linux-stable/drivers/net/pcs/pcs-xpcs.c

1170 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020 Synopsys, Inc. and/or its affiliates.
* Synopsys DesignWare XPCS helpers
*
* Author: Jose Abreu <Jose.Abreu@synopsys.com>
*/
#include <linux/delay.h>
#include <linux/pcs/pcs-xpcs.h>
#include <linux/mdio.h>
#include <linux/phylink.h>
#include <linux/workqueue.h>
#include "pcs-xpcs.h"
#define phylink_pcs_to_xpcs(pl_pcs) \
container_of((pl_pcs), struct dw_xpcs, pcs)
static const int xpcs_usxgmii_features[] = {
ETHTOOL_LINK_MODE_Pause_BIT,
ETHTOOL_LINK_MODE_Asym_Pause_BIT,
ETHTOOL_LINK_MODE_Autoneg_BIT,
ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_2500baseX_Full_BIT,
__ETHTOOL_LINK_MODE_MASK_NBITS,
};
static const int xpcs_10gkr_features[] = {
ETHTOOL_LINK_MODE_Pause_BIT,
ETHTOOL_LINK_MODE_Asym_Pause_BIT,
ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
__ETHTOOL_LINK_MODE_MASK_NBITS,
};
static const int xpcs_xlgmii_features[] = {
ETHTOOL_LINK_MODE_Pause_BIT,
ETHTOOL_LINK_MODE_Asym_Pause_BIT,
ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
ETHTOOL_LINK_MODE_50000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseSR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseDR_Full_BIT,
ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseLR2_ER2_FR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseDR2_Full_BIT,
__ETHTOOL_LINK_MODE_MASK_NBITS,
};
static const int xpcs_sgmii_features[] = {
ETHTOOL_LINK_MODE_Pause_BIT,
ETHTOOL_LINK_MODE_Asym_Pause_BIT,
ETHTOOL_LINK_MODE_Autoneg_BIT,
ETHTOOL_LINK_MODE_10baseT_Half_BIT,
ETHTOOL_LINK_MODE_10baseT_Full_BIT,
ETHTOOL_LINK_MODE_100baseT_Half_BIT,
ETHTOOL_LINK_MODE_100baseT_Full_BIT,
ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
__ETHTOOL_LINK_MODE_MASK_NBITS,
};
static const int xpcs_2500basex_features[] = {
ETHTOOL_LINK_MODE_Pause_BIT,
ETHTOOL_LINK_MODE_Asym_Pause_BIT,
ETHTOOL_LINK_MODE_Autoneg_BIT,
ETHTOOL_LINK_MODE_2500baseX_Full_BIT,
ETHTOOL_LINK_MODE_2500baseT_Full_BIT,
__ETHTOOL_LINK_MODE_MASK_NBITS,
};
static const phy_interface_t xpcs_usxgmii_interfaces[] = {
PHY_INTERFACE_MODE_USXGMII,
};
static const phy_interface_t xpcs_10gkr_interfaces[] = {
PHY_INTERFACE_MODE_10GKR,
};
static const phy_interface_t xpcs_xlgmii_interfaces[] = {
PHY_INTERFACE_MODE_XLGMII,
};
static const phy_interface_t xpcs_sgmii_interfaces[] = {
PHY_INTERFACE_MODE_SGMII,
};
static const phy_interface_t xpcs_2500basex_interfaces[] = {
PHY_INTERFACE_MODE_2500BASEX,
PHY_INTERFACE_MODE_MAX,
};
net: pcs: xpcs: there is only one PHY ID The xpcs driver has an apparently inadequate structure for the actual hardware it drives. These defines and the xpcs_probe() function would suggest that there is one PHY ID per supported PHY interface type, and the driver simply validates whether the mode it should operate in (the argument of xpcs_probe) matches what the hardware is capable of: #define SYNOPSYS_XPCS_USXGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_10GKR_ID 0x7996ced0 #define SYNOPSYS_XPCS_XLGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_SGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_MASK 0xffffffff but that is not the case, because upon closer inspection, all the above 4 PHY ID definitions are in fact equal. So it is the same XPCS that is compatible with all 4 sets of PHY interface types. This change introduces an array of struct xpcs_compat which is populated by the single struct xpcs_id instance. It also eliminates the bogus defines for multiple Synopsys XPCS PHY IDs and replaces them with a single XPCS_ID, which better reflects the way in which the hardware operates. Because we are touching this area of the code anyway, the new array of struct xpcs_compat, as well as the array of xpcs_id, have been moved towards the end of the file, since they are variable declarations not definitions. If whichever of struct xpcs_compat or struct xpcs_id need to gain a function pointer member in the future, it is easier to reference functions (no forward declarations needed) if we have the const variable declarations at the end of the file. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:12 +00:00
enum {
DW_XPCS_USXGMII,
DW_XPCS_10GKR,
DW_XPCS_XLGMII,
DW_XPCS_SGMII,
DW_XPCS_2500BASEX,
net: pcs: xpcs: there is only one PHY ID The xpcs driver has an apparently inadequate structure for the actual hardware it drives. These defines and the xpcs_probe() function would suggest that there is one PHY ID per supported PHY interface type, and the driver simply validates whether the mode it should operate in (the argument of xpcs_probe) matches what the hardware is capable of: #define SYNOPSYS_XPCS_USXGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_10GKR_ID 0x7996ced0 #define SYNOPSYS_XPCS_XLGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_SGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_MASK 0xffffffff but that is not the case, because upon closer inspection, all the above 4 PHY ID definitions are in fact equal. So it is the same XPCS that is compatible with all 4 sets of PHY interface types. This change introduces an array of struct xpcs_compat which is populated by the single struct xpcs_id instance. It also eliminates the bogus defines for multiple Synopsys XPCS PHY IDs and replaces them with a single XPCS_ID, which better reflects the way in which the hardware operates. Because we are touching this area of the code anyway, the new array of struct xpcs_compat, as well as the array of xpcs_id, have been moved towards the end of the file, since they are variable declarations not definitions. If whichever of struct xpcs_compat or struct xpcs_id need to gain a function pointer member in the future, it is easier to reference functions (no forward declarations needed) if we have the const variable declarations at the end of the file. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:12 +00:00
DW_XPCS_INTERFACE_MAX,
};
struct xpcs_compat {
const int *supported;
const phy_interface_t *interface;
net: pcs: xpcs: there is only one PHY ID The xpcs driver has an apparently inadequate structure for the actual hardware it drives. These defines and the xpcs_probe() function would suggest that there is one PHY ID per supported PHY interface type, and the driver simply validates whether the mode it should operate in (the argument of xpcs_probe) matches what the hardware is capable of: #define SYNOPSYS_XPCS_USXGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_10GKR_ID 0x7996ced0 #define SYNOPSYS_XPCS_XLGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_SGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_MASK 0xffffffff but that is not the case, because upon closer inspection, all the above 4 PHY ID definitions are in fact equal. So it is the same XPCS that is compatible with all 4 sets of PHY interface types. This change introduces an array of struct xpcs_compat which is populated by the single struct xpcs_id instance. It also eliminates the bogus defines for multiple Synopsys XPCS PHY IDs and replaces them with a single XPCS_ID, which better reflects the way in which the hardware operates. Because we are touching this area of the code anyway, the new array of struct xpcs_compat, as well as the array of xpcs_id, have been moved towards the end of the file, since they are variable declarations not definitions. If whichever of struct xpcs_compat or struct xpcs_id need to gain a function pointer member in the future, it is easier to reference functions (no forward declarations needed) if we have the const variable declarations at the end of the file. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:12 +00:00
int num_interfaces;
int an_mode;
int (*pma_config)(struct dw_xpcs *xpcs);
