linux-stable/include/net/scm.h

209 lines
4.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_NET_SCM_H
#define __LINUX_NET_SCM_H
#include <linux/limits.h>
#include <linux/net.h>
#include <linux/cred.h>
#include <linux/security.h>
#include <linux/pid.h>
#include <linux/nsproxy.h>
#include <linux/sched/signal.h>
/* Well, we should have at least one descriptor open
* to accept passed FDs 8)
*/
#define SCM_MAX_FD 253
struct scm_creds {
u32 pid;
kuid_t uid;
kgid_t gid;
};
struct scm_fp_list {
short count;
short max;
struct user_struct *user;
struct file *fp[SCM_MAX_FD];
};
struct scm_cookie {
struct pid *pid; /* Skb credentials */
struct scm_fp_list *fp; /* Passed files */
struct scm_creds creds; /* Skb credentials */
[AF_UNIX]: Datagram getpeersec This patch implements an API whereby an application can determine the label of its peer's Unix datagram sockets via the auxiliary data mechanism of recvmsg. Patch purpose: This patch enables a security-aware application to retrieve the security context of the peer of a Unix datagram socket. The application can then use this security context to determine the security context for processing on behalf of the peer who sent the packet. Patch design and implementation: The design and implementation is very similar to the UDP case for INET sockets. Basically we build upon the existing Unix domain socket API for retrieving user credentials. Linux offers the API for obtaining user credentials via ancillary messages (i.e., out of band/control messages that are bundled together with a normal message). To retrieve the security context, the application first indicates to the kernel such desire by setting the SO_PASSSEC option via getsockopt. Then the application retrieves the security context using the auxiliary data mechanism. An example server application for Unix datagram socket should look like this: toggle = 1; toggle_len = sizeof(toggle); setsockopt(sockfd, SOL_SOCKET, SO_PASSSEC, &toggle, &toggle_len); recvmsg(sockfd, &msg_hdr, 0); if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) { cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr); if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) && cmsg_hdr->cmsg_level == SOL_SOCKET && cmsg_hdr->cmsg_type == SCM_SECURITY) { memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext)); } } sock_setsockopt is enhanced with a new socket option SOCK_PASSSEC to allow a server socket to receive security context of the peer. Testing: We have tested the patch by setting up Unix datagram client and server applications. We verified that the server can retrieve the security context using the auxiliary data mechanism of recvmsg. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Acked-by: Acked-by: James Morris <jmorris@namei.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-29 19:27:47 +00:00
#ifdef CONFIG_SECURITY_NETWORK
u32 secid; /* Passed security ID */
[AF_UNIX]: Datagram getpeersec This patch implements an API whereby an application can determine the label of its peer's Unix datagram sockets via the auxiliary data mechanism of recvmsg. Patch purpose: This patch enables a security-aware application to retrieve the security context of the peer of a Unix datagram socket. The application can then use this security context to determine the security context for processing on behalf of the peer who sent the packet. Patch design and implementation: The design and implementation is very similar to the UDP case for INET sockets. Basically we build upon the existing Unix domain socket API for retrieving user credentials. Linux offers the API for obtaining user credentials via ancillary messages (i.e., out of band/control messages that are bundled together with a normal message). To retrieve the security context, the application first indicates to the kernel such desire by setting the SO_PASSSEC option via getsockopt. Then the application retrieves the security context using the auxiliary data mechanism. An example server application for Unix datagram socket should look like this: toggle = 1; toggle_len = sizeof(toggle); setsockopt(sockfd, SOL_SOCKET, SO_PASSSEC, &toggle, &toggle_len); recvmsg(sockfd, &msg_hdr, 0); if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) { cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr); if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) && cmsg_hdr->cmsg_level == SOL_SOCKET && cmsg_hdr->cmsg_type == SCM_SECURITY) { memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext)); } } sock_setsockopt is enhanced with a new socket option SOCK_PASSSEC to allow a server socket to receive security context of the peer. Testing: We have tested the patch by setting up Unix datagram client and server applications. We verified that the server can retrieve the security context using the auxiliary data mechanism of recvmsg. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Acked-by: Acked-by: James Morris <jmorris@namei.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-29 19:27:47 +00:00
