linux-stable/kernel/sched/debug.c

1123 lines
26 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* kernel/sched/debug.c
*
* Print the CFS rbtree and other debugging details
*
* Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
*/
/*
* This allows printing both to /sys/kernel/debug/sched/debug and
* to the console
*/
#define SEQ_printf(m, x...) \
do { \
if (m) \
seq_printf(m, x); \
else \
pr_cont(x); \
} while (0)
/*
* Ease the printing of nsec fields:
*/
static long long nsec_high(unsigned long long nsec)
{
if ((long long)nsec < 0) {
nsec = -nsec;
do_div(nsec, 1000000);
return -nsec;
}
do_div(nsec, 1000000);
return nsec;
}
static unsigned long nsec_low(unsigned long long nsec)
{
if ((long long)nsec < 0)
nsec = -nsec;
return do_div(nsec, 1000000);
}
#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
#define SCHED_FEAT(name, enabled) \
#name ,
static const char * const sched_feat_names[] = {
#include "features.h"
};
#undef SCHED_FEAT
static int sched_feat_show(struct seq_file *m, void *v)
{
int i;
for (i = 0; i < __SCHED_FEAT_NR; i++) {
if (!(sysctl_sched_features & (1UL << i)))
seq_puts(m, "NO_");
seq_printf(m, "%s ", sched_feat_names[i]);
}
seq_puts(m, "\n");
return 0;
}
#ifdef CONFIG_JUMP_LABEL
#define jump_label_key__true STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
#define SCHED_FEAT(name, enabled) \
jump_label_key__##enabled ,
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
#include "features.h"
};
#undef SCHED_FEAT
static void sched_feat_disable(int i)
{
sched/debug: Fix potential deadlock when writing to sched_features The following lockdep report can be triggered by writing to /sys/kernel/debug/sched_features: ====================================================== WARNING: possible circular locking dependency detected 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Not tainted ------------------------------------------------------ sh/3358 is trying to acquire lock: 000000004ad3989d (cpu_hotplug_lock.rw_sem){++++}, at: static_key_enable+0x14/0x30 but task is already holding lock: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&sb->s_type->i_mutex_key#3){+.+.}: lock_acquire+0xb8/0x148 down_write+0xac/0x140 start_creating+0x5c/0x168 debugfs_create_dir+0x18/0x220 opp_debug_register+0x8c/0x120 _add_opp_dev+0x104/0x1f8 dev_pm_opp_get_opp_table+0x174/0x340 _of_add_opp_table_v2+0x110/0x760 dev_pm_opp_of_add_table+0x5c/0x240 dev_pm_opp_of_cpumask_add_table+0x5c/0x100 cpufreq_init+0x160/0x430 cpufreq_online+0x1cc/0xe30 cpufreq_add_dev+0x78/0x198 subsys_interface_register+0x168/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #2 (opp_table_lock){+.+.}: lock_acquire+0xb8/0x148 __mutex_lock+0x104/0xf50 mutex_lock_nested+0x1c/0x28 _of_add_opp_table_v2+0xb4/0x760 dev_pm_opp_of_add_table+0x5c/0x240 dev_pm_opp_of_cpumask_add_table+0x5c/0x100 cpufreq_init+0x160/0x430 cpufreq_online+0x1cc/0xe30 cpufreq_add_dev+0x78/0x198 subsys_interface_register+0x168/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #1 (subsys mutex#6){+.+.}: lock_acquire+0xb8/0x148 __mutex_lock+0x104/0xf50 mutex_lock_nested+0x1c/0x28 subsys_interface_register+0xd8/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #0 (cpu_hotplug_lock.rw_sem){++++}: __lock_acquire+0x203c/0x21d0 lock_acquire+0xb8/0x148 cpus_read_lock+0x58/0x1c8 static_key_enable+0x14/0x30 sched_feat_write+0x314/0x428 full_proxy_write+0xa0/0x138 __vfs_write+0xd8/0x388 vfs_write+0xdc/0x318 ksys_write+0xb4/0x138 sys_write+0xc/0x18 __sys_trace_return+0x0/0x4 other info that might help us debug this: Chain exists of: cpu_hotplug_lock.rw_sem --> opp_table_lock --> &sb->s_type->i_mutex_key#3 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&sb->s_type->i_mutex_key#3); lock(opp_table_lock); lock(&sb->s_type->i_mutex_key#3); lock(cpu_hotplug_lock.rw_sem); *** DEADLOCK *** 2 locks held by sh/3358: #0: 00000000a8c4b363 (sb_writers#10){.+.+}, at: vfs_write+0x238/0x318 #1: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428 stack backtrace: CPU: 5 PID: 3358 Comm: sh Not tainted 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Hardware name: Renesas H3ULCB Kingfisher board based on r8a7795 ES2.0+ (DT) Call trace: dump_backtrace+0x0/0x288 show_stack+0x14/0x20 dump_stack+0x13c/0x1ac print_circular_bug.isra.10+0x270/0x438 check_prev_add.constprop.16+0x4dc/0xb98 __lock_acquire+0x203c/0x21d0 lock_acquire+0xb8/0x148 cpus_read_lock+0x58/0x1c8 static_key_enable+0x14/0x30 sched_feat_write+0x314/0x428 full_proxy_write+0xa0/0x138 __vfs_write+0xd8/0x388 vfs_write+0xdc/0x318 ksys_write+0xb4/0x138 sys_write+0xc/0x18 __sys_trace_return+0x0/0x4 This is because when loading the cpufreq_dt module we first acquire cpu_hotplug_lock.rw_sem lock, then in cpufreq_init(), we are taking the &sb->s_type->i_mutex_key lock. But when writing to /sys/kernel/debug/sched_features, the cpu_hotplug_lock.rw_sem lock depends on the &sb->s_type->i_mutex_key lock. To fix this bug, reverse the lock acquisition order when writing to sched_features, this way cpu_hotplug_lock.rw_sem no longer depends on &sb->s_type->i_mutex_key. Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Jiada Wang <jiada_wang@mentor.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Eugeniu Rosca <erosca@de.adit-jv.com> Cc: George G. Davis <george_davis@mentor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180731121222.26195-1-jiada_wang@mentor.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-31 12:12:22 +00:00
static_key_disable_cpuslocked(&sched_feat_keys[i]);
}
static void sched_feat_enable(int i)
{
sched/debug: Fix potential deadlock when writing to sched_features The following lockdep report can be triggered by writing to /sys/kernel/debug/sched_features: ====================================================== WARNING: possible circular locking dependency detected 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Not tainted ------------------------------------------------------ sh/3358 is trying to acquire lock: 000000004ad3989d (cpu_hotplug_lock.rw_sem){++++}, at: static_key_enable+0x14/0x30 but task is already holding lock: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&sb->s_type->i_mutex_key#3){+.+.}: lock_acquire+0xb8/0x148 down_write+0xac/0x140 start_creating+0x5c/0x168 debugfs_create_dir+0x18/0x220 opp_debug_register+0x8c/0x120 _add_opp_dev+0x104/0x1f8 dev_pm_opp_get_opp_table+0x174/0x340 _of_add_opp_table_v2+0x110/0x760 dev_pm_opp_of_add_table+0x5c/0x240 dev_pm_opp_of_cpumask_add_table+0x5c/0x100 cpufreq_init+0x160/0x430 cpufreq_online+0x1cc/0xe30 cpufreq_add_dev+0x78/0x198 subsys_interface_register+0x168/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #2 (opp_table_lock){+.+.}: lock_acquire+0xb8/0x148 __mutex_lock+0x104/0xf50 mutex_lock_nested+0x1c/0x28 _of_add_opp_table_v2+0xb4/0x760 dev_pm_opp_of_add_table+0x5c/0x240 dev_pm_opp_of_cpumask_add_table+0x5c/0x100 cpufreq_init+0x160/0x430 cpufreq_online+0x1cc/0xe30 cpufreq_add_dev+0x78/0x198 subsys_interface_register+0x168/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #1 (subsys mutex#6){+.+.}: lock_acquire+0xb8/0x148 __mutex_lock+0x104/0xf50 mutex_lock_nested+0x1c/0x28 subsys_interface_register+0xd8/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #0 (cpu_hotplug_lock.rw_sem){++++}: __lock_acquire+0x203c/0x21d0 lock_acquire+0xb8/0x148 cpus_read_lock+0x58/0x1c8 static_key_enable+0x14/0x30 sched_feat_write+0x314/0x428 full_proxy_write+0xa0/0x138 __vfs_write+0xd8/0x388 vfs_write+0xdc/0x318 ksys_write+0xb4/0x138 sys_write+0xc/0x18 __sys_trace_return+0x0/0x4 other info that might help us debug this: Chain exists of: cpu_hotplug_lock.rw_sem --> opp_table_lock --> &sb->s_type->i_mutex_key#3 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&sb->s_type->i_mutex_key#3); lock(opp_table_lock); lock(&sb->s_type->i_mutex_key#3); lock(cpu_hotplug_lock.rw_sem); *** DEADLOCK *** 2 locks held by sh/3358: #0: 00000000a8c4b363 (sb_writers#10){.+.+}, at: vfs_write+0x238/0x318 #1: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428 stack backtrace: CPU: 5 PID: 3358 Comm: sh Not tainted 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Hardware name: Renesas H3ULCB Kingfisher board based on r8a7795 ES2.0+ (DT) Call trace: dump_backtrace+0x0/0x288 show_stack+0x14/0x20 dump_stack+0x13c/0x1ac print_circular_bug.isra.10+0x270/0x438 check_prev_add.constprop.16+0x4dc/0xb98 __lock_acquire+0x203c/0x21d0 lock_acquire+0xb8/0x148 cpus_read_lock+0x58/0x1c8 static_key_enable+0x14/0x30 sched_feat_write+0x314/0x428 full_proxy_write+0xa0/0x138 __vfs_write+0xd8/0x388 vfs_write+0xdc/0x318 ksys_write+0xb4/0x138 sys_write+0xc/0x18 __sys_trace_return+0x0/0x4 This is because when loading the cpufreq_dt module we first acquire cpu_hotplug_lock.rw_sem lock, then in cpufreq_init(), we are taking the &sb->s_type->i_mutex_key lock. But when writing to /sys/kernel/debug/sched_features, the cpu_hotplug_lock.rw_sem lock depends on the &sb->s_type->i_mutex_key lock. To fix this bug, reverse the lock acquisition order when writing to sched_features, this way cpu_hotplug_lock.rw_sem no longer depends on &sb->s_type->i_mutex_key. Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Jiada Wang <jiada_wang@mentor.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Eugeniu Rosca <erosca@de.adit-jv.com> Cc: George G. Davis <george_davis@mentor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180731121222.26195-1-jiada_wang@mentor.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-31 12:12:22 +00:00
static_key_enable_cpuslocked(&sched_feat_keys[i]);
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* CONFIG_JUMP_LABEL */
static int sched_feat_set(char *cmp)
{
int i;
int neg = 0;
if (strncmp(cmp, "NO_", 3) == 0) {
neg = 1;
cmp += 3;
}
i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
if (i < 0)
return i;
if (neg) {
sysctl_sched_features &= ~(1UL << i);
sched_feat_disable(i);
} else {
sysctl_sched_features |= (1UL << i);
sched_feat_enable(i);
}
return 0;
}
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[64];
char *cmp;
int ret;
struct inode *inode;
if (cnt > 63)
cnt = 63;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
cmp = strstrip(buf);
/* Ensure the static_key remains in a consistent state */
inode = file_inode(filp);
sched/debug: Fix potential deadlock when writing to sched_features The following lockdep report can be triggered by writing to /sys/kernel/debug/sched_features: ====================================================== WARNING: possible circular locking dependency detected 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Not tainted ------------------------------------------------------ sh/3358 is trying to acquire lock: 000000004ad3989d (cpu_hotplug_lock.rw_sem){++++}, at: static_key_enable+0x14/0x30 but task is already holding lock: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&sb->s_type->i_mutex_key#3){+.+.}: lock_acquire+0xb8/0x148 down_write+0xac/0x140 start_creating+0x5c/0x168 debugfs_create_dir+0x18/0x220 opp_debug_register+0x8c/0x120 _add_opp_dev+0x104/0x1f8 dev_pm_opp_get_opp_table+0x174/0x340 _of_add_opp_table_v2+0x110/0x760 dev_pm_opp_of_add_table+0x5c/0x240 dev_pm_opp_of_cpumask_add_table+0x5c/0x100 cpufreq_init+0x160/0x430 cpufreq_online+0x1cc/0xe30 cpufreq_add_dev+0x78/0x198 subsys_interface_register+0x168/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #2 (opp_table_lock){+.+.}: lock_acquire+0xb8/0x148 __mutex_lock+0x104/0xf50 mutex_lock_nested+0x1c/0x28 _of_add_opp_table_v2+0xb4/0x760 dev_pm_opp_of_add_table+0x5c/0x240 dev_pm_opp_of_cpumask_add_table+0x5c/0x100 cpufreq_init+0x160/0x430 cpufreq_online+0x1cc/0xe30 cpufreq_add_dev+0x78/0x198 subsys_interface_register+0x168/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #1 (subsys mutex#6){+.+.}: lock_acquire+0xb8/0x148 __mutex_lock+0x104/0xf50 mutex_lock_nested+0x1c/0x28 subsys_interface_register+0xd8/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #0 (cpu_hotplug_lock.rw_sem){++++}: __lock_acquire+0x203c/0x21d0 lock_acquire+0xb8/0x148 cpus_read_lock+0x58/0x1c8 static_key_enable+0x14/0x30 sched_feat_write+0x314/0x428 full_proxy_write+0xa0/0x138 __vfs_write+0xd8/0x388 vfs_write+0xdc/0x318 ksys_write+0xb4/0x138 sys_write+0xc/0x18 __sys_trace_return+0x0/0x4 other info that might help us debug this: Chain exists of: cpu_hotplug_lock.rw_sem --> opp_table_lock --> &sb->s_type->i_mutex_key#3 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&sb->s_type->i_mutex_key#3); lock(opp_table_lock); lock(&sb->s_type->i_mutex_key#3); lock(cpu_hotplug_lock.rw_sem); *** DEADLOCK *** 2 locks held by sh/3358: #0: 00000000a8c4b363 (sb_writers#10){.+.+}, at: vfs_write+0x238/0x318 #1: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428 stack backtrace: CPU: 5 PID: 3358 Comm: sh Not tainted 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Hardware name: Renesas H3ULCB Kingfisher board based on r8a7795 ES2.0+ (DT) Call trace: dump_backtrace+0x0/0x288 show_stack+0x14/0x20 dump_stack+0x13c/0x1ac print_circular_bug.isra.10+0x270/0x438 check_prev_add.constprop.16+0x4dc/0xb98 __lock_acquire+0x203c/0x21d0 lock_acquire+0xb8/0x148 cpus_read_lock+0x58/0x1c8 static_key_enable+0x14/0x30 sched_feat_write+0x314/0x428 full_proxy_write+0xa0/0x138 __vfs_write+0xd8/0x388 vfs_write+0xdc/0x318 ksys_write+0xb4/0x138 sys_write+0xc/0x18 __sys_trace_return+0x0/0x4 This is because when loading the cpufreq_dt module we first acquire cpu_hotplug_lock.rw_sem lock, then in cpufreq_init(), we are taking the &sb->s_type->i_mutex_key lock. But when writing to /sys/kernel/debug/sched_features, the cpu_hotplug_lock.rw_sem lock depends on the &sb->s_type->i_mutex_key lock. To fix this bug, reverse the lock acquisition order when writing to sched_features, this way cpu_hotplug_lock.rw_sem no longer depends on &sb->s_type->i_mutex_key. Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Jiada Wang <jiada_wang@mentor.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Eugeniu Rosca <erosca@de.adit-jv.com> Cc: George G. Davis <george_davis@mentor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180731121222.26195-1-jiada_wang@mentor.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-31 12:12:22 +00:00
cpus_read_lock();
inode_lock(inode);
ret = sched_feat_set(cmp);
inode_unlock(inode);
