linux-stable/arch/powerpc/kexec/file_load_64.c

1359 lines
36 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* ppc64 code to implement the kexec_file_load syscall
*
* Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
* Copyright (C) 2004 IBM Corp.
* Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation
* Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
* Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
* Copyright (C) 2020 IBM Corporation
*
* Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
* Heavily modified for the kernel by
* Hari Bathini, IBM Corporation.
*/
#include <linux/kexec.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <linux/of.h>
#include <linux/memblock.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <asm/setup.h>
#include <asm/drmem.h>
#include <asm/firmware.h>
#include <asm/kexec_ranges.h>
#include <asm/crashdump-ppc64.h>
#include <asm/mmzone.h>
#include <asm/iommu.h>
#include <asm/prom.h>
#include <asm/plpks.h>
struct umem_info {
__be64 *buf; /* data buffer for usable-memory property */
u32 size; /* size allocated for the data buffer */
u32 max_entries; /* maximum no. of entries */
u32 idx; /* index of current entry */
/* usable memory ranges to look up */
unsigned int nr_ranges;
const struct range *ranges;
};
const struct kexec_file_ops * const kexec_file_loaders[] = {
&kexec_elf64_ops,
NULL
};
/**
* get_exclude_memory_ranges - Get exclude memory ranges. This list includes
* regions like opal/rtas, tce-table, initrd,
* kernel, htab which should be avoided while
* setting up kexec load segments.
* @mem_ranges: Range list to add the memory ranges to.
*
* Returns 0 on success, negative errno on error.
*/
static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
{
int ret;
ret = add_tce_mem_ranges(mem_ranges);
if (ret)
goto out;
ret = add_initrd_mem_range(mem_ranges);
if (ret)
goto out;
ret = add_htab_mem_range(mem_ranges);
if (ret)
goto out;
ret = add_kernel_mem_range(mem_ranges);
if (ret)
goto out;
ret = add_rtas_mem_range(mem_ranges);
if (ret)
goto out;
ret = add_opal_mem_range(mem_ranges);
if (ret)
goto out;
ret = add_reserved_mem_ranges(mem_ranges);
if (ret)
goto out;
/* exclude memory ranges should be sorted for easy lookup */
sort_memory_ranges(*mem_ranges, true);
out:
if (ret)
pr_err("Failed to setup exclude memory ranges\n");
return ret;
}
/**
* get_usable_memory_ranges - Get usable memory ranges. This list includes
* regions like crashkernel, opal/rtas & tce-table,
* that kdump kernel could use.
* @mem_ranges: Range list to add the memory ranges to.
*
* Returns 0 on success, negative errno on error.
*/
static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
{
int ret;
/*
* Early boot failure observed on guests when low memory (first memory
* block?) is not added to usable memory. So, add [0, crashk_res.end]
* instead of [crashk_res.start, crashk_res.end] to workaround it.
* Also, crashed kernel's memory must be added to reserve map to
* avoid kdump kernel from using it.
*/
ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
if (ret)
goto out;
ret = add_rtas_mem_range(mem_ranges);
if (ret)
goto out;
ret = add_opal_mem_range(mem_ranges);
if (ret)
goto out;
ret = add_tce_mem_ranges(mem_ranges);
out:
if (ret)
pr_err("Failed to setup usable memory ranges\n");
return ret;
}
/**
* get_crash_memory_ranges - Get crash memory ranges. This list includes
* first/crashing kernel's memory regions that
* would be exported via an elfcore.
* @mem_ranges: Range list to add the memory ranges to.
*
* Returns 0 on success, negative errno on error.
*/
static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
{
arch, drivers: replace for_each_membock() with for_each_mem_range() There are several occurrences of the following pattern: for_each_memblock(memory, reg) { start = __pfn_to_phys(memblock_region_memory_base_pfn(reg); end = __pfn_to_phys(memblock_region_memory_end_pfn(reg)); /* do something with start and end */ } Using for_each_mem_range() iterator is more appropriate in such cases and allows simpler and cleaner code. [akpm@linux-foundation.org: fix arch/arm/mm/pmsa-v7.c build] [rppt@linux.ibm.com: mips: fix cavium-octeon build caused by memblock refactoring] Link: http://lkml.kernel.org/r/20200827124549.GD167163@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Axtens <dja@axtens.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Emil Renner Berthing <kernel@esmil.dk> Cc: Hari Bathini <hbathini@linux.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: https://lkml.kernel.org/r/20200818151634.14343-13-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 23:58:08 +00:00
phys_addr_t base, end;
struct crash_mem *tmem;
arch, drivers: replace for_each_membock() with for_each_mem_range() There are several occurrences of the following pattern: for_each_memblock(memory, reg) { start = __pfn_to_phys(memblock_region_memory_base_pfn(reg); end = __pfn_to_phys(memblock_region_memory_end_pfn(reg)); /* do something with start and end */ } Using for_each_mem_range() iterator is more appropriate in such cases and allows simpler and cleaner code. [akpm@linux-foundation.org: fix arch/arm/mm/pmsa-v7.c build] [rppt@linux.ibm.com: mips: fix cavium-octeon build caused by memblock refactoring] Link: http://lkml.kernel.org/r/20200827124549.GD167163@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Axtens <dja@axtens.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Emil Renner Berthing <kernel@esmil.dk> Cc: Hari Bathini <hbathini@linux.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: https://lkml.kernel.org/r/20200818151634.14343-13-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 23:58:08 +00:00
u64 i;
int ret;
arch, drivers: replace for_each_membock() with for_each_mem_range() There are several occurrences of the following pattern: for_each_memblock(memory, reg) { start = __pfn_to_phys(memblock_region_memory_base_pfn(reg); end = __pfn_to_phys(memblock_region_memory_end_pfn(reg)); /* do something with start and end */ } Using for_each_mem_range() iterator is more appropriate in such cases and allows simpler and cleaner code. [akpm@linux-foundation.org: fix arch/arm/mm/pmsa-v7.c build] [rppt@linux.ibm.com: mips: fix cavium-octeon build caused by memblock refactoring] Link: http://lkml.kernel.org/r/20200827124549.GD167163@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Axtens <dja@axtens.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Emil Renner Berthing <kernel@esmil.dk> Cc: Hari Bathini <hbathini@linux.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: https://lkml.kernel.org/r/20200818151634.14343-13-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 23:58:08 +00:00
for_each_mem_range(i, &base, &end) {
u64 size = end - base;
/* Skip backup memory region, which needs a separate entry */
if (base == BACKUP_SRC_START) {
if (size > BACKUP_SRC_SIZE) {
base = BACKUP_SRC_END + 1;
size -= BACKUP_SRC_SIZE;
} else
continue;
}
ret = add_mem_range(mem_ranges, base, size);
if (ret)
goto out;
/* Try merging adjacent ranges before reallocation attempt */
if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
sort_memory_ranges(*mem_ranges, true);
}
/* Reallocate memory ranges if there is no space to split ranges */
tmem = *mem_ranges;
if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
tmem = realloc_mem_ranges(mem_ranges);
if (!tmem)
goto out;
}
/* Exclude crashkernel region */
ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
if (ret)
goto out;
/*
* FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
* regions are exported to save their context at the time of
* crash, they should actually be backed up just like the
* first 64K bytes of memory.