#endif
};
void scm_detach_fds(struct msghdr *msg, struct scm_cookie *scm);
void scm_detach_fds_compat(struct msghdr *msg, struct scm_cookie *scm);
int __scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm);
void __scm_destroy(struct scm_cookie *scm);
struct scm_fp_list *scm_fp_dup(struct scm_fp_list *fpl);
#ifdef CONFIG_SECURITY_NETWORK
static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm)
{
security_socket_getpeersec_dgram(sock, NULL, &scm->secid);
}
#else
static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm)
{ }
#endif /* CONFIG_SECURITY_NETWORK */
static __inline__ void scm_set_cred(struct scm_cookie *scm,
struct pid *pid, kuid_t uid, kgid_t gid)
{
scm->pid = get_pid(pid);
scm->creds.pid = pid_vnr(pid);
scm->creds.uid = uid;
scm->creds.gid = gid;
}
static __inline__ void scm_destroy_cred(struct scm_cookie *scm)
{
put_pid(scm->pid);
scm->pid = NULL;
}
static __inline__ void scm_destroy(struct scm_cookie *scm)
{
scm_destroy_cred(scm);
if (scm->fp)
__scm_destroy(scm);
}
static __inline__ int scm_send(struct socket *sock, struct msghdr *msg,
struct scm_cookie *scm, bool forcecreds)
{
af_unix: dont send SCM_CREDENTIALS by default Since commit 7361c36c5224 (af_unix: Allow credentials to work across user and pid namespaces) af_unix performance dropped a lot. This is because we now take a reference on pid and cred in each write(), and release them in read(), usually done from another process, eventually from another cpu. This triggers false sharing. # Events: 154K cycles # # Overhead Command Shared Object Symbol # ........ ....... .................. ......................... # 10.40% hackbench [kernel.kallsyms] [k] put_pid 8.60% hackbench [kernel.kallsyms] [k] unix_stream_recvmsg 7.87% hackbench [kernel.kallsyms] [k] unix_stream_sendmsg 6.11% hackbench [kernel.kallsyms] [k] do_raw_spin_lock 4.95% hackbench [kernel.kallsyms] [k] unix_scm_to_skb 4.87% hackbench [kernel.kallsyms] [k] pid_nr_ns 4.34% hackbench [kernel.kallsyms] [k] cred_to_ucred 2.39% hackbench [kernel.kallsyms] [k] unix_destruct_scm 2.24% hackbench [kernel.kallsyms] [k] sub_preempt_count 1.75% hackbench [kernel.kallsyms] [k] fget_light 1.51% hackbench [kernel.kallsyms] [k] __mutex_lock_interruptible_slowpath 1.42% hackbench [kernel.kallsyms] [k] sock_alloc_send_pskb This patch includes SCM_CREDENTIALS information in a af_unix message/skb only if requested by the sender, [man 7 unix for details how to include ancillary data using sendmsg() system call] Note: This might break buggy applications that expected SCM_CREDENTIAL from an unaware write() system call, and receiver not using SO_PASSCRED socket option. If SOCK_PASSCRED is set on source or destination socket, we still include credentials for mere write() syscalls. Performance boost in hackbench : more than 50% gain on a 16 thread machine (2 quad-core cpus, 2 threads per core) hackbench 20 thread 2000 4.228 sec instead of 9.102 sec Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-09-19 05:52:27 +00:00
memset(scm, 0, sizeof(*scm));
scm->creds.uid = INVALID_UID;
scm->creds.gid = INVALID_GID;
if (forcecreds)
scm_set_cred(scm, task_tgid(current), current_uid(), current_gid());
unix_get_peersec_dgram(sock, scm);
if (msg->msg_controllen <= 0)
return 0;
return __scm_send(sock, msg, scm);
}
