linux-stable/fs/afs/dir.c

1869 lines
47 KiB
C
Raw Normal View History

/* dir.c: AFS filesystem directory handling
*
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
* Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
#include <linux/swap.h>
#include <linux/ctype.h>
#include <linux/sched.h>
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
#include <linux/task_io_accounting_ops.h>
#include "internal.h"
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
#include "afs_fs.h"
#include "xdr_fs.h"
static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags);
static int afs_dir_open(struct inode *inode, struct file *file);
static int afs_readdir(struct file *file, struct dir_context *ctx);
static int afs_d_revalidate(struct dentry *dentry, unsigned int flags);
static int afs_d_delete(const struct dentry *dentry);
static void afs_d_iput(struct dentry *dentry, struct inode *inode);
static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen,
[PATCH] VFS: Make filldir_t and struct kstat deal in 64-bit inode numbers These patches make the kernel pass 64-bit inode numbers internally when communicating to userspace, even on a 32-bit system. They are required because some filesystems have intrinsic 64-bit inode numbers: NFS3+ and XFS for example. The 64-bit inode numbers are then propagated to userspace automatically where the arch supports it. Problems have been seen with userspace (eg: ld.so) using the 64-bit inode number returned by stat64() or getdents64() to differentiate files, and failing because the 64-bit inode number space was compressed to 32-bits, and so overlaps occur. This patch: Make filldir_t take a 64-bit inode number and struct kstat carry a 64-bit inode number so that 64-bit inode numbers can be passed back to userspace. The stat functions then returns the full 64-bit inode number where available and where possible. If it is not possible to represent the inode number supplied by the filesystem in the field provided by userspace, then error EOVERFLOW will be issued. Similarly, the getdents/readdir functions now pass the full 64-bit inode number to userspace where possible, returning EOVERFLOW instead when a directory entry is encountered that can't be properly represented. Note that this means that some inodes will not be stat'able on a 32-bit system with old libraries where they were before - but it does mean that there will be no ambiguity over what a 32-bit inode number refers to. Note similarly that directory scans may be cut short with an error on a 32-bit system with old libraries where the scan would work before for the same reasons. It is judged unlikely that this situation will occur because modern glibc uses 64-bit capable versions of stat and getdents class functions exclusively, and that older systems are unlikely to encounter unrepresentable inode numbers anyway. [akpm: alpha build fix] Signed-off-by: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03 08:13:46 +00:00
loff_t fpos, u64 ino, unsigned dtype);
static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen,
loff_t fpos, u64 ino, unsigned dtype);
static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
bool excl);
static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
static int afs_rmdir(struct inode *dir, struct dentry *dentry);
static int afs_unlink(struct inode *dir, struct dentry *dentry);
static int afs_link(struct dentry *from, struct inode *dir,
struct dentry *dentry);
static int afs_symlink(struct inode *dir, struct dentry *dentry,
const char *content);
static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags);
static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
unsigned int length);
static int afs_dir_set_page_dirty(struct page *page)
{
BUG(); /* This should never happen. */
}
const struct file_operations afs_dir_file_operations = {
.open = afs_dir_open,
.release = afs_release,
.iterate_shared = afs_readdir,
.lock = afs_lock,
.llseek = generic_file_llseek,
};
const struct inode_operations afs_dir_inode_operations = {
.create = afs_create,
.lookup = afs_lookup,
.link = afs_link,
.unlink = afs_unlink,
.symlink = afs_symlink,
.mkdir = afs_mkdir,
.rmdir = afs_rmdir,
.rename = afs_rename,
.permission = afs_permission,
.getattr = afs_getattr,
.setattr = afs_setattr,
.listxattr = afs_listxattr,
};
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
const struct address_space_operations afs_dir_aops = {
.set_page_dirty = afs_dir_set_page_dirty,
.releasepage = afs_dir_releasepage,
.invalidatepage = afs_dir_invalidatepage,
};
const struct dentry_operations afs_fs_dentry_operations = {
.d_revalidate = afs_d_revalidate,
.d_delete = afs_d_delete,
.d_release = afs_d_release,
.d_automount = afs_d_automount,
.d_iput = afs_d_iput,
};
struct afs_lookup_one_cookie {
struct dir_context ctx;
struct qstr name;
bool found;
struct afs_fid fid;
};
struct afs_lookup_cookie {
struct dir_context ctx;
struct qstr name;
bool found;
bool one_only;
unsigned short nr_fids;
struct afs_status_cb *statuses;
struct afs_fid fids[50];
};
/*
* check that a directory page is valid
*/
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page,
loff_t i_size)
{
struct afs_xdr_dir_page *dbuf;
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
loff_t latter, off;
int tmp, qty;
/* Determine how many magic numbers there should be in this page, but
* we must take care because the directory may change size under us.
*/
off = page_offset(page);
if (i_size <= off)
goto checked;
latter = i_size - off;
if (latter >= PAGE_SIZE)
qty = PAGE_SIZE;
else
qty = latter;
qty /= sizeof(union afs_xdr_dir_block);
/* check them */
dbuf = kmap(page);
for (tmp = 0; tmp < qty; tmp++) {
if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) {
printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n",
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
__func__, dvnode->vfs_inode.i_ino, tmp, qty,
ntohs(dbuf->blocks[tmp].hdr.magic));
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
trace_afs_dir_check_failed(dvnode, off, i_size);
kunmap(page);
trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic);
goto error;
}
/* Make sure each block is NUL terminated so we can reasonably
* use string functions on it. The filenames in the page
* *should* be NUL-terminated anyway.
*/
((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0;
}
kunmap(page);
checked:
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
afs_stat_v(dvnode, n_read_dir);
return true;
error:
return false;
}
/*
* Check the contents of a directory that we've just read.
*/
static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req)
{
struct afs_xdr_dir_page *dbuf;
unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block);
for (i = 0; i < req->nr_pages; i++)
if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len))
goto bad;
return true;
bad:
pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n",
dvnode->fid.vid, dvnode->fid.vnode,
req->file_size, req->len, req->actual_len, req->remain);
pr_warn("DIR %llx %x %x %x\n",
req->pos, req->index, req->nr_pages, req->offset);
for (i = 0; i < req->nr_pages; i++) {
dbuf = kmap(req->pages[i]);
for (j = 0; j < qty; j++) {
union afs_xdr_dir_block *block = &dbuf->blocks[j];
pr_warn("[%02x] %32phN\n", i * qty + j, block);
}
kunmap(req->pages[i]);
}
return false;
}
/*
* open an AFS directory file
*/
static int afs_dir_open(struct inode *inode, struct file *file)
{
_enter("{%lu}", inode->i_ino);
BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags))
return -ENOENT;
return afs_open(inode, file);
}
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
/*
* Read the directory into the pagecache in one go, scrubbing the previous
* contents. The list of pages is returned, pinning them so that they don't
* get reclaimed during the iteration.