net: pcs: xpcs: there is only one PHY ID The xpcs driver has an apparently inadequate structure for the actual hardware it drives. These defines and the xpcs_probe() function would suggest that there is one PHY ID per supported PHY interface type, and the driver simply validates whether the mode it should operate in (the argument of xpcs_probe) matches what the hardware is capable of: #define SYNOPSYS_XPCS_USXGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_10GKR_ID 0x7996ced0 #define SYNOPSYS_XPCS_XLGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_SGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_MASK 0xffffffff but that is not the case, because upon closer inspection, all the above 4 PHY ID definitions are in fact equal. So it is the same XPCS that is compatible with all 4 sets of PHY interface types. This change introduces an array of struct xpcs_compat which is populated by the single struct xpcs_id instance. It also eliminates the bogus defines for multiple Synopsys XPCS PHY IDs and replaces them with a single XPCS_ID, which better reflects the way in which the hardware operates. Because we are touching this area of the code anyway, the new array of struct xpcs_compat, as well as the array of xpcs_id, have been moved towards the end of the file, since they are variable declarations not definitions. If whichever of struct xpcs_compat or struct xpcs_id need to gain a function pointer member in the future, it is easier to reference functions (no forward declarations needed) if we have the const variable declarations at the end of the file. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:12 +00:00
};
struct xpcs_id {
u32 id;
u32 mask;
const struct xpcs_compat *compat;
};
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
static const struct xpcs_compat *xpcs_find_compat(const struct xpcs_id *id,
phy_interface_t interface)
{
int i, j;
for (i = 0; i < DW_XPCS_INTERFACE_MAX; i++) {
const struct xpcs_compat *compat = &id->compat[i];
for (j = 0; j < compat->num_interfaces; j++)
if (compat->interface[j] == interface)
return compat;
}
return NULL;
}
int xpcs_get_an_mode(struct dw_xpcs *xpcs, phy_interface_t interface)
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
{
const struct xpcs_compat *compat;
compat = xpcs_find_compat(xpcs->id, interface);
if (!compat)
return -ENODEV;
return compat->an_mode;
}
EXPORT_SYMBOL_GPL(xpcs_get_an_mode);
static bool __xpcs_linkmode_supported(const struct xpcs_compat *compat,
enum ethtool_link_mode_bit_indices linkmode)
{
int i;
for (i = 0; compat->supported[i] != __ETHTOOL_LINK_MODE_MASK_NBITS; i++)
if (compat->supported[i] == linkmode)
return true;
return false;
}
#define xpcs_linkmode_supported(compat, mode) \
__xpcs_linkmode_supported(compat, ETHTOOL_LINK_MODE_ ## mode ## _BIT)
int xpcs_read(struct dw_xpcs *xpcs, int dev, u32 reg)
{
u32 reg_addr = mdiobus_c45_addr(dev, reg);
struct mii_bus *bus = xpcs->mdiodev->bus;
int addr = xpcs->mdiodev->addr;
return mdiobus_read(bus, addr, reg_addr);
}
int xpcs_write(struct dw_xpcs *xpcs, int dev, u32 reg, u16 val)
{
u32 reg_addr = mdiobus_c45_addr(dev, reg);
struct mii_bus *bus = xpcs->mdiodev->bus;
int addr = xpcs->mdiodev->addr;
return mdiobus_write(bus, addr, reg_addr, val);
}
static int xpcs_read_vendor(struct dw_xpcs *xpcs, int dev, u32 reg)
{
return xpcs_read(xpcs, dev, DW_VENDOR | reg);
}
static int xpcs_write_vendor(struct dw_xpcs *xpcs, int dev, int reg,
u16 val)
{
return xpcs_write(xpcs, dev, DW_VENDOR | reg, val);
}
static int xpcs_read_vpcs(struct dw_xpcs *xpcs, int reg)
{
return xpcs_read_vendor(xpcs, MDIO_MMD_PCS, reg);
}
static int xpcs_write_vpcs(struct dw_xpcs *xpcs, int reg, u16 val)
{
return xpcs_write_vendor(xpcs, MDIO_MMD_PCS, reg, val);
}
static int xpcs_poll_reset(struct dw_xpcs *xpcs, int dev)
{
/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
unsigned int retries = 12;
int ret;
do {
msleep(50);
ret = xpcs_read(xpcs, dev, MDIO_CTRL1);
if (ret < 0)
return ret;
} while (ret & MDIO_CTRL1_RESET && --retries);
return (ret & MDIO_CTRL1_RESET) ? -ETIMEDOUT : 0;
}
static int xpcs_soft_reset(struct dw_xpcs *xpcs,
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
const struct xpcs_compat *compat)
{
int ret, dev;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
switch (compat->an_mode) {
case DW_AN_C73:
dev = MDIO_MMD_PCS;
break;
case DW_AN_C37_SGMII:
case DW_2500BASEX:
dev = MDIO_MMD_VEND2;
break;
default:
return -1;
}
ret = xpcs_write(xpcs, dev, MDIO_CTRL1, MDIO_CTRL1_RESET);
if (ret < 0)
return ret;
return xpcs_poll_reset(xpcs, dev);
}
#define xpcs_warn(__xpcs, __state, __args...) \
({ \
if ((__state)->link) \
dev_warn(&(__xpcs)->mdiodev->dev, ##__args); \
})
static int xpcs_read_fault_c73(struct dw_xpcs *xpcs,
struct phylink_link_state *state)
{
int ret;
ret = xpcs_read(xpcs, MDIO_MMD_PCS, MDIO_STAT1);
if (ret < 0)
return ret;
if (ret & MDIO_STAT1_FAULT) {
xpcs_warn(xpcs, state, "Link fault condition detected!\n");
return -EFAULT;
}
ret = xpcs_read(xpcs, MDIO_MMD_PCS, MDIO_STAT2);
if (ret < 0)
return ret;
if (ret & MDIO_STAT2_RXFAULT)
xpcs_warn(xpcs, state, "Receiver fault detected!\n");
if (ret & MDIO_STAT2_TXFAULT)
xpcs_warn(xpcs, state, "Transmitter fault detected!\n");
ret = xpcs_read_vendor(xpcs, MDIO_MMD_PCS, DW_VR_XS_PCS_DIG_STS);
if (ret < 0)
return ret;
if (ret & DW_RXFIFO_ERR) {
xpcs_warn(xpcs, state, "FIFO fault condition detected!\n");
return -EFAULT;
}
ret = xpcs_read(xpcs, MDIO_MMD_PCS, MDIO_PCS_10GBRT_STAT1);
if (ret < 0)
return ret;
if (!(ret & MDIO_PCS_10GBRT_STAT1_BLKLK))
xpcs_warn(xpcs, state, "Link is not locked!\n");
ret = xpcs_read(xpcs, MDIO_MMD_PCS, MDIO_PCS_10GBRT_STAT2);
if (ret < 0)
return ret;
if (ret & MDIO_PCS_10GBRT_STAT2_ERR) {
xpcs_warn(xpcs, state, "Link has errors!\n");
return -EFAULT;
}
return 0;
}
static int xpcs_read_link_c73(struct dw_xpcs *xpcs, bool an)
{
bool link = true;
int ret;
ret = xpcs_read(xpcs, MDIO_MMD_PCS, MDIO_STAT1);
if (ret < 0)
return ret;
if (!(ret & MDIO_STAT1_LSTATUS))
link = false;
if (an) {
ret = xpcs_read(xpcs, MDIO_MMD_AN, MDIO_STAT1);
if (ret < 0)
return ret;
if (!(ret & MDIO_STAT1_LSTATUS))
link = false;
}
return link;
}
static int xpcs_get_max_usxgmii_speed(const unsigned long *supported)
{
int max = SPEED_UNKNOWN;
if (phylink_test(supported, 1000baseKX_Full))
max = SPEED_1000;
if (phylink_test(supported, 2500baseX_Full))
max = SPEED_2500;
if (phylink_test(supported, 10000baseKX4_Full))
max = SPEED_10000;
if (phylink_test(supported, 10000baseKR_Full))
max = SPEED_10000;
return max;
}
static void xpcs_config_usxgmii(struct dw_xpcs *xpcs, int speed)
{
int ret, speed_sel;
switch (speed) {
case SPEED_10:
speed_sel = DW_USXGMII_10;
break;
case SPEED_100:
speed_sel = DW_USXGMII_100;
break;
case SPEED_1000:
speed_sel = DW_USXGMII_1000;
break;
case SPEED_2500:
speed_sel = DW_USXGMII_2500;
break;
case SPEED_5000:
speed_sel = DW_USXGMII_5000;
break;
case SPEED_10000:
speed_sel = DW_USXGMII_10000;
break;
default:
/* Nothing to do here */
return;
}
ret = xpcs_read_vpcs(xpcs, MDIO_CTRL1);
if (ret < 0)
goto out;
ret = xpcs_write_vpcs(xpcs, MDIO_CTRL1, ret | DW_USXGMII_EN);
if (ret < 0)
goto out;
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, MDIO_CTRL1);
if (ret < 0)
goto out;
ret &= ~DW_USXGMII_SS_MASK;
ret |= speed_sel | DW_USXGMII_FULL;
ret = xpcs_write(xpcs, MDIO_MMD_VEND2, MDIO_CTRL1, ret);
if (ret < 0)
goto out;
ret = xpcs_read_vpcs(xpcs, MDIO_CTRL1);
if (ret < 0)
goto out;
ret = xpcs_write_vpcs(xpcs, MDIO_CTRL1, ret | DW_USXGMII_RST);
if (ret < 0)
goto out;
return;
out:
pr_err("%s: XPCS access returned %pe\n", __func__, ERR_PTR(ret));
}
static int _xpcs_config_aneg_c73(struct dw_xpcs *xpcs,
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
const struct xpcs_compat *compat)
{
int ret, adv;
/* By default, in USXGMII mode XPCS operates at 10G baud and
* replicates data to achieve lower speeds. Hereby, in this
* default configuration we need to advertise all supported
* modes and not only the ones we want to use.
