");
#endif
// check input value
bitRate_min = F_OSC / 8388608; // 8388608 = 2^23;
if (bitRate < bitRate_min) {
dev_dbg(&spi->dev, "setBitRate: illegal input param");
return -EINVAL;
}
// calculate reg settings
bitRate_reg = (F_OSC / bitRate);
msb = (bitRate_reg & 0xff00) >> 8;
lsb = (bitRate_reg & 0xff);
// transmit to RF 69
retval = rf69_write_reg(spi, REG_BITRATE_MSB, msb);
if (retval)
return retval;
retval = rf69_write_reg(spi, REG_BITRATE_LSB, lsb);
if (retval)
return retval;
return 0;
}
int rf69_set_deviation(struct spi_device *spi, u32 deviation)
{
int retval;
u64 f_reg;
u64 f_step;
u8 msb;
u8 lsb;
u64 factor = 1000000; // to improve precision of calculation
#ifdef DEBUG
dev_dbg(&spi->dev, "set: deviation");
#endif
// TODO: Dependency to bitrate
if (deviation < 600 || deviation > 500000) {
dev_dbg(&spi->dev, "set_deviation: illegal input param");
return -EINVAL;
}
// calculat f step
f_step = F_OSC * factor;
do_div(f_step, 524288); // 524288 = 2^19
// calculate register settings
f_reg = deviation * factor;
do_div(f_reg, f_step);
msb = (f_reg & 0xff00) >> 8;
lsb = (f_reg & 0xff);
// check msb
if (msb & ~FDEVMASB_MASK) {
dev_dbg(&spi->dev, "set_deviation: err in calc of msb");
return -EINVAL;
}
// write to chip
retval = rf69_write_reg(spi, REG_FDEV_MSB, msb);
if (retval)
return retval;
retval = rf69_write_reg(spi, REG_FDEV_LSB, lsb);
if (retval)
return retval;
return 0;
}
int rf69_set_frequency(struct spi_device *spi, u32 frequency)
{
int retval;
u32 f_max;
u64 f_reg;
u64 f_step;
u8 msb;
u8 mid;
u8 lsb;
u64 factor = 1000000; // to improve precision of calculation
#ifdef DEBUG
dev_dbg(&spi->dev, "set: frequency");
#endif
// calculat f step
f_step = F_OSC * factor;
do_div(f_step, 524288); // 524288 = 2^19
// check input value
f_max = div_u64(f_step * 8388608, factor);
if (frequency > f_max) {
dev_dbg(&spi->dev, "setFrequency: illegal input param");
return -EINVAL;
}
// calculate reg settings
f_reg = frequency * factor;
do_div(f_reg, f_step);
msb = (f_reg & 0xff0000) >> 16;
mid = (f_reg & 0xff00) >> 8;
lsb = (f_reg & 0xff);
// write to chip
retval = rf69_write_reg(spi, REG_FRF_MSB, msb);
if (retval)
return retval;
retval = rf69_write_reg(spi, REG_FRF_MID, mid);
if (retval)
return retval;
retval = rf69_write_reg(spi, REG_FRF_LSB, lsb);
if (retval)
return retval;
return 0;
}
int rf69_enable_amplifier(struct spi_device *spi, u8 amplifier_mask)
{
return rf69_set_bit(spi, REG_PALEVEL, amplifier_mask);
}
int rf69_disable_amplifier(struct spi_device *spi, u8 amplifier_mask)
{
return rf69_clear_bit(spi, REG_PALEVEL, amplifier_mask);
}
int rf69_set_output_power_level(struct spi_device *spi, u8 powerLevel)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: power level");
#endif
// TODO: Dependency to PA0,1,2 setting
powerLevel += 18;
// check input value
if (powerLevel > 0x1f) {
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
// write value
return rf69_read_mod_write(spi, REG_PALEVEL, MASK_PALEVEL_OUTPUT_POWER, powerLevel);
}
int rf69_set_pa_ramp(struct spi_device *spi, enum paRamp paRamp)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: pa ramp");
#endif
switch (paRamp) {
case ramp3400: return rf69_write_reg(spi, REG_PARAMP, PARAMP_3400);
case ramp2000: return rf69_write_reg(spi, REG_PARAMP, PARAMP_2000);
case ramp1000: return rf69_write_reg(spi, REG_PARAMP, PARAMP_1000);
case ramp500: return rf69_write_reg(spi, REG_PARAMP, PARAMP_500);
case ramp250: return rf69_write_reg(spi, REG_PARAMP, PARAMP_250);