*/
static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key)
afs: Fix directory page locking The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-27 19:46:22 +00:00
__acquires(&dvnode->validate_lock)
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
{
struct afs_read *req;
loff_t i_size;
int nr_pages, nr_inline, i, n;
int ret = -ENOMEM;
retry:
i_size = i_size_read(&dvnode->vfs_inode);
if (i_size < 2048)
return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small));
if (i_size > 2048 * 1024) {
trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
return ERR_PTR(-EFBIG);
}
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
_enter("%llu", i_size);
/* Get a request record to hold the page list. We want to hold it
* inline if we can, but we don't want to make an order 1 allocation.
*/
nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE;
nr_inline = nr_pages;
if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *))
nr_inline = 0;
req = kzalloc(sizeof(*req) + sizeof(struct page *) * nr_inline,
GFP_KERNEL);
if (!req)
return ERR_PTR(-ENOMEM);
refcount_set(&req->usage, 1);
req->nr_pages = nr_pages;
req->actual_len = i_size; /* May change */
req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */
req->data_version = dvnode->status.data_version; /* May change */
if (nr_inline > 0) {
req->pages = req->array;
} else {
req->pages = kcalloc(nr_pages, sizeof(struct page *),
GFP_KERNEL);
if (!req->pages)
goto error;
}
/* Get a list of all the pages that hold or will hold the directory
* content. We need to fill in any gaps that we might find where the
* memory reclaimer has been at work. If there are any gaps, we will
* need to reread the entire directory contents.
*/
i = 0;
do {
n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i,
req->nr_pages - i,
req->pages + i);
_debug("find %u at %u/%u", n, i, req->nr_pages);
if (n == 0) {
gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask;
if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
afs_stat_v(dvnode, n_inval);
ret = -ENOMEM;
req->pages[i] = __page_cache_alloc(gfp);
if (!req->pages[i])
goto error;
ret = add_to_page_cache_lru(req->pages[i],
dvnode->vfs_inode.i_mapping,
i, gfp);
if (ret < 0)
goto error;
set_page_private(req->pages[i], 1);
SetPagePrivate(req->pages[i]);
unlock_page(req->pages[i]);
i++;
} else {
i += n;
}
} while (i < req->nr_pages);
/* If we're going to reload, we need to lock all the pages to prevent
* races.
*/
afs: Fix directory page locking The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-27 19:46:22 +00:00
ret = -ERESTARTSYS;
if (down_read_killable(&dvnode->validate_lock) < 0)
goto error;
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
afs: Fix directory page locking The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-27 19:46:22 +00:00
if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
goto success;
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
afs: Fix directory page locking The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-27 19:46:22 +00:00
up_read(&dvnode->validate_lock);
if (down_write_killable(&dvnode->validate_lock) < 0)
goto error;
if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
trace_afs_reload_dir(dvnode);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
ret = afs_fetch_data(dvnode, key, req);
if (ret < 0)
afs: Fix directory page locking The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-27 19:46:22 +00:00
goto error_unlock;
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
task_io_account_read(PAGE_SIZE * req->nr_pages);
if (req->len < req->file_size)
goto content_has_grown;
/* Validate the data we just read. */
ret = -EIO;
if (!afs_dir_check_pages(dvnode, req))
goto error_unlock;
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
// TODO: Trim excess pages
set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags);
}
afs: Fix directory page locking The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-27 19:46:22 +00:00
downgrade_write(&dvnode->validate_lock);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
success:
return req;
error_unlock:
afs: Fix directory page locking The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-27 19:46:22 +00:00
up_write(&dvnode->validate_lock);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
error:
afs_put_read(req);
_leave(" = %d", ret);
return ERR_PTR(ret);
content_has_grown:
afs: Fix directory page locking The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-27 19:46:22 +00:00
up_write(&dvnode->validate_lock);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
afs_put_read(req);
goto retry;
}
/*
* deal with one block in an AFS directory
*/
static int afs_dir_iterate_block(struct afs_vnode *dvnode,
struct dir_context *ctx,
union afs_xdr_dir_block *block,
unsigned blkoff)
{
union afs_xdr_dirent *dire;
unsigned offset, next, curr;
size_t nlen;
int tmp;
_enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block);
curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent);
/* walk through the block, an entry at a time */
for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS);
offset < AFS_DIR_SLOTS_PER_BLOCK;
offset = next
) {
next = offset + 1;
/* skip entries marked unused in the bitmap */
if (!(block->hdr.bitmap[offset / 8] &
(1 << (offset % 8)))) {
_debug("ENT[%zu.%u]: unused",
blkoff / sizeof(union afs_xdr_dir_block), offset);
if (offset >= curr)
ctx->pos = blkoff +
next * sizeof(union afs_xdr_dirent);
continue;
}
/* got a valid entry */
dire = &block->dirents[offset];
nlen = strnlen(dire->u.name,
sizeof(*block) -
offset * sizeof(union afs_xdr_dirent));
_debug("ENT[%zu.%u]: %s %zu \"%s\"",
blkoff / sizeof(union afs_xdr_dir_block), offset,
(offset < curr ? "skip" : "fill"),
nlen, dire->u.name);
/* work out where the next possible entry is */
for (tmp = nlen; tmp > 15; tmp -= sizeof(union afs_xdr_dirent)) {
if (next >= AFS_DIR_SLOTS_PER_BLOCK) {
_debug("ENT[%zu.%u]:"
" %u travelled beyond end dir block"
" (len %u/%zu)",
blkoff / sizeof(union afs_xdr_dir_block),
offset, next, tmp, nlen);
return afs_bad(dvnode, afs_file_error_dir_over_end);
}
if (!(block->hdr.bitmap[next / 8] &
(1 << (next % 8)))) {
_debug("ENT[%zu.%u]:"
" %u unmarked extension (len %u/%zu)",
blkoff / sizeof(union afs_xdr_dir_block),
offset, next, tmp, nlen);
return afs_bad(dvnode, afs_file_error_dir_unmarked_ext);
}
_debug("ENT[%zu.%u]: ext %u/%zu",
blkoff / sizeof(union afs_xdr_dir_block),
next, tmp, nlen);
next++;
}
/* skip if starts before the current position */
if (offset < curr)
continue;
/* found the next entry */
if (!dir_emit(ctx, dire->u.name, nlen,
ntohl(dire->u.vnode),
(ctx->actor == afs_lookup_filldir ||
ctx->actor == afs_lookup_one_filldir)?
