linux-stable/drivers/hwmon/w83791d.c

1658 lines
49 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
*
* Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
*/
/*
* Supports following chips:
*
* Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
* w83791d 10 5 5 3 0x71 0x5ca3 yes no
*
* The w83791d chip appears to be part way between the 83781d and the
* 83792d. Thus, this file is derived from both the w83792d.c and
* w83781d.c files.
*
* The w83791g chip is the same as the w83791d but lead-free.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/jiffies.h>
#define NUMBER_OF_VIN 10
#define NUMBER_OF_FANIN 5
#define NUMBER_OF_TEMPIN 3
#define NUMBER_OF_PWM 5
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
I2C_CLIENT_END };
/* Insmod parameters */
static unsigned short force_subclients[4];
module_param_array(force_subclients, short, NULL, 0);
MODULE_PARM_DESC(force_subclients,
"List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
static bool reset;
module_param(reset, bool, 0);
MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
static bool init;
module_param(init, bool, 0);
MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
/* The W83791D registers */
static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
0x20, /* VCOREA in DataSheet */
0x21, /* VINR0 in DataSheet */
0x22, /* +3.3VIN in DataSheet */
0x23, /* VDD5V in DataSheet */
0x24, /* +12VIN in DataSheet */
0x25, /* -12VIN in DataSheet */
0x26, /* -5VIN in DataSheet */
0xB0, /* 5VSB in DataSheet */
0xB1, /* VBAT in DataSheet */
0xB2 /* VINR1 in DataSheet */
};
static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
0x2B, /* VCOREA High Limit in DataSheet */
0x2D, /* VINR0 High Limit in DataSheet */
0x2F, /* +3.3VIN High Limit in DataSheet */
0x31, /* VDD5V High Limit in DataSheet */
0x33, /* +12VIN High Limit in DataSheet */
0x35, /* -12VIN High Limit in DataSheet */
0x37, /* -5VIN High Limit in DataSheet */
0xB4, /* 5VSB High Limit in DataSheet */
0xB6, /* VBAT High Limit in DataSheet */
0xB8 /* VINR1 High Limit in DataSheet */
};
static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
0x2C, /* VCOREA Low Limit in DataSheet */
0x2E, /* VINR0 Low Limit in DataSheet */
0x30, /* +3.3VIN Low Limit in DataSheet */
0x32, /* VDD5V Low Limit in DataSheet */
0x34, /* +12VIN Low Limit in DataSheet */
0x36, /* -12VIN Low Limit in DataSheet */
0x38, /* -5VIN Low Limit in DataSheet */
0xB5, /* 5VSB Low Limit in DataSheet */
0xB7, /* VBAT Low Limit in DataSheet */
0xB9 /* VINR1 Low Limit in DataSheet */
};
static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
0x28, /* FAN 1 Count in DataSheet */
0x29, /* FAN 2 Count in DataSheet */
0x2A, /* FAN 3 Count in DataSheet */
0xBA, /* FAN 4 Count in DataSheet */
0xBB, /* FAN 5 Count in DataSheet */
};
static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
0x3B, /* FAN 1 Count Low Limit in DataSheet */
0x3C, /* FAN 2 Count Low Limit in DataSheet */
0x3D, /* FAN 3 Count Low Limit in DataSheet */
0xBC, /* FAN 4 Count Low Limit in DataSheet */
0xBD, /* FAN 5 Count Low Limit in DataSheet */
};
static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
0x81, /* PWM 1 duty cycle register in DataSheet */
0x83, /* PWM 2 duty cycle register in DataSheet */
0x94, /* PWM 3 duty cycle register in DataSheet */
0xA0, /* PWM 4 duty cycle register in DataSheet */
0xA1, /* PWM 5 duty cycle register in DataSheet */
};
static const u8 W83791D_REG_TEMP_TARGET[3] = {
0x85, /* PWM 1 target temperature for temp 1 */
0x86, /* PWM 2 target temperature for temp 2 */
0x96, /* PWM 3 target temperature for temp 3 */
};
static const u8 W83791D_REG_TEMP_TOL[2] = {
0x87, /* PWM 1/2 temperature tolerance */
0x97, /* PWM 3 temperature tolerance */
};
static const u8 W83791D_REG_FAN_CFG[2] = {
0x84, /* FAN 1/2 configuration */
0x95, /* FAN 3 configuration */
};
static const u8 W83791D_REG_FAN_DIV[3] = {
0x47, /* contains FAN1 and FAN2 Divisor */
0x4b, /* contains FAN3 Divisor */
0x5C, /* contains FAN4 and FAN5 Divisor */
};
#define W83791D_REG_BANK 0x4E
#define W83791D_REG_TEMP2_CONFIG 0xC2
#define W83791D_REG_TEMP3_CONFIG 0xCA
static const u8 W83791D_REG_TEMP1[3] = {
0x27, /* TEMP 1 in DataSheet */
0x39, /* TEMP 1 Over in DataSheet */