*/
ret = add_rtas_mem_range(mem_ranges);
if (ret)
goto out;
ret = add_opal_mem_range(mem_ranges);
if (ret)
goto out;
/* create a separate program header for the backup region */
ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
if (ret)
goto out;
sort_memory_ranges(*mem_ranges, false);
out:
if (ret)
pr_err("Failed to setup crash memory ranges\n");
return ret;
}
/**
* get_reserved_memory_ranges - Get reserve memory ranges. This list includes
* memory regions that should be added to the
* memory reserve map to ensure the region is
* protected from any mischief.
* @mem_ranges: Range list to add the memory ranges to.
*
* Returns 0 on success, negative errno on error.
*/
static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
{
int ret;
ret = add_rtas_mem_range(mem_ranges);
if (ret)
goto out;
ret = add_tce_mem_ranges(mem_ranges);
if (ret)
goto out;
ret = add_reserved_mem_ranges(mem_ranges);
out:
if (ret)
pr_err("Failed to setup reserved memory ranges\n");
return ret;
}
/**
* __locate_mem_hole_top_down - Looks top down for a large enough memory hole
* in the memory regions between buf_min & buf_max
* for the buffer. If found, sets kbuf->mem.
* @kbuf: Buffer contents and memory parameters.
* @buf_min: Minimum address for the buffer.
* @buf_max: Maximum address for the buffer.
*
* Returns 0 on success, negative errno on error.
*/
static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
u64 buf_min, u64 buf_max)
{
int ret = -EADDRNOTAVAIL;
phys_addr_t start, end;
u64 i;
memblock: reduce number of parameters in for_each_mem_range() Currently for_each_mem_range() and for_each_mem_range_rev() iterators are the most generic way to traverse memblock regions. As such, they have 8 parameters and they are hardly convenient to users. Most users choose to utilize one of their wrappers and the only user that actually needs most of the parameters is memblock itself. To avoid yet another naming for memblock iterators, rename the existing for_each_mem_range[_rev]() to __for_each_mem_range[_rev]() and add a new for_each_mem_range[_rev]() wrappers with only index, start and end parameters. The new wrapper nicely fits into init_unavailable_mem() and will be used in upcoming changes to simplify memblock traversals. Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> [MIPS] Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Axtens <dja@axtens.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Emil Renner Berthing <kernel@esmil.dk> Cc: Hari Bathini <hbathini@linux.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: https://lkml.kernel.org/r/20200818151634.14343-11-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 23:57:59 +00:00
for_each_mem_range_rev(i, &start, &end) {
/*
* memblock uses [start, end) convention while it is
* [start, end] here. Fix the off-by-one to have the
* same convention.
*/
end -= 1;
if (start > buf_max)
continue;
/* Memory hole not found */
if (end < buf_min)
break;
/* Adjust memory region based on the given range */
if (start < buf_min)
start = buf_min;
if (end > buf_max)
end = buf_max;
start = ALIGN(start, kbuf->buf_align);
if (start < end && (end - start + 1) >= kbuf->memsz) {
/* Suitable memory range found. Set kbuf->mem */
kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
kbuf->buf_align);
ret = 0;
break;
}
}
return ret;
}
/**
* locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
* suitable buffer with top down approach.
* @kbuf: Buffer contents and memory parameters.
* @buf_min: Minimum address for the buffer.
* @buf_max: Maximum address for the buffer.
* @emem: Exclude memory ranges.
*
* Returns 0 on success, negative errno on error.
*/
static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
u64 buf_min, u64 buf_max,
const struct crash_mem *emem)
{
int i, ret = 0, err = -EADDRNOTAVAIL;
u64 start, end, tmin, tmax;
tmax = buf_max;
for (i = (emem->nr_ranges - 1); i >= 0; i--) {
start = emem->ranges[i].start;
end = emem->ranges[i].end;
if (start > tmax)
continue;
if (end < tmax) {
tmin = (end < buf_min ? buf_min : end + 1);
ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
if (!ret)
return 0;
}
tmax = start - 1;
if (tmax < buf_min) {
ret = err;
break;
}
ret = 0;
}
if (!ret) {
tmin = buf_min;
ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
}
return ret;
}
/**
* __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
* in the memory regions between buf_min & buf_max
* for the buffer. If found, sets kbuf->mem.
* @kbuf: Buffer contents and memory parameters.
* @buf_min: Minimum address for the buffer.
* @buf_max: Maximum address for the buffer.
*
* Returns 0 on success, negative errno on error.
*/
static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
u64 buf_min, u64 buf_max)
{
int ret = -EADDRNOTAVAIL;
phys_addr_t start, end;
u64 i;
memblock: reduce number of parameters in for_each_mem_range() Currently for_each_mem_range() and for_each_mem_range_rev() iterators are the most generic way to traverse memblock regions. As such, they have 8 parameters and they are hardly convenient to users. Most users choose to utilize one of their wrappers and the only user that actually needs most of the parameters is memblock itself. To avoid yet another naming for memblock iterators, rename the existing for_each_mem_range[_rev]() to __for_each_mem_range[_rev]() and add a new for_each_mem_range[_rev]() wrappers with only index, start and end parameters. The new wrapper nicely fits into init_unavailable_mem() and will be used in upcoming changes to simplify memblock traversals. Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> [MIPS] Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Axtens <dja@axtens.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Emil Renner Berthing <kernel@esmil.dk> Cc: Hari Bathini <hbathini@linux.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: https://lkml.kernel.org/r/20200818151634.14343-11-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 23:57:59 +00:00
for_each_mem_range(i, &start, &end) {
/*
* memblock uses [start, end) convention while it is
* [start, end] here. Fix the off-by-one to have the
* same convention.
*/
end -= 1;
if (end < buf_min)
continue;
/* Memory hole not found */
if (start > buf_max)
break;
/* Adjust memory region based on the given range */
if (start < buf_min)
start = buf_min;
if (end > buf_max)
end = buf_max;
start = ALIGN(start, kbuf->buf_align);
if (start < end && (end - start + 1) >= kbuf->memsz) {
/* Suitable memory range found. Set kbuf->mem */
kbuf->mem = start;
ret = 0;
break;
}
}
return ret;
}
/**
* locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
* suitable buffer with bottom up approach.
* @kbuf: Buffer contents and memory parameters.
* @buf_min: Minimum address for the buffer.
* @buf_max: Maximum address for the buffer.
* @emem: Exclude memory ranges.
*
* Returns 0 on success, negative errno on error.
*/
static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
u64 buf_min, u64 buf_max,
const struct crash_mem *emem)
{
int i, ret = 0, err = -EADDRNOTAVAIL;
u64 start, end, tmin, tmax;
tmin = buf_min;
for (i = 0; i < emem->nr_ranges; i++) {
start = emem->ranges[i].start;
end = emem->ranges[i].end;
if (end < tmin)
continue;
if (start > tmin) {
tmax = (start > buf_max ? buf_max : start - 1);
ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
if (!ret)
return 0;
}
tmin = end + 1;
if (tmin > buf_max) {
ret = err;
break;
}
ret = 0;
}
if (!ret) {
tmax = buf_max;
ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
}
return ret;
}
/**
* check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
* @um_info: Usable memory buffer and ranges info.
* @cnt: No. of entries to accommodate.
*
* Frees up the old buffer if memory reallocation fails.
*
* Returns buffer on success, NULL on error.
