linux-stable/drivers/base/arch_topology.c

781 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Arch specific cpu topology information
*
* Copyright (C) 2016, ARM Ltd.
* Written by: Juri Lelli, ARM Ltd.
*/
#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/sched/topology.h>
#include <linux/cpuset.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
static struct cpumask scale_freq_counters_mask;
static bool scale_freq_invariant;
static DEFINE_PER_CPU(u32, freq_factor) = 1;
static bool supports_scale_freq_counters(const struct cpumask *cpus)
{
return cpumask_subset(cpus, &scale_freq_counters_mask);
}
arch_topology, arm, arm64: define arch_scale_freq_invariant() arch_scale_freq_invariant() is used by schedutil to determine whether the scheduler's load-tracking signals are frequency invariant. Its definition is overridable, though by default it is hardcoded to 'true' if arch_scale_freq_capacity() is defined ('false' otherwise). This behaviour is not overridden on arm, arm64 and other users of the generic arch topology driver, which is somewhat precarious: arch_scale_freq_capacity() will always be defined, yet not all cpufreq drivers are guaranteed to drive the frequency invariance scale factor setting. In other words, the load-tracking signals may very well *not* be frequency invariant. Now that cpufreq can be queried on whether the current driver is driving the Frequency Invariance (FI) scale setting, the current situation can be improved. This combines the query of whether cpufreq supports the setting of the frequency scale factor, with whether all online CPUs are counter-based FI enabled. While cpufreq FI enablement applies at system level, for all CPUs, counter-based FI support could also be used for only a subset of CPUs to set the invariance scale factor. Therefore, if cpufreq-based FI support is present, we consider the system to be invariant. If missing, we require all online CPUs to be counter-based FI enabled in order for the full system to be considered invariant. If the system ends up not being invariant, a new condition is needed in the counter initialization code that disables all scale factor setting based on counters. Precedence of counters over cpufreq use is not important here. The invariant status is only given to the system if all CPUs have at least one method of setting the frequency scale factor. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-09-01 20:55:49 +00:00
bool topology_scale_freq_invariant(void)
{
return cpufreq_supports_freq_invariance() ||
supports_scale_freq_counters(cpu_online_mask);
}
static void update_scale_freq_invariant(bool status)
{
if (scale_freq_invariant == status)
return;
/*
* Task scheduler behavior depends on frequency invariance support,
* either cpufreq or counter driven. If the support status changes as
* a result of counter initialisation and use, retrigger the build of
* scheduling domains to ensure the information is propagated properly.
*/
if (topology_scale_freq_invariant() == status) {
scale_freq_invariant = status;
rebuild_sched_domains_energy();
}
}
void topology_set_scale_freq_source(struct scale_freq_data *data,
const struct cpumask *cpus)
{
struct scale_freq_data *sfd;
int cpu;
/*
* Avoid calling rebuild_sched_domains() unnecessarily if FIE is
* supported by cpufreq.
*/
if (cpumask_empty(&scale_freq_counters_mask))
scale_freq_invariant = topology_scale_freq_invariant();
rcu_read_lock();
for_each_cpu(cpu, cpus) {
sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
/* Use ARCH provided counters whenever possible */
if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
rcu_assign_pointer(per_cpu(sft_data, cpu), data);
cpumask_set_cpu(cpu, &scale_freq_counters_mask);
}
}
rcu_read_unlock();
update_scale_freq_invariant(true);
arch_topology, arm, arm64: define arch_scale_freq_invariant() arch_scale_freq_invariant() is used by schedutil to determine whether the scheduler's load-tracking signals are frequency invariant. Its definition is overridable, though by default it is hardcoded to 'true' if arch_scale_freq_capacity() is defined ('false' otherwise). This behaviour is not overridden on arm, arm64 and other users of the generic arch topology driver, which is somewhat precarious: arch_scale_freq_capacity() will always be defined, yet not all cpufreq drivers are guaranteed to drive the frequency invariance scale factor setting. In other words, the load-tracking signals may very well *not* be frequency invariant. Now that cpufreq can be queried on whether the current driver is driving the Frequency Invariance (FI) scale setting, the current situation can be improved. This combines the query of whether cpufreq supports the setting of the frequency scale factor, with whether all online CPUs are counter-based FI enabled. While cpufreq FI enablement applies at system level, for all CPUs, counter-based FI support could also be used for only a subset of CPUs to set the invariance scale factor. Therefore, if cpufreq-based FI support is present, we consider the system to be invariant. If missing, we require all online CPUs to be counter-based FI enabled in order for the full system to be considered invariant. If the system ends up not being invariant, a new condition is needed in the counter initialization code that disables all scale factor setting based on counters. Precedence of counters over cpufreq use is not important here. The invariant status is only given to the system if all CPUs have at least one method of setting the frequency scale factor. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-09-01 20:55:49 +00:00
