linux-stable/Documentation/bpf/map_lpm_trie.rst

198 lines
5.5 KiB
ReStructuredText
Raw Normal View History

.. SPDX-License-Identifier: GPL-2.0-only
.. Copyright (C) 2022 Red Hat, Inc.
=====================
BPF_MAP_TYPE_LPM_TRIE
=====================
.. note::
- ``BPF_MAP_TYPE_LPM_TRIE`` was introduced in kernel version 4.11
``BPF_MAP_TYPE_LPM_TRIE`` provides a longest prefix match algorithm that
can be used to match IP addresses to a stored set of prefixes.
Internally, data is stored in an unbalanced trie of nodes that uses
``prefixlen,data`` pairs as its keys. The ``data`` is interpreted in
network byte order, i.e. big endian, so ``data[0]`` stores the most
significant byte.
LPM tries may be created with a maximum prefix length that is a multiple
of 8, in the range from 8 to 2048. The key used for lookup and update
bpf: Replace bpf_lpm_trie_key 0-length array with flexible array Replace deprecated 0-length array in struct bpf_lpm_trie_key with flexible array. Found with GCC 13: ../kernel/bpf/lpm_trie.c:207:51: warning: array subscript i is outside array bounds of 'const __u8[0]' {aka 'const unsigned char[]'} [-Warray-bounds=] 207 | *(__be16 *)&key->data[i]); | ^~~~~~~~~~~~~ ../include/uapi/linux/swab.h:102:54: note: in definition of macro '__swab16' 102 | #define __swab16(x) (__u16)__builtin_bswap16((__u16)(x)) | ^ ../include/linux/byteorder/generic.h:97:21: note: in expansion of macro '__be16_to_cpu' 97 | #define be16_to_cpu __be16_to_cpu | ^~~~~~~~~~~~~ ../kernel/bpf/lpm_trie.c:206:28: note: in expansion of macro 'be16_to_cpu' 206 | u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^ | ^~~~~~~~~~~ In file included from ../include/linux/bpf.h:7: ../include/uapi/linux/bpf.h:82:17: note: while referencing 'data' 82 | __u8 data[0]; /* Arbitrary size */ | ^~~~ And found at run-time under CONFIG_FORTIFY_SOURCE: UBSAN: array-index-out-of-bounds in kernel/bpf/lpm_trie.c:218:49 index 0 is out of range for type '__u8 [*]' Changing struct bpf_lpm_trie_key is difficult since has been used by userspace. For example, in Cilium: struct egress_gw_policy_key { struct bpf_lpm_trie_key lpm_key; __u32 saddr; __u32 daddr; }; While direct references to the "data" member haven't been found, there are static initializers what include the final member. For example, the "{}" here: struct egress_gw_policy_key in_key = { .lpm_key = { 32 + 24, {} }, .saddr = CLIENT_IP, .daddr = EXTERNAL_SVC_IP & 0Xffffff, }; To avoid the build time and run time warnings seen with a 0-sized trailing array for struct bpf_lpm_trie_key, introduce a new struct that correctly uses a flexible array for the trailing bytes, struct bpf_lpm_trie_key_u8. As part of this, include the "header" portion (which is just the "prefixlen" member), so it can be used by anything building a bpf_lpr_trie_key that has trailing members that aren't a u8 flexible array (like the self-test[1]), which is named struct bpf_lpm_trie_key_hdr. Unfortunately, C++ refuses to parse the __struct_group() helper, so it is not possible to define struct bpf_lpm_trie_key_hdr directly in struct bpf_lpm_trie_key_u8, so we must open-code the union directly. Adjust the kernel code to use struct bpf_lpm_trie_key_u8 through-out, and for the selftest to use struct bpf_lpm_trie_key_hdr. Add a comment to the UAPI header directing folks to the two new options. Reported-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Gustavo A. R. Silva <gustavoars@kernel.org> Closes: https://paste.debian.net/hidden/ca500597/ Link: https://lore.kernel.org/all/202206281009.4332AA33@keescook/ [1] Link: https://lore.kernel.org/bpf/20240222155612.it.533-kees@kernel.org
2024-02-22 15:56:15 +00:00
operations is a ``struct bpf_lpm_trie_key_u8``, extended by
``max_prefixlen/8`` bytes.
- For IPv4 addresses the data length is 4 bytes
- For IPv6 addresses the data length is 16 bytes
The value type stored in the LPM trie can be any user defined type.