ntohl(dire->u.unique) : DT_UNKNOWN)) {
_leave(" = 0 [full]");
return 0;
}
ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent);
}
_leave(" = 1 [more]");
return 1;
}
/*
* iterate through the data blob that lists the contents of an AFS directory
*/
static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx,
struct key *key)
{
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
struct afs_vnode *dvnode = AFS_FS_I(dir);
struct afs_xdr_dir_page *dbuf;
union afs_xdr_dir_block *dblock;
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
struct afs_read *req;
struct page *page;
unsigned blkoff, limit;
int ret;
_enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos);
if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) {
_leave(" = -ESTALE");
return -ESTALE;
}
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
req = afs_read_dir(dvnode, key);
if (IS_ERR(req))
return PTR_ERR(req);
/* round the file position up to the next entry boundary */
ctx->pos += sizeof(union afs_xdr_dirent) - 1;
ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1);
/* walk through the blocks in sequence */
ret = 0;
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
while (ctx->pos < req->actual_len) {
blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
/* Fetch the appropriate page from the directory and re-add it
* to the LRU.
*/
page = req->pages[blkoff / PAGE_SIZE];
if (!page) {
ret = afs_bad(dvnode, afs_file_error_dir_missing_page);
break;
}
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
mark_page_accessed(page);
limit = blkoff & ~(PAGE_SIZE - 1);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
dbuf = kmap(page);
/* deal with the individual blocks stashed on this page */
do {
dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) /
sizeof(union afs_xdr_dir_block)];
ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff);
if (ret != 1) {
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
kunmap(page);
goto out;
}
blkoff += sizeof(union afs_xdr_dir_block);
} while (ctx->pos < dir->i_size && blkoff < limit);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
kunmap(page);
ret = 0;
}
out:
afs: Fix directory page locking The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-27 19:46:22 +00:00
up_read(&dvnode->validate_lock);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
afs_put_read(req);
_leave(" = %d", ret);
return ret;
}
/*
* read an AFS directory
*/
static int afs_readdir(struct file *file, struct dir_context *ctx)
{
return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file));
}
/*
* Search the directory for a single name
* - if afs_dir_iterate_block() spots this function, it'll pass the FID
* uniquifier through dtype
*/
static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name,
int nlen, loff_t fpos, u64 ino, unsigned dtype)
{
struct afs_lookup_one_cookie *cookie =
container_of(ctx, struct afs_lookup_one_cookie, ctx);
_enter("{%s,%u},%s,%u,,%llu,%u",
cookie->name.name, cookie->name.len, name, nlen,
(unsigned long long) ino, dtype);
/* insanity checks first */
BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
if (cookie->name.len != nlen ||
memcmp(cookie->name.name, name, nlen) != 0) {
_leave(" = 0 [no]");
return 0;
}
cookie->fid.vnode = ino;
cookie->fid.unique = dtype;
cookie->found = 1;
_leave(" = -1 [found]");
return -1;
}
/*
* Do a lookup of a single name in a directory
* - just returns the FID the dentry name maps to if found
*/
static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry,
struct afs_fid *fid, struct key *key)
{
struct afs_super_info *as = dir->i_sb->s_fs_info;
struct afs_lookup_one_cookie cookie = {
.ctx.actor = afs_lookup_one_filldir,
.name = dentry->d_name,
.fid.vid = as->volume->vid
};
int ret;
_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
/* search the directory */
ret = afs_dir_iterate(dir, &cookie.ctx, key);
if (ret < 0) {
_leave(" = %d [iter]", ret);
return ret;
}
ret = -ENOENT;
if (!cookie.found) {
_leave(" = -ENOENT [not found]");
return -ENOENT;
}
*fid = cookie.fid;
_leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique);
return 0;
}
/*
* search the directory for a name
* - if afs_dir_iterate_block() spots this function, it'll pass the FID
* uniquifier through dtype
*/
static int afs_lookup_filldir(struct dir_context *ctx, const char *name,
int nlen, loff_t fpos, u64 ino, unsigned dtype)
{
struct afs_lookup_cookie *cookie =
container_of(ctx, struct afs_lookup_cookie, ctx);
int ret;
_enter("{%s,%u},%s,%u,,%llu,%u",
cookie->name.name, cookie->name.len, name, nlen,
(unsigned long long) ino, dtype);
/* insanity checks first */
BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
if (cookie->found) {
if (cookie->nr_fids < 50) {
cookie->fids[cookie->nr_fids].vnode = ino;
cookie->fids[cookie->nr_fids].unique = dtype;
cookie->nr_fids++;
}
} else if (cookie->name.len == nlen &&
memcmp(cookie->name.name, name, nlen) == 0) {
cookie->fids[0].vnode = ino;
cookie->fids[0].unique = dtype;
cookie->found = 1;
if (cookie->one_only)
return -1;
}
ret = cookie->nr_fids >= 50 ? -1 : 0;
_leave(" = %d", ret);
return ret;
}
/*
* Do a lookup in a directory. We make use of bulk lookup to query a slew of
* files in one go and create inodes for them. The inode of the file we were
* asked for is returned.
*/
static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry,
struct key *key)
{
struct afs_lookup_cookie *cookie;
struct afs_cb_interest *dcbi, *cbi = NULL;
struct afs_super_info *as = dir->i_sb->s_fs_info;
struct afs_status_cb *scb;
struct afs_iget_data data;
struct afs_fs_cursor fc;
struct afs_server *server;
struct afs_vnode *dvnode = AFS_FS_I(dir);
struct inode *inode = NULL;
int ret, i;
_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL);
if (!cookie)
return ERR_PTR(-ENOMEM);
cookie->ctx.actor = afs_lookup_filldir;
cookie->name = dentry->d_name;
cookie->nr_fids = 1; /* slot 0 is saved for the fid we actually want */
read_seqlock_excl(&dvnode->cb_lock);
dcbi = rcu_dereference_protected(dvnode->cb_interest,
lockdep_is_held(&dvnode->cb_lock.lock));
if (dcbi) {
server = dcbi->server;
if (server &&
test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags))
cookie->one_only = true;
}
read_sequnlock_excl(&dvnode->cb_lock);
for (i = 0; i < 50; i++)
cookie->fids[i].vid = as->volume->vid;
/* search the directory */
ret = afs_dir_iterate(dir, &cookie->ctx, key);
if (ret < 0) {
inode = ERR_PTR(ret);
goto out;
}
inode = ERR_PTR(-ENOENT);
if (!cookie->found)
goto out;
/* Check to see if we already have an inode for the primary fid. */
data.volume = dvnode->volume;
data.fid = cookie->fids[0];
inode = ilookup5(dir->i_sb, cookie->fids[0].vnode, afs_iget5_test, &data);
if (inode)
goto out;
/* Need space for examining all the selected files */
inode = ERR_PTR(-ENOMEM);
cookie->statuses = kvcalloc(cookie->nr_fids, sizeof(struct afs_status_cb),
GFP_KERNEL);
if (!cookie->statuses)
goto out;
/* Try FS.InlineBulkStatus first. Abort codes for the individual
* lookups contained therein are stored in the reply without aborting
* the whole operation.