*/
/* SR_AN_ADV3 */
adv = 0;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
if (xpcs_linkmode_supported(compat, 2500baseX_Full))
adv |= DW_C73_2500KX;
/* TODO: 5000baseKR */
ret = xpcs_write(xpcs, MDIO_MMD_AN, DW_SR_AN_ADV3, adv);
if (ret < 0)
return ret;
/* SR_AN_ADV2 */
adv = 0;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
if (xpcs_linkmode_supported(compat, 1000baseKX_Full))
adv |= DW_C73_1000KX;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
if (xpcs_linkmode_supported(compat, 10000baseKX4_Full))
adv |= DW_C73_10000KX4;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
if (xpcs_linkmode_supported(compat, 10000baseKR_Full))
adv |= DW_C73_10000KR;
ret = xpcs_write(xpcs, MDIO_MMD_AN, DW_SR_AN_ADV2, adv);
if (ret < 0)
return ret;
/* SR_AN_ADV1 */
adv = DW_C73_AN_ADV_SF;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
if (xpcs_linkmode_supported(compat, Pause))
adv |= DW_C73_PAUSE;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
if (xpcs_linkmode_supported(compat, Asym_Pause))
adv |= DW_C73_ASYM_PAUSE;
return xpcs_write(xpcs, MDIO_MMD_AN, DW_SR_AN_ADV1, adv);
}
static int xpcs_config_aneg_c73(struct dw_xpcs *xpcs,
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
const struct xpcs_compat *compat)
{
int ret;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
ret = _xpcs_config_aneg_c73(xpcs, compat);
if (ret < 0)
return ret;
ret = xpcs_read(xpcs, MDIO_MMD_AN, MDIO_CTRL1);
if (ret < 0)
return ret;
ret |= MDIO_AN_CTRL1_ENABLE | MDIO_AN_CTRL1_RESTART;
return xpcs_write(xpcs, MDIO_MMD_AN, MDIO_CTRL1, ret);
}
static int xpcs_aneg_done_c73(struct dw_xpcs *xpcs,
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
struct phylink_link_state *state,
const struct xpcs_compat *compat)
{
int ret;
ret = xpcs_read(xpcs, MDIO_MMD_AN, MDIO_STAT1);
if (ret < 0)
return ret;
if (ret & MDIO_AN_STAT1_COMPLETE) {
ret = xpcs_read(xpcs, MDIO_MMD_AN, DW_SR_AN_LP_ABL1);
if (ret < 0)
return ret;
/* Check if Aneg outcome is valid */
if (!(ret & DW_C73_AN_ADV_SF)) {
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
xpcs_config_aneg_c73(xpcs, compat);
return 0;
}
return 1;
}
return 0;
}
static int xpcs_read_lpa_c73(struct dw_xpcs *xpcs,
struct phylink_link_state *state)
{
int ret;
ret = xpcs_read(xpcs, MDIO_MMD_AN, MDIO_STAT1);
if (ret < 0)
return ret;
if (!(ret & MDIO_AN_STAT1_LPABLE)) {
phylink_clear(state->lp_advertising, Autoneg);
return 0;
}
phylink_set(state->lp_advertising, Autoneg);
/* Clause 73 outcome */
ret = xpcs_read(xpcs, MDIO_MMD_AN, DW_SR_AN_LP_ABL3);
if (ret < 0)
return ret;
if (ret & DW_C73_2500KX)
phylink_set(state->lp_advertising, 2500baseX_Full);
ret = xpcs_read(xpcs, MDIO_MMD_AN, DW_SR_AN_LP_ABL2);
if (ret < 0)
return ret;
if (ret & DW_C73_1000KX)
phylink_set(state->lp_advertising, 1000baseKX_Full);
if (ret & DW_C73_10000KX4)
phylink_set(state->lp_advertising, 10000baseKX4_Full);
if (ret & DW_C73_10000KR)
phylink_set(state->lp_advertising, 10000baseKR_Full);
ret = xpcs_read(xpcs, MDIO_MMD_AN, DW_SR_AN_LP_ABL1);
if (ret < 0)
return ret;
if (ret & DW_C73_PAUSE)
phylink_set(state->lp_advertising, Pause);
if (ret & DW_C73_ASYM_PAUSE)
phylink_set(state->lp_advertising, Asym_Pause);
linkmode_and(state->lp_advertising, state->lp_advertising,
state->advertising);
return 0;
}
static void xpcs_resolve_lpa_c73(struct dw_xpcs *xpcs,
struct phylink_link_state *state)
{
int max_speed = xpcs_get_max_usxgmii_speed(state->lp_advertising);
state->pause = MLO_PAUSE_TX | MLO_PAUSE_RX;
state->speed = max_speed;
state->duplex = DUPLEX_FULL;
}
static int xpcs_get_max_xlgmii_speed(struct dw_xpcs *xpcs,
struct phylink_link_state *state)
{
unsigned long *adv = state->advertising;
int speed = SPEED_UNKNOWN;
int bit;
for_each_set_bit(bit, adv, __ETHTOOL_LINK_MODE_MASK_NBITS) {
int new_speed = SPEED_UNKNOWN;
switch (bit) {
case ETHTOOL_LINK_MODE_25000baseCR_Full_BIT:
case ETHTOOL_LINK_MODE_25000baseKR_Full_BIT:
case ETHTOOL_LINK_MODE_25000baseSR_Full_BIT:
new_speed = SPEED_25000;
break;
case ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT:
case ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT:
case ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT:
case ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT:
new_speed = SPEED_40000;
break;
case ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT:
case ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT:
case ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT:
case ETHTOOL_LINK_MODE_50000baseKR_Full_BIT:
case ETHTOOL_LINK_MODE_50000baseSR_Full_BIT:
case ETHTOOL_LINK_MODE_50000baseCR_Full_BIT:
case ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT:
case ETHTOOL_LINK_MODE_50000baseDR_Full_BIT:
new_speed = SPEED_50000;
break;
case ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT:
case ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT:
case ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT:
case ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT:
case ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT:
case ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT:
case ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT:
case ETHTOOL_LINK_MODE_100000baseLR2_ER2_FR2_Full_BIT:
case ETHTOOL_LINK_MODE_100000baseDR2_Full_BIT:
new_speed = SPEED_100000;
break;
default:
continue;
}
if (new_speed > speed)
speed = new_speed;
}
return speed;
}
static void xpcs_resolve_pma(struct dw_xpcs *xpcs,
struct phylink_link_state *state)
{
state->pause = MLO_PAUSE_TX | MLO_PAUSE_RX;
state->duplex = DUPLEX_FULL;
switch (state->interface) {
case PHY_INTERFACE_MODE_10GKR:
state->speed = SPEED_10000;
break;
case PHY_INTERFACE_MODE_XLGMII:
state->speed = xpcs_get_max_xlgmii_speed(xpcs, state);
break;
default:
state->speed = SPEED_UNKNOWN;
break;
}
}
void xpcs_validate(struct dw_xpcs *xpcs, unsigned long *supported,
struct phylink_link_state *state)
{
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
__ETHTOOL_DECLARE_LINK_MODE_MASK(xpcs_supported);
const struct xpcs_compat *compat;
int i;
/* phylink expects us to report all supported modes with
* PHY_INTERFACE_MODE_NA, just don't limit the supported and
* advertising masks and exit.
