linux-stable/fs/bcachefs/journal_types.h

339 lines
7.7 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_JOURNAL_TYPES_H
#define _BCACHEFS_JOURNAL_TYPES_H
#include <linux/cache.h>
#include <linux/workqueue.h>
#include "alloc_types.h"
#include "super_types.h"
#include "fifo.h"
#define JOURNAL_BUF_BITS 2
#define JOURNAL_BUF_NR (1U << JOURNAL_BUF_BITS)
#define JOURNAL_BUF_MASK (JOURNAL_BUF_NR - 1)
/*
* We put JOURNAL_BUF_NR of these in struct journal; we used them for writes to
* the journal that are being staged or in flight.
*/
struct journal_buf {
struct closure io;
struct jset *data;
__BKEY_PADDED(key, BCH_REPLICAS_MAX);
struct bch_devs_list devs_written;
struct closure_waitlist wait;
u64 last_seq; /* copy of data->last_seq */
long expires;
u64 flush_time;
unsigned buf_size; /* size in bytes of @data */
unsigned sectors; /* maximum size for current entry */
unsigned disk_sectors; /* maximum size entry could have been, if
buf_size was bigger */
unsigned u64s_reserved;
bool noflush:1; /* write has already been kicked off, and was noflush */
bool must_flush:1; /* something wants a flush */
bool separate_flush:1;
bool need_flush_to_write_buffer:1;
bool write_started:1;
bool write_allocated:1;
bool write_done:1;
u8 idx;
};
/*
* Something that makes a journal entry dirty - i.e. a btree node that has to be
* flushed:
*/
enum journal_pin_type {
JOURNAL_PIN_btree,
JOURNAL_PIN_key_cache,
JOURNAL_PIN_other,
JOURNAL_PIN_NR,
};
struct journal_entry_pin_list {
struct list_head list[JOURNAL_PIN_NR];
struct list_head flushed;
atomic_t count;
struct bch_devs_list devs;
};
struct journal;
struct journal_entry_pin;
typedef int (*journal_pin_flush_fn)(struct journal *j,
struct journal_entry_pin *, u64);
struct journal_entry_pin {
struct list_head list;
journal_pin_flush_fn flush;
u64 seq;
};
struct journal_res {
bool ref;
u8 idx;
u16 u64s;
u32 offset;
u64 seq;
};
union journal_res_state {
struct {
atomic64_t counter;
};
struct {
u64 v;
};
struct {
u64 cur_entry_offset:20,
idx:2,
unwritten_idx:2,
buf0_count:10,
buf1_count:10,
buf2_count:10,
buf3_count:10;
};
};
/* bytes: */
#define JOURNAL_ENTRY_SIZE_MIN (64U << 10) /* 64k */
#define JOURNAL_ENTRY_SIZE_MAX (4U << 20) /* 4M */
/*
* We stash some journal state as sentinal values in cur_entry_offset:
* note - cur_entry_offset is in units of u64s
*/
#define JOURNAL_ENTRY_OFFSET_MAX ((1U << 20) - 1)
#define JOURNAL_ENTRY_CLOSED_VAL (JOURNAL_ENTRY_OFFSET_MAX - 1)
#define JOURNAL_ENTRY_ERROR_VAL (JOURNAL_ENTRY_OFFSET_MAX)
struct journal_space {
/* Units of 512 bytes sectors: */
unsigned next_entry; /* How big the next journal entry can be */
unsigned total;
};
enum journal_space_from {
journal_space_discarded,
journal_space_clean_ondisk,
journal_space_clean,
journal_space_total,
journal_space_nr,
};
enum journal_flags {
JOURNAL_REPLAY_DONE,
JOURNAL_STARTED,
bcachefs: Don't require flush/fua on every journal write This patch adds a flag to journal entries which, if set, indicates that they weren't done as flush/fua writes. - non flush/fua journal writes don't update last_seq (i.e. they don't free up space in the journal), thus the journal free space calculations now check whether nonflush journal writes are currently allowed (i.e. are we low on free space, or would doing a flush write free up a lot of space in the journal) - write_delay_ms, the user configurable option for when open journal entries are automatically written, is now interpreted as the max delay between flush journal writes (default 1 second). - bch2_journal_flush_seq_async is changed to ensure a flush write >= the requested sequence number has happened - journal read/replay must now ignore, and blacklist, any journal entries newer than the most recent flush entry in the journal. Also, the way the read_entire_journal option is handled has been improved; struct journal_replay now has an entry, 'ignore', for entries that were read but should not be used. - assorted refactoring and improvements related to journal read in journal_io.c and recovery.c Previously, we'd have to issue a flush/fua write every time we accumulated a full journal entry - typically the bucket size. Now we need to issue them much less frequently: when an fsync is requested, or it's been more than write_delay_ms since the last flush, or when we need to free up space in the journal. This is a significant performance improvement on many write heavy workloads. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2020-11-14 14:59:58 +00:00