sched/debug: Fix potential deadlock when writing to sched_features The following lockdep report can be triggered by writing to /sys/kernel/debug/sched_features: ====================================================== WARNING: possible circular locking dependency detected 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Not tainted ------------------------------------------------------ sh/3358 is trying to acquire lock: 000000004ad3989d (cpu_hotplug_lock.rw_sem){++++}, at: static_key_enable+0x14/0x30 but task is already holding lock: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&sb->s_type->i_mutex_key#3){+.+.}: lock_acquire+0xb8/0x148 down_write+0xac/0x140 start_creating+0x5c/0x168 debugfs_create_dir+0x18/0x220 opp_debug_register+0x8c/0x120 _add_opp_dev+0x104/0x1f8 dev_pm_opp_get_opp_table+0x174/0x340 _of_add_opp_table_v2+0x110/0x760 dev_pm_opp_of_add_table+0x5c/0x240 dev_pm_opp_of_cpumask_add_table+0x5c/0x100 cpufreq_init+0x160/0x430 cpufreq_online+0x1cc/0xe30 cpufreq_add_dev+0x78/0x198 subsys_interface_register+0x168/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #2 (opp_table_lock){+.+.}: lock_acquire+0xb8/0x148 __mutex_lock+0x104/0xf50 mutex_lock_nested+0x1c/0x28 _of_add_opp_table_v2+0xb4/0x760 dev_pm_opp_of_add_table+0x5c/0x240 dev_pm_opp_of_cpumask_add_table+0x5c/0x100 cpufreq_init+0x160/0x430 cpufreq_online+0x1cc/0xe30 cpufreq_add_dev+0x78/0x198 subsys_interface_register+0x168/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #1 (subsys mutex#6){+.+.}: lock_acquire+0xb8/0x148 __mutex_lock+0x104/0xf50 mutex_lock_nested+0x1c/0x28 subsys_interface_register+0xd8/0x270 cpufreq_register_driver+0x1c8/0x278 dt_cpufreq_probe+0xdc/0x1b8 platform_drv_probe+0xb4/0x168 driver_probe_device+0x318/0x4b0 __device_attach_driver+0xfc/0x1f0 bus_for_each_drv+0xf8/0x180 __device_attach+0x164/0x200 device_initial_probe+0x10/0x18 bus_probe_device+0x110/0x178 device_add+0x6d8/0x908 platform_device_add+0x138/0x3d8 platform_device_register_full+0x1cc/0x1f8 cpufreq_dt_platdev_init+0x174/0x1bc do_one_initcall+0xb8/0x310 kernel_init_freeable+0x4b8/0x56c kernel_init+0x10/0x138 ret_from_fork+0x10/0x18 -> #0 (cpu_hotplug_lock.rw_sem){++++}: __lock_acquire+0x203c/0x21d0 lock_acquire+0xb8/0x148 cpus_read_lock+0x58/0x1c8 static_key_enable+0x14/0x30 sched_feat_write+0x314/0x428 full_proxy_write+0xa0/0x138 __vfs_write+0xd8/0x388 vfs_write+0xdc/0x318 ksys_write+0xb4/0x138 sys_write+0xc/0x18 __sys_trace_return+0x0/0x4 other info that might help us debug this: Chain exists of: cpu_hotplug_lock.rw_sem --> opp_table_lock --> &sb->s_type->i_mutex_key#3 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&sb->s_type->i_mutex_key#3); lock(opp_table_lock); lock(&sb->s_type->i_mutex_key#3); lock(cpu_hotplug_lock.rw_sem); *** DEADLOCK *** 2 locks held by sh/3358: #0: 00000000a8c4b363 (sb_writers#10){.+.+}, at: vfs_write+0x238/0x318 #1: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428 stack backtrace: CPU: 5 PID: 3358 Comm: sh Not tainted 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Hardware name: Renesas H3ULCB Kingfisher board based on r8a7795 ES2.0+ (DT) Call trace: dump_backtrace+0x0/0x288 show_stack+0x14/0x20 dump_stack+0x13c/0x1ac print_circular_bug.isra.10+0x270/0x438 check_prev_add.constprop.16+0x4dc/0xb98 __lock_acquire+0x203c/0x21d0 lock_acquire+0xb8/0x148 cpus_read_lock+0x58/0x1c8 static_key_enable+0x14/0x30 sched_feat_write+0x314/0x428 full_proxy_write+0xa0/0x138 __vfs_write+0xd8/0x388 vfs_write+0xdc/0x318 ksys_write+0xb4/0x138 sys_write+0xc/0x18 __sys_trace_return+0x0/0x4 This is because when loading the cpufreq_dt module we first acquire cpu_hotplug_lock.rw_sem lock, then in cpufreq_init(), we are taking the &sb->s_type->i_mutex_key lock. But when writing to /sys/kernel/debug/sched_features, the cpu_hotplug_lock.rw_sem lock depends on the &sb->s_type->i_mutex_key lock. To fix this bug, reverse the lock acquisition order when writing to sched_features, this way cpu_hotplug_lock.rw_sem no longer depends on &sb->s_type->i_mutex_key. Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Jiada Wang <jiada_wang@mentor.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Eugeniu Rosca <erosca@de.adit-jv.com> Cc: George G. Davis <george_davis@mentor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180731121222.26195-1-jiada_wang@mentor.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-31 12:12:22 +00:00
cpus_read_unlock();
if (ret < 0)
return ret;
*ppos += cnt;
return cnt;
}
static int sched_feat_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_feat_show, NULL);
}
static const struct file_operations sched_feat_fops = {
.open = sched_feat_open,
.write = sched_feat_write,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#ifdef CONFIG_SMP
static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[16];
unsigned int scaling;
if (cnt > 15)
cnt = 15;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = '\0';
if (kstrtouint(buf, 10, &scaling))
return -EINVAL;
if (scaling >= SCHED_TUNABLESCALING_END)
return -EINVAL;
sysctl_sched_tunable_scaling = scaling;
if (sched_update_scaling())
return -EINVAL;
*ppos += cnt;
return cnt;
}
static int sched_scaling_show(struct seq_file *m, void *v)
{
seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
return 0;
}
static int sched_scaling_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_scaling_show, NULL);
}
static const struct file_operations sched_scaling_fops = {
.open = sched_scaling_open,
.write = sched_scaling_write,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif /* SMP */
#ifdef CONFIG_PREEMPT_DYNAMIC
static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[16];
int mode;
if (cnt > 15)
cnt = 15;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
mode = sched_dynamic_mode(strstrip(buf));
if (mode < 0)
return mode;
sched_dynamic_update(mode);
*ppos += cnt;
return cnt;
}
static int sched_dynamic_show(struct seq_file *m, void *v)
{
static const char * preempt_modes[] = {
"none", "voluntary", "full"
};
int i;
for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
if (preempt_dynamic_mode == i)
seq_puts(m, "(");
seq_puts(m, preempt_modes[i]);
if (preempt_dynamic_mode == i)
seq_puts(m, ")");
seq_puts(m, " ");
}
seq_puts(m, "\n");
return 0;
}
static int sched_dynamic_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_dynamic_show, NULL);
}
static const struct file_operations sched_dynamic_fops = {
.open = sched_dynamic_open,
.write = sched_dynamic_write,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif /* CONFIG_PREEMPT_DYNAMIC */
__read_mostly bool sched_debug_verbose;
2023-03-03 18:37:54 +00:00
#ifdef CONFIG_SMP
static struct dentry *sd_dentry;
static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
ssize_t result;
bool orig;
cpus_read_lock();
mutex_lock(&sched_domains_mutex);
orig = sched_debug_verbose;
result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
if (sched_debug_verbose && !orig)
update_sched_domain_debugfs();
else if (!sched_debug_verbose && orig) {
debugfs_remove(sd_dentry);
sd_dentry = NULL;
}
mutex_unlock(&sched_domains_mutex);
cpus_read_unlock();
return result;
}
#else
#define sched_verbose_write debugfs_write_file_bool
#endif
static const struct file_operations sched_verbose_fops = {
.read = debugfs_read_file_bool,
.write = sched_verbose_write,
.open = simple_open,
.llseek = default_llseek,
};
static const struct seq_operations sched_debug_sops;
static int sched_debug_open(struct inode *inode, struct file *filp)
{
return seq_open(filp, &sched_debug_sops);
}
static const struct file_operations sched_debug_fops = {
.open = sched_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static struct dentry *debugfs_sched;
static __init int sched_init_debug(void)
{
struct dentry __maybe_unused *numa;
debugfs_sched = debugfs_create_dir("sched", NULL);
debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
2023-03-03 18:37:54 +00:00
debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
#ifdef CONFIG_PREEMPT_DYNAMIC
debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
#endif
debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
#ifdef CONFIG_SMP
debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
mutex_lock(&sched_domains_mutex);
update_sched_domain_debugfs();
mutex_unlock(&sched_domains_mutex);
#endif
#ifdef CONFIG_NUMA_BALANCING
numa = debugfs_create_dir("numa_balancing", debugfs_sched);
debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
memory tiering: hot page selection with hint page fault latency Patch series "memory tiering: hot page selection", v4. To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory nodes need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). So in this patchset, we implement a new hot page identification algorithm based on the latency between NUMA balancing page table scanning and hint page fault. Which is a kind of mostly frequently accessed (MFU) algorithm. In NUMA balancing memory tiering mode, if there are hot pages in slow memory node and cold pages in fast memory node, we need to promote/demote hot/cold pages between the fast and cold memory nodes. A choice is to promote/demote as fast as possible. But the CPU cycles and memory bandwidth consumed by the high promoting/demoting throughput will hurt the latency of some workload because of accessing inflating and slow memory bandwidth contention. A way to resolve this issue is to restrict the max promoting/demoting throughput. It will take longer to finish the promoting/demoting. But the workload latency will be better. This is implemented in this patchset as the page promotion rate limit mechanism. The promotion hot threshold is workload and system configuration dependent. So in this patchset, a method to adjust the hot threshold automatically is implemented. The basic idea is to control the number of the candidate promotion pages to match the promotion rate limit. We used the pmbench memory accessing benchmark tested the patchset on a 2-socket server system with DRAM and PMEM installed. The test results are as follows, pmbench score promote rate (accesses/s) MB/s ------------- ------------ base 146887704.1 725.6 hot selection 165695601.2 544.0 rate limit 162814569.8 165.2 auto adjustment 170495294.0 136.9 From the results above, With hot page selection patch [1/3], the pmbench score increases about 12.8%, and promote rate (overhead) decreases about 25.0%, compared with base kernel. With rate limit patch [2/3], pmbench score decreases about 1.7%, and promote rate decreases about 69.6%, compared with hot page selection patch. With threshold auto adjustment patch [3/3], pmbench score increases about 4.7%, and promote rate decrease about 17.1%, compared with rate limit patch. Baolin helped to test the patchset with MySQL on a machine which contains 1 DRAM node (30G) and 1 PMEM node (126G). sysbench /usr/share/sysbench/oltp_read_write.lua \ ...... --tables=200 \ --table-size=1000000 \ --report-interval=10 \ --threads=16 \ --time=120 The tps can be improved about 5%. This patch (of 3): To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory node need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). The most frequently accessed (MFU) algorithm is better. So, in this patch we implemented a better hot page selection algorithm. Which is based on NUMA balancing page table scanning and hint page fault as follows, - When the page tables of the processes are scanned to change PTE/PMD to be PROT_NONE, the current time is recorded in struct page as scan time. - When the page is accessed, hint page fault will occur. The scan time is gotten from the struct page. And The hint page fault latency is defined as hint page fault time - scan time The shorter the hint page fault latency of a page is, the higher the probability of their access frequency to be higher. So the hint page fault latency is a better estimation of the page hot/cold. It's hard to find some extra space in struct page to hold the scan time. Fortunately, we can reuse some bits used by the original NUMA balancing. NUMA balancing uses some bits in struct page to store the page accessing CPU and PID (referring to page_cpupid_xchg_last()). Which is used by the multi-stage node selection algorithm to avoid to migrate pages shared accessed by the NUMA nodes back and forth. But for pages in the slow memory node, even if they are shared accessed by multiple NUMA nodes, as long as the pages are hot, they need to be promoted to the fast memory node. So the accessing CPU and PID information are unnecessary for the slow memory pages. We can reuse these bits in struct page to record the scan time. For the fast memory pages, these bits are used as before. For the hot threshold, the default value is 1 second, which works well in our performance test. All pages with hint page fault latency < hot threshold will be considered hot. It's hard for users to determine the hot threshold. So we don't provide a kernel ABI to set it, just provide a debugfs interface for advanced users to experiment. We will continue to work on a hot threshold automatic adjustment mechanism. The downside of the above method is that the response time to the workload hot spot changing may be much longer. For example, - A previous cold memory area becomes hot - The hint page fault will be triggered. But the hint page fault latency isn't shorter than the hot threshold. So the pages will not be promoted. - When the memory area is scanned again, maybe after a scan period, the hint page fault latency measured will be shorter than the hot threshold and the pages will be promoted. To mitigate this, if there are enough free space in the fast memory node, the hot threshold will not be used, all pages will be promoted upon the hint page fault for fast response. Thanks Zhong Jiang reported and tested the fix for a bug when disabling memory tiering mode dynamically. Link: https://lkml.kernel.org/r/20220713083954.34196-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220713083954.34196-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: osalvador <osalvador@suse.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-13 08:39:51 +00:00
debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
#endif
debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
return 0;
}
late_initcall(sched_init_debug);
#ifdef CONFIG_SMP
static cpumask_var_t sd_sysctl_cpus;
static int sd_flags_show(struct seq_file *m, void *v)
{
unsigned long flags = *(unsigned int *)m->private;
int idx;
for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
seq_puts(m, sd_flag_debug[idx].name);
seq_puts(m, " ");
}
seq_puts(m, "\n");
return 0;
}
static int sd_flags_open(struct inode *inode, struct file *file)
{
return single_open(file, sd_flags_show, inode->i_private);
}
static const struct file_operations sd_flags_fops = {
.open = sd_flags_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void register_sd(struct sched_domain *sd, struct dentry *parent)
{
#define SDM(type, mode, member) \
debugfs_create_##type(#member, mode, parent, &sd->member)
SDM(ulong, 0644, min_interval);
SDM(ulong, 0644, max_interval);
SDM(u64, 0644, max_newidle_lb_cost);
SDM(u32, 0644, busy_factor);
SDM(u32, 0644, imbalance_pct);
SDM(u32, 0644, cache_nice_tries);
SDM(str, 0444, name);
#undef SDM
debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
}
void update_sched_domain_debugfs(void)
{
int cpu, i;
sched/debug: Don't update sched_domain debug directories before sched_debug_init() Since CPU capacity asymmetry can stem purely from maximum frequency differences (e.g. Pixel 1), a rebuild of the scheduler topology can be issued upon loading cpufreq, see: arch_topology.c::init_cpu_capacity_callback() Turns out that if this rebuild happens *before* sched_debug_init() is run (which is a late initcall), we end up messing up the sched_domain debug directory: passing a NULL parent to debugfs_create_dir() ends up creating the directory at the debugfs root, which in this case creates /sys/kernel/debug/domains (instead of /sys/kernel/debug/sched/domains). This currently doesn't happen on asymmetric systems which use cpufreq-scpi or cpufreq-dt drivers, as those are loaded via deferred_probe_initcall() (it is also a late initcall, but appears to be ordered *after* sched_debug_init()). Ionela has been working on detecting maximum frequency asymmetry via ACPI, and that actually happens via a *device* initcall, thus before sched_debug_init(), and causes the aforementionned debugfs mayhem. One option would be to punt sched_debug_init() down to fs_initcall_sync(). Preventing update_sched_domain_debugfs() from running before sched_debug_init() appears to be the safer option. Fixes: 3b87f136f8fc ("sched,debug: Convert sysctl sched_domains to debugfs") Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: http://lore.kernel.org/r/20210514095339.12979-1-ionela.voinescu@arm.com
2021-05-18 13:07:25 +00:00
/*
* This can unfortunately be invoked before sched_debug_init() creates
* the debug directory. Don't touch sd_sysctl_cpus until then.