*/
if (state->interface == PHY_INTERFACE_MODE_NA)
return;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
net: convert users of bitmap_foo() to linkmode_foo() This converts instances of bitmap_foo(args..., __ETHTOOL_LINK_MODE_MASK_NBITS) to linkmode_foo(args...) I manually fixed up some lines to prevent them from being excessively long. Otherwise, this change was generated with the following semantic patch: // Generated with // echo linux/linkmode.h > includes // git grep -Flf includes include/ | cut -f 2- -d / | cat includes - \ // | sort | uniq | tee new_includes | wc -l && mv new_includes includes // and repeating until the number stopped going up @i@ @@ ( #include <linux/acpi_mdio.h> | #include <linux/brcmphy.h> | #include <linux/dsa/loop.h> | #include <linux/dsa/sja1105.h> | #include <linux/ethtool.h> | #include <linux/ethtool_netlink.h> | #include <linux/fec.h> | #include <linux/fs_enet_pd.h> | #include <linux/fsl/enetc_mdio.h> | #include <linux/fwnode_mdio.h> | #include <linux/linkmode.h> | #include <linux/lsm_audit.h> | #include <linux/mdio-bitbang.h> | #include <linux/mdio.h> | #include <linux/mdio-mux.h> | #include <linux/mii.h> | #include <linux/mii_timestamper.h> | #include <linux/mlx5/accel.h> | #include <linux/mlx5/cq.h> | #include <linux/mlx5/device.h> | #include <linux/mlx5/driver.h> | #include <linux/mlx5/eswitch.h> | #include <linux/mlx5/fs.h> | #include <linux/mlx5/port.h> | #include <linux/mlx5/qp.h> | #include <linux/mlx5/rsc_dump.h> | #include <linux/mlx5/transobj.h> | #include <linux/mlx5/vport.h> | #include <linux/of_mdio.h> | #include <linux/of_net.h> | #include <linux/pcs-lynx.h> | #include <linux/pcs/pcs-xpcs.h> | #include <linux/phy.h> | #include <linux/phy_led_triggers.h> | #include <linux/phylink.h> | #include <linux/platform_data/bcmgenet.h> | #include <linux/platform_data/xilinx-ll-temac.h> | #include <linux/pxa168_eth.h> | #include <linux/qed/qed_eth_if.h> | #include <linux/qed/qed_fcoe_if.h> | #include <linux/qed/qed_if.h> | #include <linux/qed/qed_iov_if.h> | #include <linux/qed/qed_iscsi_if.h> | #include <linux/qed/qed_ll2_if.h> | #include <linux/qed/qed_nvmetcp_if.h> | #include <linux/qed/qed_rdma_if.h> | #include <linux/sfp.h> | #include <linux/sh_eth.h> | #include <linux/smsc911x.h> | #include <linux/soc/nxp/lpc32xx-misc.h> | #include <linux/stmmac.h> | #include <linux/sunrpc/svc_rdma.h> | #include <linux/sxgbe_platform.h> | #include <net/cfg80211.h> | #include <net/dsa.h> | #include <net/mac80211.h> | #include <net/selftests.h> | #include <rdma/ib_addr.h> | #include <rdma/ib_cache.h> | #include <rdma/ib_cm.h> | #include <rdma/ib_hdrs.h> | #include <rdma/ib_mad.h> | #include <rdma/ib_marshall.h> | #include <rdma/ib_pack.h> | #include <rdma/ib_pma.h> | #include <rdma/ib_sa.h> | #include <rdma/ib_smi.h> | #include <rdma/ib_umem.h> | #include <rdma/ib_umem_odp.h> | #include <rdma/ib_verbs.h> | #include <rdma/iw_cm.h> | #include <rdma/mr_pool.h> | #include <rdma/opa_addr.h> | #include <rdma/opa_port_info.h> | #include <rdma/opa_smi.h> | #include <rdma/opa_vnic.h> | #include <rdma/rdma_cm.h> | #include <rdma/rdma_cm_ib.h> | #include <rdma/rdmavt_cq.h> | #include <rdma/rdma_vt.h> | #include <rdma/rdmavt_qp.h> | #include <rdma/rw.h> | #include <rdma/tid_rdma_defs.h> | #include <rdma/uverbs_ioctl.h> | #include <rdma/uverbs_named_ioctl.h> | #include <rdma/uverbs_std_types.h> | #include <rdma/uverbs_types.h> | #include <soc/mscc/ocelot.h> | #include <soc/mscc/ocelot_ptp.h> | #include <soc/mscc/ocelot_vcap.h> | #include <trace/events/ib_mad.h> | #include <trace/events/rdma_core.h> | #include <trace/events/rdma.h> | #include <trace/events/rpcrdma.h> | #include <uapi/linux/ethtool.h> | #include <uapi/linux/ethtool_netlink.h> | #include <uapi/linux/mdio.h> | #include <uapi/linux/mii.h> ) @depends on i@ expression list args; @@ ( - bitmap_zero(args, __ETHTOOL_LINK_MODE_MASK_NBITS) + linkmode_zero(args) | - bitmap_copy(args, __ETHTOOL_LINK_MODE_MASK_NBITS) + linkmode_copy(args) | - bitmap_and(args, __ETHTOOL_LINK_MODE_MASK_NBITS) + linkmode_and(args) | - bitmap_or(args, __ETHTOOL_LINK_MODE_MASK_NBITS) + linkmode_or(args) | - bitmap_empty(args, ETHTOOL_LINK_MODE_MASK_NBITS) + linkmode_empty(args) | - bitmap_andnot(args, __ETHTOOL_LINK_MODE_MASK_NBITS) + linkmode_andnot(args) | - bitmap_equal(args, __ETHTOOL_LINK_MODE_MASK_NBITS) + linkmode_equal(args) | - bitmap_intersects(args, __ETHTOOL_LINK_MODE_MASK_NBITS) + linkmode_intersects(args) | - bitmap_subset(args, __ETHTOOL_LINK_MODE_MASK_NBITS) + linkmode_subset(args) ) Add missing linux/mii.h include to mellanox. -DaveM Signed-off-by: Sean Anderson <sean.anderson@seco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-22 22:41:04 +00:00
linkmode_zero(xpcs_supported);
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
compat = xpcs_find_compat(xpcs->id, state->interface);
/* Populate the supported link modes for this
* PHY interface type
*/
if (compat)
for (i = 0; compat->supported[i] != __ETHTOOL_LINK_MODE_MASK_NBITS; i++)
set_bit(compat->supported[i], xpcs_supported);
linkmode_and(supported, supported, xpcs_supported);
linkmode_and(state->advertising, state->advertising, xpcs_supported);
}
EXPORT_SYMBOL_GPL(xpcs_validate);
int xpcs_config_eee(struct dw_xpcs *xpcs, int mult_fact_100ns, int enable)
{
int ret;
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, DW_VR_MII_EEE_MCTRL0);
if (ret < 0)
return ret;
if (enable) {
/* Enable EEE */
ret = DW_VR_MII_EEE_LTX_EN | DW_VR_MII_EEE_LRX_EN |
DW_VR_MII_EEE_TX_QUIET_EN | DW_VR_MII_EEE_RX_QUIET_EN |
DW_VR_MII_EEE_TX_EN_CTRL | DW_VR_MII_EEE_RX_EN_CTRL |
mult_fact_100ns << DW_VR_MII_EEE_MULT_FACT_100NS_SHIFT;
} else {
ret &= ~(DW_VR_MII_EEE_LTX_EN | DW_VR_MII_EEE_LRX_EN |
DW_VR_MII_EEE_TX_QUIET_EN | DW_VR_MII_EEE_RX_QUIET_EN |
DW_VR_MII_EEE_TX_EN_CTRL | DW_VR_MII_EEE_RX_EN_CTRL |
DW_VR_MII_EEE_MULT_FACT_100NS);
}
ret = xpcs_write(xpcs, MDIO_MMD_VEND2, DW_VR_MII_EEE_MCTRL0, ret);
if (ret < 0)
return ret;
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, DW_VR_MII_EEE_MCTRL1);
if (ret < 0)
return ret;
if (enable)
ret |= DW_VR_MII_EEE_TRN_LPI;
else
ret &= ~DW_VR_MII_EEE_TRN_LPI;
return xpcs_write(xpcs, MDIO_MMD_VEND2, DW_VR_MII_EEE_MCTRL1, ret);
}
EXPORT_SYMBOL_GPL(xpcs_config_eee);
static int xpcs_config_aneg_c37_sgmii(struct dw_xpcs *xpcs, unsigned int mode)
{
int ret, mdio_ctrl;
/* For AN for C37 SGMII mode, the settings are :-
* 1) VR_MII_MMD_CTRL Bit(12) [AN_ENABLE] = 0b (Disable SGMII AN in case
it is already enabled)
* 2) VR_MII_AN_CTRL Bit(2:1)[PCS_MODE] = 10b (SGMII AN)
* 3) VR_MII_AN_CTRL Bit(3) [TX_CONFIG] = 0b (MAC side SGMII)
* DW xPCS used with DW EQoS MAC is always MAC side SGMII.
* 4) VR_MII_DIG_CTRL1 Bit(9) [MAC_AUTO_SW] = 1b (Automatic
* speed/duplex mode change by HW after SGMII AN complete)
* 5) VR_MII_MMD_CTRL Bit(12) [AN_ENABLE] = 1b (Enable SGMII AN)
*