0x3A, /* TEMP 1 Hyst in DataSheet */
};
static const u8 W83791D_REG_TEMP_ADD[2][6] = {
{0xC0, /* TEMP 2 in DataSheet */
0xC1, /* TEMP 2(0.5 deg) in DataSheet */
0xC5, /* TEMP 2 Over High part in DataSheet */
0xC6, /* TEMP 2 Over Low part in DataSheet */
0xC3, /* TEMP 2 Thyst High part in DataSheet */
0xC4}, /* TEMP 2 Thyst Low part in DataSheet */
{0xC8, /* TEMP 3 in DataSheet */
0xC9, /* TEMP 3(0.5 deg) in DataSheet */
0xCD, /* TEMP 3 Over High part in DataSheet */
0xCE, /* TEMP 3 Over Low part in DataSheet */
0xCB, /* TEMP 3 Thyst High part in DataSheet */
0xCC} /* TEMP 3 Thyst Low part in DataSheet */
};
#define W83791D_REG_BEEP_CONFIG 0x4D
static const u8 W83791D_REG_BEEP_CTRL[3] = {
0x56, /* BEEP Control Register 1 */
0x57, /* BEEP Control Register 2 */
0xA3, /* BEEP Control Register 3 */
};
#define W83791D_REG_GPIO 0x15
#define W83791D_REG_CONFIG 0x40
#define W83791D_REG_VID_FANDIV 0x47
#define W83791D_REG_DID_VID4 0x49
#define W83791D_REG_WCHIPID 0x58
#define W83791D_REG_CHIPMAN 0x4F
#define W83791D_REG_PIN 0x4B
#define W83791D_REG_I2C_SUBADDR 0x4A
#define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */
#define W83791D_REG_ALARM2 0xAA /* realtime status register2 */
#define W83791D_REG_ALARM3 0xAB /* realtime status register3 */
#define W83791D_REG_VBAT 0x5D
#define W83791D_REG_I2C_ADDR 0x48
/*
* The SMBus locks itself. The Winbond W83791D has a bank select register
* (index 0x4e), but the driver only accesses registers in bank 0. Since
* we don't switch banks, we don't need any special code to handle
* locking access between bank switches
*/
static inline int w83791d_read(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/*
* The analog voltage inputs have 16mV LSB. Since the sysfs output is
* in mV as would be measured on the chip input pin, need to just
* multiply/divide by 16 to translate from/to register values.
*/
#define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255))
#define IN_FROM_REG(val) ((val) * 16)
static u8 fan_to_reg(long rpm, int div)
{
if (rpm == 0)
return 255;
rpm = clamp_val(rpm, 1, 1000000);
return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}
#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
((val) == 255 ? 0 : \
1350000 / ((val) * (div))))
/* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
#define TEMP1_FROM_REG(val) ((val) * 1000)
#define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \
(val) >= 127000 ? 127 : \
(val) < 0 ? ((val) - 500) / 1000 : \
((val) + 500) / 1000)
/*
* for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
* Assumes the top 8 bits are the integral amount and the bottom 8 bits
* are the fractional amount. Since we only have 0.5 degree resolution,
* the bottom 7 bits will always be zero
*/
#define TEMP23_FROM_REG(val) ((val) / 128 * 500)
#define TEMP23_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
127500), 500) * 128)
/* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
#define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
1000)
/* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
#define TOL_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \
1000)
#define BEEP_MASK_TO_REG(val) ((val) & 0xffffff)
#define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff)
#define DIV_FROM_REG(val) (1 << (val))
static u8 div_to_reg(int nr, long val)
{
int i;
/* fan divisors max out at 128 */
val = clamp_val(val, 1, 128) >> 1;
for (i = 0; i < 7; i++) {
if (val == 0)
break;
val >>= 1;
}
return (u8) i;
}
struct w83791d_data {
struct device *hwmon_dev;
struct mutex update_lock;
bool valid; /* true if following fields are valid */
unsigned long last_updated; /* In jiffies */
/* volts */
u8 in[NUMBER_OF_VIN]; /* Register value */
u8 in_max[NUMBER_OF_VIN]; /* Register value */
u8 in_min[NUMBER_OF_VIN]; /* Register value */
/* fans */
u8 fan[NUMBER_OF_FANIN]; /* Register value */
u8 fan_min[NUMBER_OF_FANIN]; /* Register value */
u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */
/* Temperature sensors */
s8 temp1[3]; /* current, over, thyst */
s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the
* integral part, bottom 8 bits are the
* fractional part. We only use the top
* 9 bits as the resolution is only
* to the 0.5 degree C...
