linux-stable/drivers/net/can/sja1000/ems_pci.c

373 lines
9.8 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007 Wolfgang Grandegger <wg@grandegger.com>
* Copyright (C) 2008 Markus Plessing <plessing@ems-wuensche.com>
* Copyright (C) 2008 Sebastian Haas <haas@ems-wuensche.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the version 2 of the GNU General Public License
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/can/dev.h>
#include <linux/io.h>
#include "sja1000.h"
#define DRV_NAME "ems_pci"
MODULE_AUTHOR("Sebastian Haas <haas@ems-wuenche.com>");
MODULE_DESCRIPTION("Socket-CAN driver for EMS CPC-PCI/PCIe/104P CAN cards");
MODULE_SUPPORTED_DEVICE("EMS CPC-PCI/PCIe/104P CAN card");
MODULE_LICENSE("GPL v2");
#define EMS_PCI_V1_MAX_CHAN 2
#define EMS_PCI_V2_MAX_CHAN 4
#define EMS_PCI_MAX_CHAN EMS_PCI_V2_MAX_CHAN
struct ems_pci_card {
int version;
int channels;
struct pci_dev *pci_dev;
struct net_device *net_dev[EMS_PCI_MAX_CHAN];
void __iomem *conf_addr;
void __iomem *base_addr;
};
#define EMS_PCI_CAN_CLOCK (16000000 / 2)
/*
* Register definitions and descriptions are from LinCAN 0.3.3.
*
* PSB4610 PITA-2 bridge control registers
*/
#define PITA2_ICR 0x00 /* Interrupt Control Register */
#define PITA2_ICR_INT0 0x00000002 /* [RC] INT0 Active/Clear */
#define PITA2_ICR_INT0_EN 0x00020000 /* [RW] Enable INT0 */
#define PITA2_MISC 0x1c /* Miscellaneous Register */
#define PITA2_MISC_CONFIG 0x04000000 /* Multiplexed parallel interface */
/*
* Register definitions for the PLX 9030
*/
#define PLX_ICSR 0x4c /* Interrupt Control/Status register */
#define PLX_ICSR_LINTI1_ENA 0x0001 /* LINTi1 Enable */
#define PLX_ICSR_PCIINT_ENA 0x0040 /* PCI Interrupt Enable */
#define PLX_ICSR_LINTI1_CLR 0x0400 /* Local Edge Triggerable Interrupt Clear */
#define PLX_ICSR_ENA_CLR (PLX_ICSR_LINTI1_ENA | PLX_ICSR_PCIINT_ENA | \
PLX_ICSR_LINTI1_CLR)
/*
* The board configuration is probably following:
* RX1 is connected to ground.
* TX1 is not connected.
* CLKO is not connected.
* Setting the OCR register to 0xDA is a good idea.
* This means normal output mode, push-pull and the correct polarity.
*/
#define EMS_PCI_OCR (OCR_TX0_PUSHPULL | OCR_TX1_PUSHPULL)
/*
* In the CDR register, you should set CBP to 1.
* You will probably also want to set the clock divider value to 7
* (meaning direct oscillator output) because the second SJA1000 chip
* is driven by the first one CLKOUT output.