*/
if (!debugfs_sched)
return;
2023-03-03 18:37:54 +00:00
if (!sched_debug_verbose)
return;
if (!cpumask_available(sd_sysctl_cpus)) {
if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
return;
cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
}
2023-03-03 18:37:54 +00:00
if (!sd_dentry) {
sd_dentry = debugfs_create_dir("domains", debugfs_sched);
2023-03-03 18:37:54 +00:00
/* rebuild sd_sysctl_cpus if empty since it gets cleared below */
if (cpumask_empty(sd_sysctl_cpus))
cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
}
for_each_cpu(cpu, sd_sysctl_cpus) {
struct sched_domain *sd;
struct dentry *d_cpu;
char buf[32];
snprintf(buf, sizeof(buf), "cpu%d", cpu);
debugfs_lookup_and_remove(buf, sd_dentry);
d_cpu = debugfs_create_dir(buf, sd_dentry);
i = 0;
for_each_domain(cpu, sd) {
struct dentry *d_sd;
snprintf(buf, sizeof(buf), "domain%d", i);
d_sd = debugfs_create_dir(buf, d_cpu);
register_sd(sd, d_sd);
i++;
}
__cpumask_clear_cpu(cpu, sd_sysctl_cpus);
}
}
void dirty_sched_domain_sysctl(int cpu)
{
if (cpumask_available(sd_sysctl_cpus))
__cpumask_set_cpu(cpu, sd_sysctl_cpus);
}
#endif /* CONFIG_SMP */
sched: include group statistics in /proc/sched_debug Impact: extend /proc/sched_debug info Since the statistics of a group entity isn't exported directly from the kernel, it becomes difficult to obtain some of the group statistics. For example, the current method to obtain exec time of a group entity is not always accurate. One has to read the exec times of all the tasks(/proc/<pid>/sched) in the group and add them. This method fails (or becomes difficult) if we want to collect stats of a group over a duration where tasks get created and terminated. This patch makes it easier to obtain group stats by directly including them in /proc/sched_debug. Stats like group exec time would help user programs (like LTP) to accurately measure the group fairness. An example output of group stats from /proc/sched_debug: cfs_rq[3]:/3/a/1 .exec_clock : 89.598007 .MIN_vruntime : 0.000001 .min_vruntime : 256300.970506 .max_vruntime : 0.000001 .spread : 0.000000 .spread0 : -25373.372248 .nr_running : 0 .load : 0 .yld_exp_empty : 0 .yld_act_empty : 0 .yld_both_empty : 0 .yld_count : 4474 .sched_switch : 0 .sched_count : 40507 .sched_goidle : 12686 .ttwu_count : 15114 .ttwu_local : 11950 .bkl_count : 67 .nr_spread_over : 0 .shares : 0 .se->exec_start : 113676.727170 .se->vruntime : 1592.612714 .se->sum_exec_runtime : 89.598007 .se->wait_start : 0.000000 .se->sleep_start : 0.000000 .se->block_start : 0.000000 .se->sleep_max : 0.000000 .se->block_max : 0.000000 .se->exec_max : 1.000282 .se->slice_max : 1.999750 .se->wait_max : 54.981093 .se->wait_sum : 217.610521 .se->wait_count : 50 .se->load.weight : 2 Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Acked-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-10 16:04:09 +00:00
#ifdef CONFIG_FAIR_GROUP_SCHED
sched: Add 'autogroup' scheduling feature: automated per session task groups A recurring complaint from CFS users is that parallel kbuild has a negative impact on desktop interactivity. This patch implements an idea from Linus, to automatically create task groups. Currently, only per session autogroups are implemented, but the patch leaves the way open for enhancement. Implementation: each task's signal struct contains an inherited pointer to a refcounted autogroup struct containing a task group pointer, the default for all tasks pointing to the init_task_group. When a task calls setsid(), a new task group is created, the process is moved into the new task group, and a reference to the preveious task group is dropped. Child processes inherit this task group thereafter, and increase it's refcount. When the last thread of a process exits, the process's reference is dropped, such that when the last process referencing an autogroup exits, the autogroup is destroyed. At runqueue selection time, IFF a task has no cgroup assignment, its current autogroup is used. Autogroup bandwidth is controllable via setting it's nice level through the proc filesystem: cat /proc/<pid>/autogroup Displays the task's group and the group's nice level. echo <nice level> > /proc/<pid>/autogroup Sets the task group's shares to the weight of nice <level> task. Setting nice level is rate limited for !admin users due to the abuse risk of task group locking. The feature is enabled from boot by default if CONFIG_SCHED_AUTOGROUP=y is selected, but can be disabled via the boot option noautogroup, and can also be turned on/off on the fly via: echo [01] > /proc/sys/kernel/sched_autogroup_enabled ... which will automatically move tasks to/from the root task group. Signed-off-by: Mike Galbraith <efault@gmx.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Markus Trippelsdorf <markus@trippelsdorf.de> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Paul Turner <pjt@google.com> Cc: Oleg Nesterov <oleg@redhat.com> [ Removed the task_group_path() debug code, and fixed !EVENTFD build failure. ] Signed-off-by: Ingo Molnar <mingo@elte.hu> LKML-Reference: <1290281700.28711.9.camel@maggy.simson.net> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-11-30 13:18:03 +00:00
static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
sched: include group statistics in /proc/sched_debug Impact: extend /proc/sched_debug info Since the statistics of a group entity isn't exported directly from the kernel, it becomes difficult to obtain some of the group statistics. For example, the current method to obtain exec time of a group entity is not always accurate. One has to read the exec times of all the tasks(/proc/<pid>/sched) in the group and add them. This method fails (or becomes difficult) if we want to collect stats of a group over a duration where tasks get created and terminated. This patch makes it easier to obtain group stats by directly including them in /proc/sched_debug. Stats like group exec time would help user programs (like LTP) to accurately measure the group fairness. An example output of group stats from /proc/sched_debug: cfs_rq[3]:/3/a/1 .exec_clock : 89.598007 .MIN_vruntime : 0.000001 .min_vruntime : 256300.970506 .max_vruntime : 0.000001 .spread : 0.000000 .spread0 : -25373.372248 .nr_running : 0 .load : 0 .yld_exp_empty : 0 .yld_act_empty : 0 .yld_both_empty : 0 .yld_count : 4474 .sched_switch : 0 .sched_count : 40507 .sched_goidle : 12686 .ttwu_count : 15114 .ttwu_local : 11950 .bkl_count : 67 .nr_spread_over : 0 .shares : 0 .se->exec_start : 113676.727170 .se->vruntime : 1592.612714 .se->sum_exec_runtime : 89.598007 .se->wait_start : 0.000000 .se->sleep_start : 0.000000 .se->block_start : 0.000000 .se->sleep_max : 0.000000 .se->block_max : 0.000000 .se->exec_max : 1.000282 .se->slice_max : 1.999750 .se->wait_max : 54.981093 .se->wait_sum : 217.610521 .se->wait_count : 50 .se->load.weight : 2 Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Acked-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-10 16:04:09 +00:00
{
struct sched_entity *se = tg->se[cpu];
#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
sched: Make struct sched_statistics independent of fair sched class If we want to use the schedstats facility to trace other sched classes, we should make it independent of fair sched class. The struct sched_statistics is the schedular statistics of a task_struct or a task_group. So we can move it into struct task_struct and struct task_group to achieve the goal. After the patch, schestats are orgnized as follows, struct task_struct { ... struct sched_entity se; struct sched_rt_entity rt; struct sched_dl_entity dl; ... struct sched_statistics stats; ... }; Regarding the task group, schedstats is only supported for fair group sched, and a new struct sched_entity_stats is introduced, suggested by Peter - struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; Then with the se in a task_group, we can easily get the stats. The sched_statistics members may be frequently modified when schedstats is enabled, in order to avoid impacting on random data which may in the same cacheline with them, the struct sched_statistics is defined as cacheline aligned. As this patch changes the core struct of scheduler, so I verified the performance it may impact on the scheduler with 'perf bench sched pipe', suggested by Mel. Below is the result, in which all the values are in usecs/op. Before After kernel.sched_schedstats=0 5.2~5.4 5.2~5.4 kernel.sched_schedstats=1 5.3~5.5 5.3~5.5 [These data is a little difference with the earlier version, that is because my old test machine is destroyed so I have to use a new different test machine.] Almost no impact on the sched performance. No functional change. [lkp@intel.com: reported build failure in earlier version] Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-09-05 14:35:41 +00:00
#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \
#F, (long long)schedstat_val(stats->F))
#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
sched: Make struct sched_statistics independent of fair sched class If we want to use the schedstats facility to trace other sched classes, we should make it independent of fair sched class. The struct sched_statistics is the schedular statistics of a task_struct or a task_group. So we can move it into struct task_struct and struct task_group to achieve the goal. After the patch, schestats are orgnized as follows, struct task_struct { ... struct sched_entity se; struct sched_rt_entity rt; struct sched_dl_entity dl; ... struct sched_statistics stats; ... }; Regarding the task group, schedstats is only supported for fair group sched, and a new struct sched_entity_stats is introduced, suggested by Peter - struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; Then with the se in a task_group, we can easily get the stats. The sched_statistics members may be frequently modified when schedstats is enabled, in order to avoid impacting on random data which may in the same cacheline with them, the struct sched_statistics is defined as cacheline aligned. As this patch changes the core struct of scheduler, so I verified the performance it may impact on the scheduler with 'perf bench sched pipe', suggested by Mel. Below is the result, in which all the values are in usecs/op. Before After kernel.sched_schedstats=0 5.2~5.4 5.2~5.4 kernel.sched_schedstats=1 5.3~5.5 5.3~5.5 [These data is a little difference with the earlier version, that is because my old test machine is destroyed so I have to use a new different test machine.] Almost no impact on the sched performance. No functional change. [lkp@intel.com: reported build failure in earlier version] Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-09-05 14:35:41 +00:00
#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \
#F, SPLIT_NS((long long)schedstat_val(stats->F)))
sched: include group statistics in /proc/sched_debug Impact: extend /proc/sched_debug info Since the statistics of a group entity isn't exported directly from the kernel, it becomes difficult to obtain some of the group statistics. For example, the current method to obtain exec time of a group entity is not always accurate. One has to read the exec times of all the tasks(/proc/<pid>/sched) in the group and add them. This method fails (or becomes difficult) if we want to collect stats of a group over a duration where tasks get created and terminated. This patch makes it easier to obtain group stats by directly including them in /proc/sched_debug. Stats like group exec time would help user programs (like LTP) to accurately measure the group fairness. An example output of group stats from /proc/sched_debug: cfs_rq[3]:/3/a/1 .exec_clock : 89.598007 .MIN_vruntime : 0.000001 .min_vruntime : 256300.970506 .max_vruntime : 0.000001 .spread : 0.000000 .spread0 : -25373.372248 .nr_running : 0 .load : 0 .yld_exp_empty : 0 .yld_act_empty : 0 .yld_both_empty : 0 .yld_count : 4474 .sched_switch : 0 .sched_count : 40507 .sched_goidle : 12686 .ttwu_count : 15114 .ttwu_local : 11950 .bkl_count : 67 .nr_spread_over : 0 .shares : 0 .se->exec_start : 113676.727170 .se->vruntime : 1592.612714 .se->sum_exec_runtime : 89.598007 .se->wait_start : 0.000000 .se->sleep_start : 0.000000 .se->block_start : 0.000000 .se->sleep_max : 0.000000 .se->block_max : 0.000000 .se->exec_max : 1.000282 .se->slice_max : 1.999750 .se->wait_max : 54.981093 .se->wait_sum : 217.610521 .se->wait_count : 50 .se->load.weight : 2 Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Acked-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-10 16:04:09 +00:00
if (!se)
return;
sched: include group statistics in /proc/sched_debug Impact: extend /proc/sched_debug info Since the statistics of a group entity isn't exported directly from the kernel, it becomes difficult to obtain some of the group statistics. For example, the current method to obtain exec time of a group entity is not always accurate. One has to read the exec times of all the tasks(/proc/<pid>/sched) in the group and add them. This method fails (or becomes difficult) if we want to collect stats of a group over a duration where tasks get created and terminated. This patch makes it easier to obtain group stats by directly including them in /proc/sched_debug. Stats like group exec time would help user programs (like LTP) to accurately measure the group fairness. An example output of group stats from /proc/sched_debug: cfs_rq[3]:/3/a/1 .exec_clock : 89.598007 .MIN_vruntime : 0.000001 .min_vruntime : 256300.970506 .max_vruntime : 0.000001 .spread : 0.000000 .spread0 : -25373.372248 .nr_running : 0 .load : 0 .yld_exp_empty : 0 .yld_act_empty : 0 .yld_both_empty : 0 .yld_count : 4474 .sched_switch : 0 .sched_count : 40507 .sched_goidle : 12686 .ttwu_count : 15114 .ttwu_local : 11950 .bkl_count : 67 .nr_spread_over : 0 .shares : 0 .se->exec_start : 113676.727170 .se->vruntime : 1592.612714 .se->sum_exec_runtime : 89.598007 .se->wait_start : 0.000000 .se->sleep_start : 0.000000 .se->block_start : 0.000000 .se->sleep_max : 0.000000 .se->block_max : 0.000000 .se->exec_max : 1.000282 .se->slice_max : 1.999750 .se->wait_max : 54.981093 .se->wait_sum : 217.610521 .se->wait_count : 50 .se->load.weight : 2 Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Acked-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-10 16:04:09 +00:00
PN(se->exec_start);
PN(se->vruntime);
PN(se->sum_exec_runtime);
sched/debug: Make schedstats a runtime tunable that is disabled by default schedstats is very useful during debugging and performance tuning but it incurs overhead to calculate the stats. As such, even though it can be disabled at build time, it is often enabled as the information is useful. This patch adds a kernel command-line and sysctl tunable to enable or disable schedstats on demand (when it's built in). It is disabled by default as someone who knows they need it can also learn to enable it when necessary. The benefits are dependent on how scheduler-intensive the workload is. If it is then the patch reduces the number of cycles spent calculating the stats with a small benefit from reducing the cache footprint of the scheduler. These measurements were taken from a 48-core 2-socket machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a single socket machine 8-core machine with Intel i7-3770 processors. netperf-tcp 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%) Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%) Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%) Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%) Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%) Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%) Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%) Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%) Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%) Small gains here, UDP_STREAM showed nothing intresting and neither did the TCP_RR tests. The gains on the 8-core machine were very similar. tbench4 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%) Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%) Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%) Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%) Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%) Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%) Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%) Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%) Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%) Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%) Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%) Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%) Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%) Small gains of 2-4% at low thread counts and otherwise flat. The gains on the 8-core machine were slightly different tbench4 on 8-core i7-3770 single socket machine Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%) Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%) Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%) Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%) Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%) Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%) Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%) Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%) Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%) Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%) In constract, this shows a relatively steady 2-3% gain at higher thread counts. Due to the nature of the patch and the type of workload, it's not a surprise that the result will depend on the CPU used. hackbench-pipes 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%) Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%) Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%) Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%) Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%) Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%) Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%) Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%) Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%) Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%) Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%) Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%) Some small gains and losses and while the variance data is not included, it's close to the noise. The UMA machine did not show anything particularly different pipetest 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v2r2 Min Time 4.13 ( 0.00%) 3.99 ( 3.39%) 1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%) 2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%) 3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%) Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%) Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%) Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%) Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%) Max Time 4.93 ( 0.00%) 4.83 ( 2.03%) Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%) Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%) Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%) Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%) Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%) Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%) Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%) Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%) Small improvement and similar gains were seen on the UMA machine. The gain is small but it stands to reason that doing less work in the scheduler is a good thing. The downside is that the lack of schedstats and tracepoints may be surprising to experts doing performance analysis until they find the existence of the schedstats= parameter or schedstats sysctl. It will be automatically activated for latencytop and sleep profiling to alleviate the problem. For tracepoints, there is a simple warning as it's not safe to activate schedstats in the context when it's known the tracepoint may be wanted but is unavailable. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-05 09:08:36 +00:00
if (schedstat_enabled()) {
struct sched_statistics *stats;
stats = __schedstats_from_se(se);
sched: Make struct sched_statistics independent of fair sched class If we want to use the schedstats facility to trace other sched classes, we should make it independent of fair sched class. The struct sched_statistics is the schedular statistics of a task_struct or a task_group. So we can move it into struct task_struct and struct task_group to achieve the goal. After the patch, schestats are orgnized as follows, struct task_struct { ... struct sched_entity se; struct sched_rt_entity rt; struct sched_dl_entity dl; ... struct sched_statistics stats; ... }; Regarding the task group, schedstats is only supported for fair group sched, and a new struct sched_entity_stats is introduced, suggested by Peter - struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; Then with the se in a task_group, we can easily get the stats. The sched_statistics members may be frequently modified when schedstats is enabled, in order to avoid impacting on random data which may in the same cacheline with them, the struct sched_statistics is defined as cacheline aligned. As this patch changes the core struct of scheduler, so I verified the performance it may impact on the scheduler with 'perf bench sched pipe', suggested by Mel. Below is the result, in which all the values are in usecs/op. Before After kernel.sched_schedstats=0 5.2~5.4 5.2~5.4 kernel.sched_schedstats=1 5.3~5.5 5.3~5.5 [These data is a little difference with the earlier version, that is because my old test machine is destroyed so I have to use a new different test machine.] Almost no impact on the sched performance. No functional change. [lkp@intel.com: reported build failure in earlier version] Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-09-05 14:35:41 +00:00
PN_SCHEDSTAT(wait_start);
PN_SCHEDSTAT(sleep_start);
PN_SCHEDSTAT(block_start);
PN_SCHEDSTAT(sleep_max);
PN_SCHEDSTAT(block_max);
PN_SCHEDSTAT(exec_max);
PN_SCHEDSTAT(slice_max);
PN_SCHEDSTAT(wait_max);
PN_SCHEDSTAT(wait_sum);
P_SCHEDSTAT(wait_count);