}
EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
arch_topology, arm, arm64: define arch_scale_freq_invariant() arch_scale_freq_invariant() is used by schedutil to determine whether the scheduler's load-tracking signals are frequency invariant. Its definition is overridable, though by default it is hardcoded to 'true' if arch_scale_freq_capacity() is defined ('false' otherwise). This behaviour is not overridden on arm, arm64 and other users of the generic arch topology driver, which is somewhat precarious: arch_scale_freq_capacity() will always be defined, yet not all cpufreq drivers are guaranteed to drive the frequency invariance scale factor setting. In other words, the load-tracking signals may very well *not* be frequency invariant. Now that cpufreq can be queried on whether the current driver is driving the Frequency Invariance (FI) scale setting, the current situation can be improved. This combines the query of whether cpufreq supports the setting of the frequency scale factor, with whether all online CPUs are counter-based FI enabled. While cpufreq FI enablement applies at system level, for all CPUs, counter-based FI support could also be used for only a subset of CPUs to set the invariance scale factor. Therefore, if cpufreq-based FI support is present, we consider the system to be invariant. If missing, we require all online CPUs to be counter-based FI enabled in order for the full system to be considered invariant. If the system ends up not being invariant, a new condition is needed in the counter initialization code that disables all scale factor setting based on counters. Precedence of counters over cpufreq use is not important here. The invariant status is only given to the system if all CPUs have at least one method of setting the frequency scale factor. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-09-01 20:55:49 +00:00
void topology_clear_scale_freq_source(enum scale_freq_source source,
const struct cpumask *cpus)
arm64: use activity monitors for frequency invariance The Frequency Invariance Engine (FIE) is providing a frequency scaling correction factor that helps achieve more accurate load-tracking. So far, for arm and arm64 platforms, this scale factor has been obtained based on the ratio between the current frequency and the maximum supported frequency recorded by the cpufreq policy. The setting of this scale factor is triggered from cpufreq drivers by calling arch_set_freq_scale. The current frequency used in computation is the frequency requested by a governor, but it may not be the frequency that was implemented by the platform. This correction factor can also be obtained using a core counter and a constant counter to get information on the performance (frequency based only) obtained in a period of time. This will more accurately reflect the actual current frequency of the CPU, compared with the alternative implementation that reflects the request of a performance level from the OS. Therefore, implement arch_scale_freq_tick to use activity monitors, if present, for the computation of the frequency scale factor. The use of AMU counters depends on: - CONFIG_ARM64_AMU_EXTN - depents on the AMU extension being present - CONFIG_CPU_FREQ - the current frequency obtained using counter information is divided by the maximum frequency obtained from the cpufreq policy. While it is possible to have a combination of CPUs in the system with and without support for activity monitors, the use of counters for frequency invariance is only enabled for a CPU if all related CPUs (CPUs in the same frequency domain) support and have enabled the core and constant activity monitor counters. In this way, there is a clear separation between the policies for which arch_set_freq_scale (cpufreq based FIE) is used, and the policies for which arch_scale_freq_tick (counter based FIE) is used to set the frequency scale factor. For this purpose, a late_initcall_sync is registered to trigger validation work for policies that will enable or disable the use of AMU counters for frequency invariance. If CONFIG_CPU_FREQ is not defined, the use of counters is enabled on all CPUs only if all possible CPUs correctly support the necessary counters. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-05 09:06:26 +00:00
{
struct scale_freq_data *sfd;
int cpu;
rcu_read_lock();
for_each_cpu(cpu, cpus) {
sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
if (sfd && sfd->source == source) {
rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
}
}
rcu_read_unlock();
/*
* Make sure all references to previous sft_data are dropped to avoid
* use-after-free races.