*/
if (cookie->one_only)
goto no_inline_bulk_status;
inode = ERR_PTR(-ERESTARTSYS);
afs: Make some RPC operations non-interruptible Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 15:16:31 +00:00
if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
while (afs_select_fileserver(&fc)) {
if (test_bit(AFS_SERVER_FL_NO_IBULK,
&fc.cbi->server->flags)) {
fc.ac.abort_code = RX_INVALID_OPERATION;
fc.ac.error = -ECONNABORTED;
break;
}
afs_fs_inline_bulk_status(&fc,
afs_v2net(dvnode),
cookie->fids,
cookie->statuses,
cookie->nr_fids, NULL);
}
if (fc.ac.error == 0)
cbi = afs_get_cb_interest(fc.cbi);
if (fc.ac.abort_code == RX_INVALID_OPERATION)
set_bit(AFS_SERVER_FL_NO_IBULK, &fc.cbi->server->flags);
inode = ERR_PTR(afs_end_vnode_operation(&fc));
}
if (!IS_ERR(inode))
goto success;
if (fc.ac.abort_code != RX_INVALID_OPERATION)
goto out_c;
no_inline_bulk_status:
/* We could try FS.BulkStatus next, but this aborts the entire op if
* any of the lookups fails - so, for the moment, revert to
* FS.FetchStatus for just the primary fid.
*/
cookie->nr_fids = 1;
inode = ERR_PTR(-ERESTARTSYS);
afs: Make some RPC operations non-interruptible Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 15:16:31 +00:00
if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
while (afs_select_fileserver(&fc)) {
scb = &cookie->statuses[0];
afs_fs_fetch_status(&fc,
afs_v2net(dvnode),
cookie->fids,
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
scb,
NULL);
}
if (fc.ac.error == 0)
cbi = afs_get_cb_interest(fc.cbi);
inode = ERR_PTR(afs_end_vnode_operation(&fc));
}
if (IS_ERR(inode))
goto out_c;
for (i = 0; i < cookie->nr_fids; i++)
cookie->statuses[i].status.abort_code = 0;
success:
/* Turn all the files into inodes and save the first one - which is the
* one we actually want.
*/
scb = &cookie->statuses[0];
if (scb->status.abort_code != 0)
inode = ERR_PTR(afs_abort_to_error(scb->status.abort_code));
for (i = 0; i < cookie->nr_fids; i++) {
struct afs_status_cb *scb = &cookie->statuses[i];
struct inode *ti;
if (scb->status.abort_code != 0)
continue;
ti = afs_iget(dir->i_sb, key, &cookie->fids[i],
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
scb, cbi, dvnode);
if (i == 0) {
inode = ti;
} else {
if (!IS_ERR(ti))
iput(ti);
}
}
out_c:
afs_put_cb_interest(afs_v2net(dvnode), cbi);
kvfree(cookie->statuses);
out:
kfree(cookie);
return inode;
}
/*
* Look up an entry in a directory with @sys substitution.
*/
static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry,
struct key *key)
{
struct afs_sysnames *subs;
struct afs_net *net = afs_i2net(dir);
struct dentry *ret;
char *buf, *p, *name;
int len, i;
_enter("");
ret = ERR_PTR(-ENOMEM);
p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL);
if (!buf)
goto out_p;
if (dentry->d_name.len > 4) {
memcpy(p, dentry->d_name.name, dentry->d_name.len - 4);
p += dentry->d_name.len - 4;
}
/* There is an ordered list of substitutes that we have to try. */
read_lock(&net->sysnames_lock);
subs = net->sysnames;
refcount_inc(&subs->usage);
read_unlock(&net->sysnames_lock);
for (i = 0; i < subs->nr; i++) {
name = subs->subs[i];
len = dentry->d_name.len - 4 + strlen(name);
if (len >= AFSNAMEMAX) {
ret = ERR_PTR(-ENAMETOOLONG);
goto out_s;
}
strcpy(p, name);
ret = lookup_one_len(buf, dentry->d_parent, len);
if (IS_ERR(ret) || d_is_positive(ret))
goto out_s;
dput(ret);
}
/* We don't want to d_add() the @sys dentry here as we don't want to
* the cached dentry to hide changes to the sysnames list.