case ramp125: return rf69_write_reg(spi, REG_PARAMP, PARAMP_125);
case ramp100: return rf69_write_reg(spi, REG_PARAMP, PARAMP_100);
case ramp62: return rf69_write_reg(spi, REG_PARAMP, PARAMP_62);
case ramp50: return rf69_write_reg(spi, REG_PARAMP, PARAMP_50);
case ramp40: return rf69_write_reg(spi, REG_PARAMP, PARAMP_40);
case ramp31: return rf69_write_reg(spi, REG_PARAMP, PARAMP_31);
case ramp25: return rf69_write_reg(spi, REG_PARAMP, PARAMP_25);
case ramp20: return rf69_write_reg(spi, REG_PARAMP, PARAMP_20);
case ramp15: return rf69_write_reg(spi, REG_PARAMP, PARAMP_15);
case ramp12: return rf69_write_reg(spi, REG_PARAMP, PARAMP_12);
case ramp10: return rf69_write_reg(spi, REG_PARAMP, PARAMP_10);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_antenna_impedance(struct spi_device *spi, enum antennaImpedance antennaImpedance)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: antenna impedance");
#endif
switch (antennaImpedance) {
case fiftyOhm: return rf69_clear_bit(spi, REG_LNA, MASK_LNA_ZIN);
case twohundretOhm: return rf69_set_bit(spi, REG_LNA, MASK_LNA_ZIN);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_lna_gain(struct spi_device *spi, enum lnaGain lnaGain)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: lna gain");
#endif
switch (lnaGain) {
case automatic: return rf69_read_mod_write(spi, REG_LNA, MASK_LNA_GAIN, LNA_GAIN_AUTO);
case max: return rf69_read_mod_write(spi, REG_LNA, MASK_LNA_GAIN, LNA_GAIN_MAX);
case maxMinus6: return rf69_read_mod_write(spi, REG_LNA, MASK_LNA_GAIN, LNA_GAIN_MAX_MINUS_6);
case maxMinus12: return rf69_read_mod_write(spi, REG_LNA, MASK_LNA_GAIN, LNA_GAIN_MAX_MINUS_12);
case maxMinus24: return rf69_read_mod_write(spi, REG_LNA, MASK_LNA_GAIN, LNA_GAIN_MAX_MINUS_24);
case maxMinus36: return rf69_read_mod_write(spi, REG_LNA, MASK_LNA_GAIN, LNA_GAIN_MAX_MINUS_36);
case maxMinus48: return rf69_read_mod_write(spi, REG_LNA, MASK_LNA_GAIN, LNA_GAIN_MAX_MINUS_48);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
enum lnaGain rf69_get_lna_gain(struct spi_device *spi)
{
u8 currentValue;
#ifdef DEBUG
dev_dbg(&spi->dev, "get: lna gain");
#endif
currentValue = rf69_read_reg(spi, REG_LNA);
switch (currentValue & MASK_LNA_CURRENT_GAIN >> 3) { // improvement: change 3 to define
case LNA_GAIN_AUTO: return automatic;
case LNA_GAIN_MAX: return max;
case LNA_GAIN_MAX_MINUS_6: return maxMinus6;
case LNA_GAIN_MAX_MINUS_12: return maxMinus12;
case LNA_GAIN_MAX_MINUS_24: return maxMinus24;
case LNA_GAIN_MAX_MINUS_36: return maxMinus36;
case LNA_GAIN_MAX_MINUS_48: return maxMinus48;
default: return undefined;
}
}
int rf69_set_dc_cut_off_frequency_intern(struct spi_device *spi, u8 reg, enum dccPercent dccPercent)
{
switch (dccPercent) {
case dcc16Percent: return rf69_read_mod_write(spi, reg, MASK_BW_DCC_FREQ, BW_DCC_16_PERCENT);
case dcc8Percent: return rf69_read_mod_write(spi, reg, MASK_BW_DCC_FREQ, BW_DCC_8_PERCENT);
case dcc4Percent: return rf69_read_mod_write(spi, reg, MASK_BW_DCC_FREQ, BW_DCC_4_PERCENT);
case dcc2Percent: return rf69_read_mod_write(spi, reg, MASK_BW_DCC_FREQ, BW_DCC_2_PERCENT);
case dcc1Percent: return rf69_read_mod_write(spi, reg, MASK_BW_DCC_FREQ, BW_DCC_1_PERCENT);
case dcc0_5Percent: return rf69_read_mod_write(spi, reg, MASK_BW_DCC_FREQ, BW_DCC_0_5_PERCENT);
case dcc0_25Percent: return rf69_read_mod_write(spi, reg, MASK_BW_DCC_FREQ, BW_DCC_0_25_PERCENT);