*/
static __be64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
{
u32 new_size;
__be64 *tbuf;
if ((um_info->idx + cnt) <= um_info->max_entries)
return um_info->buf;
new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
if (tbuf) {
um_info->buf = tbuf;
um_info->size = new_size;
um_info->max_entries = (um_info->size / sizeof(u64));
}
return tbuf;
}
/**
* add_usable_mem - Add the usable memory ranges within the given memory range
* to the buffer
* @um_info: Usable memory buffer and ranges info.
* @base: Base address of memory range to look for.
* @end: End address of memory range to look for.
*
* Returns 0 on success, negative errno on error.
*/
static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
{
u64 loc_base, loc_end;
bool add;
int i;
for (i = 0; i < um_info->nr_ranges; i++) {
add = false;
loc_base = um_info->ranges[i].start;
loc_end = um_info->ranges[i].end;
if (loc_base >= base && loc_end <= end)
add = true;
else if (base < loc_end && end > loc_base) {
if (loc_base < base)
loc_base = base;
if (loc_end > end)
loc_end = end;
add = true;
}
if (add) {
if (!check_realloc_usable_mem(um_info, 2))
return -ENOMEM;
um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
um_info->buf[um_info->idx++] =
cpu_to_be64(loc_end - loc_base + 1);
}
}
return 0;
}
/**
* kdump_setup_usable_lmb - This is a callback function that gets called by
* walk_drmem_lmbs for every LMB to set its
* usable memory ranges.
* @lmb: LMB info.
* @usm: linux,drconf-usable-memory property value.
* @data: Pointer to usable memory buffer and ranges info.
*
* Returns 0 on success, negative errno on error.
*/
static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
void *data)
{
struct umem_info *um_info;
int tmp_idx, ret;
u64 base, end;
/*
* kdump load isn't supported on kernels already booted with
* linux,drconf-usable-memory property.
*/
if (*usm) {
pr_err("linux,drconf-usable-memory property already exists!");
return -EINVAL;
}
um_info = data;
tmp_idx = um_info->idx;
if (!check_realloc_usable_mem(um_info, 1))
return -ENOMEM;
um_info->idx++;
base = lmb->base_addr;
end = base + drmem_lmb_size() - 1;
ret = add_usable_mem(um_info, base, end);
if (!ret) {
/*
* Update the no. of ranges added. Two entries (base & size)
* for every range added.
*/
um_info->buf[tmp_idx] =
cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
}
return ret;
}
#define NODE_PATH_LEN 256
/**
* add_usable_mem_property - Add usable memory property for the given
* memory node.
* @fdt: Flattened device tree for the kdump kernel.
* @dn: Memory node.
* @um_info: Usable memory buffer and ranges info.
*
* Returns 0 on success, negative errno on error.
*/
static int add_usable_mem_property(void *fdt, struct device_node *dn,
struct umem_info *um_info)
{
int n_mem_addr_cells, n_mem_size_cells, node;
char path[NODE_PATH_LEN];
int i, len, ranges, ret;
const __be32 *prop;
u64 base, end;
of_node_get(dn);
if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
pr_err("Buffer (%d) too small for memory node: %pOF\n",
NODE_PATH_LEN, dn);
return -EOVERFLOW;
}
kexec_dprintk("Memory node path: %s\n", path);
/* Now that we know the path, find its offset in kdump kernel's fdt */
node = fdt_path_offset(fdt, path);
if (node < 0) {
pr_err("Malformed device tree: error reading %s\n", path);
ret = -EINVAL;
goto out;
}
/* Get the address & size cells */
n_mem_addr_cells = of_n_addr_cells(dn);
n_mem_size_cells = of_n_size_cells(dn);
kexec_dprintk("address cells: %d, size cells: %d\n", n_mem_addr_cells,
n_mem_size_cells);
um_info->idx = 0;
if (!check_realloc_usable_mem(um_info, 2)) {
ret = -ENOMEM;
goto out;
}
prop = of_get_property(dn, "reg", &len);
if (!prop || len <= 0) {
ret = 0;
goto out;
}
/*
* "reg" property represents sequence of (addr,size) tuples
* each representing a memory range.
*/
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
for (i = 0; i < ranges; i++) {
base = of_read_number(prop, n_mem_addr_cells);
prop += n_mem_addr_cells;
end = base + of_read_number(prop, n_mem_size_cells) - 1;
prop += n_mem_size_cells;
ret = add_usable_mem(um_info, base, end);
if (ret)
goto out;
}
/*
* No kdump kernel usable memory found in this memory node.
* Write (0,0) tuple in linux,usable-memory property for
* this region to be ignored.
*/
if (um_info->idx == 0) {
um_info->buf[0] = 0;
um_info->buf[1] = 0;
um_info->idx = 2;
}
ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
(um_info->idx * sizeof(u64)));
out:
of_node_put(dn);
return ret;
}
/**
* update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
* and linux,drconf-usable-memory DT properties as
* appropriate to restrict its memory usage.
* @fdt: Flattened device tree for the kdump kernel.
* @usable_mem: Usable memory ranges for kdump kernel.
*
* Returns 0 on success, negative errno on error.
*/
static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
{
struct umem_info um_info;
struct device_node *dn;
int node, ret = 0;
if (!usable_mem) {
pr_err("Usable memory ranges for kdump kernel not found\n");
return -ENOENT;
}
node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
if (node == -FDT_ERR_NOTFOUND)
kexec_dprintk("No dynamic reconfiguration memory found\n");
else if (node < 0) {
pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
return -EINVAL;
}
um_info.buf = NULL;
um_info.size = 0;
um_info.max_entries = 0;
um_info.idx = 0;
/* Memory ranges to look up */
um_info.ranges = &(usable_mem->ranges[0]);
um_info.nr_ranges = usable_mem->nr_ranges;
dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (dn) {
ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
of_node_put(dn);
if (ret) {
pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
goto out;
}
ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
um_info.buf, (um_info.idx * sizeof(u64)));
if (ret) {
pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
fdt_strerror(ret));
goto out;
}
}
/*
* Walk through each memory node and set linux,usable-memory property
* for the corresponding node in kdump kernel's fdt.
*/
for_each_node_by_type(dn, "memory") {
ret = add_usable_mem_property(fdt, dn, &um_info);
if (ret) {
pr_err("Failed to set linux,usable-memory property for %s node",
dn->full_name);
of_node_put(dn);
goto out;
}
}
out:
kfree(um_info.buf);
return ret;
}
/**
* load_backup_segment - Locate a memory hole to place the backup region.
* @image: Kexec image.
* @kbuf: Buffer contents and memory parameters.
*
* Returns 0 on success, negative errno on error.
*/
static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
{
void *buf;
int ret;
/*
* Setup a source buffer for backup segment.
*
* A source buffer has no meaning for backup region as data will
* be copied from backup source, after crash, in the purgatory.
* But as load segment code doesn't recognize such segments,
* setup a dummy source buffer to keep it happy for now.
*/
buf = vzalloc(BACKUP_SRC_SIZE);
if (!buf)
return -ENOMEM;
kbuf->buffer = buf;
kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
kbuf->top_down = false;
ret = kexec_add_buffer(kbuf);
if (ret) {
vfree(buf);
return ret;
}
image->arch.backup_buf = buf;
image->arch.backup_start = kbuf->mem;
return 0;
}
/**
* update_backup_region_phdr - Update backup region's offset for the core to
* export the region appropriately.