*/
#define EMS_PCI_CDR (CDR_CBP | CDR_CLKOUT_MASK)
#define EMS_PCI_V1_BASE_BAR 1
#define EMS_PCI_V1_CONF_SIZE 4096 /* size of PITA control area */
#define EMS_PCI_V2_BASE_BAR 2
#define EMS_PCI_V2_CONF_SIZE 128 /* size of PLX control area */
#define EMS_PCI_CAN_BASE_OFFSET 0x400 /* offset where the controllers starts */
#define EMS_PCI_CAN_CTRL_SIZE 0x200 /* memory size for each controller */
#define EMS_PCI_BASE_SIZE 4096 /* size of controller area */
static const struct pci_device_id ems_pci_tbl[] = {
/* CPC-PCI v1 */
{PCI_VENDOR_ID_SIEMENS, 0x2104, PCI_ANY_ID, PCI_ANY_ID,},
/* CPC-PCI v2 */
{PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_PLX, 0x4000},
/* CPC-104P v2 */
{PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_PLX, 0x4002},
{0,}
};
MODULE_DEVICE_TABLE(pci, ems_pci_tbl);
/*
* Helper to read internal registers from card logic (not CAN)
*/
static u8 ems_pci_v1_readb(struct ems_pci_card *card, unsigned int port)
{
return readb(card->base_addr + (port * 4));
}
static u8 ems_pci_v1_read_reg(const struct sja1000_priv *priv, int port)
{
return readb(priv->reg_base + (port * 4));
}
static void ems_pci_v1_write_reg(const struct sja1000_priv *priv,
int port, u8 val)
{
writeb(val, priv->reg_base + (port * 4));
}
static void ems_pci_v1_post_irq(const struct sja1000_priv *priv)
{
struct ems_pci_card *card = (struct ems_pci_card *)priv->priv;
/* reset int flag of pita */
writel(PITA2_ICR_INT0_EN | PITA2_ICR_INT0,
card->conf_addr + PITA2_ICR);
}
static u8 ems_pci_v2_read_reg(const struct sja1000_priv *priv, int port)
{
return readb(priv->reg_base + port);
}
static void ems_pci_v2_write_reg(const struct sja1000_priv *priv,
int port, u8 val)
{
writeb(val, priv->reg_base + port);
}
static void ems_pci_v2_post_irq(const struct sja1000_priv *priv)
{
struct ems_pci_card *card = (struct ems_pci_card *)priv->priv;
writel(PLX_ICSR_ENA_CLR, card->conf_addr + PLX_ICSR);
}
/*
* Check if a CAN controller is present at the specified location
* by trying to set 'em into the PeliCAN mode
*/
static inline int ems_pci_check_chan(const struct sja1000_priv *priv)
{
unsigned char res;
/* Make sure SJA1000 is in reset mode */
priv->write_reg(priv, SJA1000_MOD, 1);
priv->write_reg(priv, SJA1000_CDR, CDR_PELICAN);
/* read reset-values */
res = priv->read_reg(priv, SJA1000_CDR);
if (res == CDR_PELICAN)
return 1;
return 0;
}
static void ems_pci_del_card(struct pci_dev *pdev)
{
struct ems_pci_card *card = pci_get_drvdata(pdev);
struct net_device *dev;
int i = 0;
for (i = 0; i < card->channels; i++) {
dev = card->net_dev[i];
if (!dev)
continue;
dev_info(&pdev->dev, "Removing %s.\n", dev->name);
unregister_sja1000dev(dev);
free_sja1000dev(dev);
}
if (card->base_addr != NULL)
pci_iounmap(card->pci_dev, card->base_addr);
if (card->conf_addr != NULL)
pci_iounmap(card->pci_dev, card->conf_addr);
kfree(card);
pci_disable_device(pdev);
}
static void ems_pci_card_reset(struct ems_pci_card *card)
{
/* Request board reset */
writeb(0, card->base_addr);
}
/*
* Probe PCI device for EMS CAN signature and register each available
* CAN channel to SJA1000 Socket-CAN subsystem.
