linux-stable/include/linux/bpf_mprog.h

344 lines
9.3 KiB
C
Raw Normal View History

bpf: Add generic attach/detach/query API for multi-progs This adds a generic layer called bpf_mprog which can be reused by different attachment layers to enable multi-program attachment and dependency resolution. In-kernel users of the bpf_mprog don't need to care about the dependency resolution internals, they can just consume it with few API calls. The initial idea of having a generic API sparked out of discussion [0] from an earlier revision of this work where tc's priority was reused and exposed via BPF uapi as a way to coordinate dependencies among tc BPF programs, similar as-is for classic tc BPF. The feedback was that priority provides a bad user experience and is hard to use [1], e.g.: I cannot help but feel that priority logic copy-paste from old tc, netfilter and friends is done because "that's how things were done in the past". [...] Priority gets exposed everywhere in uapi all the way to bpftool when it's right there for users to understand. And that's the main problem with it. The user don't want to and don't need to be aware of it, but uapi forces them to pick the priority. [...] Your cover letter [0] example proves that in real life different service pick the same priority. They simply don't know any better. Priority is an unnecessary magic that apps _have_ to pick, so they just copy-paste and everyone ends up using the same. The course of the discussion showed more and more the need for a generic, reusable API where the "same look and feel" can be applied for various other program types beyond just tc BPF, for example XDP today does not have multi- program support in kernel, but also there was interest around this API for improving management of cgroup program types. Such common multi-program management concept is useful for BPF management daemons or user space BPF applications coordinating internally about their attachments. Both from Cilium and Meta side [2], we've collected the following requirements for a generic attach/detach/query API for multi-progs which has been implemented as part of this work: - Support prog-based attach/detach and link API - Dependency directives (can also be combined): - BPF_F_{BEFORE,AFTER} with relative_{fd,id} which can be {prog,link,none} - BPF_F_ID flag as {fd,id} toggle; the rationale for id is so that user space application does not need CAP_SYS_ADMIN to retrieve foreign fds via bpf_*_get_fd_by_id() - BPF_F_LINK flag as {prog,link} toggle - If relative_{fd,id} is none, then BPF_F_BEFORE will just prepend, and BPF_F_AFTER will just append for attaching - Enforced only at attach time - BPF_F_REPLACE with replace_bpf_fd which can be prog, links have their own infra for replacing their internal prog - If no flags are set, then it's default append behavior for attaching - Internal revision counter and optionally being able to pass expected_revision - User space application can query current state with revision, and pass it along for attachment to assert current state before doing updates - Query also gets extension for link_ids array and link_attach_flags: - prog_ids are always filled with program IDs - link_ids are filled with link IDs when link was used, otherwise 0 - {prog,link}_attach_flags for holding {prog,link}-specific flags - Must be easy to integrate/reuse for in-kernel users The uapi-side changes needed for supporting bpf_mprog are rather minimal, consisting of the additions of the attachment flags, revision counter, and expanding existing union with relative_{fd,id} member. The bpf_mprog framework consists of an bpf_mprog_entry object which holds an array of bpf_mprog_fp (fast-path structure). The bpf_mprog_cp (control-path structure) is part of bpf_mprog_bundle. Both have been separated, so that fast-path gets efficient packing of bpf_prog pointers for maximum cache efficiency. Also, array has been chosen instead of linked list or other structures to remove unnecessary indirections for a fast point-to-entry in tc for BPF. The