*/
ret = NULL;
out_s:
afs_put_sysnames(subs);
kfree(buf);
out_p:
key_put(key);
return ret;
}
/*
* look up an entry in a directory
*/
static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct afs_vnode *dvnode = AFS_FS_I(dir);
struct inode *inode;
struct dentry *d;
struct key *key;
int ret;
_enter("{%llx:%llu},%p{%pd},",
dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry);
ASSERTCMP(d_inode(dentry), ==, NULL);
if (dentry->d_name.len >= AFSNAMEMAX) {
_leave(" = -ENAMETOOLONG");
return ERR_PTR(-ENAMETOOLONG);
}
if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) {
_leave(" = -ESTALE");
return ERR_PTR(-ESTALE);
}
key = afs_request_key(dvnode->volume->cell);
if (IS_ERR(key)) {
_leave(" = %ld [key]", PTR_ERR(key));
return ERR_CAST(key);
}
ret = afs_validate(dvnode, key);
if (ret < 0) {
key_put(key);
_leave(" = %d [val]", ret);
return ERR_PTR(ret);
}
if (dentry->d_name.len >= 4 &&
dentry->d_name.name[dentry->d_name.len - 4] == '@' &&
dentry->d_name.name[dentry->d_name.len - 3] == 's' &&
dentry->d_name.name[dentry->d_name.len - 2] == 'y' &&
dentry->d_name.name[dentry->d_name.len - 1] == 's')
return afs_lookup_atsys(dir, dentry, key);
afs_stat_v(dvnode, n_lookup);
inode = afs_do_lookup(dir, dentry, key);
key_put(key);
if (inode == ERR_PTR(-ENOENT)) {
inode = afs_try_auto_mntpt(dentry, dir);
} else {
dentry->d_fsdata =
(void *)(unsigned long)dvnode->status.data_version;
}
d = d_splice_alias(inode, dentry);
if (!IS_ERR_OR_NULL(d)) {
d->d_fsdata = dentry->d_fsdata;
trace_afs_lookup(dvnode, &d->d_name,
inode ? AFS_FS_I(inode) : NULL);
} else {
trace_afs_lookup(dvnode, &dentry->d_name,
inode ? AFS_FS_I(inode) : NULL);
}
return d;
}
/*
* check that a dentry lookup hit has found a valid entry
* - NOTE! the hit can be a negative hit too, so we can't assume we have an
* inode
*/
static int afs_d_revalidate(struct dentry *dentry, unsigned int flags)
{
struct afs_vnode *vnode, *dir;
struct afs_fid uninitialized_var(fid);
struct dentry *parent;
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
struct inode *inode;
struct key *key;
long dir_version, de_version;
int ret;
if (flags & LOOKUP_RCU)
return -ECHILD;
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
if (d_really_is_positive(dentry)) {
vnode = AFS_FS_I(d_inode(dentry));
_enter("{v={%llx:%llu} n=%pd fl=%lx},",
vnode->fid.vid, vnode->fid.vnode, dentry,
vnode->flags);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
} else {
_enter("{neg n=%pd}", dentry);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
}
key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell);
if (IS_ERR(key))
key = NULL;
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
if (d_really_is_positive(dentry)) {
inode = d_inode(dentry);
if (inode) {
vnode = AFS_FS_I(inode);
afs_validate(vnode, key);
if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
goto out_bad;
}
}
/* lock down the parent dentry so we can peer at it */
parent = dget_parent(dentry);
dir = AFS_FS_I(d_inode(parent));
/* validate the parent directory */
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
afs_validate(dir, key);
if (test_bit(AFS_VNODE_DELETED, &dir->flags)) {
_debug("%pd: parent dir deleted", dentry);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
goto out_bad_parent;
}
/* We only need to invalidate a dentry if the server's copy changed
* behind our back. If we made the change, it's no problem. Note that
* on a 32-bit system, we only have 32 bits in the dentry to store the
* version.
*/
dir_version = (long)dir->status.data_version;
de_version = (long)dentry->d_fsdata;
if (de_version == dir_version)
goto out_valid;
dir_version = (long)dir->invalid_before;
if (de_version - dir_version >= 0)
goto out_valid;
_debug("dir modified");
afs_stat_v(dir, n_reval);
/* search the directory for this vnode */
ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key);
switch (ret) {
case 0:
/* the filename maps to something */
if (d_really_is_negative(dentry))
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
goto out_bad_parent;
inode = d_inode(dentry);
if (is_bad_inode(inode)) {
printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n",
dentry);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
goto out_bad_parent;
}
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
vnode = AFS_FS_I(inode);
/* if the vnode ID has changed, then the dirent points to a
* different file */
if (fid.vnode != vnode->fid.vnode) {
_debug("%pd: dirent changed [%llu != %llu]",
dentry, fid.vnode,
vnode->fid.vnode);
goto not_found;
}
/* if the vnode ID uniqifier has changed, then the file has
* been deleted and replaced, and the original vnode ID has
* been reused */
if (fid.unique != vnode->fid.unique) {
_debug("%pd: file deleted (uq %u -> %u I:%u)",
dentry, fid.unique,
vnode->fid.unique,
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
vnode->vfs_inode.i_generation);
write_seqlock(&vnode->cb_lock);
set_bit(AFS_VNODE_DELETED, &vnode->flags);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
write_sequnlock(&vnode->cb_lock);
goto not_found;
}
goto out_valid;
case -ENOENT:
/* the filename is unknown */
_debug("%pd: dirent not found", dentry);
if (d_really_is_positive(dentry))
goto not_found;
goto out_valid;
default:
_debug("failed to iterate dir %pd: %d",
parent, ret);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
goto out_bad_parent;
}
out_valid:
dentry->d_fsdata = (void *)dir_version;
dput(parent);
key_put(key);
_leave(" = 1 [valid]");
return 1;
/* the dirent, if it exists, now points to a different vnode */
not_found:
spin_lock(&dentry->d_lock);
dentry->d_flags |= DCACHE_NFSFS_RENAMED;
spin_unlock(&dentry->d_lock);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
out_bad_parent:
_debug("dropping dentry %pd2", dentry);
dput(parent);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:49 +00:00
out_bad:
key_put(key);
_leave(" = 0 [bad]");
return 0;
}
/*
* allow the VFS to enquire as to whether a dentry should be unhashed (mustn't
* sleep)
* - called from dput() when d_count is going to 0.
* - return 1 to request dentry be unhashed, 0 otherwise
*/
static int afs_d_delete(const struct dentry *dentry)
{
_enter("%pd", dentry);
if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
goto zap;
if (d_really_is_positive(dentry) &&
(test_bit(AFS_VNODE_DELETED, &AFS_FS_I(d_inode(dentry))->flags) ||
test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags)))
goto zap;
_leave(" = 0 [keep]");
return 0;
zap:
_leave(" = 1 [zap]");
return 1;
}
/*
* Clean up sillyrename files on dentry removal.
*/
static void afs_d_iput(struct dentry *dentry, struct inode *inode)
{
if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
afs_silly_iput(dentry, inode);
iput(inode);
}
/*
* handle dentry release
*/
void afs_d_release(struct dentry *dentry)
{
_enter("%pd", dentry);
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
/*
* Create a new inode for create/mkdir/symlink
*/
static void afs_vnode_new_inode(struct afs_fs_cursor *fc,
struct dentry *new_dentry,
struct afs_fid *newfid,
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
struct afs_status_cb *new_scb)
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
{
struct afs_vnode *vnode;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct inode *inode;
if (fc->ac.error < 0)
return;
inode = afs_iget(fc->vnode->vfs_inode.i_sb, fc->key,
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
newfid, new_scb, fc->cbi, fc->vnode);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
if (IS_ERR(inode)) {
/* ENOMEM or EINTR at a really inconvenient time - just abandon
* the new directory on the server.