* @image: Kexec image.
* @ehdr: ELF core header.
*
* Assumes an exclusive program header is setup for the backup region
* in the ELF headers
*
* Returns nothing.
*/
static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
{
Elf64_Phdr *phdr;
unsigned int i;
phdr = (Elf64_Phdr *)(ehdr + 1);
for (i = 0; i < ehdr->e_phnum; i++) {
if (phdr->p_paddr == BACKUP_SRC_START) {
phdr->p_offset = image->arch.backup_start;
kexec_dprintk("Backup region offset updated to 0x%lx\n",
image->arch.backup_start);
return;
}
}
}
/**
* load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
* segment needed to load kdump kernel.
* @image: Kexec image.
* @kbuf: Buffer contents and memory parameters.
*
* Returns 0 on success, negative errno on error.
*/
static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
{
struct crash_mem *cmem = NULL;
unsigned long headers_sz;
void *headers = NULL;
int ret;
ret = get_crash_memory_ranges(&cmem);
if (ret)
goto out;
/* Setup elfcorehdr segment */
ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
if (ret) {
pr_err("Failed to prepare elf headers for the core\n");
goto out;
}
/* Fix the offset for backup region in the ELF header */
update_backup_region_phdr(image, headers);
kbuf->buffer = headers;
kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf->bufsz = kbuf->memsz = headers_sz;
kbuf->top_down = false;
ret = kexec_add_buffer(kbuf);
if (ret) {
vfree(headers);
goto out;
}
image->elf_load_addr = kbuf->mem;
image->elf_headers_sz = headers_sz;
image->elf_headers = headers;
out:
kfree(cmem);
return ret;
}
/**
* load_crashdump_segments_ppc64 - Initialize the additional segements needed
* to load kdump kernel.
* @image: Kexec image.
* @kbuf: Buffer contents and memory parameters.
*
* Returns 0 on success, negative errno on error.
*/
int load_crashdump_segments_ppc64(struct kimage *image,
struct kexec_buf *kbuf)
{
int ret;
/* Load backup segment - first 64K bytes of the crashing kernel */
ret = load_backup_segment(image, kbuf);
if (ret) {
pr_err("Failed to load backup segment\n");
return ret;
}
kexec_dprintk("Loaded the backup region at 0x%lx\n", kbuf->mem);
/* Load elfcorehdr segment - to export crashing kernel's vmcore */
ret = load_elfcorehdr_segment(image, kbuf);
if (ret) {
pr_err("Failed to load elfcorehdr segment\n");
return ret;
}
kexec_dprintk("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
return 0;
}
/**
* setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
* variables and call setup_purgatory() to initialize
* common global variable.
* @image: kexec image.
* @slave_code: Slave code for the purgatory.
* @fdt: Flattened device tree for the next kernel.
* @kernel_load_addr: Address where the kernel is loaded.
* @fdt_load_addr: Address where the flattened device tree is loaded.
*
* Returns 0 on success, negative errno on error.
*/
int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
const void *fdt, unsigned long kernel_load_addr,
unsigned long fdt_load_addr)
{
struct device_node *dn = NULL;
int ret;
ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
fdt_load_addr);
if (ret)
goto out;
if (image->type == KEXEC_TYPE_CRASH) {
u32 my_run_at_load = 1;
/*
* Tell relocatable kernel to run at load address
* via the word meant for that at 0x5c.
*/
ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
&my_run_at_load,
sizeof(my_run_at_load),
false);
if (ret)
goto out;
}
/* Tell purgatory where to look for backup region */
ret = kexec_purgatory_get_set_symbol(image, "backup_start",
&image->arch.backup_start,
sizeof(image->arch.backup_start),
false);
if (ret)
goto out;
/* Setup OPAL base & entry values */
dn = of_find_node_by_path("/ibm,opal");
if (dn) {
u64 val;
of_property_read_u64(dn, "opal-base-address", &val);
ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
sizeof(val), false);
if (ret)
goto out;
of_property_read_u64(dn, "opal-entry-address", &val);
ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
sizeof(val), false);
}
out:
if (ret)
pr_err("Failed to setup purgatory symbols");
of_node_put(dn);
return ret;
}
/**
* cpu_node_size - Compute the size of a CPU node in the FDT.
* This should be done only once and the value is stored in
* a static variable.
* Returns the max size of a CPU node in the FDT.
*/
static unsigned int cpu_node_size(void)
{
static unsigned int size;
struct device_node *dn;
struct property *pp;
/*
* Don't compute it twice, we are assuming that the per CPU node size
* doesn't change during the system's life.
*/
if (size)
return size;
dn = of_find_node_by_type(NULL, "cpu");
if (WARN_ON_ONCE(!dn)) {
// Unlikely to happen
return 0;
}
/*
* We compute the sub node size for a CPU node, assuming it
* will be the same for all.
*/
size += strlen(dn->name) + 5;
for_each_property_of_node(dn, pp) {
size += strlen(pp->name);
size += pp->length;
}
of_node_put(dn);
return size;
}
/**
* kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
* setup FDT for kexec/kdump kernel.
* @image: kexec image being loaded.
*
* Returns the estimated extra size needed for kexec/kdump kernel FDT.
*/
unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
{
unsigned int cpu_nodes, extra_size = 0;
struct device_node *dn;
u64 usm_entries;
// Budget some space for the password blob. There's already extra space
// for the key name
if (plpks_is_available())
extra_size += (unsigned int)plpks_get_passwordlen();
if (image->type != KEXEC_TYPE_CRASH)
return extra_size;
/*
* For kdump kernel, account for linux,usable-memory and
* linux,drconf-usable-memory properties. Get an approximate on the
* number of usable memory entries and use for FDT size estimation.