bpf_mprog_entry comes as a pair via bpf_mprog_bundle so that in case of updates the peer bpf_mprog_entry is populated and then just swapped which avoids additional allocations that could otherwise fail, for example, in detach case. bpf_mprog_{fp,cp} arrays are currently static, but they could be converted to dynamic allocation if necessary at a point in future. Locking is deferred to the in-kernel user of bpf_mprog, for example, in case of tcx which uses this API in the next patch, it piggybacks on rtnl. An extensive test suite for checking all aspects of this API for prog-based attach/detach and link API comes as BPF selftests in this series. Thanks also to Andrii Nakryiko for early API discussions wrt Meta's BPF prog management. [0] https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net [1] https://lore.kernel.org/bpf/CAADnVQ+gEY3FjCR=+DmjDR4gp5bOYZUFJQXj4agKFHT9CQPZBw@mail.gmail.com [2] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/r/20230719140858.13224-2-daniel@iogearbox.net Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 14:08:51 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2023 Isovalent */
#ifndef __BPF_MPROG_H
#define __BPF_MPROG_H
#include <linux/bpf.h>
/* bpf_mprog framework:
*
* bpf_mprog is a generic layer for multi-program attachment. In-kernel users
* of the bpf_mprog don't need to care about the dependency resolution
* internals, they can just consume it with few API calls. Currently available
* dependency directives are BPF_F_{BEFORE,AFTER} which enable insertion of
* a BPF program or BPF link relative to an existing BPF program or BPF link
* inside the multi-program array as well as prepend and append behavior if
* no relative object was specified, see corresponding selftests for concrete
* examples (e.g. tc_links and tc_opts test cases of test_progs).
*
* Usage of bpf_mprog_{attach,detach,query}() core APIs with pseudo code:
*
* Attach case:
*
* struct bpf_mprog_entry *entry, *entry_new;
* int ret;
*
* // bpf_mprog user-side lock
* // fetch active @entry from attach location
* [...]
* ret = bpf_mprog_attach(entry, &entry_new, [...]);
* if (!ret) {
* if (entry != entry_new) {
* // swap @entry to @entry_new at attach location
* // ensure there are no inflight users of @entry:
* synchronize_rcu();
* }
* bpf_mprog_commit(entry);
* } else {
* // error path, bail out, propagate @ret
* }
* // bpf_mprog user-side unlock
*
* Detach case:
*
* struct bpf_mprog_entry *entry, *entry_new;
* int ret;
*
* // bpf_mprog user-side lock
* // fetch active @entry from attach location
* [...]
* ret = bpf_mprog_detach(entry, &entry_new, [...]);
* if (!ret) {
* // all (*) marked is optional and depends on the use-case
* // whether bpf_mprog_bundle should be freed or not
* if (!bpf_mprog_total(entry_new)) (*)
* entry_new = NULL (*)
* // swap @entry to @entry_new at attach location
* // ensure there are no inflight users of @entry:
* synchronize_rcu();
* bpf_mprog_commit(entry);
* if (!entry_new) (*)
* // free bpf_mprog_bundle (*)
* } else {
* // error path, bail out, propagate @ret
* }
* // bpf_mprog user-side unlock
*
* Query case:
*
* struct bpf_mprog_entry *entry;
* int ret;
*
* // bpf_mprog user-side lock
* // fetch active @entry from attach location
* [...]
* ret = bpf_mprog_query(attr, uattr, entry);
* // bpf_mprog user-side unlock
*
* Data/fast path:
*
* struct bpf_mprog_entry *entry;
* struct bpf_mprog_fp *fp;
* struct bpf_prog *prog;
* int ret = [...];
*
* rcu_read_lock();
* // fetch active @entry from attach location
* [...]
* bpf_mprog_foreach_prog(entry, fp, prog) {
* ret = bpf_prog_run(prog, [...]);
* // process @ret from program
* }
* [...]
* rcu_read_unlock();
*
* bpf_mprog locking considerations:
*
* bpf_mprog_{attach,detach,query}() must be protected by an external lock
* (like RTNL in case of tcx).
*
* bpf_mprog_entry pointer can be an __rcu annotated pointer (in case of tcx
* the netdevice has tcx_ingress and tcx_egress __rcu pointer) which gets
* updated via rcu_assign_pointer() pointing to the active bpf_mprog_entry of
* the bpf_mprog_bundle.