* two sensors with three values
* (cur, over, hyst)
*/
/* PWMs */
u8 pwm[5]; /* pwm duty cycle */
u8 pwm_enable[3]; /* pwm enable status for fan 1-3
* (fan 4-5 only support manual mode)
*/
u8 temp_target[3]; /* pwm 1-3 target temperature */
u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */
/* Misc */
u32 alarms; /* realtime status register encoding,combined */
u8 beep_enable; /* Global beep enable */
u32 beep_mask; /* Mask off specific beeps */
u8 vid; /* Register encoding, combined */
u8 vrm; /* hwmon-vid */
};
static int w83791d_probe(struct i2c_client *client);
static int w83791d_detect(struct i2c_client *client,
struct i2c_board_info *info);
i2c: Make remove callback return void The value returned by an i2c driver's remove function is mostly ignored. (Only an error message is printed if the value is non-zero that the error is ignored.) So change the prototype of the remove function to return no value. This way driver authors are not tempted to assume that passing an error to the upper layer is a good idea. All drivers are adapted accordingly. There is no intended change of behaviour, all callbacks were prepared to return 0 before. Reviewed-by: Peter Senna Tschudin <peter.senna@gmail.com> Reviewed-by: Jeremy Kerr <jk@codeconstruct.com.au> Reviewed-by: Benjamin Mugnier <benjamin.mugnier@foss.st.com> Reviewed-by: Javier Martinez Canillas <javierm@redhat.com> Reviewed-by: Crt Mori <cmo@melexis.com> Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Marek Behún <kabel@kernel.org> # for leds-turris-omnia Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Petr Machata <petrm@nvidia.com> # for mlxsw Reviewed-by: Maximilian Luz <luzmaximilian@gmail.com> # for surface3_power Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> # for bmc150-accel-i2c + kxcjk-1013 Reviewed-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> # for media/* + staging/media/* Acked-by: Miguel Ojeda <ojeda@kernel.org> # for auxdisplay/ht16k33 + auxdisplay/lcd2s Reviewed-by: Luca Ceresoli <luca.ceresoli@bootlin.com> # for versaclock5 Reviewed-by: Ajay Gupta <ajayg@nvidia.com> # for ucsi_ccg Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> # for iio Acked-by: Peter Rosin <peda@axentia.se> # for i2c-mux-*, max9860 Acked-by: Adrien Grassein <adrien.grassein@gmail.com> # for lontium-lt8912b Reviewed-by: Jean Delvare <jdelvare@suse.de> # for hwmon, i2c-core and i2c/muxes Acked-by: Corey Minyard <cminyard@mvista.com> # for IPMI Reviewed-by: Vladimir Oltean <olteanv@gmail.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com> # for drivers/power Acked-by: Krzysztof Hałasa <khalasa@piap.pl> Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Wolfram Sang <wsa@kernel.org>
2022-08-15 08:02:30 +00:00
static void w83791d_remove(struct i2c_client *client);
static int w83791d_read(struct i2c_client *client, u8 reg);
static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
static struct w83791d_data *w83791d_update_device(struct device *dev);
#ifdef DEBUG
static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
#endif
static void w83791d_init_client(struct i2c_client *client);
static const struct i2c_device_id w83791d_id[] = {
{ "w83791d", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, w83791d_id);
static struct i2c_driver w83791d_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "w83791d",
},
.probe = w83791d_probe,
.remove = w83791d_remove,
.id_table = w83791d_id,
.detect = w83791d_detect,
.address_list = normal_i2c,
};
/* following are the sysfs callback functions */
#define show_in_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
struct w83791d_data *data = w83791d_update_device(dev); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
}
show_in_reg(in);
show_in_reg(in_min);
show_in_reg(in_max);
#define store_in_reg(REG, reg) \
static ssize_t store_in_##reg(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
struct i2c_client *client = to_i2c_client(dev); \
struct w83791d_data *data = i2c_get_clientdata(client); \
int nr = sensor_attr->index; \
unsigned long val; \
int err = kstrtoul(buf, 10, &val); \
if (err) \
return err; \
mutex_lock(&data->update_lock); \
data->in_##reg[nr] = IN_TO_REG(val); \
w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
mutex_unlock(&data->update_lock); \
\
return count; \
}
store_in_reg(MIN, min);
store_in_reg(MAX, max);
static struct sensor_device_attribute sda_in_input[] = {
SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};
static struct sensor_device_attribute sda_in_min[] = {
SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};
static struct sensor_device_attribute sda_in_max[] = {
SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};
static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr =
to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int bitnr = sensor_attr->index;
return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
}
static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr =
to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int bitnr = sensor_attr->index;
int bytenr = bitnr / 8;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
val = val ? 1 : 0;
mutex_lock(&data->update_lock);
data->beep_mask &= ~(0xff << (bytenr * 8));
data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
<< (bytenr * 8);
data->beep_mask &= ~(1 << bitnr);
data->beep_mask |= val << bitnr;
w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
(data->beep_mask >> (bytenr * 8)) & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr =
to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int bitnr = sensor_attr->index;
return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
}
/*
* Note: The bitmask for the beep enable/disable is different than
* the bitmask for the alarm.