* Note: Since it is MAC side SGMII, there is no need to set
* SR_MII_AN_ADV. MAC side SGMII receives AN Tx Config from
* PHY about the link state change after C28 AN is completed
* between PHY and Link Partner. There is also no need to
* trigger AN restart for MAC-side SGMII.
*/
mdio_ctrl = xpcs_read(xpcs, MDIO_MMD_VEND2, DW_VR_MII_MMD_CTRL);
if (mdio_ctrl < 0)
return mdio_ctrl;
if (mdio_ctrl & AN_CL37_EN) {
ret = xpcs_write(xpcs, MDIO_MMD_VEND2, DW_VR_MII_MMD_CTRL,
mdio_ctrl & ~AN_CL37_EN);
if (ret < 0)
return ret;
}
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, DW_VR_MII_AN_CTRL);
if (ret < 0)
return ret;
ret &= ~(DW_VR_MII_PCS_MODE_MASK | DW_VR_MII_TX_CONFIG_MASK);
ret |= (DW_VR_MII_PCS_MODE_C37_SGMII <<
DW_VR_MII_AN_CTRL_PCS_MODE_SHIFT &
DW_VR_MII_PCS_MODE_MASK);
ret |= (DW_VR_MII_TX_CONFIG_MAC_SIDE_SGMII <<
DW_VR_MII_AN_CTRL_TX_CONFIG_SHIFT &
DW_VR_MII_TX_CONFIG_MASK);
ret = xpcs_write(xpcs, MDIO_MMD_VEND2, DW_VR_MII_AN_CTRL, ret);
if (ret < 0)
return ret;
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, DW_VR_MII_DIG_CTRL1);
if (ret < 0)
return ret;
if (phylink_autoneg_inband(mode))
ret |= DW_VR_MII_DIG_CTRL1_MAC_AUTO_SW;
else
ret &= ~DW_VR_MII_DIG_CTRL1_MAC_AUTO_SW;
ret = xpcs_write(xpcs, MDIO_MMD_VEND2, DW_VR_MII_DIG_CTRL1, ret);
if (ret < 0)
return ret;
if (phylink_autoneg_inband(mode))
ret = xpcs_write(xpcs, MDIO_MMD_VEND2, DW_VR_MII_MMD_CTRL,
mdio_ctrl | AN_CL37_EN);
return ret;
}
static int xpcs_config_2500basex(struct dw_xpcs *xpcs)
{
int ret;
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, DW_VR_MII_DIG_CTRL1);
if (ret < 0)
return ret;
ret |= DW_VR_MII_DIG_CTRL1_2G5_EN;
ret &= ~DW_VR_MII_DIG_CTRL1_MAC_AUTO_SW;
ret = xpcs_write(xpcs, MDIO_MMD_VEND2, DW_VR_MII_DIG_CTRL1, ret);
if (ret < 0)
return ret;
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, DW_VR_MII_MMD_CTRL);
if (ret < 0)
return ret;
ret &= ~AN_CL37_EN;
ret |= SGMII_SPEED_SS6;
ret &= ~SGMII_SPEED_SS13;
return xpcs_write(xpcs, MDIO_MMD_VEND2, DW_VR_MII_MMD_CTRL, ret);
}
net: pcs: xpcs: export xpcs_do_config and xpcs_link_up The sja1105 hardware has a quirk in that some changes require a switch reset, which loses all configuration. When the reset is initiated, everything needs to be reprogrammed, including the MACs and the PCS. This is currently done in sja1105_static_config_reload() - we manually call sja1105_adjust_port_config(), sja1105_sgmii_pcs_config() and sja1105_sgmii_pcs_force_speed() which are all internal functions. There is a desire for sja1105 to use the common xpcs driver, and that means that the equivalents of those functions, xpcs_do_config() and xpcs_link_up() respectively, will no longer be local functions. Forcing phylink to retrigger a resolve somehow, say by doing dev_close() followed by dev_open() is not really an option, because the CPU port might have a PCS as well, and there is no net device which we can close and reopen for that. Additionally, the dev_close/dev_open sequence might force a renegotiation of the copper-side link for SGMII ports connected to a PHY, and this is undesirable as well, because the switch reset is much quicker than a PHY autoneg, so we would have a lot more downtime. The only solution I see is for the sja1105 driver to keep doing what it's doing, and that means we need to export the equivalents from xpcs for sja1105_sgmii_pcs_config and sja1105_sgmii_pcs_force_speed, and call them directly in sja1105_static_config_reload(). This will be done during the conversion patch. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-11 20:05:27 +00:00
int xpcs_do_config(struct dw_xpcs *xpcs, phy_interface_t interface,
unsigned int mode)
{
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
const struct xpcs_compat *compat;
int ret;
compat = xpcs_find_compat(xpcs->id, interface);
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
if (!compat)
return -ENODEV;
switch (compat->an_mode) {
case DW_AN_C73:
if (phylink_autoneg_inband(mode)) {
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
ret = xpcs_config_aneg_c73(xpcs, compat);
if (ret)
return ret;
}
break;
case DW_AN_C37_SGMII:
ret = xpcs_config_aneg_c37_sgmii(xpcs, mode);
if (ret)
return ret;
break;
case DW_2500BASEX:
ret = xpcs_config_2500basex(xpcs);
if (ret)
return ret;
break;
default:
return -1;
}
if (compat->pma_config) {
ret = compat->pma_config(xpcs);
if (ret)
return ret;
}
return 0;
}
net: pcs: xpcs: export xpcs_do_config and xpcs_link_up The sja1105 hardware has a quirk in that some changes require a switch reset, which loses all configuration. When the reset is initiated, everything needs to be reprogrammed, including the MACs and the PCS. This is currently done in sja1105_static_config_reload() - we manually call sja1105_adjust_port_config(), sja1105_sgmii_pcs_config() and sja1105_sgmii_pcs_force_speed() which are all internal functions. There is a desire for sja1105 to use the common xpcs driver, and that means that the equivalents of those functions, xpcs_do_config() and xpcs_link_up() respectively, will no longer be local functions. Forcing phylink to retrigger a resolve somehow, say by doing dev_close() followed by dev_open() is not really an option, because the CPU port might have a PCS as well, and there is no net device which we can close and reopen for that. Additionally, the dev_close/dev_open sequence might force a renegotiation of the copper-side link for SGMII ports connected to a PHY, and this is undesirable as well, because the switch reset is much quicker than a PHY autoneg, so we would have a lot more downtime. The only solution I see is for the sja1105 driver to keep doing what it's doing, and that means we need to export the equivalents from xpcs for sja1105_sgmii_pcs_config and sja1105_sgmii_pcs_force_speed, and call them directly in sja1105_static_config_reload(). This will be done during the conversion patch. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-11 20:05:27 +00:00
EXPORT_SYMBOL_GPL(xpcs_do_config);
static int xpcs_config(struct phylink_pcs *pcs, unsigned int mode,
phy_interface_t interface,
const unsigned long *advertising,
bool permit_pause_to_mac)
{
struct dw_xpcs *xpcs = phylink_pcs_to_xpcs(pcs);
return xpcs_do_config(xpcs, interface, mode);
}
static int xpcs_get_state_c73(struct dw_xpcs *xpcs,
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
struct phylink_link_state *state,
const struct xpcs_compat *compat)
{
int ret;
/* Link needs to be read first ... */
state->link = xpcs_read_link_c73(xpcs, state->an_enabled) > 0 ? 1 : 0;
/* ... and then we check the faults. */
ret = xpcs_read_fault_c73(xpcs, state);
if (ret) {
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
ret = xpcs_soft_reset(xpcs, compat);
if (ret)
return ret;
state->link = 0;
return xpcs_do_config(xpcs, state->interface, MLO_AN_INBAND);
}
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