*
* Fast path accesses the active bpf_mprog_entry within RCU critical section
* (in case of tcx it runs in NAPI which provides RCU protection there,
* other users might need explicit rcu_read_lock()). The bpf_mprog_commit()
* assumes that for the old bpf_mprog_entry there are no inflight users
* anymore.
*
* The READ_ONCE()/WRITE_ONCE() pairing for bpf_mprog_fp's prog access is for
* the replacement case where we don't swap the bpf_mprog_entry.
*/
#define bpf_mprog_foreach_tuple(entry, fp, cp, t) \
for (fp = &entry->fp_items[0], cp = &entry->parent->cp_items[0];\
({ \
t.prog = READ_ONCE(fp->prog); \
t.link = cp->link; \
t.prog; \
}); \
fp++, cp++)
#define bpf_mprog_foreach_prog(entry, fp, p) \
for (fp = &entry->fp_items[0]; \
(p = READ_ONCE(fp->prog)); \
fp++)
#define BPF_MPROG_MAX 64
struct bpf_mprog_fp {
struct bpf_prog *prog;
};
struct bpf_mprog_cp {
struct bpf_link *link;
};
struct bpf_mprog_entry {
struct bpf_mprog_fp fp_items[BPF_MPROG_MAX];
struct bpf_mprog_bundle *parent;
};
struct bpf_mprog_bundle {
struct bpf_mprog_entry a;
struct bpf_mprog_entry b;
struct bpf_mprog_cp cp_items[BPF_MPROG_MAX];
struct bpf_prog *ref;
atomic64_t revision;
u32 count;
};
struct bpf_tuple {
struct bpf_prog *prog;
struct bpf_link *link;
};
static inline struct bpf_mprog_entry *
bpf_mprog_peer(const struct bpf_mprog_entry *entry)
{
if (entry == &entry->parent->a)
return &entry->parent->b;
else
return &entry->parent->a;
}
static inline void bpf_mprog_bundle_init(struct bpf_mprog_bundle *bundle)
{
BUILD_BUG_ON(sizeof(bundle->a.fp_items[0]) > sizeof(u64));
BUILD_BUG_ON(ARRAY_SIZE(bundle->a.fp_items) !=
ARRAY_SIZE(bundle->cp_items));
memset(bundle, 0, sizeof(*bundle));
atomic64_set(&bundle->revision, 1);
bundle->a.parent = bundle;
bundle->b.parent = bundle;
}
static inline void bpf_mprog_inc(struct bpf_mprog_entry *entry)
{
entry->parent->count++;
}
static inline void bpf_mprog_dec(struct bpf_mprog_entry *entry)
{
entry->parent->count--;
}
static inline int bpf_mprog_max(void)
{
return ARRAY_SIZE(((struct bpf_mprog_entry *)NULL)->fp_items) - 1;
}
static inline int bpf_mprog_total(struct bpf_mprog_entry *entry)
{
int total = entry->parent->count;
WARN_ON_ONCE(total > bpf_mprog_max());
return total;
}
static inline bool bpf_mprog_exists(struct bpf_mprog_entry *entry,
struct bpf_prog *prog)
{
const struct bpf_mprog_fp *fp;
const struct bpf_prog *tmp;
bpf_mprog_foreach_prog(entry, fp, tmp) {
if (tmp == prog)
return true;
}
return false;
}
static inline void bpf_mprog_mark_for_release(struct bpf_mprog_entry *entry,
struct bpf_tuple *tuple)
{
WARN_ON_ONCE(entry->parent->ref);
if (!tuple->link)
entry->parent->ref = tuple->prog;
}
static inline void bpf_mprog_complete_release(struct bpf_mprog_entry *entry)
{
/* In the non-link case prog deletions can only drop the reference
* to the prog after the bpf_mprog_entry got swapped and the
* bpf_mprog ensured that there are no inflight users anymore.