*/
static struct sensor_device_attribute sda_in_beep[] = {
SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
};
static struct sensor_device_attribute sda_in_alarm[] = {
SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
};
#define show_fan_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
struct w83791d_data *data = w83791d_update_device(dev); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", \
FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);
static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
}
/*
* Note: we save and restore the fan minimum here, because its value is
* determined in part by the fan divisor. This follows the principle of
* least surprise; the user doesn't expect the fan minimum to change just
* because the divisor changed.
*/
static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long min;
u8 tmp_fan_div;
u8 fan_div_reg;
u8 vbat_reg;
int indx = 0;
u8 keep_mask = 0;
u8 new_shift = 0;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
/* Save fan_min */
min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
mutex_lock(&data->update_lock);
data->fan_div[nr] = div_to_reg(nr, val);
switch (nr) {
case 0:
indx = 0;
keep_mask = 0xcf;
new_shift = 4;
break;
case 1:
indx = 0;
keep_mask = 0x3f;
new_shift = 6;
break;
case 2:
indx = 1;
keep_mask = 0x3f;
new_shift = 6;
break;
case 3:
indx = 2;
keep_mask = 0xf8;
new_shift = 0;
break;
case 4:
indx = 2;
keep_mask = 0x8f;
new_shift = 4;
break;
#ifdef DEBUG
default:
dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
count = -EINVAL;
goto err_exit;
#endif
}
fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
& keep_mask;
tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
w83791d_write(client, W83791D_REG_FAN_DIV[indx],
fan_div_reg | tmp_fan_div);
/* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
if (nr < 3) {
keep_mask = ~(1 << (nr + 5));
vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
& keep_mask;
tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
w83791d_write(client, W83791D_REG_VBAT,
vbat_reg | tmp_fan_div);
}
/* Restore fan_min */
data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
#ifdef DEBUG
err_exit:
#endif
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_fan_input[] = {
SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
static struct sensor_device_attribute sda_fan_min[] = {
SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 0),
SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 1),
SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 2),
SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 3),
SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 4),
};
static struct sensor_device_attribute sda_fan_div[] = {
SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 0),
SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 1),
SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 2),
SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 3),
SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 4),
};
static struct sensor_device_attribute sda_fan_beep[] = {
SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
};
static struct sensor_device_attribute sda_fan_alarm[] = {
SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
};
/* read/write PWMs */
static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", data->pwm[nr]);
}
static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm[nr] = clamp_val(val, 0, 255);
w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_pwm[] = {
SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 0),
SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 1),
SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 2),
SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 3),
SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 4),
};
static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
}
static ssize_t store_pwmenable(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
u8 reg_cfg_tmp;
u8 reg_idx = 0;
u8 val_shift = 0;
u8 keep_mask = 0;
int ret = kstrtoul(buf, 10, &val);
if (ret || val < 1 || val > 3)
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm_enable[nr] = val - 1;
switch (nr) {
case 0:
reg_idx = 0;
val_shift = 2;
keep_mask = 0xf3;
break;
case 1:
reg_idx = 0;
val_shift = 4;
keep_mask = 0xcf;
break;
case 2:
reg_idx = 1;
val_shift = 2;
keep_mask = 0xf3;
break;
}
reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
data->pwm_enable[nr] << val_shift;
w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_pwmenable[] = {
SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 0),
SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 1),
SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 2),
};
/* For Smart Fan I / Thermal Cruise */
static ssize_t show_temp_target(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int nr = sensor_attr->index;