case dcc0_125Percent: return rf69_read_mod_write(spi, reg, MASK_BW_DCC_FREQ, BW_DCC_0_125_PERCENT);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_dc_cut_off_frequency(struct spi_device *spi, enum dccPercent dccPercent)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: cut off freq");
#endif
return rf69_set_dc_cut_off_frequency_intern(spi, REG_RXBW, dccPercent);
}
int rf69_set_dc_cut_off_frequency_during_afc(struct spi_device *spi, enum dccPercent dccPercent)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: cut off freq during afc");
#endif
return rf69_set_dc_cut_off_frequency_intern(spi, REG_AFCBW, dccPercent);
}
static int rf69_set_bandwidth_intern(struct spi_device *spi, u8 reg,
enum mantisse mantisse, u8 exponent)
{
u8 newValue;
// check value for mantisse and exponent
if (exponent > 7) {
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
if ((mantisse != mantisse16) &&
(mantisse != mantisse20) &&
(mantisse != mantisse24)) {
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
// read old value
newValue = rf69_read_reg(spi, reg);
// "delete" mantisse and exponent = just keep the DCC setting
newValue = newValue & MASK_BW_DCC_FREQ;
// add new mantisse
switch (mantisse) {
case mantisse16:
newValue = newValue | BW_MANT_16;
break;
case mantisse20:
newValue = newValue | BW_MANT_20;
break;
case mantisse24:
newValue = newValue | BW_MANT_24;
break;
}
// add new exponent
newValue = newValue | exponent;
// write back
return rf69_write_reg(spi, reg, newValue);
}
int rf69_set_bandwidth(struct spi_device *spi, enum mantisse mantisse, u8 exponent)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: band width");
#endif
return rf69_set_bandwidth_intern(spi, REG_RXBW, mantisse, exponent);
}
int rf69_set_bandwidth_during_afc(struct spi_device *spi, enum mantisse mantisse, u8 exponent)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: band width during afc");
#endif
return rf69_set_bandwidth_intern(spi, REG_AFCBW, mantisse, exponent);
}
int rf69_set_ook_threshold_type(struct spi_device *spi, enum thresholdType thresholdType)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: threshold type");
#endif
switch (thresholdType) {
case fixed: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESTYPE, OOKPEAK_THRESHTYPE_FIXED);
case peak: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESTYPE, OOKPEAK_THRESHTYPE_PEAK);
case average: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESTYPE, OOKPEAK_THRESHTYPE_AVERAGE);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_ook_threshold_step(struct spi_device *spi, enum thresholdStep thresholdStep)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: threshold step");
#endif
switch (thresholdStep) {
case step_0_5db: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESSTEP, OOKPEAK_THRESHSTEP_0_5_DB);
case step_1_0db: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESSTEP, OOKPEAK_THRESHSTEP_1_0_DB);
case step_1_5db: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESSTEP, OOKPEAK_THRESHSTEP_1_5_DB);
case step_2_0db: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESSTEP, OOKPEAK_THRESHSTEP_2_0_DB);
case step_3_0db: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESSTEP, OOKPEAK_THRESHSTEP_3_0_DB);
case step_4_0db: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESSTEP, OOKPEAK_THRESHSTEP_4_0_DB);
case step_5_0db: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESSTEP, OOKPEAK_THRESHSTEP_5_0_DB);