*/
powerpc/kexec_file: Fix division by zero in extra size estimation In kexec_extra_fdt_size_ppc64() there's logic to estimate how much extra space will be needed in the device tree for some memory related properties. That logic uses the size of RAM divided by drmem_lmb_size() to do the estimation. However drmem_lmb_size() can be zero if the machine has no hotpluggable memory configured, which is the case when booting with qemu and no maxmem=x parameter is passed (the default). The division by zero is reported by UBSAN, and can also lead to an overflow and a warning from kvmalloc, and kdump kernel loading fails: WARNING: CPU: 0 PID: 133 at mm/util.c:596 kvmalloc_node+0x15c/0x160 Modules linked in: CPU: 0 PID: 133 Comm: kexec Not tainted 6.2.0-rc5-03455-g07358bd97810 #223 Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1200 0xf000005 of:SLOF,git-dd0dca pSeries NIP: c00000000041ff4c LR: c00000000041fe58 CTR: 0000000000000000 REGS: c0000000096ef750 TRAP: 0700 Not tainted (6.2.0-rc5-03455-g07358bd97810) MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24248242 XER: 2004011e CFAR: c00000000041fed0 IRQMASK: 0 ... NIP kvmalloc_node+0x15c/0x160 LR kvmalloc_node+0x68/0x160 Call Trace: kvmalloc_node+0x68/0x160 (unreliable) of_kexec_alloc_and_setup_fdt+0xb8/0x7d0 elf64_load+0x25c/0x4a0 kexec_image_load_default+0x58/0x80 sys_kexec_file_load+0x5c0/0x920 system_call_exception+0x128/0x330 system_call_vectored_common+0x15c/0x2ec To fix it, skip the calculation if drmem_lmb_size() is zero. Fixes: 2377c92e37fe ("powerpc/kexec_file: fix FDT size estimation for kdump kernel") Cc: stable@vger.kernel.org # v5.12+ Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20230130014707.541110-1-mpe@ellerman.id.au
2023-01-30 01:47:07 +00:00
if (drmem_lmb_size()) {
usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
powerpc/kexec_file: Fix division by zero in extra size estimation In kexec_extra_fdt_size_ppc64() there's logic to estimate how much extra space will be needed in the device tree for some memory related properties. That logic uses the size of RAM divided by drmem_lmb_size() to do the estimation. However drmem_lmb_size() can be zero if the machine has no hotpluggable memory configured, which is the case when booting with qemu and no maxmem=x parameter is passed (the default). The division by zero is reported by UBSAN, and can also lead to an overflow and a warning from kvmalloc, and kdump kernel loading fails: WARNING: CPU: 0 PID: 133 at mm/util.c:596 kvmalloc_node+0x15c/0x160 Modules linked in: CPU: 0 PID: 133 Comm: kexec Not tainted 6.2.0-rc5-03455-g07358bd97810 #223 Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1200 0xf000005 of:SLOF,git-dd0dca pSeries NIP: c00000000041ff4c LR: c00000000041fe58 CTR: 0000000000000000 REGS: c0000000096ef750 TRAP: 0700 Not tainted (6.2.0-rc5-03455-g07358bd97810) MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24248242 XER: 2004011e CFAR: c00000000041fed0 IRQMASK: 0 ... NIP kvmalloc_node+0x15c/0x160 LR kvmalloc_node+0x68/0x160 Call Trace: kvmalloc_node+0x68/0x160 (unreliable) of_kexec_alloc_and_setup_fdt+0xb8/0x7d0 elf64_load+0x25c/0x4a0 kexec_image_load_default+0x58/0x80 sys_kexec_file_load+0x5c0/0x920 system_call_exception+0x128/0x330 system_call_vectored_common+0x15c/0x2ec To fix it, skip the calculation if drmem_lmb_size() is zero. Fixes: 2377c92e37fe ("powerpc/kexec_file: fix FDT size estimation for kdump kernel") Cc: stable@vger.kernel.org # v5.12+ Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20230130014707.541110-1-mpe@ellerman.id.au
2023-01-30 01:47:07 +00:00
(2 * (resource_size(&crashk_res) / drmem_lmb_size())));
extra_size += (unsigned int)(usm_entries * sizeof(u64));
powerpc/kexec_file: Fix division by zero in extra size estimation In kexec_extra_fdt_size_ppc64() there's logic to estimate how much extra space will be needed in the device tree for some memory related properties. That logic uses the size of RAM divided by drmem_lmb_size() to do the estimation. However drmem_lmb_size() can be zero if the machine has no hotpluggable memory configured, which is the case when booting with qemu and no maxmem=x parameter is passed (the default). The division by zero is reported by UBSAN, and can also lead to an overflow and a warning from kvmalloc, and kdump kernel loading fails: WARNING: CPU: 0 PID: 133 at mm/util.c:596 kvmalloc_node+0x15c/0x160 Modules linked in: CPU: 0 PID: 133 Comm: kexec Not tainted 6.2.0-rc5-03455-g07358bd97810 #223 Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1200 0xf000005 of:SLOF,git-dd0dca pSeries NIP: c00000000041ff4c LR: c00000000041fe58 CTR: 0000000000000000 REGS: c0000000096ef750 TRAP: 0700 Not tainted (6.2.0-rc5-03455-g07358bd97810) MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24248242 XER: 2004011e CFAR: c00000000041fed0 IRQMASK: 0 ... NIP kvmalloc_node+0x15c/0x160 LR kvmalloc_node+0x68/0x160 Call Trace: kvmalloc_node+0x68/0x160 (unreliable) of_kexec_alloc_and_setup_fdt+0xb8/0x7d0 elf64_load+0x25c/0x4a0 kexec_image_load_default+0x58/0x80 sys_kexec_file_load+0x5c0/0x920 system_call_exception+0x128/0x330 system_call_vectored_common+0x15c/0x2ec To fix it, skip the calculation if drmem_lmb_size() is zero. Fixes: 2377c92e37fe ("powerpc/kexec_file: fix FDT size estimation for kdump kernel") Cc: stable@vger.kernel.org # v5.12+ Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20230130014707.541110-1-mpe@ellerman.id.au
2023-01-30 01:47:07 +00:00
}
/*
* Get the number of CPU nodes in the current DT. This allows to
* reserve places for CPU nodes added since the boot time.
*/
cpu_nodes = 0;
for_each_node_by_type(dn, "cpu") {
cpu_nodes++;
}
if (cpu_nodes > boot_cpu_node_count)
extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
return extra_size;
}
/**
* add_node_props - Reads node properties from device node structure and add
* them to fdt.
* @fdt: Flattened device tree of the kernel
* @node_offset: offset of the node to add a property at
* @dn: device node pointer
*
* Returns 0 on success, negative errno on error.
*/
static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
{
int ret = 0;
struct property *pp;
if (!dn)
return -EINVAL;
for_each_property_of_node(dn, pp) {
ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
if (ret < 0) {
pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
return ret;
}
}
return ret;
}
/**
* update_cpus_node - Update cpus node of flattened device tree using of_root
* device node.
* @fdt: Flattened device tree of the kernel.
*
* Returns 0 on success, negative errno on error.