*
* Paired with bpf_mprog_mark_for_release().
*/
if (entry->parent->ref) {
bpf_prog_put(entry->parent->ref);
entry->parent->ref = NULL;
}
}
static inline void bpf_mprog_revision_new(struct bpf_mprog_entry *entry)
{
atomic64_inc(&entry->parent->revision);
}
static inline void bpf_mprog_commit(struct bpf_mprog_entry *entry)
{
bpf_mprog_complete_release(entry);
bpf_mprog_revision_new(entry);
}
static inline u64 bpf_mprog_revision(struct bpf_mprog_entry *entry)
{
return atomic64_read(&entry->parent->revision);
}
static inline void bpf_mprog_entry_copy(struct bpf_mprog_entry *dst,
struct bpf_mprog_entry *src)
{
memcpy(dst->fp_items, src->fp_items, sizeof(src->fp_items));
}
tcx: Fix splat during dev unregister During unregister_netdevice_many_notify(), the ordering of our concerned function calls is like this: unregister_netdevice_many_notify dev_shutdown qdisc_put clsact_destroy tcx_uninstall The syzbot reproducer triggered a case that the qdisc refcnt is not zero during dev_shutdown(). tcx_uninstall() will then WARN_ON_ONCE(tcx_entry(entry)->miniq_active) because the miniq is still active and the entry should not be freed. The latter assumed that qdisc destruction happens before tcx teardown. This fix is to avoid tcx_uninstall() doing tcx_entry_free() when the miniq is still alive and let the clsact_destroy() do the free later, so that we do not assume any specific ordering for either of them. If still active, tcx_uninstall() does clear the entry when flushing out the prog/link. clsact_destroy() will then notice the "!tcx_entry_is_active()" and then does the tcx_entry_free() eventually. Fixes: e420bed02507 ("bpf: Add fd-based tcx multi-prog infra with link support") Reported-by: syzbot+376a289e86a0fd02b9ba@syzkaller.appspotmail.com Reported-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: syzbot+376a289e86a0fd02b9ba@syzkaller.appspotmail.com Tested-by: Leon Romanovsky <leonro@nvidia.com> Link: https://lore.kernel.org/r/222255fe07cb58f15ee662e7ee78328af5b438e4.1690549248.git.daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-07-28 21:47:17 +00:00
static inline void bpf_mprog_entry_clear(struct bpf_mprog_entry *dst)
{
memset(dst->fp_items, 0, sizeof(dst->fp_items));
}
static inline void bpf_mprog_clear_all(struct bpf_mprog_entry *entry,
struct bpf_mprog_entry **entry_new)
{
struct bpf_mprog_entry *peer;
peer = bpf_mprog_peer(entry);
bpf_mprog_entry_clear(peer);
peer->parent->count = 0;
*entry_new = peer;
}
bpf: Add generic attach/detach/query API for multi-progs This adds a generic layer called bpf_mprog which can be reused by different attachment layers to enable multi-program attachment and dependency resolution. In-kernel users of the bpf_mprog don't need to care about the dependency resolution internals, they can just consume it with few API calls. The initial idea of having a generic API sparked out of discussion [0] from an earlier revision of this work where tc's priority was reused and exposed via BPF uapi as a way to coordinate dependencies among tc BPF programs, similar as-is for classic tc BPF. The feedback was that priority provides a bad user experience and is hard to use [1], e.g.: I cannot help but feel that priority logic copy-paste from old tc, netfilter and friends is done because "that's how things were done in the past". [...] Priority gets exposed everywhere in uapi all the way to bpftool when it's right there for users to understand. And that's the main problem with it. The user don't want to and don't need to be aware of it, but uapi forces them to pick the priority. [...] Your cover letter [0] example proves that in real life different service pick the same priority. They simply don't know any better. Priority is an unnecessary magic that apps _have_ to pick, so they just copy-paste and everyone ends up using the same. The course of the discussion showed more and more the need for a generic, reusable API where the "same look and feel" can be applied for various other program types beyond just tc BPF, for