linux-stable/include/linux/math64.h

301 lines
6.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MATH64_H
#define _LINUX_MATH64_H
#include <linux/types.h>
#include <asm/div64.h>
#if BITS_PER_LONG == 64
#define div64_long(x, y) div64_s64((x), (y))
#define div64_ul(x, y) div64_u64((x), (y))
/**
* div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
* @dividend: unsigned 64bit dividend
* @divisor: unsigned 32bit divisor
* @remainder: pointer to unsigned 32bit remainder
*
* Return: sets ``*remainder``, then returns dividend / divisor
*
* This is commonly provided by 32bit archs to provide an optimized 64bit
* divide.
*/
static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
{
*remainder = dividend % divisor;
return dividend / divisor;
}
/**
* div_s64_rem - signed 64bit divide with 32bit divisor with remainder
* @dividend: signed 64bit dividend
* @divisor: signed 32bit divisor
* @remainder: pointer to signed 32bit remainder
*
* Return: sets ``*remainder``, then returns dividend / divisor
*/
static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
{
*remainder = dividend % divisor;
return dividend / divisor;
}
/**
* div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
* @dividend: unsigned 64bit dividend
* @divisor: unsigned 64bit divisor
* @remainder: pointer to unsigned 64bit remainder
*
* Return: sets ``*remainder``, then returns dividend / divisor
*/
static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
{
*remainder = dividend % divisor;
return dividend / divisor;
}
/**
* div64_u64 - unsigned 64bit divide with 64bit divisor
* @dividend: unsigned 64bit dividend
* @divisor: unsigned 64bit divisor
*
* Return: dividend / divisor
*/
static inline u64 div64_u64(u64 dividend, u64 divisor)
{
return dividend / divisor;
}
/**
* div64_s64 - signed 64bit divide with 64bit divisor
* @dividend: signed 64bit dividend
* @divisor: signed 64bit divisor
*
* Return: dividend / divisor
*/
static inline s64 div64_s64(s64 dividend, s64 divisor)
{
return dividend / divisor;
}
#elif BITS_PER_LONG == 32
#define div64_long(x, y) div_s64((x), (y))
#define div64_ul(x, y) div_u64((x), (y))
#ifndef div_u64_rem
static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
{
*remainder = do_div(dividend, divisor);
return dividend;
}
#endif
#ifndef div_s64_rem
extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
#endif
#ifndef div64_u64_rem
extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
#endif
#ifndef div64_u64
extern u64 div64_u64(u64 dividend, u64 divisor);
#endif
#ifndef div64_s64
extern s64 div64_s64(s64 dividend, s64 divisor);
#endif
#endif /* BITS_PER_LONG */
/**
* div_u64 - unsigned 64bit divide with 32bit divisor
* @dividend: unsigned 64bit dividend
* @divisor: unsigned 32bit divisor
*
* This is the most common 64bit divide and should be used if possible,
* as many 32bit archs can optimize this variant better than a full 64bit
* divide.
*/
#ifndef div_u64
static inline u64 div_u64(u64 dividend, u32 divisor)
{
u32 remainder;
return div_u64_rem(dividend, divisor, &remainder);
}
#endif
/**
* div_s64 - signed 64bit divide with 32bit divisor
* @dividend: signed 64bit dividend
* @divisor: signed 32bit divisor
*/
#ifndef div_s64
static inline s64 div_s64(s64 dividend, s32 divisor)
{
s32 remainder;
return div_s64_rem(dividend, divisor, &remainder);
}
#endif
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
static __always_inline u32
__iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
{
u32 ret = 0;
while (dividend >= divisor) {
/* The following asm() prevents the compiler from
optimising this loop into a modulo operation. */
asm("" : "+rm"(dividend));
dividend -= divisor;
ret++;
}
*remainder = dividend;
return ret;
}
#ifndef mul_u32_u32
/*
* Many a GCC version messes this up and generates a 64x64 mult :-(
*/
static inline u64 mul_u32_u32(u32 a, u32 b)
{
return (u64)a * b;
}
#endif
#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
#ifndef mul_u64_u32_shr
static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
{
return (u64)(((unsigned __int128)a * mul) >> shift);
}
#endif /* mul_u64_u32_shr */
#ifndef mul_u64_u64_shr
static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
{
return (u64)(((unsigned __int128)a * mul) >> shift);
}
#endif /* mul_u64_u64_shr */
#else
#ifndef mul_u64_u32_shr
static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
{
u32 ah, al;
u64 ret;
al = a;
ah = a >> 32;
ret = mul_u32_u32(al, mul) >> shift;
if (ah)
ret += mul_u32_u32(ah, mul) << (32 - shift);
return ret;
}
#endif /* mul_u64_u32_shr */
#ifndef mul_u64_u64_shr
static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
{
union {
u64 ll;
struct {
#ifdef __BIG_ENDIAN
u32 high, low;
#else
u32 low, high;
#endif
} l;
} rl, rm, rn, rh, a0, b0;
u64 c;
a0.ll = a;
b0.ll = b;
rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
/*
* Each of these lines computes a 64-bit intermediate result into "c",
* starting at bits 32-95. The low 32-bits go into the result of the
* multiplication, the high 32-bits are carried into the next step.
*/
rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
rh.l.high = (c >> 32) + rh.l.high;
/*
* The 128-bit result of the multiplication is in rl.ll and rh.ll,
* shift it right and throw away the high part of the result.
*/
if (shift == 0)
return rl.ll;
if (shift < 64)
return (rl.ll >> shift) | (rh.ll << (64 - shift));
return rh.ll >> (shift & 63);
}
#endif /* mul_u64_u64_shr */
#endif
#ifndef mul_u64_u32_div
static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
{
union {
u64 ll;
struct {
#ifdef __BIG_ENDIAN
u32 high, low;
#else
u32 low, high;
#endif
} l;
} u, rl, rh;
u.ll = a;
rl.ll = mul_u32_u32(u.l.low, mul);
rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
/* Bits 32-63 of the result will be in rh.l.low. */
rl.l.high = do_div(rh.ll, divisor);
/* Bits 0-31 of the result will be in rl.l.low. */
do_div(rl.ll, divisor);
rl.l.high = rh.l.low;
return rl.ll;
}
#endif /* mul_u64_u32_div */
#define DIV64_U64_ROUND_UP(ll, d) \
({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
/**
* DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
* @dividend: unsigned 64bit dividend
* @divisor: unsigned 64bit divisor
*
* Divide unsigned 64bit dividend by unsigned 64bit divisor
* and round to closest integer.
*
* Return: dividend / divisor rounded to nearest integer
*/
#define DIV64_U64_ROUND_CLOSEST(dividend, divisor) \
({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
#endif /* _LINUX_MATH64_H */