*/
static int update_cpus_node(void *fdt)
{
struct device_node *cpus_node, *dn;
int cpus_offset, cpus_subnode_offset, ret = 0;
cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
pr_err("Malformed device tree: error reading /cpus node: %s\n",
fdt_strerror(cpus_offset));
return cpus_offset;
}
if (cpus_offset > 0) {
ret = fdt_del_node(fdt, cpus_offset);
if (ret < 0) {
pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
return -EINVAL;
}
}
/* Add cpus node to fdt */
cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
if (cpus_offset < 0) {
pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
return -EINVAL;
}
/* Add cpus node properties */
cpus_node = of_find_node_by_path("/cpus");
ret = add_node_props(fdt, cpus_offset, cpus_node);
of_node_put(cpus_node);
if (ret < 0)
return ret;
/* Loop through all subnodes of cpus and add them to fdt */
for_each_node_by_type(dn, "cpu") {
cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
if (cpus_subnode_offset < 0) {
pr_err("Unable to add %s subnode: %s\n", dn->full_name,
fdt_strerror(cpus_subnode_offset));
ret = cpus_subnode_offset;
goto out;
}
ret = add_node_props(fdt, cpus_subnode_offset, dn);
if (ret < 0)
goto out;
}
out:
of_node_put(dn);
return ret;
}
pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window The pseries platform uses 32bit default DMA window (always 4K pages) and optional 64bit DMA window available via DDW ("Dynamic DMA Windows"), 64K or 2M pages. For ages the default one was not removed and a huge window was created in addition. Things changed with SRIOV-enabled PowerVM which creates a default-and-bigger DMA window in 64bit space (still using 4K pages) for IOV VFs so certain OSes do not need to use the DDW API in order to utilize all available TCE budget. Linux on the other hand removes the default window and creates a bigger one (with more TCEs or/and a bigger page size - 64K/2M) in a bid to map the entire RAM, and if the new window size is smaller than that - it still uses this new bigger window. The result is that the default window is removed but the "ibm,dma-window" property is not. When kdump is invoked, the existing code tries reusing the existing 64bit DMA window which location and parameters are stored in the device tree but this fails as the new property does not make it to the kdump device tree blob. So the code falls back to the default window which does not exist anymore although the device tree says that it does. The result of that is that PCI devices become unusable and cannot be used for kdumping. This preserves the DMA64 and DIRECT64 properties in the device tree blob for the crash kernel. Since the crash kernel setup is done after device drivers are loaded and probed, the proper DMA config is stored at least for boot time devices. Because DDW window is optional and the code configures the default window first, the existing code creates an IOMMU table descriptor for the non-existing default DMA window. It is harmless for kdump as it does not touch the actual window (only reads what is mapped and marks those IO pages as used) but it is bad for kexec which clears it thinking it is a smaller default window rather than a bigger DDW window. This removes the "ibm,dma-window" property from the device tree after a bigger window is created and the crash kernel setup picks it up. Fixes: 381ceda88c4c ("powerpc/pseries/iommu: Make use of DDW for indirect mapping") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629060614.1680476-1-aik@ozlabs.ru
2022-06-29 06:06:14 +00:00
static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
const char *propname)
{
const void *prop, *fdtprop;
int len = 0, fdtlen = 0;
pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window The pseries platform uses 32bit default DMA window (always 4K pages) and optional 64bit DMA window available via DDW ("Dynamic DMA Windows"), 64K or 2M pages. For ages the default one was not removed and a huge window was created in addition. Things changed with SRIOV-enabled PowerVM which creates a default-and-bigger DMA window in 64bit space (still using 4K pages) for IOV VFs so certain OSes do not need to use the DDW API in order to utilize all available TCE budget. Linux on the other hand removes the default window and creates a bigger one (with more TCEs or/and a bigger page size - 64K/2M) in a bid to map the entire RAM, and if the new window size is smaller than that - it still uses this new bigger window. The result is that the default window is removed but the "ibm,dma-window" property is not. When kdump is invoked, the existing code tries reusing the existing 64bit DMA window which location and parameters are stored in the device tree but this fails as the new property does not make it to the kdump device tree blob. So the code falls back to the default window which does not exist anymore although the device tree says that it does. The result of that is that PCI devices become unusable and cannot be used for kdumping. This preserves the DMA64 and DIRECT64 properties in the device tree blob for the crash kernel. Since the crash kernel setup is done after device drivers are loaded and probed, the proper DMA config is stored at least for boot time devices. Because DDW window is optional and the code configures the default window first, the existing code creates an IOMMU table descriptor for the non-existing default DMA window. It is harmless for kdump as it does not touch the actual window (only reads what is mapped and marks those IO pages as used) but it is bad for kexec which clears it thinking it is a smaller default window rather than a bigger DDW window. This removes the "ibm,dma-window" property from the device tree after a bigger window is created and the crash kernel setup picks it up. Fixes: 381ceda88c4c ("powerpc/pseries/iommu: Make use of DDW for indirect mapping") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629060614.1680476-1-aik@ozlabs.ru
2022-06-29 06:06:14 +00:00
prop = of_get_property(dn, propname, &len);
fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
if (fdtprop && !prop)
return fdt_delprop(fdt, node_offset, propname);
pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window The pseries platform uses 32bit default DMA window (always 4K pages) and optional 64bit DMA window available via DDW ("Dynamic DMA Windows"), 64K or 2M pages. For ages the default one was not removed and a huge window was created in addition. Things changed with SRIOV-enabled PowerVM which creates a default-and-bigger DMA window in 64bit space (still using 4K pages) for IOV VFs so certain OSes do not need to use the DDW API in order to utilize all available TCE budget. Linux on the other hand removes the default window and creates a bigger one (with more TCEs or/and a bigger page size - 64K/2M) in a bid to map the entire RAM, and if the new window size is smaller than that - it still uses this new bigger window. The result is that the default window is removed but the "ibm,dma-window" property is not. When kdump is invoked, the existing code tries reusing the existing 64bit DMA window which location and parameters are stored in the device tree but this fails as the new property does not make it to the kdump device tree blob. So the code falls back to the default window which does not exist anymore although the device tree says that it does. The result of that is that PCI devices become unusable and cannot be used for kdumping. This preserves the DMA64 and DIRECT64 properties in the device tree blob for the crash kernel. Since the crash kernel setup is done after device drivers are loaded and probed, the proper DMA config is stored at least for boot time devices. Because DDW window is optional and the code configures the default window first, the existing code creates an IOMMU table descriptor for the non-existing default DMA window. It is harmless for kdump as it does not touch the actual window (only reads what is mapped and marks those IO pages as used) but it is bad for kexec which clears it thinking it is a smaller default window rather than a bigger DDW window. This removes the "ibm,dma-window" property from the device tree after a bigger window is created and the crash kernel setup picks it up. Fixes: 381ceda88c4c ("powerpc/pseries/iommu: Make use of DDW for indirect mapping") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629060614.1680476-1-aik@ozlabs.ru
2022-06-29 06:06:14 +00:00
else if (prop)
return fdt_setprop(fdt, node_offset, propname, prop, len);
else
return -FDT_ERR_NOTFOUND;
pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window The pseries platform uses 32bit default DMA window (always 4K pages) and optional 64bit DMA window available via DDW ("Dynamic DMA Windows"), 64K or 2M pages. For ages the default one was not removed and a huge window was created in addition. Things changed with SRIOV-enabled PowerVM which creates a default-and-bigger DMA window in 64bit space (still using 4K pages) for IOV VFs so certain OSes do not need to use the DDW API in order to utilize all available TCE budget. Linux on the other hand removes the default window and creates a bigger one (with more TCEs or/and a bigger page size - 64K/2M) in a bid to map the entire RAM, and if the new window size is smaller than that - it still uses this new bigger window. The result is that the default window is removed but the "ibm,dma-window" property is not. When kdump is invoked, the existing code tries reusing the existing 64bit DMA window which location and parameters are stored in the device tree but this fails as the new property does not make it to the kdump device tree blob. So the code falls back to the default window which does not exist anymore although the device tree says that it does. The result of that is that PCI devices become unusable and cannot be used for kdumping. This preserves the DMA64 and DIRECT64 properties in the device tree blob for the crash kernel. Since the crash kernel setup is done after device drivers are loaded and probed, the proper DMA config is stored at least for boot time devices. Because DDW window is optional and the code configures the default window first, the existing code creates an IOMMU table descriptor for the non-existing default DMA window. It is harmless for kdump as it does not touch the actual window (only reads what is mapped and marks those IO pages as used) but it is bad for kexec which clears it thinking it is a smaller default window rather than a bigger DDW window. This removes the "ibm,dma-window" property from the device tree after a bigger window is created and the crash kernel setup picks it up. Fixes: 381ceda88c4c ("powerpc/pseries/iommu: Make use of DDW for indirect mapping") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629060614.1680476-1-aik@ozlabs.ru