example XDP today does not have multi- program support in kernel, but also there was interest around this API for improving management of cgroup program types. Such common multi-program management concept is useful for BPF management daemons or user space BPF applications coordinating internally about their attachments. Both from Cilium and Meta side [2], we've collected the following requirements for a generic attach/detach/query API for multi-progs which has been implemented as part of this work: - Support prog-based attach/detach and link API - Dependency directives (can also be combined): - BPF_F_{BEFORE,AFTER} with relative_{fd,id} which can be {prog,link,none} - BPF_F_ID flag as {fd,id} toggle; the rationale for id is so that user space application does not need CAP_SYS_ADMIN to retrieve foreign fds via bpf_*_get_fd_by_id() - BPF_F_LINK flag as {prog,link} toggle - If relative_{fd,id} is none, then BPF_F_BEFORE will just prepend, and BPF_F_AFTER will just append for attaching - Enforced only at attach time - BPF_F_REPLACE with replace_bpf_fd which can be prog, links have their own infra for replacing their internal prog - If no flags are set, then it's default append behavior for attaching - Internal revision counter and optionally being able to pass expected_revision - User space application can query current state with revision, and pass it along for attachment to assert current state before doing updates - Query also gets extension for link_ids array and link_attach_flags: - prog_ids are always filled with program IDs - link_ids are filled with link IDs when link was used, otherwise 0 - {prog,link}_attach_flags for holding {prog,link}-specific flags - Must be easy to integrate/reuse for in-kernel users The uapi-side changes needed for supporting bpf_mprog are rather minimal, consisting of the additions of the attachment flags, revision counter, and expanding existing union with relative_{fd,id} member. The bpf_mprog framework consists of an bpf_mprog_entry object which holds an array of bpf_mprog_fp (fast-path structure). The bpf_mprog_cp (control-path structure) is part of bpf_mprog_bundle. Both have been separated, so that fast-path gets efficient packing of bpf_prog pointers for maximum cache efficiency. Also, array has been chosen instead of linked list or other structures to remove unnecessary indirections for a fast point-to-entry in tc for BPF. The bpf_mprog_entry comes as a pair via bpf_mprog_bundle so that in case of updates the peer bpf_mprog_entry is populated and then just swapped which avoids additional allocations that could otherwise fail, for example, in detach case. bpf_mprog_{fp,cp} arrays are currently static, but they could be converted to dynamic allocation if necessary at a point in future. Locking is deferred to the in-kernel user of bpf_mprog, for example, in case of tcx which uses this API in the next patch, it piggybacks on rtnl. An extensive test suite for checking all aspects of this API for prog-based attach/detach and link API comes as BPF selftests in this series. Thanks also to Andrii Nakryiko for early API discussions wrt Meta's BPF prog management. [0] https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net [1] https://lore.kernel.org/bpf/CAADnVQ+gEY3FjCR=+DmjDR4gp5bOYZUFJQXj4agKFHT9CQPZBw@mail.gmail.com [2] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/r/20230719140858.13224-2-daniel@iogearbox.net Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 14:08:51 +00:00
static inline void bpf_mprog_entry_grow(struct bpf_mprog_entry *entry, int idx)
{
int total = bpf_mprog_total(entry);
memmove(entry->fp_items + idx + 1,
entry->fp_items + idx,
(total - idx) * sizeof(struct bpf_mprog_fp));
memmove(entry->parent->cp_items + idx + 1,
entry->parent->cp_items + idx,
(total - idx) * sizeof(struct bpf_mprog_cp));
}
static inline void bpf_mprog_entry_shrink(struct bpf_mprog_entry *entry, int idx)
{
/* Total array size is needed in this case to enure the NULL
* entry is copied at the end.