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
}
static ssize_t store_temp_target(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
long val;
u8 target_mask;
if (kstrtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->update_lock);
data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
target_mask = w83791d_read(client,
W83791D_REG_TEMP_TARGET[nr]) & 0x80;
w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
data->temp_target[nr] | target_mask);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_temp_target[] = {
SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
show_temp_target, store_temp_target, 0),
SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
show_temp_target, store_temp_target, 1),
SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
show_temp_target, store_temp_target, 2),
};
static ssize_t show_temp_tolerance(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int nr = sensor_attr->index;
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
}
static ssize_t store_temp_tolerance(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
u8 target_mask;
u8 reg_idx = 0;
u8 val_shift = 0;
u8 keep_mask = 0;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
switch (nr) {
case 0:
reg_idx = 0;
val_shift = 0;
keep_mask = 0xf0;
break;
case 1:
reg_idx = 0;
val_shift = 4;
keep_mask = 0x0f;
break;
case 2:
reg_idx = 1;
val_shift = 0;
keep_mask = 0xf0;
break;
}
mutex_lock(&data->update_lock);
data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
target_mask = w83791d_read(client,
W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
(data->temp_tolerance[nr] << val_shift) | target_mask);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_temp_tolerance[] = {
SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
show_temp_tolerance, store_temp_tolerance, 0),
SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
show_temp_tolerance, store_temp_tolerance, 1),
SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
show_temp_tolerance, store_temp_tolerance, 2),
};
/* read/write the temperature1, includes measured value and limits */
static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
}
static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = attr->index;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp1[nr] = TEMP1_TO_REG(val);
w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* read/write temperature2-3, includes measured value and limits */
static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct w83791d_data *data = w83791d_update_device(dev);
int nr = attr->nr;
int index = attr->index;
return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
}
static ssize_t store_temp23(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
long val;
int err;
int nr = attr->nr;
int index = attr->index;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_add[nr][index] = TEMP23_TO_REG(val);
w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
data->temp_add[nr][index] >> 8);
w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
data->temp_add[nr][index] & 0x80);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute_2 sda_temp_input[] = {
SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
};
static struct sensor_device_attribute_2 sda_temp_max[] = {
SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
show_temp1, store_temp1, 0, 1),
SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 0, 1),
SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 1, 1),
};
static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
show_temp1, store_temp1, 0, 2),
SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 0, 2),
SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 1, 2),
};
/*
* Note: The bitmask for the beep enable/disable is different than
* the bitmask for the alarm.
*/
static struct sensor_device_attribute sda_temp_beep[] = {
SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
};
static struct sensor_device_attribute sda_temp_alarm[] = {
SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
};
/* get realtime status of all sensors items: voltage, temp, fan */
static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR_RO(alarms);
/* Beep control */
#define GLOBAL_BEEP_ENABLE_SHIFT 15
#define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT)
static ssize_t show_beep_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", data->beep_enable);
}
static ssize_t show_beep_mask(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
}
static ssize_t store_beep_mask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int i;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
/*
* The beep_enable state overrides any enabling request from
* the masks
*/
data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
val = data->beep_mask;
for (i = 0; i < 3; i++) {
w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
val >>= 8;