[AF_UNIX]: Datagram getpeersec This patch implements an API whereby an application can determine the label of its peer's Unix datagram sockets via the auxiliary data mechanism of recvmsg. Patch purpose: This patch enables a security-aware application to retrieve the security context of the peer of a Unix datagram socket. The application can then use this security context to determine the security context for processing on behalf of the peer who sent the packet. Patch design and implementation: The design and implementation is very similar to the UDP case for INET sockets. Basically we build upon the existing Unix domain socket API for retrieving user credentials. Linux offers the API for obtaining user credentials via ancillary messages (i.e., out of band/control messages that are bundled together with a normal message). To retrieve the security context, the application first indicates to the kernel such desire by setting the SO_PASSSEC option via getsockopt. Then the application retrieves the security context using the auxiliary data mechanism. An example server application for Unix datagram socket should look like this: toggle = 1; toggle_len = sizeof(toggle); setsockopt(sockfd, SOL_SOCKET, SO_PASSSEC, &toggle, &toggle_len); recvmsg(sockfd, &msg_hdr, 0); if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) { cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr); if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) && cmsg_hdr->cmsg_level == SOL_SOCKET && cmsg_hdr->cmsg_type == SCM_SECURITY) { memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext)); } } sock_setsockopt is enhanced with a new socket option SOCK_PASSSEC to allow a server socket to receive security context of the peer. Testing: We have tested the patch by setting up Unix datagram client and server applications. We verified that the server can retrieve the security context using the auxiliary data mechanism of recvmsg. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Acked-by: Acked-by: James Morris <jmorris@namei.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-29 19:27:47 +00:00
#ifdef CONFIG_SECURITY_NETWORK
static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm)
{
char *secdata;
u32 seclen;
int err;
if (test_bit(SOCK_PASSSEC, &sock->flags)) {
err = security_secid_to_secctx(scm->secid, &secdata, &seclen);
if (!err) {
put_cmsg(msg, SOL_SOCKET, SCM_SECURITY, seclen, secdata);
security_release_secctx(secdata, seclen);
}
}
[AF_UNIX]: Datagram getpeersec This patch implements an API whereby an application can determine the label of its peer's Unix datagram sockets via the auxiliary data mechanism of recvmsg. Patch purpose: This patch enables a security-aware application to retrieve the security context of the peer of a Unix datagram socket. The application can then use this security context to determine the security context for processing on behalf of the peer who sent the packet. Patch design and implementation: The design and implementation is very similar to the UDP case for INET sockets. Basically we build upon the existing Unix domain socket API for retrieving user credentials. Linux offers the API for obtaining user credentials via ancillary messages (i.e., out of band/control messages that are bundled together with a normal message). To retrieve the security context, the application first indicates to the kernel such desire by setting the SO_PASSSEC option via getsockopt. Then the application retrieves the security context using the auxiliary data mechanism. An example server application for Unix datagram socket should look like this: toggle = 1; toggle_len = sizeof(toggle); setsockopt(sockfd, SOL_SOCKET, SO_PASSSEC, &toggle, &toggle_len); recvmsg(sockfd, &msg_hdr, 0); if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) { cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr); if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) && cmsg_hdr->cmsg_level == SOL_SOCKET && cmsg_hdr->cmsg_type == SCM_SECURITY) { memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext)); } } sock_setsockopt is enhanced with a new socket option SOCK_PASSSEC to allow a server socket to receive security context of the peer. Testing: We have tested the patch by setting up Unix datagram client and server applications. We verified that the server can retrieve the security context using the auxiliary data mechanism of recvmsg. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Acked-by: Acked-by: James Morris <jmorris@namei.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-29 19:27:47 +00:00
}
static inline bool scm_has_secdata(struct socket *sock)
{
return test_bit(SOCK_PASSSEC, &sock->flags);
}