case step_6_0db: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESSTEP, OOKPEAK_THRESHSTEP_6_0_DB);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_ook_threshold_dec(struct spi_device *spi, enum thresholdDecrement thresholdDecrement)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: threshold decrement");
#endif
switch (thresholdDecrement) {
case dec_every8th: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC, OOKPEAK_THRESHDEC_EVERY_8TH);
case dec_every4th: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC, OOKPEAK_THRESHDEC_EVERY_4TH);
case dec_every2nd: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC, OOKPEAK_THRESHDEC_EVERY_2ND);
case dec_once: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC, OOKPEAK_THRESHDEC_ONCE);
case dec_twice: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC, OOKPEAK_THRESHDEC_TWICE);
case dec_4times: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC, OOKPEAK_THRESHDEC_4_TIMES);
case dec_8times: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC, OOKPEAK_THRESHDEC_8_TIMES);
case dec_16times: return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC, OOKPEAK_THRESHDEC_16_TIMES);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_dio_mapping(struct spi_device *spi, u8 DIONumber, u8 value)
{
u8 mask;
u8 shift;
u8 regaddr;
u8 regValue;
#ifdef DEBUG
dev_dbg(&spi->dev, "set: DIO mapping");
#endif
switch (DIONumber) {
case 0:
mask = MASK_DIO0; shift = SHIFT_DIO0; regaddr = REG_DIOMAPPING1;
break;
case 1:
mask = MASK_DIO1; shift = SHIFT_DIO1; regaddr = REG_DIOMAPPING1;
break;
case 2:
mask = MASK_DIO2; shift = SHIFT_DIO2; regaddr = REG_DIOMAPPING1;
break;
case 3:
mask = MASK_DIO3; shift = SHIFT_DIO3; regaddr = REG_DIOMAPPING1;
break;
case 4:
mask = MASK_DIO4; shift = SHIFT_DIO4; regaddr = REG_DIOMAPPING2;
break;
case 5:
mask = MASK_DIO5; shift = SHIFT_DIO5; regaddr = REG_DIOMAPPING2;
break;
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
// read reg
regValue = rf69_read_reg(spi, regaddr);
// delete old value
regValue = regValue & ~mask;
// add new value
regValue = regValue | value << shift;
// write back
return rf69_write_reg(spi, regaddr, regValue);
}
bool rf69_get_flag(struct spi_device *spi, enum flag flag)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "get: flag");
#endif
switch (flag) {
case modeSwitchCompleted: return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_MODE_READY);
case readyToReceive: return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_RX_READY);
case readyToSend: return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_TX_READY);
case pllLocked: return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_PLL_LOCK);
case rssiExceededThreshold: return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_RSSI);
case timeout: return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_TIMEOUT);
case automode: return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_AUTOMODE);
case syncAddressMatch: return (rf69_read_reg(spi, REG_IRQFLAGS1) & MASK_IRQFLAGS1_SYNC_ADDRESS_MATCH);
case fifoFull: return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_FULL);
/* case fifoNotEmpty: return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_NOT_EMPTY); */
case fifoEmpty: return !(rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_NOT_EMPTY);
case fifoLevelBelowThreshold: return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_LEVEL);
case fifoOverrun: return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_FIFO_OVERRUN);