sched/debug: Make schedstats a runtime tunable that is disabled by default schedstats is very useful during debugging and performance tuning but it incurs overhead to calculate the stats. As such, even though it can be disabled at build time, it is often enabled as the information is useful. This patch adds a kernel command-line and sysctl tunable to enable or disable schedstats on demand (when it's built in). It is disabled by default as someone who knows they need it can also learn to enable it when necessary. The benefits are dependent on how scheduler-intensive the workload is. If it is then the patch reduces the number of cycles spent calculating the stats with a small benefit from reducing the cache footprint of the scheduler. These measurements were taken from a 48-core 2-socket machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a single socket machine 8-core machine with Intel i7-3770 processors. netperf-tcp 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%) Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%) Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%) Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%) Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%) Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%) Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%) Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%) Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%) Small gains here, UDP_STREAM showed nothing intresting and neither did the TCP_RR tests. The gains on the 8-core machine were very similar. tbench4 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%) Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%) Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%) Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%) Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%) Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%) Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%) Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%) Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%) Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%) Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%) Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%) Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%) Small gains of 2-4% at low thread counts and otherwise flat. The gains on the 8-core machine were slightly different tbench4 on 8-core i7-3770 single socket machine Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%) Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%) Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%) Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%) Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%) Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%) Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%) Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%) Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%) Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%) In constract, this shows a relatively steady 2-3% gain at higher thread counts. Due to the nature of the patch and the type of workload, it's not a surprise that the result will depend on the CPU used. hackbench-pipes 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%) Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%) Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%) Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%) Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%) Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%) Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%) Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%) Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%) Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%) Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%) Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%) Some small gains and losses and while the variance data is not included, it's close to the noise. The UMA machine did not show anything particularly different pipetest 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v2r2 Min Time 4.13 ( 0.00%) 3.99 ( 3.39%) 1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%) 2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%) 3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%) Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%) Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%) Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%) Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%) Max Time 4.93 ( 0.00%) 4.83 ( 2.03%) Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%) Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%) Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%) Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%) Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%) Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%) Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%) Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%) Small improvement and similar gains were seen on the UMA machine. The gain is small but it stands to reason that doing less work in the scheduler is a good thing. The downside is that the lack of schedstats and tracepoints may be surprising to experts doing performance analysis until they find the existence of the schedstats= parameter or schedstats sysctl. It will be automatically activated for latencytop and sleep profiling to alleviate the problem. For tracepoints, there is a simple warning as it's not safe to activate schedstats in the context when it's known the tracepoint may be wanted but is unavailable. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-05 09:08:36 +00:00
}
sched: include group statistics in /proc/sched_debug Impact: extend /proc/sched_debug info Since the statistics of a group entity isn't exported directly from the kernel, it becomes difficult to obtain some of the group statistics. For example, the current method to obtain exec time of a group entity is not always accurate. One has to read the exec times of all the tasks(/proc/<pid>/sched) in the group and add them. This method fails (or becomes difficult) if we want to collect stats of a group over a duration where tasks get created and terminated. This patch makes it easier to obtain group stats by directly including them in /proc/sched_debug. Stats like group exec time would help user programs (like LTP) to accurately measure the group fairness. An example output of group stats from /proc/sched_debug: cfs_rq[3]:/3/a/1 .exec_clock : 89.598007 .MIN_vruntime : 0.000001 .min_vruntime : 256300.970506 .max_vruntime : 0.000001 .spread : 0.000000 .spread0 : -25373.372248 .nr_running : 0 .load : 0 .yld_exp_empty : 0 .yld_act_empty : 0 .yld_both_empty : 0 .yld_count : 4474 .sched_switch : 0 .sched_count : 40507 .sched_goidle : 12686 .ttwu_count : 15114 .ttwu_local : 11950 .bkl_count : 67 .nr_spread_over : 0 .shares : 0 .se->exec_start : 113676.727170 .se->vruntime : 1592.612714 .se->sum_exec_runtime : 89.598007 .se->wait_start : 0.000000 .se->sleep_start : 0.000000 .se->block_start : 0.000000 .se->sleep_max : 0.000000 .se->block_max : 0.000000 .se->exec_max : 1.000282 .se->slice_max : 1.999750 .se->wait_max : 54.981093 .se->wait_sum : 217.610521 .se->wait_count : 50 .se->load.weight : 2 Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Acked-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-10 16:04:09 +00:00
P(se->load.weight);
#ifdef CONFIG_SMP
sched/fair: Rewrite runnable load and utilization average tracking The idea of runnable load average (let runnable time contribute to weight) was proposed by Paul Turner and Ben Segall, and it is still followed by this rewrite. This rewrite aims to solve the following issues: 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated at the granularity of an entity at a time, which results in the cfs_rq's load average is stale or partially updated: at any time, only one entity is up to date, all other entities are effectively lagging behind. This is undesirable. To illustrate, if we have n runnable entities in the cfs_rq, as time elapses, they certainly become outdated: t0: cfs_rq { e1_old, e2_old, ..., en_old } and when we update: t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old } t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old } ... We solve this by combining all runnable entities' load averages together in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based on the fact that if we regard the update as a function, then: w * update(e) = update(w * e) and update(e1) + update(e2) = update(e1 + e2), then w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2) therefore, by this rewrite, we have an entirely updated cfs_rq at the time we update it: t1: update cfs_rq { e1_new, e2_new, ..., en_new } t2: update cfs_rq { e1_new, e2_new, ..., en_new } ... 2. cfs_rq's load average is different between top rq->cfs_rq and other task_group's per CPU cfs_rqs in whether or not blocked_load_average contributes to the load. The basic idea behind runnable load average (the same for utilization) is that the blocked state is taken into account as opposed to only accounting for the currently runnable state. Therefore, the average should include both the runnable/running and blocked load averages. This rewrite does that. In addition, we also combine runnable/running and blocked averages of all entities into the cfs_rq's average, and update it together at once. This is based on the fact that: update(runnable) + update(blocked) = update(runnable + blocked) This significantly reduces the code as we don't need to separately maintain/update runnable/running load and blocked load. 3. How task_group entities' share is calculated is complex and imprecise. We reduce the complexity in this rewrite to allow a very simple rule: the task_group's load_avg is aggregated from its per CPU cfs_rqs's load_avgs. Then group entity's weight is simply proportional to its own cfs_rq's load_avg / task_group's load_avg. To illustrate, if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then, task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share To sum up, this rewrite in principle is equivalent to the current one, but fixes the issues described above. Turns out, it significantly reduces the code complexity and hence increases clarity and efficiency. In addition, the new averages are more smooth/continuous (no spurious spikes and valleys) and updated more consistently and quickly to reflect the load dynamics. As a result, we have less load tracking overhead, better performance, and especially better power efficiency due to more balanced load. Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: arjan@linux.intel.com Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: fengguang.wu@intel.com Cc: len.brown@intel.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: rafael.j.wysocki@intel.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-15 00:04:37 +00:00
P(se->avg.load_avg);
P(se->avg.util_avg);
sched/pelt: Add a new runnable average signal Now that runnable_load_avg has been removed, we can replace it by a new signal that will highlight the runnable pressure on a cfs_rq. This signal track the waiting time of tasks on rq and can help to better define the state of rqs. At now, only util_avg is used to define the state of a rq: A rq with more that around 80% of utilization and more than 1 tasks is considered as overloaded. But the util_avg signal of a rq can become temporaly low after that a task migrated onto another rq which can bias the classification of the rq. When tasks compete for the same rq, their runnable average signal will be higher than util_avg as it will include the waiting time and we can use this signal to better classify cfs_rqs. The new runnable_avg will track the runnable time of a task which simply adds the waiting time to the running time. The runnable _avg of cfs_rq will be the /Sum of se's runnable_avg and the runnable_avg of group entity will follow the one of the rq similarly to util_avg. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-9-mgorman@techsingularity.net
2020-02-24 09:52:18 +00:00
P(se->avg.runnable_avg);
#endif
#undef PN_SCHEDSTAT
sched: include group statistics in /proc/sched_debug Impact: extend /proc/sched_debug info Since the statistics of a group entity isn't exported directly from the kernel, it becomes difficult to obtain some of the group statistics. For example, the current method to obtain exec time of a group entity is not always accurate. One has to read the exec times of all the tasks(/proc/<pid>/sched) in the group and add them. This method fails (or becomes difficult) if we want to collect stats of a group over a duration where tasks get created and terminated. This patch makes it easier to obtain group stats by directly including them in /proc/sched_debug. Stats like group exec time would help user programs (like LTP) to accurately measure the group fairness. An example output of group stats from /proc/sched_debug: cfs_rq[3]:/3/a/1 .exec_clock : 89.598007 .MIN_vruntime : 0.000001 .min_vruntime : 256300.970506 .max_vruntime : 0.000001 .spread : 0.000000 .spread0 : -25373.372248 .nr_running : 0 .load : 0 .yld_exp_empty : 0 .yld_act_empty : 0 .yld_both_empty : 0 .yld_count : 4474 .sched_switch : 0 .sched_count : 40507 .sched_goidle : 12686 .ttwu_count : 15114 .ttwu_local : 11950 .bkl_count : 67 .nr_spread_over : 0 .shares : 0 .se->exec_start : 113676.727170 .se->vruntime : 1592.612714 .se->sum_exec_runtime : 89.598007 .se->wait_start : 0.000000 .se->sleep_start : 0.000000 .se->block_start : 0.000000 .se->sleep_max : 0.000000 .se->block_max : 0.000000 .se->exec_max : 1.000282 .se->slice_max : 1.999750 .se->wait_max : 54.981093 .se->wait_sum : 217.610521 .se->wait_count : 50 .se->load.weight : 2 Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Acked-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-10 16:04:09 +00:00
#undef PN
#undef P_SCHEDSTAT
sched: include group statistics in /proc/sched_debug Impact: extend /proc/sched_debug info Since the statistics of a group entity isn't exported directly from the kernel, it becomes difficult to obtain some of the group statistics. For example, the current method to obtain exec time of a group entity is not always accurate. One has to read the exec times of all the tasks(/proc/<pid>/sched) in the group and add them. This method fails (or becomes difficult) if we want to collect stats of a group over a duration where tasks get created and terminated. This patch makes it easier to obtain group stats by directly including them in /proc/sched_debug. Stats like group exec time would help user programs (like LTP) to accurately measure the group fairness. An example output of group stats from /proc/sched_debug: cfs_rq[3]:/3/a/1 .exec_clock : 89.598007 .MIN_vruntime : 0.000001 .min_vruntime : 256300.970506 .max_vruntime : 0.000001 .spread : 0.000000 .spread0 : -25373.372248 .nr_running : 0 .load : 0 .yld_exp_empty : 0 .yld_act_empty : 0 .yld_both_empty : 0 .yld_count : 4474 .sched_switch : 0 .sched_count : 40507 .sched_goidle : 12686 .ttwu_count : 15114 .ttwu_local : 11950 .bkl_count : 67 .nr_spread_over : 0 .shares : 0 .se->exec_start : 113676.727170 .se->vruntime : 1592.612714 .se->sum_exec_runtime : 89.598007 .se->wait_start : 0.000000 .se->sleep_start : 0.000000 .se->block_start : 0.000000 .se->sleep_max : 0.000000 .se->block_max : 0.000000 .se->exec_max : 1.000282 .se->slice_max : 1.999750 .se->wait_max : 54.981093 .se->wait_sum : 217.610521 .se->wait_count : 50 .se->load.weight : 2 Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Acked-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-10 16:04:09 +00:00
#undef P
}
#endif
#ifdef CONFIG_CGROUP_SCHED
sched/debug: Fix cgroup_path[] serialization The handling of sysrq key can be activated by echoing the key to /proc/sysrq-trigger or via the magic key sequence typed into a terminal that is connected to the system in some way (serial, USB or other mean). In the former case, the handling is done in a user context. In the latter case, it is likely to be in an interrupt context. Currently in print_cpu() of kernel/sched/debug.c, sched_debug_lock is taken with interrupt disabled for the whole duration of the calls to print_*_stats() and print_rq() which could last for the quite some time if the information dump happens on the serial console. If the system has many cpus and the sched_debug_lock is somehow busy (e.g. parallel sysrq-t), the system may hit a hard lockup panic depending on the actually serial console implementation of the system. The purpose of sched_debug_lock is to serialize the use of the global cgroup_path[] buffer in print_cpu(). The rests of the printk calls don't need serialization from sched_debug_lock. Calling printk() with interrupt disabled can still be problematic if multiple instances are running. Allocating a stack buffer of PATH_MAX bytes is not feasible because of the limited size of the kernel stack. The solution implemented in this patch is to allow only one caller at a time to use the full size group_path[], while other simultaneous callers will have to use shorter stack buffers with the possibility of path name truncation. A "..." suffix will be printed if truncation may have happened. The cgroup path name is provided for informational purpose only, so occasional path name truncation should not be a big problem. Fixes: efe25c2c7b3a ("sched: Reinstate group names in /proc/sched_debug") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210415195426.6677-1-longman@redhat.com
2021-04-15 19:54:26 +00:00
static DEFINE_SPINLOCK(sched_debug_lock);
static char group_path[PATH_MAX];
sched/debug: Fix cgroup_path[] serialization The handling of sysrq key can be activated by echoing the key to /proc/sysrq-trigger or via the magic key sequence typed into a terminal that is connected to the system in some way (serial, USB or other mean). In the former case, the handling is done in a user context. In the latter case, it is likely to be in an interrupt context. Currently in print_cpu() of kernel/sched/debug.c, sched_debug_lock is taken with interrupt disabled for the whole duration of the calls to print_*_stats() and print_rq() which could last for the quite some time if the information dump happens on the serial console. If the system has many cpus and the sched_debug_lock is somehow busy (e.g. parallel sysrq-t), the system may hit a hard lockup panic depending on the actually serial console implementation of the system. The purpose of sched_debug_lock is to serialize the use of the global cgroup_path[] buffer in print_cpu(). The rests of the printk calls don't need serialization from sched_debug_lock. Calling printk() with interrupt disabled can still be problematic if multiple instances are running. Allocating a stack buffer of PATH_MAX bytes is not feasible because of the limited size of the kernel stack. The solution implemented in this patch is to allow only one caller at a time to use the full size group_path[], while other simultaneous callers will have to use shorter stack buffers with the possibility of path name truncation. A "..." suffix will be printed if truncation may have happened. The cgroup path name is provided for informational purpose only, so occasional path name truncation should not be a big problem. Fixes: efe25c2c7b3a ("sched: Reinstate group names in /proc/sched_debug") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210415195426.6677-1-longman@redhat.com
2021-04-15 19:54:26 +00:00
static void task_group_path(struct task_group *tg, char *path, int plen)
{
sched/debug: Fix cgroup_path[] serialization The handling of sysrq key can be activated by echoing the key to /proc/sysrq-trigger or via the magic key sequence typed into a terminal that is connected to the system in some way (serial, USB or other mean). In the former case, the handling is done in a user context. In the latter case, it is likely to be in an interrupt context. Currently in print_cpu() of kernel/sched/debug.c, sched_debug_lock is taken with interrupt disabled for the whole duration of the calls to print_*_stats() and print_rq() which could last for the quite some time if the information dump happens on the serial console. If the system has many cpus and the sched_debug_lock is somehow busy (e.g. parallel sysrq-t), the system may hit a hard lockup panic depending on the actually serial console implementation of the system. The purpose of sched_debug_lock is to serialize the use of the global cgroup_path[] buffer in print_cpu(). The rests of the printk calls don't need serialization from sched_debug_lock. Calling printk() with interrupt disabled can still be problematic if multiple instances are running. Allocating a stack buffer of PATH_MAX bytes is not feasible because of the limited size of the kernel stack. The solution implemented in this patch is to allow only one caller at a time to use the full size group_path[], while other simultaneous callers will have to use shorter stack buffers with the possibility of path name truncation. A "..." suffix will be printed if truncation may have happened. The cgroup path name is provided for informational purpose only, so occasional path name truncation should not be a big problem. Fixes: efe25c2c7b3a ("sched: Reinstate group names in /proc/sched_debug") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210415195426.6677-1-longman@redhat.com
2021-04-15 19:54:26 +00:00
if (autogroup_path(tg, path, plen))
return;
sched/debug: Fix cgroup_path[] serialization The handling of sysrq key can be activated by echoing the key to /proc/sysrq-trigger or via the magic key sequence typed into a terminal that is connected to the system in some way (serial, USB or other mean). In the former case, the handling is done in a user context. In the latter case, it is likely to be in an interrupt context. Currently in print_cpu() of kernel/sched/debug.c, sched_debug_lock is taken with interrupt disabled for the whole duration of the calls to print_*_stats() and print_rq() which could last for the quite some time if the information dump happens on the serial console. If the system has many cpus and the sched_debug_lock is somehow busy (e.g. parallel sysrq-t), the system may hit a hard lockup panic depending on the actually serial console implementation of the system. The purpose of sched_debug_lock is to serialize the use of the global cgroup_path[] buffer in print_cpu(). The rests of the printk calls don't need serialization from sched_debug_lock. Calling printk() with interrupt disabled can still be problematic if multiple instances are running. Allocating a stack buffer of PATH_MAX bytes is not feasible because of the limited size of the kernel stack. The solution implemented in this patch is to allow only one caller at a time to use the full size group_path[], while other simultaneous callers will have to use shorter stack buffers with the possibility of path name truncation. A "..." suffix will be printed if truncation may have happened. The cgroup path name is provided for informational purpose only, so occasional path name truncation should not be a big problem. Fixes: efe25c2c7b3a ("sched: Reinstate group names in /proc/sched_debug") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210415195426.6677-1-longman@redhat.com
2021-04-15 19:54:26 +00:00
cgroup_path(tg->css.cgroup, path, plen);
}
sched/debug: Fix cgroup_path[] serialization The handling of sysrq key can be activated by echoing the key to /proc/sysrq-trigger or via the magic key sequence typed into a terminal that is connected to the system in some way (serial, USB or other mean). In the former case, the handling is done in a user context. In the latter case, it is likely to be in an interrupt context. Currently in print_cpu() of kernel/sched/debug.c, sched_debug_lock is taken with interrupt disabled for the whole duration of the calls to print_*_stats() and print_rq() which could last for the quite some time if the information dump happens on the serial console. If the system has many cpus and the sched_debug_lock is somehow busy (e.g. parallel sysrq-t), the system may hit a hard lockup panic depending on the actually serial console implementation of the system. The purpose of sched_debug_lock is to serialize the use of the global cgroup_path[] buffer in print_cpu(). The rests of the printk calls don't need serialization from sched_debug_lock. Calling printk() with interrupt disabled can still be problematic if multiple instances are running. Allocating a stack buffer of PATH_MAX bytes is not feasible because of the limited size of the kernel stack. The solution implemented in this patch is to allow only one caller at a time to use the full size group_path[], while other simultaneous callers will have to use shorter stack buffers with the possibility of path name truncation. A "..." suffix will be printed if truncation may have happened. The cgroup path name is provided for informational purpose only, so occasional path name truncation should not be a big problem. Fixes: efe25c2c7b3a ("sched: Reinstate group names in /proc/sched_debug") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210415195426.6677-1-longman@redhat.com
2021-04-15 19:54:26 +00:00
/*
* Only 1 SEQ_printf_task_group_path() caller can use the full length
* group_path[] for cgroup path. Other simultaneous callers will have
* to use a shorter stack buffer. A "..." suffix is appended at the end
* of the stack buffer so that it will show up in case the output length
* matches the given buffer size to indicate possible path name truncation.