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t store_beep_enable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->beep_enable = val ? 1 : 0;
/* Keep the full mask value in sync with the current enable */
data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
/*
* The global control is in the second beep control register
* so only need to update that register
*/
val = (data->beep_mask >> 8) & 0xff;
w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_beep_ctrl[] = {
SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
show_beep_enable, store_beep_enable, 0),
SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
show_beep_mask, store_beep_mask, 1)
};
/* cpu voltage regulation information */
static ssize_t cpu0_vid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR_RO(cpu0_vid);
static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct w83791d_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", data->vrm);
}
static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83791d_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
/*
* No lock needed as vrm is internal to the driver
* (not read from a chip register) and so is not
* updated in w83791d_update_device()
*/
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val > 255)
return -EINVAL;
data->vrm = val;
return count;
}
static DEVICE_ATTR_RW(vrm);
#define IN_UNIT_ATTRS(X) \
&sda_in_input[X].dev_attr.attr, \
&sda_in_min[X].dev_attr.attr, \
&sda_in_max[X].dev_attr.attr, \
&sda_in_beep[X].dev_attr.attr, \
&sda_in_alarm[X].dev_attr.attr
#define FAN_UNIT_ATTRS(X) \
&sda_fan_input[X].dev_attr.attr, \
&sda_fan_min[X].dev_attr.attr, \
&sda_fan_div[X].dev_attr.attr, \
&sda_fan_beep[X].dev_attr.attr, \
&sda_fan_alarm[X].dev_attr.attr
#define TEMP_UNIT_ATTRS(X) \
&sda_temp_input[X].dev_attr.attr, \
&sda_temp_max[X].dev_attr.attr, \
&sda_temp_max_hyst[X].dev_attr.attr, \
&sda_temp_beep[X].dev_attr.attr, \
&sda_temp_alarm[X].dev_attr.attr
static struct attribute *w83791d_attributes[] = {
IN_UNIT_ATTRS(0),
IN_UNIT_ATTRS(1),
IN_UNIT_ATTRS(2),
IN_UNIT_ATTRS(3),
IN_UNIT_ATTRS(4),
IN_UNIT_ATTRS(5),
IN_UNIT_ATTRS(6),
IN_UNIT_ATTRS(7),
IN_UNIT_ATTRS(8),
IN_UNIT_ATTRS(9),
FAN_UNIT_ATTRS(0),
FAN_UNIT_ATTRS(1),
FAN_UNIT_ATTRS(2),
TEMP_UNIT_ATTRS(0),
TEMP_UNIT_ATTRS(1),
TEMP_UNIT_ATTRS(2),
&dev_attr_alarms.attr,
&sda_beep_ctrl[0].dev_attr.attr,
&sda_beep_ctrl[1].dev_attr.attr,
&dev_attr_cpu0_vid.attr,
&dev_attr_vrm.attr,
&sda_pwm[0].dev_attr.attr,
&sda_pwm[1].dev_attr.attr,
&sda_pwm[2].dev_attr.attr,
&sda_pwmenable[0].dev_attr.attr,
&sda_pwmenable[1].dev_attr.attr,
&sda_pwmenable[2].dev_attr.attr,
&sda_temp_target[0].dev_attr.attr,
&sda_temp_target[1].dev_attr.attr,
&sda_temp_target[2].dev_attr.attr,
&sda_temp_tolerance[0].dev_attr.attr,
&sda_temp_tolerance[1].dev_attr.attr,
&sda_temp_tolerance[2].dev_attr.attr,
NULL
};
static const struct attribute_group w83791d_group = {
.attrs = w83791d_attributes,
};
/*
* Separate group of attributes for fan/pwm 4-5. Their pins can also be
* in use for GPIO in which case their sysfs-interface should not be made
* available
*/
static struct attribute *w83791d_attributes_fanpwm45[] = {
FAN_UNIT_ATTRS(3),
FAN_UNIT_ATTRS(4),
&sda_pwm[3].dev_attr.attr,
&sda_pwm[4].dev_attr.attr,
NULL
};
static const struct attribute_group w83791d_group_fanpwm45 = {
.attrs = w83791d_attributes_fanpwm45,
};
static int w83791d_detect_subclients(struct i2c_client *client)
{
struct i2c_adapter *adapter = client->adapter;
int address = client->addr;
int i, id;
u8 val;
id = i2c_adapter_id(adapter);
if (force_subclients[0] == id && force_subclients[1] == address) {
for (i = 2; i <= 3; i++) {
if (force_subclients[i] < 0x48 ||
force_subclients[i] > 0x4f) {
dev_err(&client->dev,
"invalid subclient "
"address %d; must be 0x48-0x4f\n",
force_subclients[i]);
return -ENODEV;
}
}
w83791d_write(client, W83791D_REG_I2C_SUBADDR,
(force_subclients[2] & 0x07) |
((force_subclients[3] & 0x07) << 4));
}
val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
if (!(val & 0x88) && (val & 0x7) == ((val >> 4) & 0x7)) {
dev_err(&client->dev,
"duplicate addresses 0x%x, use force_subclient\n", 0x48 + (val & 0x7));
return -ENODEV;
}
if (!(val & 0x08))
devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + (val & 0x7));
if (!(val & 0x80))
devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + ((val >> 4) & 0x7));
return 0;
}
/* Return 0 if detection is successful, -ENODEV otherwise */
static int w83791d_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int val1, val2;
unsigned short address = client->addr;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
return -ENODEV;
val1 = w83791d_read(client, W83791D_REG_BANK);
val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
/* Check for Winbond ID if in bank 0 */
if (!(val1 & 0x07)) {
if ((!(val1 & 0x80) && val2 != 0xa3) ||
((val1 & 0x80) && val2 != 0x5c)) {
return -ENODEV;