case packetSent: return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_PACKET_SENT);
case payloadReady: return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_PAYLOAD_READY);
case crcOk: return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_CRC_OK);
case batteryLow: return (rf69_read_reg(spi, REG_IRQFLAGS2) & MASK_IRQFLAGS2_LOW_BAT);
default: return false;
}
}
int rf69_reset_flag(struct spi_device *spi, enum flag flag)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "reset: flag");
#endif
switch (flag) {
case rssiExceededThreshold: return rf69_write_reg(spi, REG_IRQFLAGS1, MASK_IRQFLAGS1_RSSI);
case syncAddressMatch: return rf69_write_reg(spi, REG_IRQFLAGS1, MASK_IRQFLAGS1_SYNC_ADDRESS_MATCH);
case fifoOverrun: return rf69_write_reg(spi, REG_IRQFLAGS2, MASK_IRQFLAGS2_FIFO_OVERRUN);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_rssi_threshold(struct spi_device *spi, u8 threshold)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: rssi threshold");
#endif
/* no value check needed - u8 exactly matches register size */
return rf69_write_reg(spi, REG_RSSITHRESH, threshold);
}
int rf69_set_rx_start_timeout(struct spi_device *spi, u8 timeout)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: start timeout");
#endif
/* no value check needed - u8 exactly matches register size */
return rf69_write_reg(spi, REG_RXTIMEOUT1, timeout);
}
int rf69_set_rssi_timeout(struct spi_device *spi, u8 timeout)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: rssi timeout");
#endif
/* no value check needed - u8 exactly matches register size */
return rf69_write_reg(spi, REG_RXTIMEOUT2, timeout);
}
int rf69_set_preamble_length(struct spi_device *spi, u16 preambleLength)
{
int retval;
u8 msb, lsb;
#ifdef DEBUG
dev_dbg(&spi->dev, "set: preamble length");
#endif
/* no value check needed - u16 exactly matches register size */
/* calculate reg settings */
msb = (preambleLength & 0xff00) >> 8;
lsb = (preambleLength & 0xff);
/* transmit to chip */
retval = rf69_write_reg(spi, REG_PREAMBLE_MSB, msb);
if (retval)
return retval;
retval = rf69_write_reg(spi, REG_PREAMBLE_LSB, lsb);
return retval;
}
int rf69_enable_sync(struct spi_device *spi)
{
return rf69_set_bit(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_SYNC_ON);
}
int rf69_disable_sync(struct spi_device *spi)
{
return rf69_clear_bit(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_SYNC_ON);
}
int rf69_set_fifo_fill_condition(struct spi_device *spi, enum fifoFillCondition fifoFillCondition)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: fifo fill condition");
#endif
switch (fifoFillCondition) {
case always: return rf69_set_bit(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_FIFO_FILL_CONDITION);
case afterSyncInterrupt: return rf69_clear_bit(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_FIFO_FILL_CONDITION);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_sync_size(struct spi_device *spi, u8 syncSize)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: sync size");
#endif
// check input value
if (syncSize > 0x07) {
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
// write value
return rf69_read_mod_write(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_SYNC_SIZE, (syncSize << 3));
}
int rf69_set_sync_tolerance(struct spi_device *spi, u8 syncTolerance)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: sync tolerance");
#endif
// check input value
if (syncTolerance > 0x07) {