*/
synchronize_rcu();
update_scale_freq_invariant(false);
arm64: use activity monitors for frequency invariance The Frequency Invariance Engine (FIE) is providing a frequency scaling correction factor that helps achieve more accurate load-tracking. So far, for arm and arm64 platforms, this scale factor has been obtained based on the ratio between the current frequency and the maximum supported frequency recorded by the cpufreq policy. The setting of this scale factor is triggered from cpufreq drivers by calling arch_set_freq_scale. The current frequency used in computation is the frequency requested by a governor, but it may not be the frequency that was implemented by the platform. This correction factor can also be obtained using a core counter and a constant counter to get information on the performance (frequency based only) obtained in a period of time. This will more accurately reflect the actual current frequency of the CPU, compared with the alternative implementation that reflects the request of a performance level from the OS. Therefore, implement arch_scale_freq_tick to use activity monitors, if present, for the computation of the frequency scale factor. The use of AMU counters depends on: - CONFIG_ARM64_AMU_EXTN - depents on the AMU extension being present - CONFIG_CPU_FREQ - the current frequency obtained using counter information is divided by the maximum frequency obtained from the cpufreq policy. While it is possible to have a combination of CPUs in the system with and without support for activity monitors, the use of counters for frequency invariance is only enabled for a CPU if all related CPUs (CPUs in the same frequency domain) support and have enabled the core and constant activity monitor counters. In this way, there is a clear separation between the policies for which arch_set_freq_scale (cpufreq based FIE) is used, and the policies for which arch_scale_freq_tick (counter based FIE) is used to set the frequency scale factor. For this purpose, a late_initcall_sync is registered to trigger validation work for policies that will enable or disable the use of AMU counters for frequency invariance. If CONFIG_CPU_FREQ is not defined, the use of counters is enabled on all CPUs only if all possible CPUs correctly support the necessary counters. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-05 09:06:26 +00:00
}
EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
void topology_scale_freq_tick(void)
{
struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
if (sfd)
sfd->set_freq_scale();
}
DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
cpufreq,arm,arm64: restructure definitions of arch_set_freq_scale() Compared to other arch_* functions, arch_set_freq_scale() has an atypical weak definition that can be replaced by a strong architecture specific implementation. The more typical support for architectural functions involves defining an empty stub in a header file if the symbol is not already defined in architecture code. Some examples involve: - #define arch_scale_freq_capacity topology_get_freq_scale - #define arch_scale_freq_invariant topology_scale_freq_invariant - #define arch_scale_cpu_capacity topology_get_cpu_scale - #define arch_update_cpu_topology topology_update_cpu_topology - #define arch_scale_thermal_pressure topology_get_thermal_pressure - #define arch_set_thermal_pressure topology_set_thermal_pressure Bring arch_set_freq_scale() in line with these functions by renaming it to topology_set_freq_scale() in the arch topology driver, and by defining the arch_set_freq_scale symbol to point to the new function for arm and arm64. While there are other users of the arch_topology driver, this patch defines arch_set_freq_scale for arm and arm64 only, due to their existing definitions of arch_scale_freq_capacity. This is the getter function of the frequency invariance scale factor and without a getter function, the setter function - arch_set_freq_scale() has not purpose. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> (BL_SWITCHER and topology parts) Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-09-24 12:30:15 +00:00
void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
unsigned long max_freq)
{
unsigned long scale;
int i;
if (WARN_ON_ONCE(!cur_freq || !max_freq))
return;
arm64: use activity monitors for frequency invariance The Frequency Invariance Engine (FIE) is providing a frequency scaling correction factor that helps achieve more accurate load-tracking. So far, for arm and arm64 platforms, this scale factor has been obtained based on the ratio between the current frequency and the maximum supported frequency recorded by the cpufreq policy. The setting of this scale factor is triggered from cpufreq drivers by calling arch_set_freq_scale. The current frequency used in computation is the frequency requested by a governor, but it may not be the frequency that was implemented by the platform. This correction factor can also be obtained using a core counter and a constant counter to get information on the performance (frequency based only) obtained in a period of time. This will more accurately reflect the actual current frequency of the CPU, compared with the alternative implementation that reflects the request of a performance level from the OS. Therefore, implement arch_scale_freq_tick to use activity monitors, if present, for the computation of the frequency scale factor. The use of AMU counters depends on: - CONFIG_ARM64_AMU_EXTN - depents on the AMU extension being present - CONFIG_CPU_FREQ - the current frequency obtained using counter information is divided by the maximum frequency obtained from the cpufreq policy. While it is possible to have a combination of CPUs in the system with and without support for activity monitors, the use of counters for frequency invariance is only enabled for a CPU if all related CPUs (CPUs in the same frequency domain) support and have enabled the core and constant activity monitor counters. In this way, there is a clear separation between the policies for which arch_set_freq_scale (cpufreq based FIE) is used, and the policies for which arch_scale_freq_tick (counter based FIE) is used to set the frequency scale factor. For this purpose, a late_initcall_sync is registered to trigger validation work for policies that will enable or disable the use of AMU counters for frequency invariance. If CONFIG_CPU_FREQ is not defined, the use of counters is enabled on all CPUs only if all possible CPUs correctly support the necessary counters. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-05 09:06:26 +00:00
/*
* If the use of counters for FIE is enabled, just return as we don't
* want to update the scale factor with information from CPUFREQ.
* Instead the scale factor will be updated from arch_scale_freq_tick.