if (state->an_enabled && xpcs_aneg_done_c73(xpcs, state, compat)) {
state->an_complete = true;
xpcs_read_lpa_c73(xpcs, state);
xpcs_resolve_lpa_c73(xpcs, state);
} else if (state->an_enabled) {
state->link = 0;
} else if (state->link) {
xpcs_resolve_pma(xpcs, state);
}
return 0;
}
static int xpcs_get_state_c37_sgmii(struct dw_xpcs *xpcs,
struct phylink_link_state *state)
{
int ret;
/* Reset link_state */
state->link = false;
state->speed = SPEED_UNKNOWN;
state->duplex = DUPLEX_UNKNOWN;
state->pause = 0;
/* For C37 SGMII mode, we check DW_VR_MII_AN_INTR_STS for link
* status, speed and duplex.
*/
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, DW_VR_MII_AN_INTR_STS);
if (ret < 0)
return false;
if (ret & DW_VR_MII_C37_ANSGM_SP_LNKSTS) {
int speed_value;
state->link = true;
speed_value = (ret & DW_VR_MII_AN_STS_C37_ANSGM_SP) >>
DW_VR_MII_AN_STS_C37_ANSGM_SP_SHIFT;
if (speed_value == DW_VR_MII_C37_ANSGM_SP_1000)
state->speed = SPEED_1000;
else if (speed_value == DW_VR_MII_C37_ANSGM_SP_100)
state->speed = SPEED_100;
else
state->speed = SPEED_10;
if (ret & DW_VR_MII_AN_STS_C37_ANSGM_FD)
state->duplex = DUPLEX_FULL;
else
state->duplex = DUPLEX_HALF;
}
return 0;
}
static void xpcs_get_state(struct phylink_pcs *pcs,
struct phylink_link_state *state)
{
struct dw_xpcs *xpcs = phylink_pcs_to_xpcs(pcs);
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
const struct xpcs_compat *compat;
int ret;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
compat = xpcs_find_compat(xpcs->id, state->interface);
if (!compat)
return;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
switch (compat->an_mode) {
case DW_AN_C73:
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
ret = xpcs_get_state_c73(xpcs, state, compat);
if (ret) {
pr_err("xpcs_get_state_c73 returned %pe\n",
ERR_PTR(ret));
return;
}
break;
case DW_AN_C37_SGMII:
ret = xpcs_get_state_c37_sgmii(xpcs, state);
if (ret) {
pr_err("xpcs_get_state_c37_sgmii returned %pe\n",
ERR_PTR(ret));
}
break;
default:
return;
}
}
static void xpcs_link_up_sgmii(struct dw_xpcs *xpcs, unsigned int mode,
int speed, int duplex)
{
int val, ret;
if (phylink_autoneg_inband(mode))
return;
switch (speed) {
case SPEED_1000:
val = BMCR_SPEED1000;
break;
case SPEED_100:
val = BMCR_SPEED100;
break;
case SPEED_10:
val = BMCR_SPEED10;
break;
default:
return;
}
if (duplex == DUPLEX_FULL)
val |= BMCR_FULLDPLX;
ret = xpcs_write(xpcs, MDIO_MMD_VEND2, MDIO_CTRL1, val);
if (ret)
pr_err("%s: xpcs_write returned %pe\n", __func__, ERR_PTR(ret));
}
net: pcs: xpcs: export xpcs_do_config and xpcs_link_up The sja1105 hardware has a quirk in that some changes require a switch reset, which loses all configuration. When the reset is initiated, everything needs to be reprogrammed, including the MACs and the PCS. This is currently done in sja1105_static_config_reload() - we manually call sja1105_adjust_port_config(), sja1105_sgmii_pcs_config() and sja1105_sgmii_pcs_force_speed() which are all internal functions. There is a desire for sja1105 to use the common xpcs driver, and that means that the equivalents of those functions, xpcs_do_config() and xpcs_link_up() respectively, will no longer be local functions. Forcing phylink to retrigger a resolve somehow, say by doing dev_close() followed by dev_open() is not really an option, because the CPU port might have a PCS as well, and there is no net device which we can close and reopen for that. Additionally, the dev_close/dev_open sequence might force a renegotiation of the copper-side link for SGMII ports connected to a PHY, and this is undesirable as well, because the switch reset is much quicker than a PHY autoneg, so we would have a lot more downtime. The only solution I see is for the sja1105 driver to keep doing what it's doing, and that means we need to export the equivalents from xpcs for sja1105_sgmii_pcs_config and sja1105_sgmii_pcs_force_speed, and call them directly in sja1105_static_config_reload(). This will be done during the conversion patch. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-11 20:05:27 +00:00
void xpcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
phy_interface_t interface, int speed, int duplex)
{
struct dw_xpcs *xpcs = phylink_pcs_to_xpcs(pcs);
if (interface == PHY_INTERFACE_MODE_USXGMII)
return xpcs_config_usxgmii(xpcs, speed);
if (interface == PHY_INTERFACE_MODE_SGMII)
return xpcs_link_up_sgmii(xpcs, mode, speed, duplex);
}
net: pcs: xpcs: export xpcs_do_config and xpcs_link_up The sja1105 hardware has a quirk in that some changes require a switch reset, which loses all configuration. When the reset is initiated, everything needs to be reprogrammed, including the MACs and the PCS. This is currently done in sja1105_static_config_reload() - we manually call sja1105_adjust_port_config(), sja1105_sgmii_pcs_config() and sja1105_sgmii_pcs_force_speed() which are all internal functions. There is a desire for sja1105 to use the common xpcs driver, and that means that the equivalents of those functions, xpcs_do_config() and xpcs_link_up() respectively, will no longer be local functions. Forcing phylink to retrigger a resolve somehow, say by doing dev_close() followed by dev_open() is not really an option, because the CPU port might have a PCS as well, and there is no net device which we can close and reopen for that. Additionally, the dev_close/dev_open sequence might force a renegotiation of the copper-side link for SGMII ports connected to a PHY, and this is undesirable as well, because the switch reset is much quicker than a PHY autoneg, so we would have a lot more downtime. The only solution I see is for the sja1105 driver to keep doing what it's doing, and that means we need to export the equivalents from xpcs for sja1105_sgmii_pcs_config and sja1105_sgmii_pcs_force_speed, and call them directly in sja1105_static_config_reload(). This will be done during the conversion patch. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-11 20:05:27 +00:00
EXPORT_SYMBOL_GPL(xpcs_link_up);
static u32 xpcs_get_id(struct dw_xpcs *xpcs)
{
int ret;
u32 id;
/* First, search C73 PCS using PCS MMD */
ret = xpcs_read(xpcs, MDIO_MMD_PCS, MII_PHYSID1);
if (ret < 0)
return 0xffffffff;
id = ret << 16;
ret = xpcs_read(xpcs, MDIO_MMD_PCS, MII_PHYSID2);
if (ret < 0)
return 0xffffffff;
/* If Device IDs are not all zeros or all ones,
* we found C73 AN-type device
*/
if ((id | ret) && (id | ret) != 0xffffffff)
return id | ret;
/* Next, search C37 PCS using Vendor-Specific MII MMD */
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, MII_PHYSID1);
if (ret < 0)
return 0xffffffff;
id = ret << 16;
ret = xpcs_read(xpcs, MDIO_MMD_VEND2, MII_PHYSID2);
if (ret < 0)
return 0xffffffff;
/* If Device IDs are not all zeros, we found C37 AN-type device */
if (id | ret)
return id | ret;
return 0xffffffff;
}