*/
#define SEQ_printf_task_group_path(m, tg, fmt...) \
{ \
if (spin_trylock(&sched_debug_lock)) { \
task_group_path(tg, group_path, sizeof(group_path)); \
SEQ_printf(m, fmt, group_path); \
spin_unlock(&sched_debug_lock); \
} else { \
char buf[128]; \
char *bufend = buf + sizeof(buf) - 3; \
task_group_path(tg, buf, bufend - buf); \
strcpy(bufend - 1, "..."); \
SEQ_printf(m, fmt, buf); \
} \
}
#endif
static void
print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
{
if (task_current(rq, p))
SEQ_printf(m, ">R");
else
SEQ_printf(m, " %c", task_state_to_char(p));
SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
p->comm, task_pid_nr(p),
SPLIT_NS(p->se.vruntime),
entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
SPLIT_NS(p->se.deadline),
SPLIT_NS(p->se.slice),
SPLIT_NS(p->se.sum_exec_runtime),
(long long)(p->nvcsw + p->nivcsw),
p->prio);
SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
sched: Make struct sched_statistics independent of fair sched class If we want to use the schedstats facility to trace other sched classes, we should make it independent of fair sched class. The struct sched_statistics is the schedular statistics of a task_struct or a task_group. So we can move it into struct task_struct and struct task_group to achieve the goal. After the patch, schestats are orgnized as follows, struct task_struct { ... struct sched_entity se; struct sched_rt_entity rt; struct sched_dl_entity dl; ... struct sched_statistics stats; ... }; Regarding the task group, schedstats is only supported for fair group sched, and a new struct sched_entity_stats is introduced, suggested by Peter - struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; Then with the se in a task_group, we can easily get the stats. The sched_statistics members may be frequently modified when schedstats is enabled, in order to avoid impacting on random data which may in the same cacheline with them, the struct sched_statistics is defined as cacheline aligned. As this patch changes the core struct of scheduler, so I verified the performance it may impact on the scheduler with 'perf bench sched pipe', suggested by Mel. Below is the result, in which all the values are in usecs/op. Before After kernel.sched_schedstats=0 5.2~5.4 5.2~5.4 kernel.sched_schedstats=1 5.3~5.5 5.3~5.5 [These data is a little difference with the earlier version, that is because my old test machine is destroyed so I have to use a new different test machine.] Almost no impact on the sched performance. No functional change. [lkp@intel.com: reported build failure in earlier version] Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-09-05 14:35:41 +00:00
SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
SPLIT_NS(p->se.sum_exec_runtime),
SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
#ifdef CONFIG_NUMA_BALANCING
SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
#endif
#ifdef CONFIG_CGROUP_SCHED
sched/debug: Fix cgroup_path[] serialization The handling of sysrq key can be activated by echoing the key to /proc/sysrq-trigger or via the magic key sequence typed into a terminal that is connected to the system in some way (serial, USB or other mean). In the former case, the handling is done in a user context. In the latter case, it is likely to be in an interrupt context. Currently in print_cpu() of kernel/sched/debug.c, sched_debug_lock is taken with interrupt disabled for the whole duration of the calls to print_*_stats() and print_rq() which could last for the quite some time if the information dump happens on the serial console. If the system has many cpus and the sched_debug_lock is somehow busy (e.g. parallel sysrq-t), the system may hit a hard lockup panic depending on the actually serial console implementation of the system. The purpose of sched_debug_lock is to serialize the use of the global cgroup_path[] buffer in print_cpu(). The rests of the printk calls don't need serialization from sched_debug_lock. Calling printk() with interrupt disabled can still be problematic if multiple instances are running. Allocating a stack buffer of PATH_MAX bytes is not feasible because of the limited size of the kernel stack. The solution implemented in this patch is to allow only one caller at a time to use the full size group_path[], while other simultaneous callers will have to use shorter stack buffers with the possibility of path name truncation. A "..." suffix will be printed if truncation may have happened. The cgroup path name is provided for informational purpose only, so occasional path name truncation should not be a big problem. Fixes: efe25c2c7b3a ("sched: Reinstate group names in /proc/sched_debug") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210415195426.6677-1-longman@redhat.com
2021-04-15 19:54:26 +00:00
SEQ_printf_task_group_path(m, task_group(p), " %s")
#endif
SEQ_printf(m, "\n");
}
static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
{
struct task_struct *g, *p;
sched/debug: Adjust newlines for better alignment Scheduler debug stats include newlines that display out of alignment when prefixed by timestamps. For example, the dmesg utility: % echo t > /proc/sysrq-trigger % dmesg ... [ 83.124251] runnable tasks: S task PID tree-key switches prio wait-time sum-exec sum-sleep ----------------------------------------------------------------------------------------------------------- At the same time, some syslog utilities (like rsyslog by default) don't like the additional newlines control characters, saving lines like this to /var/log/messages: Mar 16 16:02:29 localhost kernel: #012runnable tasks:#012 S task PID tree-key ... ^^^^ ^^^^ Clean these up by moving newline characters to their own SEQ_printf invocation. This leaves the /proc/sched_debug unchanged, but brings the entire output into alignment when prefixed: % echo t > /proc/sysrq-trigger % dmesg ... [ 62.410368] runnable tasks: [ 62.410368] S task PID tree-key switches prio wait-time sum-exec sum-sleep [ 62.410369] ----------------------------------------------------------------------------------------------------------- [ 62.410369] I kworker/u12:0 5 1932.215593 332 120 0.000000 3.621252 0.000000 0 0 / and no escaped control characters from rsyslog in /var/log/messages: Mar 16 16:15:06 localhost kernel: runnable tasks: Mar 16 16:15:06 localhost kernel: S task PID tree-key ... Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1521484555-8620-3-git-send-email-joe.lawrence@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-19 18:35:55 +00:00
SEQ_printf(m, "\n");
SEQ_printf(m, "runnable tasks:\n");
SEQ_printf(m, " S task PID tree-key switches prio"
sched/debug: Adjust newlines for better alignment Scheduler debug stats include newlines that display out of alignment when prefixed by timestamps. For example, the dmesg utility: % echo t > /proc/sysrq-trigger % dmesg ... [ 83.124251] runnable tasks: S task PID tree-key switches prio wait-time sum-exec sum-sleep ----------------------------------------------------------------------------------------------------------- At the same time, some syslog utilities (like rsyslog by default) don't like the additional newlines control characters, saving lines like this to /var/log/messages: Mar 16 16:02:29 localhost kernel: #012runnable tasks:#012 S task PID tree-key ... ^^^^ ^^^^ Clean these up by moving newline characters to their own SEQ_printf invocation. This leaves the /proc/sched_debug unchanged, but brings the entire output into alignment when prefixed: % echo t > /proc/sysrq-trigger % dmesg ... [ 62.410368] runnable tasks: [ 62.410368] S task PID tree-key switches prio wait-time sum-exec sum-sleep [ 62.410369] ----------------------------------------------------------------------------------------------------------- [ 62.410369] I kworker/u12:0 5 1932.215593 332 120 0.000000 3.621252 0.000000 0 0 / and no escaped control characters from rsyslog in /var/log/messages: Mar 16 16:15:06 localhost kernel: runnable tasks: Mar 16 16:15:06 localhost kernel: S task PID tree-key ... Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1521484555-8620-3-git-send-email-joe.lawrence@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-19 18:35:55 +00:00
" wait-time sum-exec sum-sleep\n");
SEQ_printf(m, "-------------------------------------------------------"
"------------------------------------------------------\n");
rcu_read_lock();
for_each_process_thread(g, p) {
if (task_cpu(p) != rq_cpu)
continue;
print_task(m, rq, p);
}
rcu_read_unlock();
}
void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread;
struct sched_entity *last, *first, *root;
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
#ifdef CONFIG_FAIR_GROUP_SCHED
sched/debug: Adjust newlines for better alignment Scheduler debug stats include newlines that display out of alignment when prefixed by timestamps. For example, the dmesg utility: % echo t > /proc/sysrq-trigger % dmesg ... [ 83.124251] runnable tasks: S task PID tree-key switches prio wait-time sum-exec sum-sleep ----------------------------------------------------------------------------------------------------------- At the same time, some syslog utilities (like rsyslog by default) don't like the additional newlines control characters, saving lines like this to /var/log/messages: Mar 16 16:02:29 localhost kernel: #012runnable tasks:#012 S task PID tree-key ... ^^^^ ^^^^ Clean these up by moving newline characters to their own SEQ_printf invocation. This leaves the /proc/sched_debug unchanged, but brings the entire output into alignment when prefixed: % echo t > /proc/sysrq-trigger % dmesg ... [ 62.410368] runnable tasks: [ 62.410368] S task PID tree-key switches prio wait-time sum-exec sum-sleep [ 62.410369] ----------------------------------------------------------------------------------------------------------- [ 62.410369] I kworker/u12:0 5 1932.215593 332 120 0.000000 3.621252 0.000000 0 0 / and no escaped control characters from rsyslog in /var/log/messages: Mar 16 16:15:06 localhost kernel: runnable tasks: Mar 16 16:15:06 localhost kernel: S task PID tree-key ... Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1521484555-8620-3-git-send-email-joe.lawrence@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-19 18:35:55 +00:00
SEQ_printf(m, "\n");
sched/debug: Fix cgroup_path[] serialization The handling of sysrq key can be activated by echoing the key to /proc/sysrq-trigger or via the magic key sequence typed into a terminal that is connected to the system in some way (serial, USB or other mean). In the former case, the handling is done in a user context. In the latter case, it is likely to be in an interrupt context. Currently in print_cpu() of kernel/sched/debug.c, sched_debug_lock is taken with interrupt disabled for the whole duration of the calls to print_*_stats() and print_rq() which could last for the quite some time if the information dump happens on the serial console. If the system has many cpus and the sched_debug_lock is somehow busy (e.g. parallel sysrq-t), the system may hit a hard lockup panic depending on the actually serial console implementation of the system. The purpose of sched_debug_lock is to serialize the use of the global cgroup_path[] buffer in print_cpu(). The rests of the printk calls don't need serialization from sched_debug_lock. Calling printk() with interrupt disabled can still be problematic if multiple instances are running. Allocating a stack buffer of PATH_MAX bytes is not feasible because of the limited size of the kernel stack. The solution implemented in this patch is to allow only one caller at a time to use the full size group_path[], while other simultaneous callers will have to use shorter stack buffers with the possibility of path name truncation. A "..." suffix will be printed if truncation may have happened. The cgroup path name is provided for informational purpose only, so occasional path name truncation should not be a big problem. Fixes: efe25c2c7b3a ("sched: Reinstate group names in /proc/sched_debug") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210415195426.6677-1-longman@redhat.com
2021-04-15 19:54:26 +00:00
SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
#else
sched/debug: Adjust newlines for better alignment Scheduler debug stats include newlines that display out of alignment when prefixed by timestamps. For example, the dmesg utility: % echo t > /proc/sysrq-trigger % dmesg ... [ 83.124251] runnable tasks: S task PID tree-key switches prio wait-time sum-exec sum-sleep ----------------------------------------------------------------------------------------------------------- At the same time, some syslog utilities (like rsyslog by default) don't like the additional newlines control characters, saving lines like this to /var/log/messages: Mar 16 16:02:29 localhost kernel: #012runnable tasks:#012 S task PID tree-key ... ^^^^ ^^^^ Clean these up by moving newline characters to their own SEQ_printf invocation. This leaves the /proc/sched_debug unchanged, but brings the entire output into alignment when prefixed: % echo t > /proc/sysrq-trigger % dmesg ... [ 62.410368] runnable tasks: [ 62.410368] S task PID tree-key switches prio wait-time sum-exec sum-sleep [ 62.410369] ----------------------------------------------------------------------------------------------------------- [ 62.410369] I kworker/u12:0 5 1932.215593 332 120 0.000000 3.621252 0.000000 0 0 / and no escaped control characters from rsyslog in /var/log/messages: Mar 16 16:15:06 localhost kernel: runnable tasks: Mar 16 16:15:06 localhost kernel: S task PID tree-key ... Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1521484555-8620-3-git-send-email-joe.lawrence@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-19 18:35:55 +00:00
SEQ_printf(m, "\n");
SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
#endif
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
SPLIT_NS(cfs_rq->exec_clock));
raw_spin_rq_lock_irqsave(rq, flags);
root = __pick_root_entity(cfs_rq);
if (root)
left_vruntime = root->min_vruntime;
first = __pick_first_entity(cfs_rq);
if (first)
left_deadline = first->deadline;
last = __pick_last_entity(cfs_rq);
if (last)
right_vruntime = last->vruntime;
min_vruntime = cfs_rq->min_vruntime;
raw_spin_rq_unlock_irqrestore(rq, flags);
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_deadline",
SPLIT_NS(left_deadline));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime",
SPLIT_NS(left_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
SPLIT_NS(min_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime",
SPLIT_NS(avg_vruntime(cfs_rq)));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime",
SPLIT_NS(right_vruntime));
spread = right_vruntime - left_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
cfs_rq->nr_spread_over);
SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
sched: Cgroup SCHED_IDLE support This extends SCHED_IDLE to cgroups. Interface: cgroup/cpu.idle. 0: default behavior 1: SCHED_IDLE Extending SCHED_IDLE to cgroups means that we incorporate the existing aspects of SCHED_IDLE; a SCHED_IDLE cgroup will count all of its descendant threads towards the idle_h_nr_running count of all of its ancestor cgroups. Thus, sched_idle_rq() will work properly. Additionally, SCHED_IDLE cgroups are configured with minimum weight. There are two key differences between the per-task and per-cgroup SCHED_IDLE interface: - The cgroup interface allows tasks within a SCHED_IDLE hierarchy to maintain their relative weights. The entity that is "idle" is the cgroup, not the tasks themselves. - Since the idle entity is the cgroup, our SCHED_IDLE wakeup preemption decision is not made by comparing the current task with the woken task, but rather by comparing their matching sched_entity. A typical use-case for this is a user that creates an idle and a non-idle subtree. The non-idle subtree will dominate competition vs the idle subtree, but the idle subtree will still be high priority vs other users on the system. The latter is accomplished via comparing matching sched_entity in the waken preemption path (this could also be improved by making the sched_idle_rq() decision dependent on the perspective of a specific task). For now, we maintain the existing SCHED_IDLE semantics. Future patches may make improvements that extend how we treat SCHED_IDLE entities. The per-task_group idle field is an integer that currently only holds either a 0 or a 1. This is explicitly typed as an integer to allow for further extensions to this API. For example, a negative value may indicate a highly latency-sensitive cgroup that should be preferred for preemption/placement/etc. Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20210730020019.1487127-2-joshdon@google.com
2021-07-30 02:00:18 +00:00
SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
cfs_rq->idle_nr_running);
sched: Cgroup SCHED_IDLE support This extends SCHED_IDLE to cgroups. Interface: cgroup/cpu.idle. 0: default behavior 1: SCHED_IDLE Extending SCHED_IDLE to cgroups means that we incorporate the existing aspects of SCHED_IDLE; a SCHED_IDLE cgroup will count all of its descendant threads towards the idle_h_nr_running count of all of its ancestor cgroups. Thus, sched_idle_rq() will work properly. Additionally, SCHED_IDLE cgroups are configured with minimum weight. There are two key differences between the per-task and per-cgroup SCHED_IDLE interface: - The cgroup interface allows tasks within a SCHED_IDLE hierarchy to maintain their relative weights. The entity that is "idle" is the cgroup, not the tasks themselves. - Since the idle entity is the cgroup, our SCHED_IDLE wakeup preemption decision is not made by comparing the current task with the woken task, but rather by comparing their matching sched_entity. A typical use-case for this is a user that creates an idle and a non-idle subtree. The non-idle subtree will dominate competition vs the idle subtree, but the idle subtree will still be high priority vs other users on the system. The latter is accomplished via comparing matching sched_entity in the waken preemption path (this could also be improved by making the sched_idle_rq() decision dependent on the perspective of a specific task). For now, we maintain the existing SCHED_IDLE semantics. Future patches may make improvements that extend how we treat SCHED_IDLE entities. The per-task_group idle field is an integer that currently only holds either a 0 or a 1. This is explicitly typed as an integer to allow for further extensions to this API. For example, a negative value may indicate a highly latency-sensitive cgroup that should be preferred for preemption/placement/etc. Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20210730020019.1487127-2-joshdon@google.com
2021-07-30 02:00:18 +00:00
SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
cfs_rq->idle_h_nr_running);
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
#ifdef CONFIG_SMP
sched/fair: Rewrite runnable load and utilization average tracking The idea of runnable load average (let runnable time contribute to weight) was proposed by Paul Turner and Ben Segall, and it is still followed by this rewrite. This rewrite aims to solve the following issues: 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated at the granularity of an entity at a time, which results in the cfs_rq's load average is stale or partially updated: at any time, only one entity is up to date, all other entities are effectively lagging behind. This is undesirable. To illustrate, if we have n runnable entities in the cfs_rq, as time elapses, they certainly become outdated: t0: cfs_rq { e1_old, e2_old, ..., en_old } and when we update: t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old } t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old } ... We solve this by combining all runnable entities' load averages together in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based on the fact that if we regard the update as a function, then: w * update(e) = update(w * e) and update(e1) + update(e2) = update(e1 + e2), then w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2) therefore, by this rewrite, we have an entirely updated cfs_rq at the time we update it: t1: update cfs_rq { e1_new, e2_new, ..., en_new } t2: update cfs_rq { e1_new, e2_new, ..., en_new } ... 2. cfs_rq's load average is different between top rq->cfs_rq and other task_group's per CPU cfs_rqs in whether or not blocked_load_average contributes to the load. The basic idea behind runnable load average (the same for utilization) is that the blocked state is taken into account as opposed to only accounting for the currently runnable state. Therefore, the average should include both the runnable/running and blocked load averages. This rewrite does that. In addition, we also combine runnable/running and blocked averages of all entities into the cfs_rq's average, and update it together at once. This is based on the fact that: update(runnable) + update(blocked) = update(runnable + blocked) This significantly reduces the code as we don't need to separately maintain/update runnable/running load and blocked load. 3. How task_group entities' share is calculated is complex and imprecise. We reduce the complexity in this rewrite to allow a very simple rule: the task_group's load_avg is aggregated from its per CPU cfs_rqs's load_avgs. Then group entity's weight is simply proportional to its own cfs_rq's load_avg / task_group's load_avg. To illustrate, if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then, task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share To sum up, this rewrite in principle is equivalent to the current one, but fixes the issues described above. Turns out, it significantly reduces the code complexity and hence increases clarity and efficiency. In addition, the new averages are more smooth/continuous (no spurious spikes and valleys) and updated more consistently and quickly to reflect the load dynamics. As a result, we have less load tracking overhead, better performance, and especially better power efficiency due to more balanced load. Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: arjan@linux.intel.com Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: fengguang.wu@intel.com Cc: len.brown@intel.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: rafael.j.wysocki@intel.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-15 00:04:37 +00:00
SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
cfs_rq->avg.load_avg);
sched/pelt: Add a new runnable average signal Now that runnable_load_avg has been removed, we can replace it by a new signal that will highlight the runnable pressure on a cfs_rq. This signal track the waiting time of tasks on rq and can help to better define the state of rqs. At now, only util_avg is used to define the state of a rq: A rq with more that around 80% of utilization and more than 1 tasks is considered as overloaded. But the util_avg signal of a rq can become temporaly low after that a task migrated onto another rq which can bias the classification of the rq. When tasks compete for the same rq, their runnable average signal will be higher than util_avg as it will include the waiting time and we can use this signal to better classify cfs_rqs. The new runnable_avg will track the runnable time of a task which simply adds the waiting time to the running time. The runnable _avg of cfs_rq will be the /Sum of se's runnable_avg and the runnable_avg of group entity will follow the one of the rq similarly to util_avg. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-9-mgorman@techsingularity.net
2020-02-24 09:52:18 +00:00
SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
cfs_rq->avg.runnable_avg);
sched/fair: Rewrite runnable load and utilization average tracking The idea of runnable load average (let runnable time contribute to weight) was proposed by Paul Turner and Ben Segall, and it is still followed by this rewrite. This rewrite aims to solve the following issues: 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated at the granularity of an entity at a time, which results in the cfs_rq's load average is stale or partially updated: at any time, only one entity is up to date, all other entities are effectively lagging behind. This is undesirable. To illustrate, if we have n runnable entities in the cfs_rq, as time elapses, they certainly become outdated: t0: cfs_rq { e1_old, e2_old, ..., en_old } and when we update: t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old } t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old } ... We solve this by combining all runnable entities' load averages together in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based on the fact that if we regard the update as a function, then: w * update(e) = update(w * e) and update(e1) + update(e2) = update(e1 + e2), then w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2) therefore, by this rewrite, we have an entirely updated cfs_rq at the time we update it: t1: update cfs_rq { e1_new, e2_new, ..., en_new } t2: update cfs_rq { e1_new, e2_new, ..., en_new } ... 2. cfs_rq's load average is different between top rq->cfs_rq and other task_group's per CPU cfs_rqs in whether or not blocked_load_average contributes to the load. The basic idea behind runnable load average (the same for utilization) is that the blocked state is taken into account as opposed to only accounting for the currently runnable state. Therefore, the average should include both the runnable/running and blocked load averages. This rewrite does that. In addition, we also combine runnable/running and blocked averages of all entities into the cfs_rq's average, and update it together at once. This is based on the fact that: update(runnable) + update(blocked) = update(runnable + blocked) This significantly reduces the code as we don't need to separately maintain/update runnable/running load and blocked load. 3. How task_group entities' share is calculated is complex and imprecise. We reduce the complexity in this rewrite to allow a very simple rule: the task_group's load_avg is aggregated from its per CPU cfs_rqs's load_avgs. Then group entity's weight is simply proportional to its own cfs_rq's load_avg / task_group's load_avg. To illustrate, if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then, task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share To sum up, this rewrite in principle is equivalent to the current one, but fixes the issues described above. Turns out, it significantly reduces the code complexity and hence increases clarity and efficiency. In addition, the new averages are more smooth/continuous (no spurious spikes and valleys) and updated more consistently and quickly to reflect the load dynamics. As a result, we have less load tracking overhead, better performance, and especially better power efficiency due to more balanced load. Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: arjan@linux.intel.com Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: fengguang.wu@intel.com Cc: len.brown@intel.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: rafael.j.wysocki@intel.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-15 00:04:37 +00:00
SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
cfs_rq->avg.util_avg);