*/
static int ems_pci_add_card(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct sja1000_priv *priv;
struct net_device *dev;
struct ems_pci_card *card;
int max_chan, conf_size, base_bar;
int err, i;
/* Enabling PCI device */
if (pci_enable_device(pdev) < 0) {
dev_err(&pdev->dev, "Enabling PCI device failed\n");
return -ENODEV;
}
/* Allocating card structures to hold addresses, ... */
card = kzalloc(sizeof(struct ems_pci_card), GFP_KERNEL);
if (card == NULL) {
pci_disable_device(pdev);
return -ENOMEM;
}
pci_set_drvdata(pdev, card);
card->pci_dev = pdev;
card->channels = 0;
if (pdev->vendor == PCI_VENDOR_ID_PLX) {
card->version = 2; /* CPC-PCI v2 */
max_chan = EMS_PCI_V2_MAX_CHAN;
base_bar = EMS_PCI_V2_BASE_BAR;
conf_size = EMS_PCI_V2_CONF_SIZE;
} else {
card->version = 1; /* CPC-PCI v1 */
max_chan = EMS_PCI_V1_MAX_CHAN;
base_bar = EMS_PCI_V1_BASE_BAR;
conf_size = EMS_PCI_V1_CONF_SIZE;
}
/* Remap configuration space and controller memory area */
card->conf_addr = pci_iomap(pdev, 0, conf_size);
if (card->conf_addr == NULL) {
err = -ENOMEM;
goto failure_cleanup;
}
card->base_addr = pci_iomap(pdev, base_bar, EMS_PCI_BASE_SIZE);
if (card->base_addr == NULL) {
err = -ENOMEM;
goto failure_cleanup;
}
if (card->version == 1) {
/* Configure PITA-2 parallel interface (enable MUX) */
writel(PITA2_MISC_CONFIG, card->conf_addr + PITA2_MISC);
/* Check for unique EMS CAN signature */
if (ems_pci_v1_readb(card, 0) != 0x55 ||
ems_pci_v1_readb(card, 1) != 0xAA ||
ems_pci_v1_readb(card, 2) != 0x01 ||
ems_pci_v1_readb(card, 3) != 0xCB ||
ems_pci_v1_readb(card, 4) != 0x11) {
dev_err(&pdev->dev,
"Not EMS Dr. Thomas Wuensche interface\n");
err = -ENODEV;
goto failure_cleanup;
}
}
ems_pci_card_reset(card);
/* Detect available channels */
for (i = 0; i < max_chan; i++) {
dev = alloc_sja1000dev(0);
if (dev == NULL) {
err = -ENOMEM;
goto failure_cleanup;
}
card->net_dev[i] = dev;
priv = netdev_priv(dev);
priv->priv = card;
priv->irq_flags = IRQF_SHARED;
dev->irq = pdev->irq;
priv->reg_base = card->base_addr + EMS_PCI_CAN_BASE_OFFSET
+ (i * EMS_PCI_CAN_CTRL_SIZE);
if (card->version == 1) {
priv->read_reg = ems_pci_v1_read_reg;
priv->write_reg = ems_pci_v1_write_reg;
priv->post_irq = ems_pci_v1_post_irq;
} else {
priv->read_reg = ems_pci_v2_read_reg;
priv->write_reg = ems_pci_v2_write_reg;
priv->post_irq = ems_pci_v2_post_irq;
}
/* Check if channel is present */
if (ems_pci_check_chan(priv)) {
priv->can.clock.freq = EMS_PCI_CAN_CLOCK;
priv->ocr = EMS_PCI_OCR;
priv->cdr = EMS_PCI_CDR;
SET_NETDEV_DEV(dev, &pdev->dev);
dev->dev_id = i;
if (card->version == 1)
/* reset int flag of pita */
writel(PITA2_ICR_INT0_EN | PITA2_ICR_INT0,
card->conf_addr + PITA2_ICR);
else
/* enable IRQ in PLX 9030 */
writel(PLX_ICSR_ENA_CLR,
card->conf_addr + PLX_ICSR);
/* Register SJA1000 device */
err = register_sja1000dev(dev);
if (err) {
dev_err(&pdev->dev, "Registering device failed "
"(err=%d)\n", err);
free_sja1000dev(dev);
goto failure_cleanup;
}
card->channels++;
dev_info(&pdev->dev, "Channel #%d at 0x%p, irq %d\n",
i + 1, priv->reg_base, dev->irq);
} else {
free_sja1000dev(dev);
}
}
return 0;
failure_cleanup:
dev_err(&pdev->dev, "Error: %d. Cleaning Up.\n", err);
ems_pci_del_card(pdev);
return err;
}
static struct pci_driver ems_pci_driver = {
.name = DRV_NAME,
.id_table = ems_pci_tbl,
.probe = ems_pci_add_card,
.remove = ems_pci_del_card,
};
module_pci_driver(ems_pci_driver);