net: pcs: xpcs: there is only one PHY ID The xpcs driver has an apparently inadequate structure for the actual hardware it drives. These defines and the xpcs_probe() function would suggest that there is one PHY ID per supported PHY interface type, and the driver simply validates whether the mode it should operate in (the argument of xpcs_probe) matches what the hardware is capable of: #define SYNOPSYS_XPCS_USXGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_10GKR_ID 0x7996ced0 #define SYNOPSYS_XPCS_XLGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_SGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_MASK 0xffffffff but that is not the case, because upon closer inspection, all the above 4 PHY ID definitions are in fact equal. So it is the same XPCS that is compatible with all 4 sets of PHY interface types. This change introduces an array of struct xpcs_compat which is populated by the single struct xpcs_id instance. It also eliminates the bogus defines for multiple Synopsys XPCS PHY IDs and replaces them with a single XPCS_ID, which better reflects the way in which the hardware operates. Because we are touching this area of the code anyway, the new array of struct xpcs_compat, as well as the array of xpcs_id, have been moved towards the end of the file, since they are variable declarations not definitions. If whichever of struct xpcs_compat or struct xpcs_id need to gain a function pointer member in the future, it is easier to reference functions (no forward declarations needed) if we have the const variable declarations at the end of the file. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:12 +00:00
static const struct xpcs_compat synopsys_xpcs_compat[DW_XPCS_INTERFACE_MAX] = {
[DW_XPCS_USXGMII] = {
.supported = xpcs_usxgmii_features,
.interface = xpcs_usxgmii_interfaces,
.num_interfaces = ARRAY_SIZE(xpcs_usxgmii_interfaces),
.an_mode = DW_AN_C73,
},
[DW_XPCS_10GKR] = {
.supported = xpcs_10gkr_features,
.interface = xpcs_10gkr_interfaces,
.num_interfaces = ARRAY_SIZE(xpcs_10gkr_interfaces),
.an_mode = DW_AN_C73,
},
[DW_XPCS_XLGMII] = {
.supported = xpcs_xlgmii_features,
.interface = xpcs_xlgmii_interfaces,
.num_interfaces = ARRAY_SIZE(xpcs_xlgmii_interfaces),
.an_mode = DW_AN_C73,
},
[DW_XPCS_SGMII] = {
.supported = xpcs_sgmii_features,
.interface = xpcs_sgmii_interfaces,
.num_interfaces = ARRAY_SIZE(xpcs_sgmii_interfaces),
.an_mode = DW_AN_C37_SGMII,
},
[DW_XPCS_2500BASEX] = {
.supported = xpcs_2500basex_features,
.interface = xpcs_2500basex_interfaces,
.num_interfaces = ARRAY_SIZE(xpcs_2500basex_features),
.an_mode = DW_2500BASEX,
},
net: pcs: xpcs: there is only one PHY ID The xpcs driver has an apparently inadequate structure for the actual hardware it drives. These defines and the xpcs_probe() function would suggest that there is one PHY ID per supported PHY interface type, and the driver simply validates whether the mode it should operate in (the argument of xpcs_probe) matches what the hardware is capable of: #define SYNOPSYS_XPCS_USXGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_10GKR_ID 0x7996ced0 #define SYNOPSYS_XPCS_XLGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_SGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_MASK 0xffffffff but that is not the case, because upon closer inspection, all the above 4 PHY ID definitions are in fact equal. So it is the same XPCS that is compatible with all 4 sets of PHY interface types. This change introduces an array of struct xpcs_compat which is populated by the single struct xpcs_id instance. It also eliminates the bogus defines for multiple Synopsys XPCS PHY IDs and replaces them with a single XPCS_ID, which better reflects the way in which the hardware operates. Because we are touching this area of the code anyway, the new array of struct xpcs_compat, as well as the array of xpcs_id, have been moved towards the end of the file, since they are variable declarations not definitions. If whichever of struct xpcs_compat or struct xpcs_id need to gain a function pointer member in the future, it is easier to reference functions (no forward declarations needed) if we have the const variable declarations at the end of the file. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:12 +00:00
};
static const struct xpcs_compat nxp_sja1105_xpcs_compat[DW_XPCS_INTERFACE_MAX] = {
[DW_XPCS_SGMII] = {
.supported = xpcs_sgmii_features,
.interface = xpcs_sgmii_interfaces,
.num_interfaces = ARRAY_SIZE(xpcs_sgmii_interfaces),
.an_mode = DW_AN_C37_SGMII,
.pma_config = nxp_sja1105_sgmii_pma_config,
},
};
static const struct xpcs_compat nxp_sja1110_xpcs_compat[DW_XPCS_INTERFACE_MAX] = {
[DW_XPCS_SGMII] = {
.supported = xpcs_sgmii_features,
.interface = xpcs_sgmii_interfaces,
.num_interfaces = ARRAY_SIZE(xpcs_sgmii_interfaces),
.an_mode = DW_AN_C37_SGMII,
.pma_config = nxp_sja1110_sgmii_pma_config,
},
[DW_XPCS_2500BASEX] = {
.supported = xpcs_2500basex_features,
.interface = xpcs_2500basex_interfaces,
.num_interfaces = ARRAY_SIZE(xpcs_2500basex_interfaces),
.an_mode = DW_2500BASEX,
.pma_config = nxp_sja1110_2500basex_pma_config,
},
};
net: pcs: xpcs: there is only one PHY ID The xpcs driver has an apparently inadequate structure for the actual hardware it drives. These defines and the xpcs_probe() function would suggest that there is one PHY ID per supported PHY interface type, and the driver simply validates whether the mode it should operate in (the argument of xpcs_probe) matches what the hardware is capable of: #define SYNOPSYS_XPCS_USXGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_10GKR_ID 0x7996ced0 #define SYNOPSYS_XPCS_XLGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_SGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_MASK 0xffffffff but that is not the case, because upon closer inspection, all the above 4 PHY ID definitions are in fact equal. So it is the same XPCS that is compatible with all 4 sets of PHY interface types. This change introduces an array of struct xpcs_compat which is populated by the single struct xpcs_id instance. It also eliminates the bogus defines for multiple Synopsys XPCS PHY IDs and replaces them with a single XPCS_ID, which better reflects the way in which the hardware operates. Because we are touching this area of the code anyway, the new array of struct xpcs_compat, as well as the array of xpcs_id, have been moved towards the end of the file, since they are variable declarations not definitions. If whichever of struct xpcs_compat or struct xpcs_id need to gain a function pointer member in the future, it is easier to reference functions (no forward declarations needed) if we have the const variable declarations at the end of the file. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:12 +00:00
static const struct xpcs_id xpcs_id_list[] = {
{
.id = SYNOPSYS_XPCS_ID,
.mask = SYNOPSYS_XPCS_MASK,
.compat = synopsys_xpcs_compat,
}, {
.id = NXP_SJA1105_XPCS_ID,
