linux-stable/arch/arm/include/asm/cachetype.h

102 lines
2.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __ASM_ARM_CACHETYPE_H
#define __ASM_ARM_CACHETYPE_H
#define CACHEID_VIVT (1 << 0)
#define CACHEID_VIPT_NONALIASING (1 << 1)
#define CACHEID_VIPT_ALIASING (1 << 2)
#define CACHEID_VIPT (CACHEID_VIPT_ALIASING|CACHEID_VIPT_NONALIASING)
#define CACHEID_ASID_TAGGED (1 << 3)
#define CACHEID_VIPT_I_ALIASING (1 << 4)
#define CACHEID_PIPT (1 << 5)
extern unsigned int cacheid;
#define cache_is_vivt() cacheid_is(CACHEID_VIVT)
#define cache_is_vipt() cacheid_is(CACHEID_VIPT)
#define cache_is_vipt_nonaliasing() cacheid_is(CACHEID_VIPT_NONALIASING)
#define cache_is_vipt_aliasing() cacheid_is(CACHEID_VIPT_ALIASING)
#define icache_is_vivt_asid_tagged() cacheid_is(CACHEID_ASID_TAGGED)
#define icache_is_vipt_aliasing() cacheid_is(CACHEID_VIPT_I_ALIASING)
#define icache_is_pipt() cacheid_is(CACHEID_PIPT)
Introduce cpu_dcache_is_aliasing() across all architectures Introduce a generic way to query whether the data cache is virtually aliased on all architectures. Its purpose is to ensure that subsystems which are incompatible with virtually aliased data caches (e.g. FS_DAX) can reliably query this. For data cache aliasing, there are three scenarios dependending on the architecture. Here is a breakdown based on my understanding: A) The data cache is always aliasing: * arc * csky * m68k (note: shared memory mappings are incoherent ? SHMLBA is missing there.) * sh * parisc B) The data cache aliasing is statically known or depends on querying CPU state at runtime: * arm (cache_is_vivt() || cache_is_vipt_aliasing()) * mips (cpu_has_dc_aliases) * nios2 (NIOS2_DCACHE_SIZE > PAGE_SIZE) * sparc32 (vac_cache_size > PAGE_SIZE) * sparc64 (L1DCACHE_SIZE > PAGE_SIZE) * xtensa (DCACHE_WAY_SIZE > PAGE_SIZE) C) The data cache is never aliasing: * alpha * arm64 (aarch64) * hexagon * loongarch (but with incoherent write buffers, which are disabled since commit d23b7795 ("LoongArch: Change SHMLBA from SZ_64K to PAGE_SIZE")) * microblaze * openrisc * powerpc * riscv * s390 * um * x86 Require architectures in A) and B) to select ARCH_HAS_CPU_CACHE_ALIASING and implement "cpu_dcache_is_aliasing()". Architectures in C) don't select ARCH_HAS_CPU_CACHE_ALIASING, and thus cpu_dcache_is_aliasing() simply evaluates to "false". Note that this leaves "cpu_icache_is_aliasing()" to be implemented as future work. This would be useful to gate features like XIP on architectures which have aliasing CPU dcache-icache but not CPU dcache-dcache. Use "cpu_dcache" and "cpu_cache" rather than just "dcache" and "cache" to clarify that we really mean "CPU data cache" and "CPU cache" to eliminate any possible confusion with VFS "dentry cache" and "page cache". Link: https://lore.kernel.org/lkml/20030910210416.GA24258@mail.jlokier.co.uk/ Link: https://lkml.kernel.org/r/20240215144633.96437-9-mathieu.desnoyers@efficios.com Fixes: d92576f1167c ("dax: does not work correctly with virtual aliasing caches") Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Russell King <linux@armlinux.org.uk> Cc: Alasdair Kergon <agk@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: kernel test robot <lkp@intel.com> Cc: Michael Sclafani <dm-devel@lists.linux.dev> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-15 14:46:32 +00:00
#define cpu_dcache_is_aliasing() (cache_is_vivt() || cache_is_vipt_aliasing())
/*
* __LINUX_ARM_ARCH__ is the minimum supported CPU architecture
* Mask out support which will never be present on newer CPUs.
* - v6+ is never VIVT
* - v7+ VIPT never aliases on D-side
*/
#if __LINUX_ARM_ARCH__ >= 7
#define __CACHEID_ARCH_MIN (CACHEID_VIPT_NONALIASING |\
CACHEID_ASID_TAGGED |\
CACHEID_VIPT_I_ALIASING |\
CACHEID_PIPT)
#elif __LINUX_ARM_ARCH__ >= 6
#define __CACHEID_ARCH_MIN (~CACHEID_VIVT)
#else
#define __CACHEID_ARCH_MIN (~0)
#endif
/*
* Mask out support which isn't configured
*/
#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
#define __CACHEID_ALWAYS (CACHEID_VIVT)
#define __CACHEID_NEVER (~CACHEID_VIVT)
#elif !defined(CONFIG_CPU_CACHE_VIVT) && defined(CONFIG_CPU_CACHE_VIPT)
#define __CACHEID_ALWAYS (0)
#define __CACHEID_NEVER (CACHEID_VIVT)
#else
#define __CACHEID_ALWAYS (0)
#define __CACHEID_NEVER (0)
#endif
static inline unsigned int __attribute__((pure)) cacheid_is(unsigned int mask)
{
return (__CACHEID_ALWAYS & mask) |
(~__CACHEID_NEVER & __CACHEID_ARCH_MIN & mask & cacheid);
}
#define CSSELR_ICACHE 1
#define CSSELR_DCACHE 0
#define CSSELR_L1 (0 << 1)
#define CSSELR_L2 (1 << 1)
#define CSSELR_L3 (2 << 1)
#define CSSELR_L4 (3 << 1)
#define CSSELR_L5 (4 << 1)
#define CSSELR_L6 (5 << 1)
#define CSSELR_L7 (6 << 1)
#ifndef CONFIG_CPU_V7M
static inline void set_csselr(unsigned int cache_selector)
{
asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (cache_selector));
}
static inline unsigned int read_ccsidr(void)
{
unsigned int val;
asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (val));
return val;
}
#else /* CONFIG_CPU_V7M */
#include <linux/io.h>
#include "asm/v7m.h"
static inline void set_csselr(unsigned int cache_selector)
{
writel(cache_selector, BASEADDR_V7M_SCB + V7M_SCB_CTR);
}
static inline unsigned int read_ccsidr(void)
{
return readl(BASEADDR_V7M_SCB + V7M_SCB_CCSIDR);
}
#endif
#endif