*/
if (supports_scale_freq_counters(cpus))
arm64: use activity monitors for frequency invariance The Frequency Invariance Engine (FIE) is providing a frequency scaling correction factor that helps achieve more accurate load-tracking. So far, for arm and arm64 platforms, this scale factor has been obtained based on the ratio between the current frequency and the maximum supported frequency recorded by the cpufreq policy. The setting of this scale factor is triggered from cpufreq drivers by calling arch_set_freq_scale. The current frequency used in computation is the frequency requested by a governor, but it may not be the frequency that was implemented by the platform. This correction factor can also be obtained using a core counter and a constant counter to get information on the performance (frequency based only) obtained in a period of time. This will more accurately reflect the actual current frequency of the CPU, compared with the alternative implementation that reflects the request of a performance level from the OS. Therefore, implement arch_scale_freq_tick to use activity monitors, if present, for the computation of the frequency scale factor. The use of AMU counters depends on: - CONFIG_ARM64_AMU_EXTN - depents on the AMU extension being present - CONFIG_CPU_FREQ - the current frequency obtained using counter information is divided by the maximum frequency obtained from the cpufreq policy. While it is possible to have a combination of CPUs in the system with and without support for activity monitors, the use of counters for frequency invariance is only enabled for a CPU if all related CPUs (CPUs in the same frequency domain) support and have enabled the core and constant activity monitor counters. In this way, there is a clear separation between the policies for which arch_set_freq_scale (cpufreq based FIE) is used, and the policies for which arch_scale_freq_tick (counter based FIE) is used to set the frequency scale factor. For this purpose, a late_initcall_sync is registered to trigger validation work for policies that will enable or disable the use of AMU counters for frequency invariance. If CONFIG_CPU_FREQ is not defined, the use of counters is enabled on all CPUs only if all possible CPUs correctly support the necessary counters. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-05 09:06:26 +00:00
return;
scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
for_each_cpu(i, cpus)
per_cpu(arch_freq_scale, i) = scale;
}
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
{
per_cpu(cpu_scale, cpu) = capacity;
}
DEFINE_PER_CPU(unsigned long, thermal_pressure);
/**
* topology_update_thermal_pressure() - Update thermal pressure for CPUs
* @cpus : The related CPUs for which capacity has been reduced
* @capped_freq : The maximum allowed frequency that CPUs can run at
*
* Update the value of thermal pressure for all @cpus in the mask. The
* cpumask should include all (online+offline) affected CPUs, to avoid
* operating on stale data when hot-plug is used for some CPUs. The
* @capped_freq reflects the currently allowed max CPUs frequency due to
* thermal capping. It might be also a boost frequency value, which is bigger
* than the internal 'freq_factor' max frequency. In such case the pressure
* value should simply be removed, since this is an indication that there is
* no thermal throttling. The @capped_freq must be provided in kHz.
*/
void topology_update_thermal_pressure(const struct cpumask *cpus,
unsigned long capped_freq)
{
unsigned long max_capacity, capacity, th_pressure;
u32 max_freq;
int cpu;
cpu = cpumask_first(cpus);
max_capacity = arch_scale_cpu_capacity(cpu);
max_freq = per_cpu(freq_factor, cpu);
/* Convert to MHz scale which is used in 'freq_factor' */
capped_freq /= 1000;
/*
* Handle properly the boost frequencies, which should simply clean
* the thermal pressure value.
*/
if (max_freq <= capped_freq)
capacity = max_capacity;
else
capacity = mult_frac(max_capacity, capped_freq, max_freq);
th_pressure = max_capacity - capacity;
for_each_cpu(cpu, cpus)
WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
}
EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
static ssize_t cpu_capacity_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
drivers core: Use sysfs_emit and sysfs_emit_at for show(device *...) functions Convert the various sprintf fmaily calls in sysfs device show functions to sysfs_emit and sysfs_emit_at for PAGE_SIZE buffer safety. Done with: $ spatch -sp-file sysfs_emit_dev.cocci --in-place --max-width=80 . And cocci script: $ cat sysfs_emit_dev.cocci @@ identifier d_show; identifier dev, attr, buf; @@ ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf) { <... return - sprintf(buf, + sysfs_emit(buf, ...); ...> } @@ identifier d_show; identifier dev, attr, buf; @@ ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf) { <... return - snprintf(buf, PAGE_SIZE, + sysfs_emit(buf, ...); ...> } @@ identifier d_show; identifier dev, attr, buf; @@ ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf) { <... return - scnprintf(buf, PAGE_SIZE, + sysfs_emit(buf, ...); ...> } @@ identifier d_show; identifier dev, attr, buf; expression chr; @@ ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf) { <... return - strcpy(buf, chr); + sysfs_emit(buf, chr); ...