}
}
/*
* If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
* should match
*/
if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
return -ENODEV;
/* We want bank 0 and Vendor ID high byte */
val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
/* Verify it is a Winbond w83791d */
val1 = w83791d_read(client, W83791D_REG_WCHIPID);
val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
if (val1 != 0x71 || val2 != 0x5c)
return -ENODEV;
strscpy(info->type, "w83791d", I2C_NAME_SIZE);
return 0;
}
static int w83791d_probe(struct i2c_client *client)
{
struct w83791d_data *data;
struct device *dev = &client->dev;
int i, err;
u8 has_fanpwm45;
#ifdef DEBUG
int val1;
val1 = w83791d_read(client, W83791D_REG_DID_VID4);
dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
(val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
#endif
data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
err = w83791d_detect_subclients(client);
if (err)
return err;
/* Initialize the chip */
w83791d_init_client(client);
/*
* If the fan_div is changed, make sure there is a rational
* fan_min in place
*/
for (i = 0; i < NUMBER_OF_FANIN; i++)
data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
/* Register sysfs hooks */
err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
if (err)
return err;
/* Check if pins of fan/pwm 4-5 are in use as GPIO */
has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
if (has_fanpwm45) {
err = sysfs_create_group(&client->dev.kobj,
&w83791d_group_fanpwm45);
if (err)
goto error4;
}
/* Everything is ready, now register the working device */
data->hwmon_dev = hwmon_device_register(dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto error5;
}
return 0;
error5:
if (has_fanpwm45)
sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
error4:
sysfs_remove_group(&client->dev.kobj, &w83791d_group);
return err;
}
i2c: Make remove callback return void The value returned by an i2c driver's remove function is mostly ignored. (Only an error message is printed if the value is non-zero that the error is ignored.) So change the prototype of the remove function to return no value. This way driver authors are not tempted to assume that passing an error to the upper layer is a good idea. All drivers are adapted accordingly. There is no intended change of behaviour, all callbacks were prepared to return 0 before. Reviewed-by: Peter Senna Tschudin <peter.senna@gmail.com> Reviewed-by: Jeremy Kerr <jk@codeconstruct.com.au> Reviewed-by: Benjamin Mugnier <benjamin.mugnier@foss.st.com> Reviewed-by: Javier Martinez Canillas <javierm@redhat.com> Reviewed-by: Crt Mori <cmo@melexis.com> Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Marek Behún <kabel@kernel.org> # for leds-turris-omnia Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Petr Machata <petrm@nvidia.com> # for mlxsw Reviewed-by: Maximilian Luz <luzmaximilian@gmail.com> # for surface3_power Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> # for bmc150-accel-i2c + kxcjk-1013 Reviewed-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> # for media/* + staging/media/* Acked-by: Miguel Ojeda <ojeda@kernel.org> # for auxdisplay/ht16k33 + auxdisplay/lcd2s Reviewed-by: Luca Ceresoli <luca.ceresoli@bootlin.com> # for versaclock5 Reviewed-by: Ajay Gupta <ajayg@nvidia.com> # for ucsi_ccg Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> # for iio Acked-by: Peter Rosin <peda@axentia.se> # for i2c-mux-*, max9860 Acked-by: Adrien Grassein <adrien.grassein@gmail.com> # for lontium-lt8912b Reviewed-by: Jean Delvare <jdelvare@suse.de> # for hwmon, i2c-core and i2c/muxes Acked-by: Corey Minyard <cminyard@mvista.com> # for IPMI Reviewed-by: Vladimir Oltean <olteanv@gmail.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com> # for drivers/power Acked-by: Krzysztof Hałasa <khalasa@piap.pl> Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Wolfram Sang <wsa@kernel.org>
2022-08-15 08:02:30 +00:00
static void w83791d_remove(struct i2c_client *client)
{
struct w83791d_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &w83791d_group);
}
static void w83791d_init_client(struct i2c_client *client)
{
struct w83791d_data *data = i2c_get_clientdata(client);
u8 tmp;
u8 old_beep;
/*
* The difference between reset and init is that reset
* does a hard reset of the chip via index 0x40, bit 7,
* but init simply forces certain registers to have "sane"
* values. The hope is that the BIOS has done the right
* thing (which is why the default is reset=0, init=0),
* but if not, reset is the hard hammer and init
* is the soft mallet both of which are trying to whack
* things into place...
* NOTE: The data sheet makes a distinction between
* "power on defaults" and "reset by MR". As far as I can tell,
* the hard reset puts everything into a power-on state so I'm
* not sure what "reset by MR" means or how it can happen.