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
// write value
return rf69_read_mod_write(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_SYNC_SIZE, syncTolerance);
}
int rf69_set_sync_values(struct spi_device *spi, u8 syncValues[8])
{
int retval = 0;
#ifdef DEBUG
dev_dbg(&spi->dev, "set: sync values");
#endif
retval += rf69_write_reg(spi, REG_SYNCVALUE1, syncValues[0]);
retval += rf69_write_reg(spi, REG_SYNCVALUE2, syncValues[1]);
retval += rf69_write_reg(spi, REG_SYNCVALUE3, syncValues[2]);
retval += rf69_write_reg(spi, REG_SYNCVALUE4, syncValues[3]);
retval += rf69_write_reg(spi, REG_SYNCVALUE5, syncValues[4]);
retval += rf69_write_reg(spi, REG_SYNCVALUE6, syncValues[5]);
retval += rf69_write_reg(spi, REG_SYNCVALUE7, syncValues[6]);
retval += rf69_write_reg(spi, REG_SYNCVALUE8, syncValues[7]);
return retval;
}
int rf69_set_packet_format(struct spi_device *spi, enum packetFormat packetFormat)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: packet format");
#endif
switch (packetFormat) {
case packetLengthVar: return rf69_set_bit(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_PAKET_FORMAT_VARIABLE);
case packetLengthFix: return rf69_clear_bit(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_PAKET_FORMAT_VARIABLE);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_enable_crc(struct spi_device *spi)
{
return rf69_set_bit(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_CRC_ON);
}
int rf69_disable_crc(struct spi_device *spi)
{
return rf69_clear_bit(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_CRC_ON);
}
int rf69_set_adressFiltering(struct spi_device *spi, enum addressFiltering addressFiltering)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: address filtering");
#endif
switch (addressFiltering) {
case filteringOff: return rf69_read_mod_write(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_ADDRESSFILTERING, PACKETCONFIG1_ADDRESSFILTERING_OFF);
case nodeAddress: return rf69_read_mod_write(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_ADDRESSFILTERING, PACKETCONFIG1_ADDRESSFILTERING_NODE);
case nodeOrBroadcastAddress: return rf69_read_mod_write(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_ADDRESSFILTERING, PACKETCONFIG1_ADDRESSFILTERING_NODEBROADCAST);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_payload_length(struct spi_device *spi, u8 payloadLength)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: payload length");
#endif
return rf69_write_reg(spi, REG_PAYLOAD_LENGTH, payloadLength);
}
u8 rf69_get_payload_length(struct spi_device *spi)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "get: payload length");
#endif
return (u8)rf69_read_reg(spi, REG_PAYLOAD_LENGTH);
}
int rf69_set_node_address(struct spi_device *spi, u8 nodeAddress)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: node address");
#endif
return rf69_write_reg(spi, REG_NODEADRS, nodeAddress);
}
int rf69_set_broadcast_address(struct spi_device *spi, u8 broadcastAddress)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: broadcast address");
#endif
return rf69_write_reg(spi, REG_BROADCASTADRS, broadcastAddress);
}
int rf69_set_tx_start_condition(struct spi_device *spi, enum txStartCondition txStartCondition)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: start condition");
#endif
switch (txStartCondition) {
case fifoLevel: return rf69_clear_bit(spi, REG_FIFO_THRESH, MASK_FIFO_THRESH_TXSTART);