> } @@ identifier d_show; identifier dev, attr, buf; identifier len; @@ ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf) { <... len = - sprintf(buf, + sysfs_emit(buf, ...); ...> return len; } @@ identifier d_show; identifier dev, attr, buf; identifier len; @@ ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf) { <... len = - snprintf(buf, PAGE_SIZE, + sysfs_emit(buf, ...); ...> return len; } @@ identifier d_show; identifier dev, attr, buf; identifier len; @@ ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf) { <... len = - scnprintf(buf, PAGE_SIZE, + sysfs_emit(buf, ...); ...> return len; } @@ identifier d_show; identifier dev, attr, buf; identifier len; @@ ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf) { <... - len += scnprintf(buf + len, PAGE_SIZE - len, + len += sysfs_emit_at(buf, len, ...); ...> return len; } @@ identifier d_show; identifier dev, attr, buf; expression chr; @@ ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf) { ... - strcpy(buf, chr); - return strlen(buf); + return sysfs_emit(buf, chr); } Signed-off-by: Joe Perches <joe@perches.com> Link: https://lore.kernel.org/r/3d033c33056d88bbe34d4ddb62afd05ee166ab9a.1600285923.git.joe@perches.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-16 20:40:39 +00:00
return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
}
static void update_topology_flags_workfn(struct work_struct *work);
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
arch_topology: Make cpu_capacity sysfs node as read-only If user updates any cpu's cpu_capacity, then the new value is going to be applied to all its online sibling cpus. But this need not to be correct always, as sibling cpus (in ARM, same micro architecture cpus) would have different cpu_capacity with different performance characteristics. So, updating the user supplied cpu_capacity to all cpu siblings is not correct. And another problem is, current code assumes that 'all cpus in a cluster or with same package_id (core_siblings), would have same cpu_capacity'. But with commit '5bdd2b3f0f8 ("arm64: topology: add support to remove cpu topology sibling masks")', when a cpu hotplugged out, the cpu information gets cleared in its sibling cpus. So, user supplied cpu_capacity would be applied to only online sibling cpus at the time. After that, if any cpu hotplugged in, it would have different cpu_capacity than its siblings, which breaks the above assumption. So, instead of mucking around the core sibling mask for user supplied value, use device-tree to set cpu capacity. And make the cpu_capacity node as read-only to know the asymmetry between cpus in the system. While at it, remove cpu_scale_mutex usage, which used for sysfs write protection. Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Quentin Perret <quentin.perret@arm.com> Reviewed-by: Quentin Perret <quentin.perret@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-01 04:24:41 +00:00
static DEVICE_ATTR_RO(cpu_capacity);
static int register_cpu_capacity_sysctl(void)
{
int i;
struct device *cpu;
for_each_possible_cpu(i) {
cpu = get_cpu_device(i);
if (!cpu) {
pr_err("%s: too early to get CPU%d device!\n",
__func__, i);
continue;
}
device_create_file(cpu, &dev_attr_cpu_capacity);
}
return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);
static int update_topology;
int topology_update_cpu_topology(void)
{
return update_topology;
}
/*
* Updating the sched_domains can't be done directly from cpufreq callbacks
* due to locking, so queue the work for later.
*/
static void update_topology_flags_workfn(struct work_struct *work)
{
update_topology = 1;
rebuild_sched_domains();
pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
update_topology = 0;
}
static u32 *raw_capacity;
static int free_raw_capacity(void)
{
kfree(raw_capacity);
raw_capacity = NULL;
return 0;
}
void topology_normalize_cpu_scale(void)
{
u64 capacity;
u64 capacity_scale;
int cpu;
if (!raw_capacity)
return;
capacity_scale = 1;
for_each_possible_cpu(cpu) {
capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
capacity_scale = max(capacity, capacity_scale);
}
pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
for_each_possible_cpu(cpu) {
capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
capacity_scale);
topology_set_cpu_scale(cpu, capacity);
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
cpu, topology_get_cpu_scale(cpu));
}
}
bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
struct clk *cpu_clk;
static bool cap_parsing_failed;
int ret;
u32 cpu_capacity;
if (cap_parsing_failed)
return false;
ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
&cpu_capacity);
if (!ret) {
if (!raw_capacity) {
raw_capacity = kcalloc(num_possible_cpus(),
sizeof(*raw_capacity),
GFP_KERNEL);
if (!raw_capacity) {
cap_parsing_failed = true;
return false;
}
}
raw_capacity[cpu] = cpu_capacity;
pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
cpu_node, raw_capacity[cpu]);
/*
* Update freq_factor for calculating early boot cpu capacities.
* For non-clk CPU DVFS mechanism, there's no way to get the
* frequency value now, assuming they are running at the same
* frequency (by keeping the initial freq_factor value).