.. note::
When creating a map of type ``BPF_MAP_TYPE_LPM_TRIE`` you must set the
``BPF_F_NO_PREALLOC`` flag.
Usage
=====
Kernel BPF
----------
bpf_map_lookup_elem()
~~~~~~~~~~~~~~~~~~~~~
.. code-block:: c
void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
The longest prefix entry for a given data value can be found using the
``bpf_map_lookup_elem()`` helper. This helper returns a pointer to the
value associated with the longest matching ``key``, or ``NULL`` if no
entry was found.
The ``key`` should have ``prefixlen`` set to ``max_prefixlen`` when
performing longest prefix lookups. For example, when searching for the
longest prefix match for an IPv4 address, ``prefixlen`` should be set to
``32``.
bpf_map_update_elem()
~~~~~~~~~~~~~~~~~~~~~
.. code-block:: c
long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
Prefix entries can be added or updated using the ``bpf_map_update_elem()``
helper. This helper replaces existing elements atomically.
``bpf_map_update_elem()`` returns ``0`` on success, or negative error in
case of failure.
.. note::
The flags parameter must be one of BPF_ANY, BPF_NOEXIST or BPF_EXIST,
but the value is ignored, giving BPF_ANY semantics.
bpf_map_delete_elem()
~~~~~~~~~~~~~~~~~~~~~
.. code-block:: c
long bpf_map_delete_elem(struct bpf_map *map, const void *key)
Prefix entries can be deleted using the ``bpf_map_delete_elem()``
helper. This helper will return 0 on success, or negative error in case
of failure.
Userspace
---------
Access from userspace uses libbpf APIs with the same names as above, with
the map identified by ``fd``.
bpf_map_get_next_key()
~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: c
int bpf_map_get_next_key (int fd, const void *cur_key, void *next_key)
A userspace program can iterate through the entries in an LPM trie using
libbpf's ``bpf_map_get_next_key()`` function. The first key can be
fetched by calling ``bpf_map_get_next_key()`` with ``cur_key`` set to
``NULL``. Subsequent calls will fetch the next key that follows the
current key. ``bpf_map_get_next_key()`` returns ``0`` on success,
``-ENOENT`` if ``cur_key`` is the last key in the trie, or negative
error in case of failure.
``bpf_map_get_next_key()`` will iterate through the LPM trie elements
from leftmost leaf first. This means that iteration will return more
specific keys before less specific ones.
Examples
========
Please see ``tools/testing/selftests/bpf/test_lpm_map.c`` for examples
of LPM trie usage from userspace. The code snippets below demonstrate
API usage.
Kernel BPF
----------
The following BPF code snippet shows how to declare a new LPM trie for IPv4
address prefixes:
.. code-block:: c
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
struct ipv4_lpm_key {
__u32 prefixlen;
__u32 data;
};
struct {
__uint(type, BPF_MAP_TYPE_LPM_TRIE);
__type(key, struct ipv4_lpm_key);
__type(value, __u32);
__uint(map_flags, BPF_F_NO_PREALLOC);
__uint(max_entries, 255);
} ipv4_lpm_map SEC(".maps");
The following BPF code snippet shows how to lookup by IPv4 address:
.. code-block:: c
void *lookup(__u32 ipaddr)
{
struct ipv4_lpm_key key = {
.prefixlen = 32,
.data = ipaddr
};
return bpf_map_lookup_elem(&ipv4_lpm_map, &key);
}
Userspace
---------
The following snippet shows how to insert an IPv4 prefix entry into an
LPM trie:
.. code-block:: c
int add_prefix_entry(int lpm_fd, __u32 addr, __u32 prefixlen, struct value *value)
{
struct ipv4_lpm_key ipv4_key = {
.prefixlen = prefixlen,
.data = addr
};
return bpf_map_update_elem(lpm_fd, &ipv4_key, value, BPF_ANY);
}
The following snippet shows a userspace program walking through the entries
of an LPM trie:
.. code-block:: c
#include <bpf/libbpf.h>
#include <bpf/bpf.h>
void iterate_lpm_trie(int map_fd)
{
struct ipv4_lpm_key *cur_key = NULL;
struct ipv4_lpm_key next_key;
struct value value;
int err;
for (;;) {
err = bpf_map_get_next_key(map_fd, cur_key, &next_key);
if (err)
break;
bpf_map_lookup_elem(map_fd, &next_key, &value);
/* Use key and value here */
cur_key = &next_key;
}
}