JOURNAL_MAY_SKIP_FLUSH,
JOURNAL_NEED_FLUSH_WRITE,
JOURNAL_SPACE_LOW,
};
/* Reasons we may fail to get a journal reservation: */
#define JOURNAL_ERRORS() \
x(ok) \
x(retry) \
x(blocked) \
x(max_in_flight) \
x(journal_full) \
x(journal_pin_full) \
x(journal_stuck) \
x(insufficient_devices)
enum journal_errors {
#define x(n) JOURNAL_ERR_##n,
JOURNAL_ERRORS()
#undef x
};
typedef DARRAY(u64) darray_u64;
struct journal_bio {
struct bch_dev *ca;
unsigned buf_idx;
struct bio bio;
};
/* Embedded in struct bch_fs */
struct journal {
/* Fastpath stuff up front: */
struct {
union journal_res_state reservations;
enum bch_watermark watermark;
} __aligned(SMP_CACHE_BYTES);
unsigned long flags;
/* Max size of current journal entry */
unsigned cur_entry_u64s;
unsigned cur_entry_sectors;
/* Reserved space in journal entry to be used just prior to write */
unsigned entry_u64s_reserved;
/*
* 0, or -ENOSPC if waiting on journal reclaim, or -EROFS if
* insufficient devices:
*/
enum journal_errors cur_entry_error;
unsigned buf_size_want;
/*
* We may queue up some things to be journalled (log messages) before
* the journal has actually started - stash them here:
*/
darray_u64 early_journal_entries;
/*
* Protects journal_buf->data, when accessing without a jorunal
* reservation: for synchronization between the btree write buffer code
* and the journal write path:
*/
struct mutex buf_lock;
/*
* Two journal entries -- one is currently open for new entries, the
* other is possibly being written out.
*/
struct journal_buf buf[JOURNAL_BUF_NR];
spinlock_t lock;
/* if nonzero, we may not open a new journal entry: */
unsigned blocked;
/* Used when waiting because the journal was full */
wait_queue_head_t wait;
struct closure_waitlist async_wait;
struct delayed_work write_work;
struct workqueue_struct *wq;
/* Sequence number of most recent journal entry (last entry in @pin) */
atomic64_t seq;
/* seq, last_seq from the most recent journal entry successfully written */
u64 seq_ondisk;
bcachefs: Don't require flush/fua on every journal write This patch adds a flag to journal entries which, if set, indicates that they weren't done as flush/fua writes. - non flush/fua journal writes don't update last_seq (i.e. they don't free up space in the journal), thus the journal free space calculations now check whether nonflush journal writes are currently allowed (i.e. are we low on free space, or would doing a flush write free up a lot of space in the journal) - write_delay_ms, the user configurable option for when open journal entries are automatically written, is now interpreted as the max delay between flush journal writes (default 1 second). - bch2_journal_flush_seq_async is changed to ensure a flush write >= the requested sequence number has happened - journal read/replay must now ignore, and blacklist, any journal entries newer than the most recent flush entry in the journal. Also, the way the read_entire_journal option is handled has been improved; struct journal_replay now has an entry, 'ignore', for entries that were read but should not be used. - assorted refactoring and improvements related to journal read in journal_io.c and recovery.c Previously, we'd have to issue a flush/fua write every time we accumulated a full journal entry - typically the bucket size. Now we need to issue them much less frequently: when an fsync is requested, or it's been more than write_delay_ms since the last flush, or when we need to free up space in the journal. This is a significant performance improvement on many write heavy workloads. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2020-11-14 14:59:58 +00:00
u64 flushed_seq_ondisk;
u64 last_seq_ondisk;
u64 err_seq;
u64 last_empty_seq;
/*
* FIFO of journal entries whose btree updates have not yet been
* written out.
*
* Each entry is a reference count. The position in the FIFO is the
* entry's sequence number relative to @seq.
*
* The journal entry itself holds a reference count, put when the
* journal entry is written out. Each btree node modified by the journal
* entry also holds a reference count, put when the btree node is
* written.
*
* When a reference count reaches zero, the journal entry is no longer
* needed. When all journal entries in the oldest journal bucket are no
* longer needed, the bucket can be discarded and reused.