*/
cpu_clk = of_clk_get(cpu_node, 0);
if (!PTR_ERR_OR_ZERO(cpu_clk)) {
per_cpu(freq_factor, cpu) =
clk_get_rate(cpu_clk) / 1000;
clk_put(cpu_clk);
}
} else {
if (raw_capacity) {
pr_err("cpu_capacity: missing %pOF raw capacity\n",
cpu_node);
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
}
cap_parsing_failed = true;
free_raw_capacity();
}
return !ret;
}
#ifdef CONFIG_ACPI_CPPC_LIB
#include <acpi/cppc_acpi.h>
void topology_init_cpu_capacity_cppc(void)
{
struct cppc_perf_caps perf_caps;
int cpu;
if (likely(acpi_disabled || !acpi_cpc_valid()))
return;
raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
GFP_KERNEL);
if (!raw_capacity)
return;
for_each_possible_cpu(cpu) {
if (!cppc_get_perf_caps(cpu, &perf_caps) &&
(perf_caps.highest_perf >= perf_caps.nominal_perf) &&
(perf_caps.highest_perf >= perf_caps.lowest_perf)) {
raw_capacity[cpu] = perf_caps.highest_perf;
pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
cpu, raw_capacity[cpu]);
continue;
}
pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
goto exit;
}
topology_normalize_cpu_scale();
schedule_work(&update_topology_flags_work);
pr_debug("cpu_capacity: cpu_capacity initialization done\n");
exit:
free_raw_capacity();
}
#endif
#ifdef CONFIG_CPU_FREQ
Revert "base: arch_topology: fix section mismatch build warnings" This reverts commit 452562abb5b7 ("base: arch_topology: fix section mismatch build warnings"). It causes the notifier call hangs in some use-cases. In some cases with using maxcpus, some of cpus are booted first and then the remaining cpus are booted. As an example, some users who want to realize fast boot up often use the following procedure. 1) Define all CPUs on device tree (CA57x4 + CA53x4) 2) Add "maxcpus=4" in bootargs 3) Kernel boot up with CA57x4 4) After kernel boot up, CA53x4 is booted from user When kernel init was finished, CPUFREQ_POLICY_NOTIFIER was not still unregisterd. This means that "__init init_cpu_capacity_callback()" will be called after kernel init sequence. To avoid this problem, it needs to remove __init{,data} annotations by reverting this commit. Also, this commit was needed to fix kernel compile issue below. However, this issue was also fixed by another patch: commit 82d8ba717ccb ("arch_topology: Fix section miss match warning due to free_raw_capacity()") in v4.15 as well. Whereas commit 452562abb5b7 added all the missing __init annotations, commit 82d8ba717ccb removed it from free_raw_capacity(). WARNING: vmlinux.o(.text+0x548f24): Section mismatch in reference from the function init_cpu_capacity_callback() to the variable .init.text:$x The function init_cpu_capacity_callback() references the variable __init $x. This is often because init_cpu_capacity_callback lacks a __init annotation or the annotation of $x is wrong. Fixes: 82d8ba717ccb ("arch_topology: Fix section miss match warning due to free_raw_capacity()") Cc: stable <stable@vger.kernel.org> Signed-off-by: Gaku Inami <gaku.inami.xh@renesas.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-13 02:06:40 +00:00
static cpumask_var_t cpus_to_visit;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
Revert "base: arch_topology: fix section mismatch build warnings" This reverts commit 452562abb5b7 ("base: arch_topology: fix section mismatch build warnings"). It causes the notifier call hangs in some use-cases. In some cases with using maxcpus, some of cpus are booted first and then the remaining cpus are booted. As an example, some users who want to realize fast boot up often use the following procedure. 1) Define all CPUs on device tree (CA57x4 + CA53x4) 2) Add "maxcpus=4" in bootargs 3) Kernel boot up with CA57x4 4) After kernel boot up, CA53x4 is booted from user When kernel init was finished, CPUFREQ_POLICY_NOTIFIER was not still unregisterd. This means that "__init init_cpu_capacity_callback()" will be called after kernel init sequence. To avoid this problem, it needs to remove __init{,data} annotations by reverting this commit. Also, this commit was needed to fix kernel compile issue below. However, this issue was also fixed by another patch: commit 82d8ba717ccb ("arch_topology: Fix section miss match warning due to free_raw_capacity()") in v4.15 as well. Whereas commit 452562abb5b7 added all the missing __init annotations, commit 82d8ba717ccb removed it from free_raw_capacity(). WARNING: vmlinux.o(.text+0x548f24): Section mismatch in reference from the function init_cpu_capacity_callback() to the variable .init.text:$x The function init_cpu_capacity_callback() references the variable __init $x. This is often because init_cpu_capacity_callback lacks a __init annotation or the annotation of $x is wrong. Fixes: 82d8ba717ccb ("arch_topology: Fix section miss match warning due to free_raw_capacity()") Cc: stable <stable@vger.kernel.org> Signed-off-by: Gaku Inami <gaku.inami.xh@renesas.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-13 02:06:40 +00:00
static int
init_cpu_capacity_callback(struct notifier_block *nb,
unsigned long val,
void *data)
{
struct cpufreq_policy *policy = data;
int cpu;
if (!raw_capacity)