[AF_UNIX]: Datagram getpeersec This patch implements an API whereby an application can determine the label of its peer's Unix datagram sockets via the auxiliary data mechanism of recvmsg. Patch purpose: This patch enables a security-aware application to retrieve the security context of the peer of a Unix datagram socket. The application can then use this security context to determine the security context for processing on behalf of the peer who sent the packet. Patch design and implementation: The design and implementation is very similar to the UDP case for INET sockets. Basically we build upon the existing Unix domain socket API for retrieving user credentials. Linux offers the API for obtaining user credentials via ancillary messages (i.e., out of band/control messages that are bundled together with a normal message). To retrieve the security context, the application first indicates to the kernel such desire by setting the SO_PASSSEC option via getsockopt. Then the application retrieves the security context using the auxiliary data mechanism. An example server application for Unix datagram socket should look like this: toggle = 1; toggle_len = sizeof(toggle); setsockopt(sockfd, SOL_SOCKET, SO_PASSSEC, &toggle, &toggle_len); recvmsg(sockfd, &msg_hdr, 0); if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) { cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr); if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) && cmsg_hdr->cmsg_level == SOL_SOCKET && cmsg_hdr->cmsg_type == SCM_SECURITY) { memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext)); } } sock_setsockopt is enhanced with a new socket option SOCK_PASSSEC to allow a server socket to receive security context of the peer. Testing: We have tested the patch by setting up Unix datagram client and server applications. We verified that the server can retrieve the security context using the auxiliary data mechanism of recvmsg. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Acked-by: Acked-by: James Morris <jmorris@namei.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-29 19:27:47 +00:00
#else
static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm)
{ }
static inline bool scm_has_secdata(struct socket *sock)
{
return false;
}
[AF_UNIX]: Datagram getpeersec This patch implements an API whereby an application can determine the label of its peer's Unix datagram sockets via the auxiliary data mechanism of recvmsg. Patch purpose: This patch enables a security-aware application to retrieve the security context of the peer of a Unix datagram socket. The application can then use this security context to determine the security context for processing on behalf of the peer who sent the packet. Patch design and implementation: The design and implementation is very similar to the UDP case for INET sockets. Basically we build upon the existing Unix domain socket API for retrieving user credentials. Linux offers the API for obtaining user credentials via ancillary messages (i.e., out of band/control messages that are bundled together with a normal message). To retrieve the security context, the application first indicates to the kernel such desire by setting the SO_PASSSEC option via getsockopt. Then the application retrieves the security context using the auxiliary data mechanism. An example server application for Unix datagram socket should look like this: toggle = 1; toggle_len = sizeof(toggle); setsockopt(sockfd, SOL_SOCKET, SO_PASSSEC, &toggle, &toggle_len); recvmsg(sockfd, &msg_hdr, 0); if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) { cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr); if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) && cmsg_hdr->cmsg_level == SOL_SOCKET && cmsg_hdr->cmsg_type == SCM_SECURITY) { memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext)); } } sock_setsockopt is enhanced with a new socket option SOCK_PASSSEC to allow a server socket to receive security context of the peer. Testing: We have tested the patch by setting up Unix datagram client and server applications. We verified that the server can retrieve the security context using the auxiliary data mechanism of recvmsg. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Acked-by: Acked-by: James Morris <jmorris@namei.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-29 19:27:47 +00:00
#endif /* CONFIG_SECURITY_NETWORK */
static __inline__ void scm_pidfd_recv(struct msghdr *msg, struct scm_cookie *scm)
{
struct file *pidfd_file = NULL;
int pidfd;
/*
* put_cmsg() doesn't return an error if CMSG is truncated,
* that's why we need to opencode these checks here.