*/
int total = ARRAY_SIZE(entry->fp_items);
memmove(entry->fp_items + idx,
entry->fp_items + idx + 1,
(total - idx - 1) * sizeof(struct bpf_mprog_fp));
memmove(entry->parent->cp_items + idx,
entry->parent->cp_items + idx + 1,
(total - idx - 1) * sizeof(struct bpf_mprog_cp));
}
static inline void bpf_mprog_read(struct bpf_mprog_entry *entry, u32 idx,
struct bpf_mprog_fp **fp,
struct bpf_mprog_cp **cp)
{
*fp = &entry->fp_items[idx];
*cp = &entry->parent->cp_items[idx];
}
static inline void bpf_mprog_write(struct bpf_mprog_fp *fp,
struct bpf_mprog_cp *cp,
struct bpf_tuple *tuple)
{
WRITE_ONCE(fp->prog, tuple->prog);
cp->link = tuple->link;
}
int bpf_mprog_attach(struct bpf_mprog_entry *entry,
struct bpf_mprog_entry **entry_new,
struct bpf_prog *prog_new, struct bpf_link *link,
struct bpf_prog *prog_old,
u32 flags, u32 id_or_fd, u64 revision);
int bpf_mprog_detach(struct bpf_mprog_entry *entry,
struct bpf_mprog_entry **entry_new,
struct bpf_prog *prog, struct bpf_link *link,
u32 flags, u32 id_or_fd, u64 revision);
int bpf_mprog_query(const union bpf_attr *attr, union bpf_attr __user *uattr,
struct bpf_mprog_entry *entry);
bpf: Add fd-based tcx multi-prog infra with link support This work refactors and adds a lightweight extension ("tcx") to the tc BPF ingress and egress data path side for allowing BPF program management based on fds via bpf() syscall through the newly added generic multi-prog API. The main goal behind this work which we also presented at LPC [0] last year and a recent update at LSF/MM/BPF this year [3] is to support long-awaited BPF link functionality for tc BPF programs, which allows for a model of safe ownership and program detachment. Given the rise in tc BPF users in cloud native environments, this becomes necessary to avoid hard to debug incidents either through stale leftover programs or 3rd party applications accidentally stepping on each others toes. As a recap, a BPF link represents the attachment of a BPF program to a BPF hook point. The BPF link holds a single reference to keep BPF program alive. Moreover, hook points do not reference a BPF link, only the application's fd or pinning does. A BPF link holds meta-data specific to attachment and implements operations for link creation, (atomic) BPF program update, detachment and introspection. The motivation for BPF links for tc BPF programs is multi-fold, for example: - From Meta: "It's especially important for applications that are deployed fleet-wide and that don't "control" hosts they are deployed to. If such application crashes and no one notices and does anything about that, BPF program will keep running draining resources or even just, say, dropping packets. We at FB had outages due to such permanent BPF attachment semantics. With fd-based BPF link we are getting a framework, which allows safe, auto-detachable behavior by default, unless application explicitly opts in by pinning the BPF link." [1] - From Cilium-side the tc BPF programs we attach to host-facing veth devices and phys devices build the core datapath for Kubernetes Pods, and they implement forwarding, load-balancing, policy, EDT-management, etc, within BPF. Currently there is no concept of 'safe' ownership, e.g. we've recently experienced hard-to-debug issues in a user's staging environment where another Kubernetes application using tc BPF attached to the same prio/handle of cls_bpf, accidentally wiping all Cilium-based BPF programs from underneath it. The goal is to establish a clear/safe ownership model via links which cannot accidentally be overridden. [0,2] BPF links for tc can co-exist with non-link attachments, and the semantics are in line also with XDP links: BPF links cannot replace other BPF links, BPF links cannot replace non-BPF links, non-BPF links cannot replace BPF links and lastly only non-BPF links can replace non-BPF links. In case of Cilium, this would solve mentioned issue of safe ownership model as 3rd party applications would not be able to accidentally wipe Cilium programs, even if they are not BPF link aware. Earlier attempts [4] have tried to integrate BPF links into core tc machinery to solve cls_bpf, which has been intrusive to the generic tc kernel API with extensions only specific to cls_bpf and suboptimal/complex since cls_bpf could be wiped from the qdisc also. Locking a tc BPF program in place this way, is