*/
if (reset || init) {
/* keep some BIOS settings when we... */
old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
if (reset) {
/* ... reset the chip and ... */
w83791d_write(client, W83791D_REG_CONFIG, 0x80);
}
/* ... disable power-on abnormal beep */
w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
/* disable the global beep (not done by hard reset) */
tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
if (init) {
/* Make sure monitoring is turned on for add-ons */
tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
if (tmp & 1) {
w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
tmp & 0xfe);
}
tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
if (tmp & 1) {
w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
tmp & 0xfe);
}
/* Start monitoring */
tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
}
}
data->vrm = vid_which_vrm();
}
static struct w83791d_data *w83791d_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int i, j;
u8 reg_array_tmp[3];
u8 vbat_reg;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + (HZ * 3))
|| !data->valid) {
dev_dbg(dev, "Starting w83791d device update\n");
/* Update the voltages measured value and limits */
for (i = 0; i < NUMBER_OF_VIN; i++) {
data->in[i] = w83791d_read(client,
W83791D_REG_IN[i]);
data->in_max[i] = w83791d_read(client,
W83791D_REG_IN_MAX[i]);
data->in_min[i] = w83791d_read(client,
W83791D_REG_IN_MIN[i]);
}
/* Update the fan counts and limits */
for (i = 0; i < NUMBER_OF_FANIN; i++) {
/* Update the Fan measured value and limits */
data->fan[i] = w83791d_read(client,
W83791D_REG_FAN[i]);
data->fan_min[i] = w83791d_read(client,
W83791D_REG_FAN_MIN[i]);
}
/* Update the fan divisor */
for (i = 0; i < 3; i++) {
reg_array_tmp[i] = w83791d_read(client,
W83791D_REG_FAN_DIV[i]);
}
data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
data->fan_div[3] = reg_array_tmp[2] & 0x07;
data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
/*
* The fan divisor for fans 0-2 get bit 2 from
* bits 5-7 respectively of vbat register
*/
vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
for (i = 0; i < 3; i++)
data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
/* Update PWM duty cycle */
for (i = 0; i < NUMBER_OF_PWM; i++) {
data->pwm[i] = w83791d_read(client,
W83791D_REG_PWM[i]);
}
/* Update PWM enable status */
for (i = 0; i < 2; i++) {
reg_array_tmp[i] = w83791d_read(client,
W83791D_REG_FAN_CFG[i]);
}
data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
/* Update PWM target temperature */
for (i = 0; i < 3; i++) {
data->temp_target[i] = w83791d_read(client,
W83791D_REG_TEMP_TARGET[i]) & 0x7f;
}
/* Update PWM temperature tolerance */
for (i = 0; i < 2; i++) {
reg_array_tmp[i] = w83791d_read(client,
W83791D_REG_TEMP_TOL[i]);
}
data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
/* Update the first temperature sensor */
for (i = 0; i < 3; i++) {
data->temp1[i] = w83791d_read(client,
W83791D_REG_TEMP1[i]);
}
/* Update the rest of the temperature sensors */
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
data->temp_add[i][j] =
(w83791d_read(client,
W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
w83791d_read(client,
W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
}
}
/* Update the realtime status */
data->alarms =
w83791d_read(client, W83791D_REG_ALARM1) +
(w83791d_read(client, W83791D_REG_ALARM2) << 8) +
(w83791d_read(client, W83791D_REG_ALARM3) << 16);
/* Update the beep configuration information */
data->beep_mask =
w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
(w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
(w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
/* Extract global beep enable flag */
data->beep_enable =
(data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
/* Update the cpu voltage information */
i = w83791d_read(client, W83791D_REG_VID_FANDIV);
data->vid = i & 0x0f;
data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
<< 4;
data->last_updated = jiffies;
data->valid = true;
}
mutex_unlock(&data->update_lock);
#ifdef DEBUG
w83791d_print_debug(data, dev);
#endif
return data;
}
#ifdef DEBUG
static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
{
int i = 0, j = 0;
dev_dbg(dev, "======Start of w83791d debug values======\n");
dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
for (i = 0; i < NUMBER_OF_VIN; i++) {
dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]);
dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
}
dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
for (i = 0; i < NUMBER_OF_FANIN; i++) {
dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]);
dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
}
/*
* temperature math is signed, but only print out the
* bits that matter
*/
dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
for (i = 0; i < 3; i++)
dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
(u16) data->temp_add[i][j]);
}
}
dev_dbg(dev, "Misc Information: ===>\n");
dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms);
dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
dev_dbg(dev, "=======End of w83791d debug values========\n");
dev_dbg(dev, "\n");
}
#endif
module_i2c_driver(w83791d_driver);
MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
MODULE_DESCRIPTION("W83791D driver");
MODULE_LICENSE("GPL");