.mask = SYNOPSYS_XPCS_MASK,
.compat = nxp_sja1105_xpcs_compat,
}, {
.id = NXP_SJA1110_XPCS_ID,
.mask = SYNOPSYS_XPCS_MASK,
.compat = nxp_sja1110_xpcs_compat,
net: pcs: xpcs: there is only one PHY ID The xpcs driver has an apparently inadequate structure for the actual hardware it drives. These defines and the xpcs_probe() function would suggest that there is one PHY ID per supported PHY interface type, and the driver simply validates whether the mode it should operate in (the argument of xpcs_probe) matches what the hardware is capable of: #define SYNOPSYS_XPCS_USXGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_10GKR_ID 0x7996ced0 #define SYNOPSYS_XPCS_XLGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_SGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_MASK 0xffffffff but that is not the case, because upon closer inspection, all the above 4 PHY ID definitions are in fact equal. So it is the same XPCS that is compatible with all 4 sets of PHY interface types. This change introduces an array of struct xpcs_compat which is populated by the single struct xpcs_id instance. It also eliminates the bogus defines for multiple Synopsys XPCS PHY IDs and replaces them with a single XPCS_ID, which better reflects the way in which the hardware operates. Because we are touching this area of the code anyway, the new array of struct xpcs_compat, as well as the array of xpcs_id, have been moved towards the end of the file, since they are variable declarations not definitions. If whichever of struct xpcs_compat or struct xpcs_id need to gain a function pointer member in the future, it is easier to reference functions (no forward declarations needed) if we have the const variable declarations at the end of the file. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:12 +00:00
},
};
static const struct phylink_pcs_ops xpcs_phylink_ops = {
.pcs_config = xpcs_config,
.pcs_get_state = xpcs_get_state,
.pcs_link_up = xpcs_link_up,
};
struct dw_xpcs *xpcs_create(struct mdio_device *mdiodev,
phy_interface_t interface)
{
struct dw_xpcs *xpcs;
u32 xpcs_id;
int i, ret;
xpcs = kzalloc(sizeof(*xpcs), GFP_KERNEL);
if (!xpcs)
return ERR_PTR(-ENOMEM);
xpcs->mdiodev = mdiodev;
xpcs_id = xpcs_get_id(xpcs);
for (i = 0; i < ARRAY_SIZE(xpcs_id_list); i++) {
net: pcs: xpcs: there is only one PHY ID The xpcs driver has an apparently inadequate structure for the actual hardware it drives. These defines and the xpcs_probe() function would suggest that there is one PHY ID per supported PHY interface type, and the driver simply validates whether the mode it should operate in (the argument of xpcs_probe) matches what the hardware is capable of: #define SYNOPSYS_XPCS_USXGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_10GKR_ID 0x7996ced0 #define SYNOPSYS_XPCS_XLGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_SGMII_ID 0x7996ced0 #define SYNOPSYS_XPCS_MASK 0xffffffff but that is not the case, because upon closer inspection, all the above 4 PHY ID definitions are in fact equal. So it is the same XPCS that is compatible with all 4 sets of PHY interface types. This change introduces an array of struct xpcs_compat which is populated by the single struct xpcs_id instance. It also eliminates the bogus defines for multiple Synopsys XPCS PHY IDs and replaces them with a single XPCS_ID, which better reflects the way in which the hardware operates. Because we are touching this area of the code anyway, the new array of struct xpcs_compat, as well as the array of xpcs_id, have been moved towards the end of the file, since they are variable declarations not definitions. If whichever of struct xpcs_compat or struct xpcs_id need to gain a function pointer member in the future, it is easier to reference functions (no forward declarations needed) if we have the const variable declarations at the end of the file. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:12 +00:00
const struct xpcs_id *entry = &xpcs_id_list[i];
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
const struct xpcs_compat *compat;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
if ((xpcs_id & entry->mask) != entry->id)
continue;
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
xpcs->id = entry;
compat = xpcs_find_compat(entry, interface);
if (!compat) {
ret = -ENODEV;
goto out;
}
net: pcs: xpcs: make the checks related to the PHY interface mode stateless The operating mode of the driver is currently to populate its struct mdio_xpcs_args::supported and struct mdio_xpcs_args::an_mode statically in xpcs_probe(), based on the passed phy_interface_t, and work with those. However this is not the operation that phylink expects from a PCS driver, because the port might be attached to an SFP cage that triggers changes of the phy_interface_t dynamically as one SFP module is unpluggged and another is plugged. To migrate towards that model, the struct mdio_xpcs_args should not cache anything related to the phy_interface_t, but just look up the statically defined, const struct xpcs_compat structure corresponding to the detected PCS OUI/model number. So we delete the "supported" and "an_mode" members of struct mdio_xpcs_args, and add the "id" structure there (since the ID is not expected to change at runtime). Since xpcs->supported is used deep in the code in _xpcs_config_aneg_c73(), we need to modify some function headers to pass the xpcs_compat from all callers. In turn, the xpcs_compat is always supplied externally to the xpcs module: - Most of the time by phylink - In xpcs_probe() it is needed because xpcs_soft_reset() writes to MDIO_MMD_PCS or to MDIO_MMD_VEND2 depending on whether an_mode is clause 37 or clause 73. In order to not introduce functional changes related to when the soft reset is issued, we continue to require the initial phy_interface_t argument to be passed to xpcs_probe() so we can pass this on to xpcs_soft_reset(). - stmmac_open() wants to know whether to call stmmac_init_phy() or not, and for that it looks inside xpcs->an_mode, because the clause 73 (backplane) AN modes supposedly do not have a PHY. Because we moved an_mode outside of struct mdio_xpcs_args, this is now no longer directly possible, so we introduce a helper function xpcs_get_an_mode() which protects the data encapsulation of the xpcs module and requires a phy_interface_t to be passed as argument. This function can look up the appropriate compat based on the phy_interface_t. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-02 16:20:13 +00:00
xpcs->pcs.ops = &xpcs_phylink_ops;
xpcs->pcs.poll = true;
ret = xpcs_soft_reset(xpcs, compat);
if (ret)
goto out;
return xpcs;
}
ret = -ENODEV;
out:
kfree(xpcs);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(xpcs_create);
void xpcs_destroy(struct dw_xpcs *xpcs)
{
kfree(xpcs);
}
EXPORT_SYMBOL_GPL(xpcs_destroy);
MODULE_LICENSE("GPL v2");