getting into layering hacks given the two object models are vastly different. We instead implemented the tcx (tc 'express') layer which is an fd-based tc BPF attach API, so that the BPF link implementation blends in naturally similar to other link types which are fd-based and without the need for changing core tc internal APIs. BPF programs for tc can then be successively migrated from classic cls_bpf to the new tc BPF link without needing to change the program's source code, just the BPF loader mechanics for attaching is sufficient. For the current tc framework, there is no change in behavior with this change and neither does this change touch on tc core kernel APIs. The gist of this patch is that the ingress and egress hook have a lightweight, qdisc-less extension for BPF to attach its tc BPF programs, in other words, a minimal entry point for tc BPF. The name tcx has been suggested from discussion of earlier revisions of this work as a good fit, and to more easily differ between the classic cls_bpf attachment and the fd-based one. For the ingress and egress tcx points, the device holds a cache-friendly array with program pointers which is separated from control plane (slow-path) data. Earlier versions of this work used priority to determine ordering and expression of dependencies similar as with classic tc, but it was challenged that for something more future-proof a better user experience is required. Hence this resulted in the design and development of the generic attach/detach/query API for multi-progs. See prior patch with its discussion on the API design. tcx is the first user and later we plan to integrate also others, for example, one candidate is multi-prog support for XDP which would benefit and have the same 'look and feel' from API perspective. The goal with tcx is to have maximum compatibility to existing tc BPF programs, so they don't need to be rewritten specifically. Compatibility to call into classic tcf_classify() is also provided in order to allow successive migration or both to cleanly co-exist where needed given its all one logical tc layer and the tcx plus classic tc cls/act build one logical overall processing pipeline. tcx supports the simplified return codes TCX_NEXT which is non-terminating (go to next program) and terminating ones with TCX_PASS, TCX_DROP, TCX_REDIRECT. The fd-based API is behind a static key, so that when unused the code is also not entered. The struct tcx_entry's program array is currently static, but could be made dynamic if necessary at a point in future. The a/b pair swap design has been chosen so that for detachment there are no allocations which otherwise could fail. The work has been tested with tc-testing selftest suite which all passes, as well as the tc BPF tests from the BPF CI, and also with Cilium's L4LB. Thanks also to Nikolay Aleksandrov and Martin Lau for in-depth early reviews of this work. [0] https://lpc.events/event/16/contributions/1353/ [1] https://lore.kernel.org/bpf/CAEf4BzbokCJN33Nw_kg82sO=xppXnKWEncGTWCTB9vGCmLB6pw@mail.gmail.com [2] https://colocatedeventseu2023.sched.com/event/1Jo6O/tales-from-an-ebpf-programs-murder-mystery-hemanth-malla-guillaume-fournier-datadog [3] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf [4] https://lore.kernel.org/bpf/20210604063116.234316-1-memxor@gmail.com Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20230719140858.13224-3-daniel@iogearbox.net Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 14:08:52 +00:00
static inline bool bpf_mprog_supported(enum bpf_prog_type type)
{
switch (type) {
case BPF_PROG_TYPE_SCHED_CLS:
return true;
default:
return false;
}
}
bpf: Add generic attach/detach/query API for multi-progs This adds a generic layer called bpf_mprog which can be reused by different attachment layers to enable multi-program attachment and dependency resolution. In-kernel users of the bpf_mprog don't need to care about the dependency resolution internals, they can just consume it with few API calls. The initial idea of having a generic API sparked out of discussion [0] from an earlier revision of this work where tc's priority was reused and exposed via BPF uapi as a way to coordinate dependencies among tc BPF programs, similar as-is for classic tc BPF. The feedback was that priority provides a bad user experience and is hard to use [1], e.g.: I