SEQ_printf(m, " .%-30s: %u\n", "util_est",
cfs_rq->avg.util_est);
SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
cfs_rq->removed.load_avg);
SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
cfs_rq->removed.util_avg);
sched/pelt: Add a new runnable average signal Now that runnable_load_avg has been removed, we can replace it by a new signal that will highlight the runnable pressure on a cfs_rq. This signal track the waiting time of tasks on rq and can help to better define the state of rqs. At now, only util_avg is used to define the state of a rq: A rq with more that around 80% of utilization and more than 1 tasks is considered as overloaded. But the util_avg signal of a rq can become temporaly low after that a task migrated onto another rq which can bias the classification of the rq. When tasks compete for the same rq, their runnable average signal will be higher than util_avg as it will include the waiting time and we can use this signal to better classify cfs_rqs. The new runnable_avg will track the runnable time of a task which simply adds the waiting time to the running time. The runnable _avg of cfs_rq will be the /Sum of se's runnable_avg and the runnable_avg of group entity will follow the one of the rq similarly to util_avg. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-9-mgorman@techsingularity.net
2020-02-24 09:52:18 +00:00
SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
cfs_rq->removed.runnable_avg);
#ifdef CONFIG_FAIR_GROUP_SCHED
sched/fair: Rewrite runnable load and utilization average tracking The idea of runnable load average (let runnable time contribute to weight) was proposed by Paul Turner and Ben Segall, and it is still followed by this rewrite. This rewrite aims to solve the following issues: 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated at the granularity of an entity at a time, which results in the cfs_rq's load average is stale or partially updated: at any time, only one entity is up to date, all other entities are effectively lagging behind. This is undesirable. To illustrate, if we have n runnable entities in the cfs_rq, as time elapses, they certainly become outdated: t0: cfs_rq { e1_old, e2_old, ..., en_old } and when we update: t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old } t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old } ... We solve this by combining all runnable entities' load averages together in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based on the fact that if we regard the update as a function, then: w * update(e) = update(w * e) and update(e1) + update(e2) = update(e1 + e2), then w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2) therefore, by this rewrite, we have an entirely updated cfs_rq at the time we update it: t1: update cfs_rq { e1_new, e2_new, ..., en_new } t2: update cfs_rq { e1_new, e2_new, ..., en_new } ... 2. cfs_rq's load average is different between top rq->cfs_rq and other task_group's per CPU cfs_rqs in whether or not blocked_load_average contributes to the load. The basic idea behind runnable load average (the same for utilization) is that the blocked state is taken into account as opposed to only accounting for the currently runnable state. Therefore, the average should include both the runnable/running and blocked load averages. This rewrite does that. In addition, we also combine runnable/running and blocked averages of all entities into the cfs_rq's average, and update it together at once. This is based on the fact that: update(runnable) + update(blocked) = update(runnable + blocked) This significantly reduces the code as we don't need to separately maintain/update runnable/running load and blocked load. 3. How task_group entities' share is calculated is complex and imprecise. We reduce the complexity in this rewrite to allow a very simple rule: the task_group's load_avg is aggregated from its per CPU cfs_rqs's load_avgs. Then group entity's weight is simply proportional to its own cfs_rq's load_avg / task_group's load_avg. To illustrate, if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then, task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share To sum up, this rewrite in principle is equivalent to the current one, but fixes the issues described above. Turns out, it significantly reduces the code complexity and hence increases clarity and efficiency. In addition, the new averages are more smooth/continuous (no spurious spikes and valleys) and updated more consistently and quickly to reflect the load dynamics. As a result, we have less load tracking overhead, better performance, and especially better power efficiency due to more balanced load. Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: arjan@linux.intel.com Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: fengguang.wu@intel.com Cc: len.brown@intel.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: rafael.j.wysocki@intel.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-15 00:04:37 +00:00
SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
cfs_rq->tg_load_avg_contrib);
SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
atomic_long_read(&cfs_rq->tg->load_avg));
#endif
#endif
#ifdef CONFIG_CFS_BANDWIDTH
SEQ_printf(m, " .%-30s: %d\n", "throttled",
cfs_rq->throttled);
SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
cfs_rq->throttle_count);
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
sched: include group statistics in /proc/sched_debug Impact: extend /proc/sched_debug info Since the statistics of a group entity isn't exported directly from the kernel, it becomes difficult to obtain some of the group statistics. For example, the current method to obtain exec time of a group entity is not always accurate. One has to read the exec times of all the tasks(/proc/<pid>/sched) in the group and add them. This method fails (or becomes difficult) if we want to collect stats of a group over a duration where tasks get created and terminated. This patch makes it easier to obtain group stats by directly including them in /proc/sched_debug. Stats like group exec time would help user programs (like LTP) to accurately measure the group fairness. An example output of group stats from /proc/sched_debug: cfs_rq[3]:/3/a/1 .exec_clock : 89.598007 .MIN_vruntime : 0.000001 .min_vruntime : 256300.970506 .max_vruntime : 0.000001 .spread : 0.000000 .spread0 : -25373.372248 .nr_running : 0 .load : 0 .yld_exp_empty : 0 .yld_act_empty : 0 .yld_both_empty : 0 .yld_count : 4474 .sched_switch : 0 .sched_count : 40507 .sched_goidle : 12686 .ttwu_count : 15114 .ttwu_local : 11950 .bkl_count : 67 .nr_spread_over : 0 .shares : 0 .se->exec_start : 113676.727170 .se->vruntime : 1592.612714 .se->sum_exec_runtime : 89.598007 .se->wait_start : 0.000000 .se->sleep_start : 0.000000 .se->block_start : 0.000000 .se->sleep_max : 0.000000 .se->block_max : 0.000000 .se->exec_max : 1.000282 .se->slice_max : 1.999750 .se->wait_max : 54.981093 .se->wait_sum : 217.610521 .se->wait_count : 50 .se->load.weight : 2 Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Acked-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-10 16:04:09 +00:00
print_cfs_group_stats(m, cpu, cfs_rq->tg);
#endif
}
void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
{
#ifdef CONFIG_RT_GROUP_SCHED
sched/debug: Adjust newlines for better alignment Scheduler debug stats include newlines that display out of alignment when prefixed by timestamps. For example, the dmesg utility: % echo t > /proc/sysrq-trigger % dmesg ... [ 83.124251] runnable tasks: S task PID tree-key switches prio wait-time sum-exec sum-sleep ----------------------------------------------------------------------------------------------------------- At the same time, some syslog utilities (like rsyslog by default) don't like the additional newlines control characters, saving lines like this to /var/log/messages: Mar 16 16:02:29 localhost kernel: #012runnable tasks:#012 S task PID tree-key ... ^^^^ ^^^^ Clean these up by moving newline characters to their own SEQ_printf invocation. This leaves the /proc/sched_debug unchanged, but brings the entire output into alignment when prefixed: % echo t > /proc/sysrq-trigger % dmesg ... [ 62.410368] runnable tasks: [ 62.410368] S task PID tree-key switches prio wait-time sum-exec sum-sleep [ 62.410369] ----------------------------------------------------------------------------------------------------------- [ 62.410369] I kworker/u12:0 5 1932.215593 332 120 0.000000 3.621252 0.000000 0 0 / and no escaped control characters from rsyslog in /var/log/messages: Mar 16 16:15:06 localhost kernel: runnable tasks: Mar 16 16:15:06 localhost kernel: S task PID tree-key ... Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1521484555-8620-3-git-send-email-joe.lawrence@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-19 18:35:55 +00:00
SEQ_printf(m, "\n");
sched/debug: Fix cgroup_path[] serialization The handling of sysrq key can be activated by echoing the key to /proc/sysrq-trigger or via the magic key sequence typed into a terminal that is connected to the system in some way (serial, USB or other mean). In the former case, the handling is done in a user context. In the latter case, it is likely to be in an interrupt context. Currently in print_cpu() of kernel/sched/debug.c, sched_debug_lock is taken with interrupt disabled for the whole duration of the calls to print_*_stats() and print_rq() which could last for the quite some time if the information dump happens on the serial console. If the system has many cpus and the sched_debug_lock is somehow busy (e.g. parallel sysrq-t), the system may hit a hard lockup panic depending on the actually serial console implementation of the system. The purpose of sched_debug_lock is to serialize the use of the global cgroup_path[] buffer in print_cpu(). The rests of the printk calls don't need serialization from sched_debug_lock. Calling printk() with interrupt disabled can still be problematic if multiple instances are running. Allocating a stack buffer of PATH_MAX bytes is not feasible because of the limited size of the kernel stack. The solution implemented in this patch is to allow only one caller at a time to use the full size group_path[], while other simultaneous callers will have to use shorter stack buffers with the possibility of path name truncation. A "..." suffix will be printed if truncation may have happened. The cgroup path name is provided for informational purpose only, so occasional path name truncation should not be a big problem. Fixes: efe25c2c7b3a ("sched: Reinstate group names in /proc/sched_debug") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210415195426.6677-1-longman@redhat.com
2021-04-15 19:54:26 +00:00
SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
#else
sched/debug: Adjust newlines for better alignment Scheduler debug stats include newlines that display out of alignment when prefixed by timestamps. For example, the dmesg utility: % echo t > /proc/sysrq-trigger % dmesg ... [ 83.124251] runnable tasks: S task PID tree-key switches prio wait-time sum-exec sum-sleep ----------------------------------------------------------------------------------------------------------- At the same time, some syslog utilities (like rsyslog by default) don't like the additional newlines control characters, saving lines like this to /var/log/messages: Mar 16 16:02:29 localhost kernel: #012runnable tasks:#012 S task PID tree-key ... ^^^^ ^^^^ Clean these up by moving newline characters to their own SEQ_printf invocation. This leaves the /proc/sched_debug unchanged, but brings the entire output into alignment when prefixed: % echo t > /proc/sysrq-trigger % dmesg ... [ 62.410368] runnable tasks: [ 62.410368] S task PID tree-key switches prio wait-time sum-exec sum-sleep [ 62.410369] ----------------------------------------------------------------------------------------------------------- [ 62.410369] I kworker/u12:0 5 1932.215593 332 120 0.000000 3.621252 0.000000 0 0 / and no escaped control characters from rsyslog in /var/log/messages: Mar 16 16:15:06 localhost kernel: runnable tasks: Mar 16 16:15:06 localhost kernel: S task PID tree-key ... Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1521484555-8620-3-git-send-email-joe.lawrence@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-19 18:35:55 +00:00
SEQ_printf(m, "\n");
SEQ_printf(m, "rt_rq[%d]:\n", cpu);
#endif
#define P(x) \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
#define PU(x) \
SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
PU(rt_nr_running);
P(rt_throttled);
PN(rt_time);
PN(rt_runtime);
#undef PN
#undef PU
#undef P
}
void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
{
sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched_debug Playing with SCHED_DEADLINE and cpusets, I found that I was unable to create new SCHED_DEADLINE tasks, with the error of EBUSY as if the bandwidth was already used up. I then realized there wa no way to see what bandwidth is used by the runqueues to debug the issue. By adding the dl_bw->bw and dl_bw->total_bw to the output of the deadline info in /proc/sched_debug, this allows us to see what bandwidth has been reserved and where a problem may exist. For example, before the issue we see the ratio of the bandwidth: # cat /proc/sys/kernel/sched_rt_runtime_us 950000 # cat /proc/sys/kernel/sched_rt_period_us 1000000 # grep dl /proc/sched_debug dl_rq[0]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[1]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[2]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[3]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[4]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[5]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[6]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[7]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 Note: (950000 / 1000000) << 20 == 996147 After I played with cpusets and hit the issue, the result is now: # grep dl /proc/sched_debug dl_rq[0]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 dl_rq[1]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 104857 dl_rq[2]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 104857 dl_rq[3]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 104857 dl_rq[4]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 dl_rq[5]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 dl_rq[6]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 dl_rq[7]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 This shows that there is definitely a problem as we should never have a negative total bandwidth. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Clark Williams <williams@redhat.com> Cc: Juri Lelli <juri.lelli@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160222212825.756849091@goodmis.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-22 21:26:52 +00:00
struct dl_bw *dl_bw;
sched/debug: Adjust newlines for better alignment Scheduler debug stats include newlines that display out of alignment when prefixed by timestamps. For example, the dmesg utility: % echo t > /proc/sysrq-trigger % dmesg ... [ 83.124251] runnable tasks: S task PID tree-key switches prio wait-time sum-exec sum-sleep ----------------------------------------------------------------------------------------------------------- At the same time, some syslog utilities (like rsyslog by default) don't like the additional newlines control characters, saving lines like this to /var/log/messages: Mar 16 16:02:29 localhost kernel: #012runnable tasks:#012 S task PID tree-key ... ^^^^ ^^^^ Clean these up by moving newline characters to their own SEQ_printf invocation. This leaves the /proc/sched_debug unchanged, but brings the entire output into alignment when prefixed: % echo t > /proc/sysrq-trigger % dmesg ... [ 62.410368] runnable tasks: [ 62.410368] S task PID tree-key switches prio wait-time sum-exec sum-sleep [ 62.410369] ----------------------------------------------------------------------------------------------------------- [ 62.410369] I kworker/u12:0 5 1932.215593 332 120 0.000000 3.621252 0.000000 0 0 / and no escaped control characters from rsyslog in /var/log/messages: Mar 16 16:15:06 localhost kernel: runnable tasks: Mar 16 16:15:06 localhost kernel: S task PID tree-key ... Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1521484555-8620-3-git-send-email-joe.lawrence@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-19 18:35:55 +00:00
SEQ_printf(m, "\n");
SEQ_printf(m, "dl_rq[%d]:\n", cpu);
#define PU(x) \
SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
PU(dl_nr_running);
sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched_debug Playing with SCHED_DEADLINE and cpusets, I found that I was unable to create new SCHED_DEADLINE tasks, with the error of EBUSY as if the bandwidth was already used up. I then realized there wa no way to see what bandwidth is used by the runqueues to debug the issue. By adding the dl_bw->bw and dl_bw->total_bw to the output of the deadline info in /proc/sched_debug, this allows us to see what bandwidth has been reserved and where a problem may exist. For example, before the issue we see the ratio of the bandwidth: # cat /proc/sys/kernel/sched_rt_runtime_us 950000 # cat /proc/sys/kernel/sched_rt_period_us 1000000 # grep dl /proc/sched_debug dl_rq[0]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[1]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[2]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[3]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[4]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[5]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[6]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 dl_rq[7]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 0 Note: (950000 / 1000000) << 20 == 996147 After I played with cpusets and hit the issue, the result is now: # grep dl /proc/sched_debug dl_rq[0]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 dl_rq[1]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 104857 dl_rq[2]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 104857 dl_rq[3]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : 104857 dl_rq[4]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 dl_rq[5]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 dl_rq[6]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 dl_rq[7]: .dl_nr_running : 0 .dl_bw->bw : 996147 .dl_bw->total_bw : -104857 This shows that there is definitely a problem as we should never have a negative total bandwidth. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Clark Williams <williams@redhat.com> Cc: Juri Lelli <juri.lelli@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160222212825.756849091@goodmis.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-22 21:26:52 +00:00
#ifdef CONFIG_SMP
dl_bw = &cpu_rq(cpu)->rd->dl_bw;
#else
dl_bw = &dl_rq->dl_bw;
#endif
SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
#undef PU
}
static void print_cpu(struct seq_file *m, int cpu)
{
struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_X86
{
unsigned int freq = cpu_khz ? : 1;
SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
cpu, freq / 1000, (freq % 1000));
}
#else
SEQ_printf(m, "cpu#%d\n", cpu);
#endif
#define P(x) \
do { \
if (sizeof(rq->x) == 4) \
SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \
else \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
} while (0)
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
P(nr_running);
P(nr_switches);
P(nr_uninterruptible);
PN(next_balance);
SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
PN(clock);
PN(clock_task);
#undef P
#undef PN
#ifdef CONFIG_SMP
#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
P64(avg_idle);
P64(max_idle_balance_cost);
#undef P64
#endif
#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
sched/debug: Make schedstats a runtime tunable that is disabled by default schedstats is very useful during debugging and performance tuning but it incurs overhead to calculate the stats. As such, even though it can be disabled at build time, it is often enabled as the information is useful. This patch adds a kernel command-line and sysctl tunable to enable or disable schedstats on demand (when it's built in). It is disabled by default as someone who knows they need it can also learn to enable it when necessary. The benefits are dependent on how scheduler-intensive the workload is. If it is then the patch reduces the number of cycles spent calculating the stats with a small benefit from reducing the cache footprint of the scheduler. These measurements were taken from a 48-core 2-socket machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a single socket machine 8-core machine with Intel i7-3770 processors. netperf-tcp 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%) Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%) Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%) Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%) Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%) Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%) Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%) Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%) Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%) Small gains here, UDP_STREAM showed nothing intresting and neither did the TCP_RR tests. The gains on the 8-core machine were very similar. tbench4 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%) Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%) Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%) Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%) Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%) Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%) Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%) Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%) Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%) Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%) Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%) Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%) Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%) Small gains of 2-4% at low thread counts and otherwise flat. The gains on the 8-core machine were slightly different tbench4 on 8-core i7-3770 single socket machine Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%) Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%) Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%) Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%) Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%) Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%) Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%) Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%) Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%) Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%) In constract, this shows a relatively steady 2-3% gain at higher thread counts. Due to the nature of the patch and the type of workload, it's not a surprise that the result will depend on the CPU used. hackbench-pipes 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%) Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%) Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%) Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%) Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%) Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%) Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%) Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%) Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%) Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%) Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%) Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%) Some small gains and losses and while the variance data is not included, it's close to the noise. The UMA machine did not show anything particularly different pipetest 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v2r2 Min Time 4.13 ( 0.00%) 3.99 ( 3.39%) 1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%) 2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%) 3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%) Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%) Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%) Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%) Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%) Max Time 4.93 ( 0.00%) 4.83 ( 2.03%) Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%) Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%) Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%) Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%) Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%) Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%) Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%) Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%) Small improvement and similar gains were seen on the UMA machine. The gain is small but it stands to reason that doing less work in the scheduler is a good thing. The downside is that the lack of schedstats and tracepoints may be surprising to experts doing performance analysis until they find the existence of the schedstats= parameter or schedstats sysctl. It will be automatically activated for latencytop and sleep profiling to alleviate the problem. For tracepoints, there is a simple warning as it's not safe to activate schedstats in the context when it's known the tracepoint may be wanted but is unavailable. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-05 09:08:36 +00:00
if (schedstat_enabled()) {
P(yld_count);
P(sched_count);
P(sched_goidle);
P(ttwu_count);
P(ttwu_local);
}
#undef P
print_cfs_stats(m, cpu);
print_rt_stats(m, cpu);
print_dl_stats(m, cpu);
print_rq(m, rq, cpu);
SEQ_printf(m, "\n");
}
static const char *sched_tunable_scaling_names[] = {
"none",
"logarithmic",
"linear"
};
static void sched_debug_header(struct seq_file *m)
{
u64 ktime, sched_clk, cpu_clk;
unsigned long flags;
local_irq_save(flags);
ktime = ktime_to_ns(ktime_get());
sched_clk = sched_clock();
cpu_clk = local_clock();
local_irq_restore(flags);
SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
#define P(x) \
SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
#define PN(x) \
SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
PN(ktime);
PN(sched_clk);
PN(cpu_clk);
P(jiffies);
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
P(sched_clock_stable());
#endif
#undef PN
#undef P
SEQ_printf(m, "\n");
SEQ_printf(m, "sysctl_sched\n");
#define P(x) \
SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
#define PN(x) \
SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
PN(sysctl_sched_base_slice);
P(sysctl_sched_features);
#undef PN
#undef P
SEQ_printf(m, " .%-40s: %d (%s)\n",
"sysctl_sched_tunable_scaling",
sysctl_sched_tunable_scaling,
sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
SEQ_printf(m, "\n");
}
static int sched_debug_show(struct seq_file *m, void *v)
{
int cpu = (unsigned long)(v - 2);
if (cpu != -1)
print_cpu(m, cpu);
else
sched_debug_header(m);
return 0;
}
void sysrq_sched_debug_show(void)
{
int cpu;
sched_debug_header(NULL);
for_each_online_cpu(cpu) {
/*
* Need to reset softlockup watchdogs on all CPUs, because
* another CPU might be blocked waiting for us to process
* an IPI or stop_machine.