2022-06-29 06:06:14 +00:00
}
static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
{
struct device_node *dn;
int pci_offset, root_offset, ret = 0;
if (!firmware_has_feature(FW_FEATURE_LPAR))
return 0;
root_offset = fdt_path_offset(fdt, "/");
for_each_node_with_property(dn, dmapropname) {
pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
if (pci_offset < 0)
continue;
ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
if (ret < 0) {
of_node_put(dn);
pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window The pseries platform uses 32bit default DMA window (always 4K pages) and optional 64bit DMA window available via DDW ("Dynamic DMA Windows"), 64K or 2M pages. For ages the default one was not removed and a huge window was created in addition. Things changed with SRIOV-enabled PowerVM which creates a default-and-bigger DMA window in 64bit space (still using 4K pages) for IOV VFs so certain OSes do not need to use the DDW API in order to utilize all available TCE budget. Linux on the other hand removes the default window and creates a bigger one (with more TCEs or/and a bigger page size - 64K/2M) in a bid to map the entire RAM, and if the new window size is smaller than that - it still uses this new bigger window. The result is that the default window is removed but the "ibm,dma-window" property is not. When kdump is invoked, the existing code tries reusing the existing 64bit DMA window which location and parameters are stored in the device tree but this fails as the new property does not make it to the kdump device tree blob. So the code falls back to the default window which does not exist anymore although the device tree says that it does. The result of that is that PCI devices become unusable and cannot be used for kdumping. This preserves the DMA64 and DIRECT64 properties in the device tree blob for the crash kernel. Since the crash kernel setup is done after device drivers are loaded and probed, the proper DMA config is stored at least for boot time devices. Because DDW window is optional and the code configures the default window first, the existing code creates an IOMMU table descriptor for the non-existing default DMA window. It is harmless for kdump as it does not touch the actual window (only reads what is mapped and marks those IO pages as used) but it is bad for kexec which clears it thinking it is a smaller default window rather than a bigger DDW window. This removes the "ibm,dma-window" property from the device tree after a bigger window is created and the crash kernel setup picks it up. Fixes: 381ceda88c4c ("powerpc/pseries/iommu: Make use of DDW for indirect mapping") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629060614.1680476-1-aik@ozlabs.ru
2022-06-29 06:06:14 +00:00
break;
}
pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window The pseries platform uses 32bit default DMA window (always 4K pages) and optional 64bit DMA window available via DDW ("Dynamic DMA Windows"), 64K or 2M pages. For ages the default one was not removed and a huge window was created in addition. Things changed with SRIOV-enabled PowerVM which creates a default-and-bigger DMA window in 64bit space (still using 4K pages) for IOV VFs so certain OSes do not need to use the DDW API in order to utilize all available TCE budget. Linux on the other hand removes the default window and creates a bigger one (with more TCEs or/and a bigger page size - 64K/2M) in a bid to map the entire RAM, and if the new window size is smaller than that - it still uses this new bigger window. The result is that the default window is removed but the "ibm,dma-window" property is not. When kdump is invoked, the existing code tries reusing the existing 64bit DMA window which location and parameters are stored in the device tree but this fails as the new property does not make it to the kdump device tree blob. So the code falls back to the default window which does not exist anymore although the device tree says that it does. The result of that is that PCI devices become unusable and cannot be used for kdumping. This preserves the DMA64 and DIRECT64 properties in the device tree blob for the crash kernel. Since the crash kernel setup is done after device drivers are loaded and probed, the proper DMA config is stored at least for boot time devices. Because DDW window is optional and the code configures the default window first, the existing code creates an IOMMU table descriptor for the non-existing default DMA window. It is harmless for kdump as it does not touch the actual window (only reads what is mapped and marks those IO pages as used) but it is bad for kexec which clears it thinking it is a smaller default window rather than a bigger DDW window. This removes the "ibm,dma-window" property from the device tree after a bigger window is created and the crash kernel setup picks it up. Fixes: 381ceda88c4c ("powerpc/pseries/iommu: Make use of DDW for indirect mapping") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629060614.1680476-1-aik@ozlabs.ru
2022-06-29 06:06:14 +00:00
ret = copy_property(fdt, pci_offset, dn, dmapropname);
if (ret < 0) {
of_node_put(dn);
pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window The pseries platform uses 32bit default DMA window (always 4K pages) and optional 64bit DMA window available via DDW ("Dynamic DMA Windows"), 64K or 2M pages. For ages the default one was not removed and a huge window was created in addition. Things changed with SRIOV-enabled PowerVM which creates a default-and-bigger DMA window in 64bit space (still using 4K pages) for IOV VFs so certain OSes do not need to use the DDW API in order to utilize all available TCE budget. Linux on the other hand removes the default window and creates a bigger one (with more TCEs or/and a bigger page size - 64K/2M) in a bid to map the entire RAM, and if the new window size is smaller than that - it still uses this new bigger window. The result is that the default window is removed but the "ibm,dma-window" property is not. When kdump is invoked, the existing code tries reusing the existing 64bit DMA window which location and parameters are stored in the device tree but this fails as the new property does not make it to the kdump device tree blob. So the code falls back to the default window which does not exist anymore although the device tree says that it does. The result of that is that PCI devices become unusable and cannot be used for kdumping. This preserves the DMA64 and DIRECT64 properties in the device tree blob for the crash kernel. Since the crash kernel setup is done after device drivers are loaded and probed, the proper DMA config is stored at least for boot time devices. Because DDW window is optional and the code configures the default window first, the existing code creates an IOMMU table descriptor for the non-existing default DMA window. It is harmless for kdump as it does not touch the actual window (only reads what is mapped and marks those IO pages as used) but it is bad for kexec which clears it thinking it is a smaller default window rather than a bigger DDW window. This removes the "ibm,dma-window" property from the device tree after a bigger window is created and the crash kernel setup picks it up. Fixes: 381ceda88c4c ("powerpc/pseries/iommu: Make use of DDW for indirect mapping") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629060614.1680476-1-aik@ozlabs.ru
2022-06-29 06:06:14 +00:00
break;
}
pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window The pseries platform uses 32bit default DMA window (always 4K pages) and optional 64bit DMA window available via DDW ("Dynamic DMA Windows"), 64K or 2M pages. For ages the default one was not removed and a huge window was created in addition. Things changed with SRIOV-enabled PowerVM which creates a default-and-bigger DMA window in 64bit space (still using 4K pages) for IOV VFs so certain OSes do not need to use the DDW API in order to utilize all available TCE budget. Linux on the other hand removes the default window and creates a bigger one (with more TCEs or/and a bigger page size - 64K/2M) in a bid to map the entire RAM, and if the new window size is smaller than that - it still uses this new bigger window. The result is that the default window is removed but the "ibm,dma-window" property is not. When kdump is invoked, the existing code tries reusing the existing 64bit DMA window which location and parameters are stored in the device tree but this fails as the new property does not make it to the kdump device tree blob. So the code falls back to the default window which does not exist anymore although the device tree says that it does. The result of that is that PCI devices become unusable and cannot be used for kdumping. This preserves the DMA64 and DIRECT64 properties in the device tree blob for the crash kernel. Since the crash kernel setup is done after device drivers are loaded and probed, the proper DMA config is stored at least for boot time devices. Because DDW window is optional and the code configures the default window first, the existing code creates an IOMMU table descriptor for the non-existing default DMA window. It is harmless for kdump as it does not touch the actual window (only reads what is mapped and marks those IO pages as used) but it is bad for kexec which clears it thinking it is a smaller default window rather than a bigger DDW window. This removes the "ibm,dma-window" property from the device tree after a bigger window is created and the crash kernel setup picks it up. Fixes: 381ceda88c4c ("powerpc/pseries/iommu: Make use of DDW for indirect mapping") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629060614.1680476-1-aik@ozlabs.ru
2022-06-29 06:06:14 +00:00
}
return ret;
}
/**
* setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
* being loaded.