*/
fc->ac.error = PTR_ERR(inode);
return;
}
vnode = AFS_FS_I(inode);
set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
if (fc->ac.error == 0)
afs_cache_permit(vnode, fc->key, vnode->cb_break, new_scb);
d_instantiate(new_dentry, inode);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
/*
* create a directory on an AFS filesystem
*/
static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
struct afs_status_cb *scb;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct afs_fs_cursor fc;
struct afs_vnode *dvnode = AFS_FS_I(dir);
struct afs_fid newfid;
struct key *key;
int ret;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
mode |= S_IFDIR;
_enter("{%llx:%llu},{%pd},%ho",
dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
ret = -ENOMEM;
scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
if (!scb)
goto error;
key = afs_request_key(dvnode->volume->cell);
if (IS_ERR(key)) {
ret = PTR_ERR(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
goto error_scb;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ERESTARTSYS;
afs: Make some RPC operations non-interruptible Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 15:16:31 +00:00
if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_dataversion_t data_version = dvnode->status.data_version + 1;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
while (afs_select_fileserver(&fc)) {
fc.cb_break = afs_calc_vnode_cb_break(dvnode);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_fs_create(&fc, dentry->d_name.name, mode,
&scb[0], &newfid, &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_check_for_remote_deletion(&fc, dvnode);
afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
&data_version, &scb[0]);
afs_vnode_new_inode(&fc, dentry, &newfid, &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = afs_end_vnode_operation(&fc);
if (ret < 0)
goto error_key;
} else {
goto error_key;
}
if (ret == 0 &&
test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
afs_edit_dir_add(dvnode, &dentry->d_name, &newfid,
afs_edit_dir_for_create);
key_put(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
kfree(scb);
_leave(" = 0");
return 0;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
error_key:
key_put(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
error_scb:
kfree(scb);
error:
d_drop(dentry);
_leave(" = %d", ret);
return ret;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
/*
* Remove a subdir from a directory.
*/
static void afs_dir_remove_subdir(struct dentry *dentry)
{
if (d_really_is_positive(dentry)) {
struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
clear_nlink(&vnode->vfs_inode);
set_bit(AFS_VNODE_DELETED, &vnode->flags);
clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags);
clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
}
/*
* remove a directory from an AFS filesystem
*/
static int afs_rmdir(struct inode *dir, struct dentry *dentry)
{
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
struct afs_status_cb *scb;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct afs_fs_cursor fc;
struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL;
struct key *key;
int ret;
_enter("{%llx:%llu},{%pd}",
dvnode->fid.vid, dvnode->fid.vnode, dentry);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
scb = kzalloc(sizeof(struct afs_status_cb), GFP_KERNEL);
if (!scb)
return -ENOMEM;
key = afs_request_key(dvnode->volume->cell);
if (IS_ERR(key)) {
ret = PTR_ERR(key);
goto error;
}
/* Try to make sure we have a callback promise on the victim. */
if (d_really_is_positive(dentry)) {
vnode = AFS_FS_I(d_inode(dentry));
ret = afs_validate(vnode, key);
if (ret < 0)
goto error_key;
}
if (vnode) {
ret = down_write_killable(&vnode->rmdir_lock);
if (ret < 0)
goto error_key;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ERESTARTSYS;
afs: Make some RPC operations non-interruptible Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 15:16:31 +00:00
if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_dataversion_t data_version = dvnode->status.data_version + 1;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
while (afs_select_fileserver(&fc)) {
fc.cb_break = afs_calc_vnode_cb_break(dvnode);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_fs_remove(&fc, vnode, dentry->d_name.name, true, scb);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
&data_version, scb);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = afs_end_vnode_operation(&fc);
if (ret == 0) {
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
afs_dir_remove_subdir(dentry);
if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
afs_edit_dir_remove(dvnode, &dentry->d_name,
afs_edit_dir_for_rmdir);
}
}
if (vnode)
up_write(&vnode->rmdir_lock);
error_key:
key_put(key);
error:
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
kfree(scb);
return ret;
}
/*
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
* Remove a link to a file or symlink from a directory.
*
* If the file was not deleted due to excess hard links, the fileserver will
* break the callback promise on the file - if it had one - before it returns
* to us, and if it was deleted, it won't
*
* However, if we didn't have a callback promise outstanding, or it was
* outstanding on a different server, then it won't break it either...
*/
static int afs_dir_remove_link(struct afs_vnode *dvnode, struct dentry *dentry,
struct key *key)
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
{
int ret = 0;
if (d_really_is_positive(dentry)) {
struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) {
/* Already done */
} else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
write_seqlock(&vnode->cb_lock);
drop_nlink(&vnode->vfs_inode);
if (vnode->vfs_inode.i_nlink == 0) {
set_bit(AFS_VNODE_DELETED, &vnode->flags);
__afs_break_callback(vnode);
}
write_sequnlock(&vnode->cb_lock);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = 0;
} else {
afs_break_callback(vnode);
if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
kdebug("AFS_VNODE_DELETED");
ret = afs_validate(vnode, key);
if (ret == -ESTALE)
ret = 0;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
_debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, ret);
}
return ret;
}
/*
* Remove a file or symlink from an AFS filesystem.