cannot help but feel that priority logic copy-paste from old tc, netfilter and friends is done because "that's how things were done in the past". [...] Priority gets exposed everywhere in uapi all the way to bpftool when it's right there for users to understand. And that's the main problem with it. The user don't want to and don't need to be aware of it, but uapi forces them to pick the priority. [...] Your cover letter [0] example proves that in real life different service pick the same priority. They simply don't know any better. Priority is an unnecessary magic that apps _have_ to pick, so they just copy-paste and everyone ends up using the same. The course of the discussion showed more and more the need for a generic, reusable API where the "same look and feel" can be applied for various other program types beyond just tc BPF, for example XDP today does not have multi- program support in kernel, but also there was interest around this API for improving management of cgroup program types. Such common multi-program management concept is useful for BPF management daemons or user space BPF applications coordinating internally about their attachments. Both from Cilium and Meta side [2], we've collected the following requirements for a generic attach/detach/query API for multi-progs which has been implemented as part of this work: - Support prog-based attach/detach and link API - Dependency directives (can also be combined): - BPF_F_{BEFORE,AFTER} with relative_{fd,id} which can be {prog,link,none} - BPF_F_ID flag as {fd,id} toggle; the rationale for id is so that user space application does not need CAP_SYS_ADMIN to retrieve foreign fds via bpf_*_get_fd_by_id() - BPF_F_LINK flag as {prog,link} toggle - If relative_{fd,id} is none, then BPF_F_BEFORE will just prepend, and BPF_F_AFTER will just append for attaching - Enforced only at attach time - BPF_F_REPLACE with replace_bpf_fd which can be prog, links have their own infra for replacing their internal prog - If no flags are set, then it's default append behavior for attaching - Internal revision counter and optionally being able to pass expected_revision - User space application can query current state with revision, and pass it along for attachment to assert current state before doing updates - Query also gets extension for link_ids array and link_attach_flags: - prog_ids are always filled with program IDs - link_ids are filled with link IDs when link was used, otherwise 0 - {prog,link}_attach_flags for holding {prog,link}-specific flags - Must be easy to integrate/reuse for in-kernel users The uapi-side changes needed for supporting bpf_mprog are rather minimal, consisting of the additions of the attachment flags, revision counter, and expanding existing union with relative_{fd,id} member. The bpf_mprog framework consists of an bpf_mprog_entry object which holds an array of bpf_mprog_fp (fast-path structure). The bpf_mprog_cp (control-path structure) is part of bpf_mprog_bundle. Both have been separated, so that fast-path gets efficient packing of bpf_prog pointers for maximum cache efficiency. Also, array has been chosen instead of linked list or other structures to remove unnecessary indirections for a fast point-to-entry in tc for BPF. The bpf_mprog_entry comes as a pair via bpf_mprog_bundle so that in case of updates the peer bpf_mprog_entry is populated and then just swapped which avoids additional allocations that could otherwise fail, for example, in detach case. bpf_mprog_{fp,cp} arrays are currently static, but they could be converted to dynamic allocation if necessary at a point in future. Locking is deferred to the in-kernel user of bpf_mprog, for example, in case of tcx which uses this API in the next patch, it piggybacks on rtnl. An extensive test suite for checking all aspects of this API for prog-based attach/detach and link API comes as BPF selftests in this series. Thanks also to Andrii Nakryiko for early API discussions wrt Meta's BPF prog management. [0] https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net [1] https://lore.kernel.org/bpf/CAADnVQ+gEY3FjCR=+DmjDR4gp5bOYZUFJQXj4agKFHT9CQPZBw@mail.gmail.com [2] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/r/20230719140858.13224-2-daniel@iogearbox.net Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 14:08:51 +00:00
#endif /* __BPF_MPROG_H */