case fifoNotEmpty: return rf69_set_bit(spi, REG_FIFO_THRESH, MASK_FIFO_THRESH_TXSTART);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
int rf69_set_fifo_threshold(struct spi_device *spi, u8 threshold)
{
int retval;
#ifdef DEBUG
dev_dbg(&spi->dev, "set: fifo threshold");
#endif
/* check input value */
if (threshold & 0x80) {
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
/* write value */
retval = rf69_read_mod_write(spi, REG_FIFO_THRESH, MASK_FIFO_THRESH_VALUE, threshold);
if (retval)
return retval;
/* access the fifo to activate new threshold
* retval (mis-) used as buffer here
*/
return rf69_read_fifo(spi, (u8 *)&retval, 1);
}
int rf69_set_dagc(struct spi_device *spi, enum dagc dagc)
{
#ifdef DEBUG
dev_dbg(&spi->dev, "set: dagc");
#endif
switch (dagc) {
case normalMode: return rf69_write_reg(spi, REG_TESTDAGC, DAGC_NORMAL);
case improve: return rf69_write_reg(spi, REG_TESTDAGC, DAGC_IMPROVED_LOWBETA0);
case improve4LowModulationIndex: return rf69_write_reg(spi, REG_TESTDAGC, DAGC_IMPROVED_LOWBETA1);
default:
dev_dbg(&spi->dev, "set: illegal input param");
return -EINVAL;
}
}
/*-------------------------------------------------------------------------*/
int rf69_read_fifo (struct spi_device *spi, u8 *buffer, unsigned int size)
{
#ifdef DEBUG_FIFO_ACCESS
int i;
#endif
struct spi_transfer transfer;
u8 local_buffer[FIFO_SIZE + 1];
int retval;
if (size > FIFO_SIZE) {
#ifdef DEBUG
dev_dbg(&spi->dev, "read fifo: passed in buffer bigger then internal buffer \n");
#endif
return -EMSGSIZE;
}
/* prepare a bidirectional transfer */
local_buffer[0] = REG_FIFO;
memset(&transfer, 0, sizeof(transfer));
transfer.tx_buf = local_buffer;
transfer.rx_buf = local_buffer;
transfer.len = size + 1;
retval = spi_sync_transfer(spi, &transfer, 1);
#ifdef DEBUG_FIFO_ACCESS
for (i = 0; i < size; i++)
dev_dbg(&spi->dev, "%d - 0x%x\n", i, local_buffer[i + 1]);
#endif
memcpy(buffer, &local_buffer[1], size);
return retval;
}
int rf69_write_fifo(struct spi_device *spi, u8 *buffer, unsigned int size)
{
#ifdef DEBUG_FIFO_ACCESS
int i;
#endif
char spi_address = REG_FIFO | WRITE_BIT;
u8 local_buffer[FIFO_SIZE + 1];
if (size > FIFO_SIZE) {
#ifdef DEBUG
dev_dbg(&spi->dev, "read fifo: passed in buffer bigger then internal buffer \n");
#endif
return -EMSGSIZE;
}
local_buffer[0] = spi_address;
memcpy(&local_buffer[1], buffer, size);
#ifdef DEBUG_FIFO_ACCESS
for (i = 0; i < size; i++)
dev_dbg(&spi->dev, "0x%x\n", buffer[i]);
#endif
return spi_write (spi, local_buffer, size + 1);
}
/*-------------------------------------------------------------------------*/
u8 rf69_read_reg(struct spi_device *spi, u8 addr)
{
int retval;
retval = spi_w8r8(spi, addr);
#ifdef DEBUG_VALUES
if (retval < 0)
/* should never happen, since we already checked,
* that module is connected. Therefore no error
* handling, just an optional error message...
*/
dev_dbg(&spi->dev, "read 0x%x FAILED\n",
addr);
else
dev_dbg(&spi->dev, "read 0x%x from reg 0x%x\n",
retval,
addr);
#endif
return retval;
}
int rf69_write_reg(struct spi_device *spi, u8 addr, u8 value)
{
int retval;
char buffer[2];
buffer[0] = addr | WRITE_BIT;
buffer[1] = value;
retval = spi_write(spi, &buffer, 2);
#ifdef DEBUG_VALUES
if (retval < 0)
/* should never happen, since we already checked,
* that module is connected. Therefore no error
* handling, just an optional error message...
*/
dev_dbg(&spi->dev, "write 0x%x to 0x%x FAILED\n",
value,
addr);
else
dev_dbg(&spi->dev, "wrote 0x%x to reg 0x%x\n",
value,
addr);
#endif
return retval;
}