*/
touch_nmi_watchdog();
touch_all_softlockup_watchdogs();
print_cpu(NULL, cpu);
}
}
/*
* This iterator needs some explanation.
* It returns 1 for the header position.
* This means 2 is CPU 0.
* In a hotplugged system some CPUs, including CPU 0, may be missing so we have
* to use cpumask_* to iterate over the CPUs.
*/
static void *sched_debug_start(struct seq_file *file, loff_t *offset)
{
unsigned long n = *offset;
if (n == 0)
return (void *) 1;
n--;
if (n > 0)
n = cpumask_next(n - 1, cpu_online_mask);
else
n = cpumask_first(cpu_online_mask);
*offset = n + 1;
if (n < nr_cpu_ids)
return (void *)(unsigned long)(n + 2);
return NULL;
}
static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
return sched_debug_start(file, offset);
}
static void sched_debug_stop(struct seq_file *file, void *data)
{
}
static const struct seq_operations sched_debug_sops = {
.start = sched_debug_start,
.next = sched_debug_next,
.stop = sched_debug_stop,
.show = sched_debug_show,
};
#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
#define __P(F) __PS(#F, F)
#define P(F) __PS(#F, p->F)
sched/fair: Fix util_est UTIL_AVG_UNCHANGED handling The util_est internal UTIL_AVG_UNCHANGED flag which is used to prevent unnecessary util_est updates uses the LSB of util_est.enqueued. It is exposed via _task_util_est() (and task_util_est()). Commit 92a801e5d5b7 ("sched/fair: Mask UTIL_AVG_UNCHANGED usages") mentions that the LSB is lost for util_est resolution but find_energy_efficient_cpu() checks if task_util_est() returns 0 to return prev_cpu early. _task_util_est() returns the max value of util_est.ewma and util_est.enqueued or'ed w/ UTIL_AVG_UNCHANGED. So task_util_est() returning the max of task_util() and _task_util_est() will never return 0 under the default SCHED_FEAT(UTIL_EST, true). To fix this use the MSB of util_est.enqueued instead and keep the flag util_est internal, i.e. don't export it via _task_util_est(). The maximal possible util_avg value for a task is 1024 so the MSB of 'unsigned int util_est.enqueued' isn't used to store a util value. As a caveat the code behind the util_est_se trace point has to filter UTIL_AVG_UNCHANGED to see the real util_est.enqueued value which should be easy to do. This also fixes an issue report by Xuewen Yan that util_est_update() only used UTIL_AVG_UNCHANGED for the subtrahend of the equation: last_enqueued_diff = ue.enqueued - (task_util() | UTIL_AVG_UNCHANGED) Fixes: b89997aa88f0b sched/pelt: Fix task util_est update filtering Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Xuewen Yan <xuewen.yan@unisoc.com> Reviewed-by: Vincent Donnefort <vincent.donnefort@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20210602145808.1562603-1-dietmar.eggemann@arm.com
2021-06-02 14:58:08 +00:00
#define PM(F, M) __PS(#F, p->F & (M))
#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
#define __PN(F) __PSN(#F, F)
#define PN(F) __PSN(#F, p->F)
sched/numa: Fix numa balancing stats in /proc/pid/sched Commit 44dba3d5d6a1 ("sched: Refactor task_struct to use numa_faults instead of numa_* pointers") modified the way tsk->numa_faults stats are accounted. However that commit never touched show_numa_stats() that is displayed in /proc/pid/sched and thus the numbers displayed in /proc/pid/sched don't match the actual numbers. Fix it by making sure that /proc/pid/sched reflects the task fault numbers. Also add group fault stats too. Also couple of more modifications are added here: 1. Format changes: - Previously we would list two entries per node, one for private and one for shared. Also the home node info was listed in each entry. - Now preferred node, total_faults and current node are displayed separately. - Now there is one entry per node, that lists private,shared task and group faults. 2. Unit changes: - p->numa_pages_migrated was getting reset after every read of /proc/pid/sched. It's more useful to have absolute numbers since differential migrations between two accesses can be more easily calculated. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Iulia Manda <iulia.manda21@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1435252903-1081-4-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-25 17:21:43 +00:00
#ifdef CONFIG_NUMA_BALANCING
void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
unsigned long tpf, unsigned long gsf, unsigned long gpf)
{
SEQ_printf(m, "numa_faults node=%d ", node);
SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
sched/numa: Fix numa balancing stats in /proc/pid/sched Commit 44dba3d5d6a1 ("sched: Refactor task_struct to use numa_faults instead of numa_* pointers") modified the way tsk->numa_faults stats are accounted. However that commit never touched show_numa_stats() that is displayed in /proc/pid/sched and thus the numbers displayed in /proc/pid/sched don't match the actual numbers. Fix it by making sure that /proc/pid/sched reflects the task fault numbers. Also add group fault stats too. Also couple of more modifications are added here: 1. Format changes: - Previously we would list two entries per node, one for private and one for shared. Also the home node info was listed in each entry. - Now preferred node, total_faults and current node are displayed separately. - Now there is one entry per node, that lists private,shared task and group faults. 2. Unit changes: - p->numa_pages_migrated was getting reset after every read of /proc/pid/sched. It's more useful to have absolute numbers since differential migrations between two accesses can be more easily calculated. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Iulia Manda <iulia.manda21@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1435252903-1081-4-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-25 17:21:43 +00:00
}
#endif
static void sched_show_numa(struct task_struct *p, struct seq_file *m)
{
#ifdef CONFIG_NUMA_BALANCING
if (p->mm)
P(mm->numa_scan_seq);
sched/numa: Fix numa balancing stats in /proc/pid/sched Commit 44dba3d5d6a1 ("sched: Refactor task_struct to use numa_faults instead of numa_* pointers") modified the way tsk->numa_faults stats are accounted. However that commit never touched show_numa_stats() that is displayed in /proc/pid/sched and thus the numbers displayed in /proc/pid/sched don't match the actual numbers. Fix it by making sure that /proc/pid/sched reflects the task fault numbers. Also add group fault stats too. Also couple of more modifications are added here: 1. Format changes: - Previously we would list two entries per node, one for private and one for shared. Also the home node info was listed in each entry. - Now preferred node, total_faults and current node are displayed separately. - Now there is one entry per node, that lists private,shared task and group faults. 2. Unit changes: - p->numa_pages_migrated was getting reset after every read of /proc/pid/sched. It's more useful to have absolute numbers since differential migrations between two accesses can be more easily calculated. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Iulia Manda <iulia.manda21@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1435252903-1081-4-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-25 17:21:43 +00:00
P(numa_pages_migrated);
P(numa_preferred_nid);
P(total_numa_faults);
SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
task_node(p), task_numa_group_id(p));
show_numa_stats(p, m);
#endif
}
void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
struct seq_file *m)
{
unsigned long nr_switches;
SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
get_nr_threads(p));
SEQ_printf(m,
"---------------------------------------------------------"
"----------\n");
sched: Make struct sched_statistics independent of fair sched class If we want to use the schedstats facility to trace other sched classes, we should make it independent of fair sched class. The struct sched_statistics is the schedular statistics of a task_struct or a task_group. So we can move it into struct task_struct and struct task_group to achieve the goal. After the patch, schestats are orgnized as follows, struct task_struct { ... struct sched_entity se; struct sched_rt_entity rt; struct sched_dl_entity dl; ... struct sched_statistics stats; ... }; Regarding the task group, schedstats is only supported for fair group sched, and a new struct sched_entity_stats is introduced, suggested by Peter - struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; Then with the se in a task_group, we can easily get the stats. The sched_statistics members may be frequently modified when schedstats is enabled, in order to avoid impacting on random data which may in the same cacheline with them, the struct sched_statistics is defined as cacheline aligned. As this patch changes the core struct of scheduler, so I verified the performance it may impact on the scheduler with 'perf bench sched pipe', suggested by Mel. Below is the result, in which all the values are in usecs/op. Before After kernel.sched_schedstats=0 5.2~5.4 5.2~5.4 kernel.sched_schedstats=1 5.3~5.5 5.3~5.5 [These data is a little difference with the earlier version, that is because my old test machine is destroyed so I have to use a new different test machine.] Almost no impact on the sched performance. No functional change. [lkp@intel.com: reported build failure in earlier version] Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-09-05 14:35:41 +00:00
#define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F))
#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
PN(se.exec_start);
PN(se.vruntime);
PN(se.sum_exec_runtime);
nr_switches = p->nvcsw + p->nivcsw;
P(se.nr_migrations);
sched/debug: Make schedstats a runtime tunable that is disabled by default schedstats is very useful during debugging and performance tuning but it incurs overhead to calculate the stats. As such, even though it can be disabled at build time, it is often enabled as the information is useful. This patch adds a kernel command-line and sysctl tunable to enable or disable schedstats on demand (when it's built in). It is disabled by default as someone who knows they need it can also learn to enable it when necessary. The benefits are dependent on how scheduler-intensive the workload is. If it is then the patch reduces the number of cycles spent calculating the stats with a small benefit from reducing the cache footprint of the scheduler. These measurements were taken from a 48-core 2-socket machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a single socket machine 8-core machine with Intel i7-3770 processors. netperf-tcp 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%) Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%) Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%) Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%) Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%) Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%) Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%) Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%) Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%) Small gains here, UDP_STREAM showed nothing intresting and neither did the TCP_RR tests. The gains on the 8-core machine were very similar. tbench4 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%) Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%) Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%) Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%) Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%) Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%) Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%) Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%) Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%) Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%) Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%) Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%) Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%) Small gains of 2-4% at low thread counts and otherwise flat. The gains on the 8-core machine were slightly different tbench4 on 8-core i7-3770 single socket machine Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%) Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%) Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%) Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%) Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%) Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%) Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%) Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%) Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%) Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%) In constract, this shows a relatively steady 2-3% gain at higher thread counts. Due to the nature of the patch and the type of workload, it's not a surprise that the result will depend on the CPU used. hackbench-pipes 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%) Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%) Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%) Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%) Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%) Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%) Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%) Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%) Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%) Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%) Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%) Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%) Some small gains and losses and while the variance data is not included, it's close to the noise. The UMA machine did not show anything particularly different pipetest 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v2r2 Min Time 4.13 ( 0.00%) 3.99 ( 3.39%) 1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%) 2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%) 3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%) Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%) Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%) Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%) Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%) Max Time 4.93 ( 0.00%) 4.83 ( 2.03%) Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%) Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%) Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%) Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%) Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%) Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%) Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%) Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%) Small improvement and similar gains were seen on the UMA machine. The gain is small but it stands to reason that doing less work in the scheduler is a good thing. The downside is that the lack of schedstats and tracepoints may be surprising to experts doing performance analysis until they find the existence of the schedstats= parameter or schedstats sysctl. It will be automatically activated for latencytop and sleep profiling to alleviate the problem. For tracepoints, there is a simple warning as it's not safe to activate schedstats in the context when it's known the tracepoint may be wanted but is unavailable. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-05 09:08:36 +00:00
if (schedstat_enabled()) {
u64 avg_atom, avg_per_cpu;
sched: Make struct sched_statistics independent of fair sched class If we want to use the schedstats facility to trace other sched classes, we should make it independent of fair sched class. The struct sched_statistics is the schedular statistics of a task_struct or a task_group. So we can move it into struct task_struct and struct task_group to achieve the goal. After the patch, schestats are orgnized as follows, struct task_struct { ... struct sched_entity se; struct sched_rt_entity rt; struct sched_dl_entity dl; ... struct sched_statistics stats; ... }; Regarding the task group, schedstats is only supported for fair group sched, and a new struct sched_entity_stats is introduced, suggested by Peter - struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; Then with the se in a task_group, we can easily get the stats. The sched_statistics members may be frequently modified when schedstats is enabled, in order to avoid impacting on random data which may in the same cacheline with them, the struct sched_statistics is defined as cacheline aligned. As this patch changes the core struct of scheduler, so I verified the performance it may impact on the scheduler with 'perf bench sched pipe', suggested by Mel. Below is the result, in which all the values are in usecs/op. Before After kernel.sched_schedstats=0 5.2~5.4 5.2~5.4 kernel.sched_schedstats=1 5.3~5.5 5.3~5.5 [These data is a little difference with the earlier version, that is because my old test machine is destroyed so I have to use a new different test machine.] Almost no impact on the sched performance. No functional change. [lkp@intel.com: reported build failure in earlier version] Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-09-05 14:35:41 +00:00
PN_SCHEDSTAT(sum_sleep_runtime);
PN_SCHEDSTAT(sum_block_runtime);
sched: Make struct sched_statistics independent of fair sched class If we want to use the schedstats facility to trace other sched classes, we should make it independent of fair sched class. The struct sched_statistics is the schedular statistics of a task_struct or a task_group. So we can move it into struct task_struct and struct task_group to achieve the goal. After the patch, schestats are orgnized as follows, struct task_struct { ... struct sched_entity se; struct sched_rt_entity rt; struct sched_dl_entity dl; ... struct sched_statistics stats; ... }; Regarding the task group, schedstats is only supported for fair group sched, and a new struct sched_entity_stats is introduced, suggested by Peter - struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; Then with the se in a task_group, we can easily get the stats. The sched_statistics members may be frequently modified when schedstats is enabled, in order to avoid impacting on random data which may in the same cacheline with them, the struct sched_statistics is defined as cacheline aligned. As this patch changes the core struct of scheduler, so I verified the performance it may impact on the scheduler with 'perf bench sched pipe', suggested by Mel. Below is the result, in which all the values are in usecs/op. Before After kernel.sched_schedstats=0 5.2~5.4 5.2~5.4 kernel.sched_schedstats=1 5.3~5.5 5.3~5.5 [These data is a little difference with the earlier version, that is because my old test machine is destroyed so I have to use a new different test machine.] Almost no impact on the sched performance. No functional change. [lkp@intel.com: reported build failure in earlier version] Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-09-05 14:35:41 +00:00
PN_SCHEDSTAT(wait_start);
PN_SCHEDSTAT(sleep_start);
PN_SCHEDSTAT(block_start);
PN_SCHEDSTAT(sleep_max);
PN_SCHEDSTAT(block_max);
PN_SCHEDSTAT(exec_max);
PN_SCHEDSTAT(slice_max);
PN_SCHEDSTAT(wait_max);
PN_SCHEDSTAT(wait_sum);
P_SCHEDSTAT(wait_count);
PN_SCHEDSTAT(iowait_sum);
P_SCHEDSTAT(iowait_count);
P_SCHEDSTAT(nr_migrations_cold);
P_SCHEDSTAT(nr_failed_migrations_affine);
P_SCHEDSTAT(nr_failed_migrations_running);
P_SCHEDSTAT(nr_failed_migrations_hot);
P_SCHEDSTAT(nr_forced_migrations);
P_SCHEDSTAT(nr_wakeups);
P_SCHEDSTAT(nr_wakeups_sync);
P_SCHEDSTAT(nr_wakeups_migrate);
P_SCHEDSTAT(nr_wakeups_local);
P_SCHEDSTAT(nr_wakeups_remote);
P_SCHEDSTAT(nr_wakeups_affine);
P_SCHEDSTAT(nr_wakeups_affine_attempts);
P_SCHEDSTAT(nr_wakeups_passive);
P_SCHEDSTAT(nr_wakeups_idle);