return 0;
if (val != CPUFREQ_CREATE_POLICY)
return 0;
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
cpumask_pr_args(policy->related_cpus),
cpumask_pr_args(cpus_to_visit));
cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
for_each_cpu(cpu, policy->related_cpus)
per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
if (cpumask_empty(cpus_to_visit)) {
topology_normalize_cpu_scale();
schedule_work(&update_topology_flags_work);
free_raw_capacity();
pr_debug("cpu_capacity: parsing done\n");
schedule_work(&parsing_done_work);
}
return 0;
}
Revert "base: arch_topology: fix section mismatch build warnings" This reverts commit 452562abb5b7 ("base: arch_topology: fix section mismatch build warnings"). It causes the notifier call hangs in some use-cases. In some cases with using maxcpus, some of cpus are booted first and then the remaining cpus are booted. As an example, some users who want to realize fast boot up often use the following procedure. 1) Define all CPUs on device tree (CA57x4 + CA53x4) 2) Add "maxcpus=4" in bootargs 3) Kernel boot up with CA57x4 4) After kernel boot up, CA53x4 is booted from user When kernel init was finished, CPUFREQ_POLICY_NOTIFIER was not still unregisterd. This means that "__init init_cpu_capacity_callback()" will be called after kernel init sequence. To avoid this problem, it needs to remove __init{,data} annotations by reverting this commit. Also, this commit was needed to fix kernel compile issue below. However, this issue was also fixed by another patch: commit 82d8ba717ccb ("arch_topology: Fix section miss match warning due to free_raw_capacity()") in v4.15 as well. Whereas commit 452562abb5b7 added all the missing __init annotations, commit 82d8ba717ccb removed it from free_raw_capacity(). WARNING: vmlinux.o(.text+0x548f24): Section mismatch in reference from the function init_cpu_capacity_callback() to the variable .init.text:$x The function init_cpu_capacity_callback() references the variable __init $x. This is often because init_cpu_capacity_callback lacks a __init annotation or the annotation of $x is wrong. Fixes: 82d8ba717ccb ("arch_topology: Fix section miss match warning due to free_raw_capacity()") Cc: stable <stable@vger.kernel.org> Signed-off-by: Gaku Inami <gaku.inami.xh@renesas.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-13 02:06:40 +00:00
static struct notifier_block init_cpu_capacity_notifier = {
.notifier_call = init_cpu_capacity_callback,
};
static int __init register_cpufreq_notifier(void)
{
int ret;
/*
* On ACPI-based systems skip registering cpufreq notifier as cpufreq
* information is not needed for cpu capacity initialization.
*/
if (!acpi_disabled || !raw_capacity)
return -EINVAL;
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
return -ENOMEM;
cpumask_copy(cpus_to_visit, cpu_possible_mask);
ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
if (ret)
free_cpumask_var(cpus_to_visit);
return ret;
}
core_initcall(register_cpufreq_notifier);
Revert "base: arch_topology: fix section mismatch build warnings" This reverts commit 452562abb5b7 ("base: arch_topology: fix section mismatch build warnings"). It causes the notifier call hangs in some use-cases. In some cases with using maxcpus, some of cpus are booted first and then the remaining cpus are booted. As an example, some users who want to realize fast boot up often use the following procedure. 1) Define all CPUs on device tree (CA57x4 + CA53x4) 2) Add "maxcpus=4" in bootargs 3) Kernel boot up with CA57x4 4) After kernel boot up, CA53x4 is booted from user When kernel init was finished, CPUFREQ_POLICY_NOTIFIER was not still unregisterd. This means that "__init init_cpu_capacity_callback()" will be called after kernel init sequence. To avoid this problem, it needs to remove __init{,data} annotations by reverting this commit. Also, this commit was needed to fix kernel compile issue below. However, this issue was also fixed by another patch: commit 82d8ba717ccb ("arch_topology: Fix section miss match warning due to free_raw_capacity()") in v4.15 as well. Whereas commit 452562abb5b7 added all the missing __init annotations, commit 82d8ba717ccb removed it from free_raw_capacity(). WARNING: vmlinux.o(.text+0x548f24): Section mismatch in reference from the function init_cpu_capacity_callback() to the variable .init.text:$x The function init_cpu_capacity_callback() references the variable __init $x. This is often because init_cpu_capacity_callback lacks a __init annotation or the annotation of $x is wrong. Fixes: 82d8ba717ccb ("arch_topology: Fix section miss match warning due to free_raw_capacity()") Cc: stable <stable@vger.kernel.org> Signed-off-by: Gaku Inami <gaku.inami.xh@renesas.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-13 02:06:40 +00:00
static void parsing_done_workfn(struct work_struct *work)
{
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
free_cpumask_var(cpus_to_visit);
}
#else
core_initcall(free_raw_capacity);
#endif
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
/*
* This function returns the logic cpu number of the node.