*/
struct {
u64 front, back, size, mask;
struct journal_entry_pin_list *data;
} pin;
struct journal_space space[journal_space_nr];
u64 replay_journal_seq;
u64 replay_journal_seq_end;
struct write_point wp;
spinlock_t err_lock;
struct mutex reclaim_lock;
/*
* Used for waiting until journal reclaim has freed up space in the
* journal:
*/
wait_queue_head_t reclaim_wait;
struct task_struct *reclaim_thread;
bool reclaim_kicked;
unsigned long next_reclaim;
u64 nr_direct_reclaim;
u64 nr_background_reclaim;
unsigned long last_flushed;
struct journal_entry_pin *flush_in_progress;
bool flush_in_progress_dropped;
wait_queue_head_t pin_flush_wait;
/* protects advancing ja->discard_idx: */
struct mutex discard_lock;
bool can_discard;
bcachefs: Don't require flush/fua on every journal write This patch adds a flag to journal entries which, if set, indicates that they weren't done as flush/fua writes. - non flush/fua journal writes don't update last_seq (i.e. they don't free up space in the journal), thus the journal free space calculations now check whether nonflush journal writes are currently allowed (i.e. are we low on free space, or would doing a flush write free up a lot of space in the journal) - write_delay_ms, the user configurable option for when open journal entries are automatically written, is now interpreted as the max delay between flush journal writes (default 1 second). - bch2_journal_flush_seq_async is changed to ensure a flush write >= the requested sequence number has happened - journal read/replay must now ignore, and blacklist, any journal entries newer than the most recent flush entry in the journal. Also, the way the read_entire_journal option is handled has been improved; struct journal_replay now has an entry, 'ignore', for entries that were read but should not be used. - assorted refactoring and improvements related to journal read in journal_io.c and recovery.c Previously, we'd have to issue a flush/fua write every time we accumulated a full journal entry - typically the bucket size. Now we need to issue them much less frequently: when an fsync is requested, or it's been more than write_delay_ms since the last flush, or when we need to free up space in the journal. This is a significant performance improvement on many write heavy workloads. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2020-11-14 14:59:58 +00:00
unsigned long last_flush_write;
u64 write_start_time;
bcachefs: Don't require flush/fua on every journal write This patch adds a flag to journal entries which, if set, indicates that they weren't done as flush/fua writes. - non flush/fua journal writes don't update last_seq (i.e. they don't free up space in the journal), thus the journal free space calculations now check whether nonflush journal writes are currently allowed (i.e. are we low on free space, or would doing a flush write free up a lot of space in the journal) - write_delay_ms, the user configurable option for when open journal entries are automatically written, is now interpreted as the max delay between flush journal writes (default 1 second). - bch2_journal_flush_seq_async is changed to ensure a flush write >= the requested sequence number has happened - journal read/replay must now ignore, and blacklist, any journal entries newer than the most recent flush entry in the journal. Also, the way the read_entire_journal option is handled has been improved; struct journal_replay now has an entry, 'ignore', for entries that were read but should not be used. - assorted refactoring and improvements related to journal read in journal_io.c and recovery.c Previously, we'd have to issue a flush/fua write every time we accumulated a full journal entry - typically the bucket size. Now we need to issue them much less frequently: when an fsync is requested, or it's been more than write_delay_ms since the last flush, or when we need to free up space in the journal. This is a significant performance improvement on many write heavy workloads. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2020-11-14 14:59:58 +00:00
u64 nr_flush_writes;
u64 nr_noflush_writes;
u64 entry_bytes_written;
bcachefs: Don't require flush/fua on every journal write This patch adds a flag to journal entries which, if set, indicates that they weren't done as flush/fua writes. - non flush/fua journal writes don't update last_seq (i.e. they don't free up space in the journal), thus the journal free space calculations now check whether nonflush journal writes are currently allowed (i.e. are we low on free space, or would doing a flush write free up a lot of space in the journal) - write_delay_ms, the user configurable option for when open journal entries are automatically written, is now interpreted as the max delay between flush journal writes (default 1 second). - bch2_journal_flush_seq_async is changed to ensure a flush write >= the requested sequence number has happened - journal read/replay must now ignore, and blacklist, any journal entries newer than the most recent flush entry in the journal. Also, the way the read_entire_journal option is handled has been improved; struct journal_replay now has an entry, 'ignore', for entries that were read but should not be used. - assorted refactoring and improvements related to journal read in journal_io.c and recovery.c Previously, we'd have to issue a flush/fua write every time we accumulated a full journal entry - typically the bucket size. Now we need to issue them much less frequently: when an fsync is requested, or it's been more than write_delay_ms since the last flush, or when we need to free up space in the journal. This is a significant performance improvement on many write heavy workloads. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2020-11-14 14:59:58 +00:00
struct bch2_time_stats *flush_write_time;
struct bch2_time_stats *noflush_write_time;
struct bch2_time_stats *flush_seq_time;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map res_map;
#endif
} __aligned(SMP_CACHE_BYTES);
/*
* Embedded in struct bch_dev. First three fields refer to the array of journal
* buckets, in bch_sb.
*/
struct journal_device {
/*
* For each journal bucket, contains the max sequence number of the
* journal writes it contains - so we know when a bucket can be reused.
*/
u64 *bucket_seq;
unsigned sectors_free;
/*
* discard_idx <= dirty_idx_ondisk <= dirty_idx <= cur_idx:
*/
unsigned discard_idx; /* Next bucket to discard */
unsigned dirty_idx_ondisk;
unsigned dirty_idx;
unsigned cur_idx; /* Journal bucket we're currently writing to */
unsigned nr;
u64 *buckets;
/* Bio for journal reads/writes to this device */
struct journal_bio *bio[JOURNAL_BUF_NR];
/* for bch_journal_read_device */
struct closure read;
};
/*
* journal_entry_res - reserve space in every journal entry:
*/
struct journal_entry_res {
unsigned u64s;
};
#endif /* _BCACHEFS_JOURNAL_TYPES_H */