sched/debug: Make schedstats a runtime tunable that is disabled by default schedstats is very useful during debugging and performance tuning but it incurs overhead to calculate the stats. As such, even though it can be disabled at build time, it is often enabled as the information is useful. This patch adds a kernel command-line and sysctl tunable to enable or disable schedstats on demand (when it's built in). It is disabled by default as someone who knows they need it can also learn to enable it when necessary. The benefits are dependent on how scheduler-intensive the workload is. If it is then the patch reduces the number of cycles spent calculating the stats with a small benefit from reducing the cache footprint of the scheduler. These measurements were taken from a 48-core 2-socket machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a single socket machine 8-core machine with Intel i7-3770 processors. netperf-tcp 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%) Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%) Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%) Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%) Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%) Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%) Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%) Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%) Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%) Small gains here, UDP_STREAM showed nothing intresting and neither did the TCP_RR tests. The gains on the 8-core machine were very similar. tbench4 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%) Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%) Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%) Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%) Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%) Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%) Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%) Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%) Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%) Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%) Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%) Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%) Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%) Small gains of 2-4% at low thread counts and otherwise flat. The gains on the 8-core machine were slightly different tbench4 on 8-core i7-3770 single socket machine Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%) Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%) Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%) Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%) Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%) Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%) Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%) Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%) Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%) Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%) In constract, this shows a relatively steady 2-3% gain at higher thread counts. Due to the nature of the patch and the type of workload, it's not a surprise that the result will depend on the CPU used. hackbench-pipes 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%) Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%) Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%) Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%) Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%) Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%) Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%) Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%) Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%) Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%) Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%) Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%) Some small gains and losses and while the variance data is not included, it's close to the noise. The UMA machine did not show anything particularly different pipetest 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v2r2 Min Time 4.13 ( 0.00%) 3.99 ( 3.39%) 1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%) 2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%) 3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%) Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%) Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%) Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%) Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%) Max Time 4.93 ( 0.00%) 4.83 ( 2.03%) Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%) Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%) Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%) Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%) Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%) Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%) Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%) Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%) Small improvement and similar gains were seen on the UMA machine. The gain is small but it stands to reason that doing less work in the scheduler is a good thing. The downside is that the lack of schedstats and tracepoints may be surprising to experts doing performance analysis until they find the existence of the schedstats= parameter or schedstats sysctl. It will be automatically activated for latencytop and sleep profiling to alleviate the problem. For tracepoints, there is a simple warning as it's not safe to activate schedstats in the context when it's known the tracepoint may be wanted but is unavailable. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-05 09:08:36 +00:00
avg_atom = p->se.sum_exec_runtime;
if (nr_switches)
avg_atom = div64_ul(avg_atom, nr_switches);
else
avg_atom = -1LL;
avg_per_cpu = p->se.sum_exec_runtime;
if (p->se.nr_migrations) {
avg_per_cpu = div64_u64(avg_per_cpu,
p->se.nr_migrations);
} else {
avg_per_cpu = -1LL;
}
__PN(avg_atom);
__PN(avg_per_cpu);
#ifdef CONFIG_SCHED_CORE
PN_SCHEDSTAT(core_forceidle_sum);
#endif
}
__P(nr_switches);
__PS("nr_voluntary_switches", p->nvcsw);
__PS("nr_involuntary_switches", p->nivcsw);
P(se.load.weight);
#ifdef CONFIG_SMP
sched/fair: Rewrite runnable load and utilization average tracking The idea of runnable load average (let runnable time contribute to weight) was proposed by Paul Turner and Ben Segall, and it is still followed by this rewrite. This rewrite aims to solve the following issues: 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated at the granularity of an entity at a time, which results in the cfs_rq's load average is stale or partially updated: at any time, only one entity is up to date, all other entities are effectively lagging behind. This is undesirable. To illustrate, if we have n runnable entities in the cfs_rq, as time elapses, they certainly become outdated: t0: cfs_rq { e1_old, e2_old, ..., en_old } and when we update: t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old } t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old } ... We solve this by combining all runnable entities' load averages together in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based on the fact that if we regard the update as a function, then: w * update(e) = update(w * e) and update(e1) + update(e2) = update(e1 + e2), then w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2) therefore, by this rewrite, we have an entirely updated cfs_rq at the time we update it: t1: update cfs_rq { e1_new, e2_new, ..., en_new } t2: update cfs_rq { e1_new, e2_new, ..., en_new } ... 2. cfs_rq's load average is different between top rq->cfs_rq and other task_group's per CPU cfs_rqs in whether or not blocked_load_average contributes to the load. The basic idea behind runnable load average (the same for utilization) is that the blocked state is taken into account as opposed to only accounting for the currently runnable state. Therefore, the average should include both the runnable/running and blocked load averages. This rewrite does that. In addition, we also combine runnable/running and blocked averages of all entities into the cfs_rq's average, and update it together at once. This is based on the fact that: update(runnable) + update(blocked) = update(runnable + blocked) This significantly reduces the code as we don't need to separately maintain/update runnable/running load and blocked load. 3. How task_group entities' share is calculated is complex and imprecise. We reduce the complexity in this rewrite to allow a very simple rule: the task_group's load_avg is aggregated from its per CPU cfs_rqs's load_avgs. Then group entity's weight is simply proportional to its own cfs_rq's load_avg / task_group's load_avg. To illustrate, if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then, task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share To sum up, this rewrite in principle is equivalent to the current one, but fixes the issues described above. Turns out, it significantly reduces the code complexity and hence increases clarity and efficiency. In addition, the new averages are more smooth/continuous (no spurious spikes and valleys) and updated more consistently and quickly to reflect the load dynamics. As a result, we have less load tracking overhead, better performance, and especially better power efficiency due to more balanced load. Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: arjan@linux.intel.com Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: fengguang.wu@intel.com Cc: len.brown@intel.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: rafael.j.wysocki@intel.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-15 00:04:37 +00:00
P(se.avg.load_sum);
sched/pelt: Add a new runnable average signal Now that runnable_load_avg has been removed, we can replace it by a new signal that will highlight the runnable pressure on a cfs_rq. This signal track the waiting time of tasks on rq and can help to better define the state of rqs. At now, only util_avg is used to define the state of a rq: A rq with more that around 80% of utilization and more than 1 tasks is considered as overloaded. But the util_avg signal of a rq can become temporaly low after that a task migrated onto another rq which can bias the classification of the rq. When tasks compete for the same rq, their runnable average signal will be higher than util_avg as it will include the waiting time and we can use this signal to better classify cfs_rqs. The new runnable_avg will track the runnable time of a task which simply adds the waiting time to the running time. The runnable _avg of cfs_rq will be the /Sum of se's runnable_avg and the runnable_avg of group entity will follow the one of the rq similarly to util_avg. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-9-mgorman@techsingularity.net
2020-02-24 09:52:18 +00:00
P(se.avg.runnable_sum);
sched/fair: Rewrite runnable load and utilization average tracking The idea of runnable load average (let runnable time contribute to weight) was proposed by Paul Turner and Ben Segall, and it is still followed by this rewrite. This rewrite aims to solve the following issues: 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated at the granularity of an entity at a time, which results in the cfs_rq's load average is stale or partially updated: at any time, only one entity is up to date, all other entities are effectively lagging behind. This is undesirable. To illustrate, if we have n runnable entities in the cfs_rq, as time elapses, they certainly become outdated: t0: cfs_rq { e1_old, e2_old, ..., en_old } and when we update: t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old } t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old } ... We solve this by combining all runnable entities' load averages together in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based on the fact that if we regard the update as a function, then: w * update(e) = update(w * e) and update(e1) + update(e2) = update(e1 + e2), then w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2) therefore, by this rewrite, we have an entirely updated cfs_rq at the time we update it: t1: update cfs_rq { e1_new, e2_new, ..., en_new } t2: update cfs_rq { e1_new, e2_new, ..., en_new } ... 2. cfs_rq's load average is different between top rq->cfs_rq and other task_group's per CPU cfs_rqs in whether or not blocked_load_average contributes to the load. The basic idea behind runnable load average (the same for utilization) is that the blocked state is taken into account as opposed to only accounting for the currently runnable state. Therefore, the average should include both the runnable/running and blocked load averages. This rewrite does that. In addition, we also combine runnable/running and blocked averages of all entities into the cfs_rq's average, and update it together at once. This is based on the fact that: update(runnable) + update(blocked) = update(runnable + blocked) This significantly reduces the code as we don't need to separately maintain/update runnable/running load and blocked load. 3. How task_group entities' share is calculated is complex and imprecise. We reduce the complexity in this rewrite to allow a very simple rule: the task_group's load_avg is aggregated from its per CPU cfs_rqs's load_avgs. Then group entity's weight is simply proportional to its own cfs_rq's load_avg / task_group's load_avg. To illustrate, if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then, task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share To sum up, this rewrite in principle is equivalent to the current one, but fixes the issues described above. Turns out, it significantly reduces the code complexity and hence increases clarity and efficiency. In addition, the new averages are more smooth/continuous (no spurious spikes and valleys) and updated more consistently and quickly to reflect the load dynamics. As a result, we have less load tracking overhead, better performance, and especially better power efficiency due to more balanced load. Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: arjan@linux.intel.com Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: fengguang.wu@intel.com Cc: len.brown@intel.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: rafael.j.wysocki@intel.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-15 00:04:37 +00:00
P(se.avg.util_sum);
P(se.avg.load_avg);
sched/pelt: Add a new runnable average signal Now that runnable_load_avg has been removed, we can replace it by a new signal that will highlight the runnable pressure on a cfs_rq. This signal track the waiting time of tasks on rq and can help to better define the state of rqs. At now, only util_avg is used to define the state of a rq: A rq with more that around 80% of utilization and more than 1 tasks is considered as overloaded. But the util_avg signal of a rq can become temporaly low after that a task migrated onto another rq which can bias the classification of the rq. When tasks compete for the same rq, their runnable average signal will be higher than util_avg as it will include the waiting time and we can use this signal to better classify cfs_rqs. The new runnable_avg will track the runnable time of a task which simply adds the waiting time to the running time. The runnable _avg of cfs_rq will be the /Sum of se's runnable_avg and the runnable_avg of group entity will follow the one of the rq similarly to util_avg. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-9-mgorman@techsingularity.net
2020-02-24 09:52:18 +00:00
P(se.avg.runnable_avg);
sched/fair: Rewrite runnable load and utilization average tracking The idea of runnable load average (let runnable time contribute to weight) was proposed by Paul Turner and Ben Segall, and it is still followed by this rewrite. This rewrite aims to solve the following issues: 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated at the granularity of an entity at a time, which results in the cfs_rq's load average is stale or partially updated: at any time, only one entity is up to date, all other entities are effectively lagging behind. This is undesirable. To illustrate, if we have n runnable entities in the cfs_rq, as time elapses, they certainly become outdated: t0: cfs_rq { e1_old, e2_old, ..., en_old } and when we update: t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old } t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old } ... We solve this by combining all runnable entities' load averages together in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based on the fact that if we regard the update as a function, then: w * update(e) = update(w * e) and update(e1) + update(e2) = update(e1 + e2), then w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2) therefore, by this rewrite, we have an entirely updated cfs_rq at the time we update it: t1: update cfs_rq { e1_new, e2_new, ..., en_new } t2: update cfs_rq { e1_new, e2_new, ..., en_new } ... 2. cfs_rq's load average is different between top rq->cfs_rq and other task_group's per CPU cfs_rqs in whether or not blocked_load_average contributes to the load. The basic idea behind runnable load average (the same for utilization) is that the blocked state is taken into account as opposed to only accounting for the currently runnable state. Therefore, the average should include both the runnable/running and blocked load averages. This rewrite does that. In addition, we also combine runnable/running and blocked averages of all entities into the cfs_rq's average, and update it together at once. This is based on the fact that: update(runnable) + update(blocked) = update(runnable + blocked) This significantly reduces the code as we don't need to separately maintain/update runnable/running load and blocked load. 3. How task_group entities' share is calculated is complex and imprecise. We reduce the complexity in this rewrite to allow a very simple rule: the task_group's load_avg is aggregated from its per CPU cfs_rqs's load_avgs. Then group entity's weight is simply proportional to its own cfs_rq's load_avg / task_group's load_avg. To illustrate, if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then, task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share To sum up, this rewrite in principle is equivalent to the current one, but fixes the issues described above. Turns out, it significantly reduces the code complexity and hence increases clarity and efficiency. In addition, the new averages are more smooth/continuous (no spurious spikes and valleys) and updated more consistently and quickly to reflect the load dynamics. As a result, we have less load tracking overhead, better performance, and especially better power efficiency due to more balanced load. Signed-off-by: Yuyang Du <yuyang.du@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: arjan@linux.intel.com Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: fengguang.wu@intel.com Cc: len.brown@intel.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: rafael.j.wysocki@intel.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-15 00:04:37 +00:00
P(se.avg.util_avg);
P(se.avg.last_update_time);
PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED);
#endif
#ifdef CONFIG_UCLAMP_TASK
__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
#endif
P(policy);
P(prio);
if (task_has_dl_policy(p)) {
P(dl.runtime);
P(dl.deadline);
}
#undef PN_SCHEDSTAT
#undef P_SCHEDSTAT
{
unsigned int this_cpu = raw_smp_processor_id();
u64 t0, t1;
t0 = cpu_clock(this_cpu);
t1 = cpu_clock(this_cpu);
__PS("clock-delta", t1-t0);
}
sched_show_numa(p, m);
}
void proc_sched_set_task(struct task_struct *p)
{
#ifdef CONFIG_SCHEDSTATS
sched: Make struct sched_statistics independent of fair sched class If we want to use the schedstats facility to trace other sched classes, we should make it independent of fair sched class. The struct sched_statistics is the schedular statistics of a task_struct or a task_group. So we can move it into struct task_struct and struct task_group to achieve the goal. After the patch, schestats are orgnized as follows, struct task_struct { ... struct sched_entity se; struct sched_rt_entity rt; struct sched_dl_entity dl; ... struct sched_statistics stats; ... }; Regarding the task group, schedstats is only supported for fair group sched, and a new struct sched_entity_stats is introduced, suggested by Peter - struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; Then with the se in a task_group, we can easily get the stats. The sched_statistics members may be frequently modified when schedstats is enabled, in order to avoid impacting on random data which may in the same cacheline with them, the struct sched_statistics is defined as cacheline aligned. As this patch changes the core struct of scheduler, so I verified the performance it may impact on the scheduler with 'perf bench sched pipe', suggested by Mel. Below is the result, in which all the values are in usecs/op. Before After kernel.sched_schedstats=0 5.2~5.4 5.2~5.4 kernel.sched_schedstats=1 5.3~5.5 5.3~5.5 [These data is a little difference with the earlier version, that is because my old test machine is destroyed so I have to use a new different test machine.] Almost no impact on the sched performance. No functional change. [lkp@intel.com: reported build failure in earlier version] Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-09-05 14:35:41 +00:00
memset(&p->stats, 0, sizeof(p->stats));
#endif
}
void resched_latency_warn(int cpu, u64 latency)
{
static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
WARN(__ratelimit(&latency_check_ratelimit),
"sched: CPU %d need_resched set for > %llu ns (%d ticks) "
"without schedule\n",
cpu, latency, cpu_rq(cpu)->ticks_without_resched);
}