*/
static int afs_unlink(struct inode *dir, struct dentry *dentry)
{
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct afs_fs_cursor fc;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
struct afs_status_cb *scb;
struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL;
struct key *key;
bool need_rehash = false;
int ret;
_enter("{%llx:%llu},{%pd}",
dvnode->fid.vid, dvnode->fid.vnode, dentry);
if (dentry->d_name.len >= AFSNAMEMAX)
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
return -ENAMETOOLONG;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
ret = -ENOMEM;
scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
if (!scb)
goto error;
key = afs_request_key(dvnode->volume->cell);
if (IS_ERR(key)) {
ret = PTR_ERR(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
goto error_scb;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
/* Try to make sure we have a callback promise on the victim. */
if (d_really_is_positive(dentry)) {
vnode = AFS_FS_I(d_inode(dentry));
ret = afs_validate(vnode, key);
if (ret < 0)
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
goto error_key;
}
spin_lock(&dentry->d_lock);
if (vnode && d_count(dentry) > 1) {
spin_unlock(&dentry->d_lock);
/* Start asynchronous writeout of the inode */
write_inode_now(d_inode(dentry), 0);
ret = afs_sillyrename(dvnode, vnode, dentry, key);
goto error_key;
}
if (!d_unhashed(dentry)) {
/* Prevent a race with RCU lookup. */
__d_drop(dentry);
need_rehash = true;
}
spin_unlock(&dentry->d_lock);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ERESTARTSYS;
afs: Make some RPC operations non-interruptible Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 15:16:31 +00:00
if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_dataversion_t data_version = dvnode->status.data_version + 1;
afs_dataversion_t data_version_2 = vnode->status.data_version;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
while (afs_select_fileserver(&fc)) {
fc.cb_break = afs_calc_vnode_cb_break(dvnode);
fc.cb_break_2 = afs_calc_vnode_cb_break(vnode);
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc.cbi->server->flags) &&
!test_bit(AFS_SERVER_FL_NO_RM2, &fc.cbi->server->flags)) {
yfs_fs_remove_file2(&fc, vnode, dentry->d_name.name,
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
&scb[0], &scb[1]);
if (fc.ac.error != -ECONNABORTED ||
fc.ac.abort_code != RXGEN_OPCODE)
continue;
set_bit(AFS_SERVER_FL_NO_RM2, &fc.cbi->server->flags);
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_fs_remove(&fc, vnode, dentry->d_name.name, false, &scb[0]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
&data_version, &scb[0]);
afs_vnode_commit_status(&fc, vnode, fc.cb_break_2,
&data_version_2, &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = afs_end_vnode_operation(&fc);
if (ret == 0 && !(scb[1].have_status || scb[1].have_error))
ret = afs_dir_remove_link(dvnode, dentry, key);
if (ret == 0 &&
test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
afs_edit_dir_remove(dvnode, &dentry->d_name,
afs_edit_dir_for_unlink);
}
if (need_rehash && ret < 0 && ret != -ENOENT)
d_rehash(dentry);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
error_key:
key_put(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
error_scb:
kfree(scb);
error:
_leave(" = %d", ret);
return ret;
}
/*
* create a regular file on an AFS filesystem
*/
static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
bool excl)
{
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct afs_fs_cursor fc;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
struct afs_status_cb *scb;
struct afs_vnode *dvnode = AFS_FS_I(dir);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct afs_fid newfid;
struct key *key;
int ret;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
mode |= S_IFREG;
_enter("{%llx:%llu},{%pd},%ho,",
dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ENAMETOOLONG;
if (dentry->d_name.len >= AFSNAMEMAX)
goto error;
key = afs_request_key(dvnode->volume->cell);
if (IS_ERR(key)) {
ret = PTR_ERR(key);
goto error;
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
ret = -ENOMEM;
scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
if (!scb)
goto error_scb;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ERESTARTSYS;
afs: Make some RPC operations non-interruptible Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 15:16:31 +00:00
if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_dataversion_t data_version = dvnode->status.data_version + 1;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
while (afs_select_fileserver(&fc)) {
fc.cb_break = afs_calc_vnode_cb_break(dvnode);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_fs_create(&fc, dentry->d_name.name, mode,
&scb[0], &newfid, &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_check_for_remote_deletion(&fc, dvnode);
afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
&data_version, &scb[0]);
afs_vnode_new_inode(&fc, dentry, &newfid, &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = afs_end_vnode_operation(&fc);
if (ret < 0)
goto error_key;
} else {
goto error_key;
}
if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
afs_edit_dir_add(dvnode, &dentry->d_name, &newfid,
afs_edit_dir_for_create);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
kfree(scb);
key_put(key);
_leave(" = 0");
return 0;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
error_scb:
kfree(scb);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
error_key:
key_put(key);
error:
d_drop(dentry);
_leave(" = %d", ret);
return ret;
}
/*
* create a hard link between files in an AFS filesystem
*/
static int afs_link(struct dentry *from, struct inode *dir,
struct dentry *dentry)
{
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct afs_fs_cursor fc;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
struct afs_status_cb *scb;
struct afs_vnode *dvnode = AFS_FS_I(dir);
struct afs_vnode *vnode = AFS_FS_I(d_inode(from));
struct key *key;
int ret;
_enter("{%llx:%llu},{%llx:%llu},{%pd}",
vnode->fid.vid, vnode->fid.vnode,
dvnode->fid.vid, dvnode->fid.vnode,
dentry);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ENAMETOOLONG;
if (dentry->d_name.len >= AFSNAMEMAX)
goto error;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
ret = -ENOMEM;
scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
if (!scb)
goto error;
key = afs_request_key(dvnode->volume->cell);
if (IS_ERR(key)) {
ret = PTR_ERR(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
goto error_scb;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ERESTARTSYS;
afs: Make some RPC operations non-interruptible Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 15:16:31 +00:00
if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_dataversion_t data_version = dvnode->status.data_version + 1;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
if (mutex_lock_interruptible_nested(&vnode->io_lock, 1) < 0) {
afs_end_vnode_operation(&fc);
goto error_key;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
while (afs_select_fileserver(&fc)) {
fc.cb_break = afs_calc_vnode_cb_break(dvnode);
fc.cb_break_2 = afs_calc_vnode_cb_break(vnode);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_fs_link(&fc, vnode, dentry->d_name.name,
&scb[0], &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
&data_version, &scb[0]);
afs_vnode_commit_status(&fc, vnode, fc.cb_break_2,
NULL, &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ihold(&vnode->vfs_inode);
d_instantiate(dentry, &vnode->vfs_inode);
mutex_unlock(&vnode->io_lock);
ret = afs_end_vnode_operation(&fc);
if (ret < 0)
goto error_key;
} else {
goto error_key;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
afs_edit_dir_add(dvnode, &dentry->d_name, &vnode->fid,
afs_edit_dir_for_link);
key_put(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
kfree(scb);
_leave(" = 0");
return 0;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
error_key:
key_put(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
error_scb:
kfree(scb);
error:
d_drop(dentry);
_leave(" = %d", ret);
return ret;
}
/*
* create a symlink in an AFS filesystem
*/
static int afs_symlink(struct inode *dir, struct dentry *dentry,