* @image: kexec image being loaded.
* @fdt: Flattened device tree for the next kernel.
* @initrd_load_addr: Address where the next initrd will be loaded.
* @initrd_len: Size of the next initrd, or 0 if there will be none.
* @cmdline: Command line for the next kernel, or NULL if there will
* be none.
*
* Returns 0 on success, negative errno on error.
*/
int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
unsigned long initrd_load_addr,
unsigned long initrd_len, const char *cmdline)
{
struct crash_mem *umem = NULL, *rmem = NULL;
int i, nr_ranges, ret;
/*
* Restrict memory usage for kdump kernel by setting up
* usable memory ranges and memory reserve map.
*/
if (image->type == KEXEC_TYPE_CRASH) {
ret = get_usable_memory_ranges(&umem);
if (ret)
goto out;
ret = update_usable_mem_fdt(fdt, umem);
if (ret) {
pr_err("Error setting up usable-memory property for kdump kernel\n");
goto out;
}
/*
* Ensure we don't touch crashed kernel's memory except the
* first 64K of RAM, which will be backed up.
*/
ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
crashk_res.start - BACKUP_SRC_SIZE);
if (ret) {
pr_err("Error reserving crash memory: %s\n",
fdt_strerror(ret));
goto out;
}
/* Ensure backup region is not used by kdump/capture kernel */
ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
BACKUP_SRC_SIZE);
if (ret) {
pr_err("Error reserving memory for backup: %s\n",
fdt_strerror(ret));
goto out;
}
}
/* Update cpus nodes information to account hotplug CPUs. */
ret = update_cpus_node(fdt);
if (ret < 0)
goto out;
pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window The pseries platform uses 32bit default DMA window (always 4K pages) and optional 64bit DMA window available via DDW ("Dynamic DMA Windows"), 64K or 2M pages. For ages the default one was not removed and a huge window was created in addition. Things changed with SRIOV-enabled PowerVM which creates a default-and-bigger DMA window in 64bit space (still using 4K pages) for IOV VFs so certain OSes do not need to use the DDW API in order to utilize all available TCE budget. Linux on the other hand removes the default window and creates a bigger one (with more TCEs or/and a bigger page size - 64K/2M) in a bid to map the entire RAM, and if the new window size is smaller than that - it still uses this new bigger window. The result is that the default window is removed but the "ibm,dma-window" property is not. When kdump is invoked, the existing code tries reusing the existing 64bit DMA window which location and parameters are stored in the device tree but this fails as the new property does not make it to the kdump device tree blob. So the code falls back to the default window which does not exist anymore although the device tree says that it does. The result of that is that PCI devices become unusable and cannot be used for kdumping. This preserves the DMA64 and DIRECT64 properties in the device tree blob for the crash kernel. Since the crash kernel setup is done after device drivers are loaded and probed, the proper DMA config is stored at least for boot time devices. Because DDW window is optional and the code configures the default window first, the existing code creates an IOMMU table descriptor for the non-existing default DMA window. It is harmless for kdump as it does not touch the actual window (only reads what is mapped and marks those IO pages as used) but it is bad for kexec which clears it thinking it is a smaller default window rather than a bigger DDW window. This removes the "ibm,dma-window" property from the device tree after a bigger window is created and the crash kernel setup picks it up. Fixes: 381ceda88c4c ("powerpc/pseries/iommu: Make use of DDW for indirect mapping") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629060614.1680476-1-aik@ozlabs.ru
2022-06-29 06:06:14 +00:00
ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
if (ret < 0)
goto out;
ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
if (ret < 0)
goto out;
/* Update memory reserve map */
ret = get_reserved_memory_ranges(&rmem);
if (ret)
goto out;
nr_ranges = rmem ? rmem->nr_ranges : 0;
for (i = 0; i < nr_ranges; i++) {
u64 base, size;
base = rmem->ranges[i].start;
size = rmem->ranges[i].end - base + 1;
ret = fdt_add_mem_rsv(fdt, base, size);
if (ret) {
pr_err("Error updating memory reserve map: %s\n",
fdt_strerror(ret));
goto out;
}
}
// If we have PLPKS active, we need to provide the password to the new kernel
if (plpks_is_available())
ret = plpks_populate_fdt(fdt);
out:
kfree(rmem);
kfree(umem);
return ret;
}
/**
* arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
* tce-table, reserved-ranges & such (exclude
* memory ranges) as they can't be used for kexec
* segment buffer. Sets kbuf->mem when a suitable
* memory hole is found.
* @kbuf: Buffer contents and memory parameters.
*
* Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
*
* Returns 0 on success, negative errno on error.
*/
int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
{
struct crash_mem **emem;
u64 buf_min, buf_max;
int ret;
/* Look up the exclude ranges list while locating the memory hole */
emem = &(kbuf->image->arch.exclude_ranges);
if (!(*emem) || ((*emem)->nr_ranges == 0)) {
pr_warn("No exclude range list. Using the default locate mem hole method\n");
return kexec_locate_mem_hole(kbuf);
}
buf_min = kbuf->buf_min;
buf_max = kbuf->buf_max;
/* Segments for kdump kernel should be within crashkernel region */
if (kbuf->image->type == KEXEC_TYPE_CRASH) {
buf_min = (buf_min < crashk_res.start ?
crashk_res.start : buf_min);
buf_max = (buf_max > crashk_res.end ?
crashk_res.end : buf_max);
}
if (buf_min > buf_max) {
pr_err("Invalid buffer min and/or max values\n");
return -EINVAL;
}
if (kbuf->top_down)
ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
*emem);
else
ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
*emem);
/* Add the buffer allocated to the exclude list for the next lookup */
if (!ret) {
add_mem_range(emem, kbuf->mem, kbuf->memsz);
sort_memory_ranges(*emem, true);
} else {
pr_err("Failed to locate memory buffer of size %lu\n",
kbuf->memsz);
}
return ret;
}
/**
* arch_kexec_kernel_image_probe - Does additional handling needed to setup
* kexec segments.
* @image: kexec image being loaded.
* @buf: Buffer pointing to elf data.
* @buf_len: Length of the buffer.
*
* Returns 0 on success, negative errno on error.
*/
int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
unsigned long buf_len)
{
int ret;
/* Get exclude memory ranges needed for setting up kexec segments */
ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
if (ret) {
pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
return ret;
}
return kexec_image_probe_default(image, buf, buf_len);
}
/**
* arch_kimage_file_post_load_cleanup - Frees up all the allocations done
* while loading the image.
* @image: kexec image being loaded.
*
* Returns 0 on success, negative errno on error.
*/
int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
kfree(image->arch.exclude_ranges);
image->arch.exclude_ranges = NULL;
vfree(image->arch.backup_buf);
image->arch.backup_buf = NULL;
vfree(image->elf_headers);
image->elf_headers = NULL;
image->elf_headers_sz = 0;
kvfree(image->arch.fdt);
image->arch.fdt = NULL;
return kexec_image_post_load_cleanup_default(image);
}