*/
if ((msg->msg_controllen <= sizeof(struct cmsghdr)) ||
(msg->msg_controllen - sizeof(struct cmsghdr)) < sizeof(int)) {
msg->msg_flags |= MSG_CTRUNC;
return;
}
af_unix: Skip SCM_PIDFD if scm->pid is NULL. syzkaller hit a WARN_ON_ONCE(!scm->pid) in scm_pidfd_recv(). In unix_stream_read_generic(), if there is no skb in the queue, we could bail out the do-while loop without calling scm_set_cred(): 1. No skb in the queue 2. sk is non-blocking or shutdown(sk, RCV_SHUTDOWN) is called concurrently or peer calls close() If the socket is configured with SO_PASSPIDFD, scm_pidfd_recv() would populate cmsg with garbage emitting the warning. Let's skip SCM_PIDFD if scm->pid is NULL in scm_pidfd_recv(). Note another way would be skip calling scm_recv() in such cases, but this caused a regression resulting in commit 9d797ee2dce1 ("Revert "af_unix: Call scm_recv() only after scm_set_cred().""). WARNING: CPU: 1 PID: 3245 at include/net/scm.h:138 scm_pidfd_recv include/net/scm.h:138 [inline] WARNING: CPU: 1 PID: 3245 at include/net/scm.h:138 scm_recv.constprop.0+0x754/0x850 include/net/scm.h:177 Modules linked in: CPU: 1 PID: 3245 Comm: syz-executor.1 Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:scm_pidfd_recv include/net/scm.h:138 [inline] RIP: 0010:scm_recv.constprop.0+0x754/0x850 include/net/scm.h:177 Code: 67 fd e9 55 fd ff ff e8 4a 70 67 fd e9 7f fd ff ff e8 40 70 67 fd e9 3e fb ff ff e8 36 70 67 fd e9 02 fd ff ff e8 8c 3a 20 fd <0f> 0b e9 fe fb ff ff e8 50 70 67 fd e9 2e f9 ff ff e8 46 70 67 fd RSP: 0018:ffffc90009af7660 EFLAGS: 00010216 RAX: 00000000000000a1 RBX: ffff888041e58a80 RCX: ffffc90003852000 RDX: 0000000000040000 RSI: ffffffff842675b4 RDI: 0000000000000007 RBP: ffffc90009af7810 R08: 0000000000000007 R09: 0000000000000013 R10: 00000000000000f8 R11: 0000000000000001 R12: ffffc90009af7db0 R13: 0000000000000000 R14: ffff888041e58a88 R15: 1ffff9200135eecc FS: 00007f6b7113f640(0000) GS:ffff88806cf00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6b7111de38 CR3: 0000000012a6e002 CR4: 0000000000770ee0 PKRU: 55555554 Call Trace: <TASK> unix_stream_read_generic+0x5fe/0x1f50 net/unix/af_unix.c:2830 unix_stream_recvmsg+0x194/0x1c0 net/unix/af_unix.c:2880 sock_recvmsg_nosec net/socket.c:1019 [inline] sock_recvmsg+0x188/0x1d0 net/socket.c:1040 ____sys_recvmsg+0x210/0x610 net/socket.c:2712 ___sys_recvmsg+0xff/0x190 net/socket.c:2754 do_recvmmsg+0x25d/0x6c0 net/socket.c:2848 __sys_recvmmsg net/socket.c:2927 [inline] __do_sys_recvmmsg net/socket.c:2950 [inline] __se_sys_recvmmsg net/socket.c:2943 [inline] __x64_sys_recvmmsg+0x224/0x290 net/socket.c:2943 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3f/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x7f6b71da2e5d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48 RSP: 002b:00007f6b7113ecc8 EFLAGS: 00000246 ORIG_RAX: 000000000000012b RAX: ffffffffffffffda RBX: 00000000004bc050 RCX: 00007f6b71da2e5d RDX: 0000000000000007 RSI: 0000000020006600 RDI: 000000000000000b RBP: 00000000004bc050 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000120 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000006e R14: 00007f6b71e03530 R15: 0000000000000000 </TASK> Fixes: 5e2ff6704a27 ("scm: add SO_PASSPIDFD and SCM_PIDFD") Reported-by: syzkaller <syzkaller@googlegroups.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20230627174314.67688-2-kuniyu@amazon.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-06-27 17:43:13 +00:00
if (!scm->pid)
return;
pidfd = pidfd_prepare(scm->pid, 0, &pidfd_file);