const char *content)
{
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct afs_fs_cursor fc;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
struct afs_status_cb *scb;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct afs_vnode *dvnode = AFS_FS_I(dir);
struct afs_fid newfid;
struct key *key;
int ret;
_enter("{%llx:%llu},{%pd},%s",
dvnode->fid.vid, dvnode->fid.vnode, dentry,
content);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ENAMETOOLONG;
if (dentry->d_name.len >= AFSNAMEMAX)
goto error;
ret = -EINVAL;
if (strlen(content) >= AFSPATHMAX)
goto error;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
ret = -ENOMEM;
scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
if (!scb)
goto error;
key = afs_request_key(dvnode->volume->cell);
if (IS_ERR(key)) {
ret = PTR_ERR(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
goto error_scb;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ERESTARTSYS;
afs: Make some RPC operations non-interruptible Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 15:16:31 +00:00
if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_dataversion_t data_version = dvnode->status.data_version + 1;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
while (afs_select_fileserver(&fc)) {
fc.cb_break = afs_calc_vnode_cb_break(dvnode);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_fs_symlink(&fc, dentry->d_name.name, content,
&scb[0], &newfid, &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_check_for_remote_deletion(&fc, dvnode);
afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
&data_version, &scb[0]);
afs_vnode_new_inode(&fc, dentry, &newfid, &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = afs_end_vnode_operation(&fc);
if (ret < 0)
goto error_key;
} else {
goto error_key;
}
if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
afs_edit_dir_add(dvnode, &dentry->d_name, &newfid,
afs_edit_dir_for_symlink);
key_put(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
kfree(scb);
_leave(" = 0");
return 0;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
error_key:
key_put(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
error_scb:
kfree(scb);
error:
d_drop(dentry);
_leave(" = %d", ret);
return ret;
}
/*
* rename a file in an AFS filesystem and/or move it between directories
*/
static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
struct afs_fs_cursor fc;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
struct afs_status_cb *scb;
struct afs_vnode *orig_dvnode, *new_dvnode, *vnode;
struct dentry *tmp = NULL, *rehash = NULL;
struct inode *new_inode;
struct key *key;
bool new_negative = d_is_negative(new_dentry);
int ret;
if (flags)
return -EINVAL;
/* Don't allow silly-rename files be moved around. */
if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED)
return -EINVAL;
vnode = AFS_FS_I(d_inode(old_dentry));
orig_dvnode = AFS_FS_I(old_dir);
new_dvnode = AFS_FS_I(new_dir);
_enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}",
orig_dvnode->fid.vid, orig_dvnode->fid.vnode,
vnode->fid.vid, vnode->fid.vnode,
new_dvnode->fid.vid, new_dvnode->fid.vnode,
new_dentry);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
ret = -ENOMEM;
scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
if (!scb)
goto error;
key = afs_request_key(orig_dvnode->volume->cell);
if (IS_ERR(key)) {
ret = PTR_ERR(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
goto error_scb;
}
/* For non-directories, check whether the target is busy and if so,
* make a copy of the dentry and then do a silly-rename. If the
* silly-rename succeeds, the copied dentry is hashed and becomes the
* new target.
*/
if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) {
/* To prevent any new references to the target during the
* rename, we unhash the dentry in advance.
*/
if (!d_unhashed(new_dentry)) {
d_drop(new_dentry);
rehash = new_dentry;
}
if (d_count(new_dentry) > 2) {
/* copy the target dentry's name */
ret = -ENOMEM;
tmp = d_alloc(new_dentry->d_parent,
&new_dentry->d_name);
if (!tmp)
goto error_rehash;
ret = afs_sillyrename(new_dvnode,
AFS_FS_I(d_inode(new_dentry)),
new_dentry, key);
if (ret)
goto error_rehash;
new_dentry = tmp;
rehash = NULL;
new_negative = true;
}
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = -ERESTARTSYS;
afs: Make some RPC operations non-interruptible Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 15:16:31 +00:00
if (afs_begin_vnode_operation(&fc, orig_dvnode, key, true)) {
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_dataversion_t orig_data_version;
afs_dataversion_t new_data_version;
struct afs_status_cb *new_scb = &scb[1];
orig_data_version = orig_dvnode->status.data_version + 1;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
if (orig_dvnode != new_dvnode) {
if (mutex_lock_interruptible_nested(&new_dvnode->io_lock, 1) < 0) {
afs_end_vnode_operation(&fc);
goto error_rehash;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
new_data_version = new_dvnode->status.data_version;
} else {
new_data_version = orig_data_version;
new_scb = &scb[0];
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
while (afs_select_fileserver(&fc)) {
fc.cb_break = afs_calc_vnode_cb_break(orig_dvnode);
fc.cb_break_2 = afs_calc_vnode_cb_break(new_dvnode);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
afs_fs_rename(&fc, old_dentry->d_name.name,
new_dvnode, new_dentry->d_name.name,
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
&scb[0], new_scb);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
afs_vnode_commit_status(&fc, orig_dvnode, fc.cb_break,
&orig_data_version, &scb[0]);
if (new_dvnode != orig_dvnode) {
afs_vnode_commit_status(&fc, new_dvnode, fc.cb_break_2,
&new_data_version, &scb[1]);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
mutex_unlock(&new_dvnode->io_lock);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = afs_end_vnode_operation(&fc);
if (ret < 0)
goto error_rehash;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
}
if (ret == 0) {
if (rehash)
d_rehash(rehash);
if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags))
afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name,
afs_edit_dir_for_rename_0);
if (!new_negative &&
test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags))
afs_edit_dir_remove(new_dvnode, &new_dentry->d_name,
afs_edit_dir_for_rename_1);
if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags))
afs_edit_dir_add(new_dvnode, &new_dentry->d_name,
&vnode->fid, afs_edit_dir_for_rename_2);
new_inode = d_inode(new_dentry);
if (new_inode) {
spin_lock(&new_inode->i_lock);
if (new_inode->i_nlink > 0)
drop_nlink(new_inode);
spin_unlock(&new_inode->i_lock);
}
d_move(old_dentry, new_dentry);
goto error_tmp;
}
error_rehash:
if (rehash)
d_rehash(rehash);
error_tmp:
if (tmp)
dput(tmp);
key_put(key);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 14:16:10 +00:00
error_scb:
kfree(scb);
error:
_leave(" = %d", ret);
return ret;
}
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
/*
* Release a directory page and clean up its private state if it's not busy
* - return true if the page can now be released, false if not
*/
static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags)
{
struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
_enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index);
afs: Fix directory handling AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 13:17:25 +00:00
set_page_private(page, 0);
ClearPagePrivate(page);
/* The directory will need reloading. */
if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
afs_stat_v(dvnode, n_relpg);
return 1;
}
/*
* invalidate part or all of a page
* - release a page and clean up its private data if offset is 0 (indicating
* the entire page)
*/
static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
_enter("{%lu},%u,%u", page->index, offset, length);
BUG_ON(!PageLocked(page));
/* The directory will need reloading. */
if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
afs_stat_v(dvnode, n_inval);
/* we clean up only if the entire page is being invalidated */
if (offset == 0 && length == PAGE_SIZE) {
set_page_private(page, 0);
ClearPagePrivate(page);
}
}