if (put_cmsg(msg, SOL_SOCKET, SCM_PIDFD, sizeof(int), &pidfd)) {
if (pidfd_file) {
put_unused_fd(pidfd);
fput(pidfd_file);
}
return;
}
if (pidfd_file)
fd_install(pidfd, pidfd_file);
}
static inline bool __scm_recv_common(struct socket *sock, struct msghdr *msg,
struct scm_cookie *scm, int flags)
{
if (!msg->msg_control) {
if (test_bit(SOCK_PASSCRED, &sock->flags) ||
test_bit(SOCK_PASSPIDFD, &sock->flags) ||
scm->fp || scm_has_secdata(sock))
msg->msg_flags |= MSG_CTRUNC;
scm_destroy(scm);
return false;
}
if (test_bit(SOCK_PASSCRED, &sock->flags)) {
struct user_namespace *current_ns = current_user_ns();
struct ucred ucreds = {
.pid = scm->creds.pid,
.uid = from_kuid_munged(current_ns, scm->creds.uid),
.gid = from_kgid_munged(current_ns, scm->creds.gid),
};
put_cmsg(msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(ucreds), &ucreds);
}
scm_passec(sock, msg, scm);
if (scm->fp)
scm_detach_fds(msg, scm);
return true;
}
[AF_UNIX]: Datagram getpeersec This patch implements an API whereby an application can determine the label of its peer's Unix datagram sockets via the auxiliary data mechanism of recvmsg. Patch purpose: This patch enables a security-aware application to retrieve the security context of the peer of a Unix datagram socket. The application can then use this security context to determine the security context for processing on behalf of the peer who sent the packet. Patch design and implementation: The design and implementation is very similar to the UDP case for INET sockets. Basically we build upon the existing Unix domain socket API for retrieving user credentials. Linux offers the API for obtaining user credentials via ancillary messages (i.e., out of band/control messages that are bundled together with a normal message). To retrieve the security context, the application first indicates to the kernel such desire by setting the SO_PASSSEC option via getsockopt. Then the application retrieves the security context using the auxiliary data mechanism. An example server application for Unix datagram socket should look like this: toggle = 1; toggle_len = sizeof(toggle); setsockopt(sockfd, SOL_SOCKET, SO_PASSSEC, &toggle, &toggle_len); recvmsg(sockfd, &msg_hdr, 0); if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) { cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr); if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) && cmsg_hdr->cmsg_level == SOL_SOCKET && cmsg_hdr->cmsg_type == SCM_SECURITY) { memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext)); } } sock_setsockopt is enhanced with a new socket option SOCK_PASSSEC to allow a server socket to receive security context of the peer. Testing: We have tested the patch by setting up Unix datagram client and server applications. We verified that the server can retrieve the security context using the auxiliary data mechanism of recvmsg. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Acked-by: Acked-by: James Morris <jmorris@namei.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-29 19:27:47 +00:00
static inline void scm_recv(struct socket *sock, struct msghdr *msg,
struct scm_cookie *scm, int flags)
{
if (!__scm_recv_common(sock, msg, scm, flags))
return;
scm_destroy_cred(scm);
}
static inline void scm_recv_unix(struct socket *sock, struct msghdr *msg,
struct scm_cookie *scm, int flags)
{
if (!__scm_recv_common(sock, msg, scm, flags))
return;
if (test_bit(SOCK_PASSPIDFD, &sock->flags))
scm_pidfd_recv(msg, scm);
scm_destroy_cred(scm);
}
#endif /* __LINUX_NET_SCM_H */