* There are basically three kinds of return values:
* (1) logic cpu number which is > 0.
* (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
* there is no possible logical CPU in the kernel to match. This happens
* when CONFIG_NR_CPUS is configure to be smaller than the number of
* CPU nodes in DT. We need to just ignore this case.
* (3) -1 if the node does not exist in the device tree
*/
static int __init get_cpu_for_node(struct device_node *node)
{
struct device_node *cpu_node;
int cpu;
cpu_node = of_parse_phandle(node, "cpu", 0);
if (!cpu_node)
return -1;
cpu = of_cpu_node_to_id(cpu_node);
if (cpu >= 0)
topology_parse_cpu_capacity(cpu_node, cpu);
else
pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
cpu_node, cpumask_pr_args(cpu_possible_mask));
of_node_put(cpu_node);
return cpu;
}
static int __init parse_core(struct device_node *core, int package_id,
int core_id)
{
char name[20];
bool leaf = true;
int i = 0;
int cpu;
struct device_node *t;
do {
snprintf(name, sizeof(name), "thread%d", i);
t = of_get_child_by_name(core, name);
if (t) {
leaf = false;
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
cpu_topology[cpu].package_id = package_id;
cpu_topology[cpu].core_id = core_id;
cpu_topology[cpu].thread_id = i;
} else if (cpu != -ENODEV) {
pr_err("%pOF: Can't get CPU for thread\n", t);
of_node_put(t);
return -EINVAL;
}
of_node_put(t);
}
i++;
} while (t);
cpu = get_cpu_for_node(core);
if (cpu >= 0) {
if (!leaf) {
pr_err("%pOF: Core has both threads and CPU\n",
core);
return -EINVAL;
}
cpu_topology[cpu].package_id = package_id;
cpu_topology[cpu].core_id = core_id;
} else if (leaf && cpu != -ENODEV) {
pr_err("%pOF: Can't get CPU for leaf core\n", core);
return -EINVAL;
}
return 0;
}
static int __init parse_cluster(struct device_node *cluster, int depth)
{
char name[20];
bool leaf = true;
bool has_cores = false;
struct device_node *c;
static int package_id __initdata;
int core_id = 0;
int i, ret;
/*
* First check for child clusters; we currently ignore any
* information about the nesting of clusters and present the
* scheduler with a flat list of them.
*/
i = 0;
do {
snprintf(name, sizeof(name), "cluster%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
leaf = false;
ret = parse_cluster(c, depth + 1);
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
/* Now check for cores */
i = 0;
do {
snprintf(name, sizeof(name), "core%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
has_cores = true;
if (depth == 0) {
pr_err("%pOF: cpu-map children should be clusters\n",
c);
of_node_put(c);
return -EINVAL;
}
if (leaf) {
ret = parse_core(c, package_id, core_id++);
} else {
pr_err("%pOF: Non-leaf cluster with core %s\n",
cluster, name);
ret = -EINVAL;
}
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
if (leaf && !has_cores)
pr_warn("%pOF: empty cluster\n", cluster);
if (leaf)
package_id++;
return 0;
}
static int __init parse_dt_topology(void)
{
struct device_node *cn, *map;
int ret = 0;
int cpu;
cn = of_find_node_by_path("/cpus");
if (!cn) {
pr_err("No CPU information found in DT\n");
return 0;
}
/*
* When topology is provided cpu-map is essentially a root
* cluster with restricted subnodes.
*/
map = of_get_child_by_name(cn, "cpu-map");
if (!map)
goto out;
ret = parse_cluster(map, 0);
if (ret != 0)
goto out_map;
topology_normalize_cpu_scale();
/*
* Check that all cores are in the topology; the SMP code will
* only mark cores described in the DT as possible.
*/
for_each_possible_cpu(cpu)
if (cpu_topology[cpu].package_id == -1)
ret = -EINVAL;
out_map:
of_node_put(map);
out:
of_node_put(cn);
return ret;
}
#endif
/*
* cpu topology table
*/
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
/* Find the smaller of NUMA, core or LLC siblings */
if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
/* not numa in package, lets use the package siblings */
core_mask = &cpu_topology[cpu].core_sibling;
}
if (cpu_topology[cpu].llc_id != -1) {
if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
core_mask = &cpu_topology[cpu].llc_sibling;
}
return core_mask;
}
topology: Represent clusters of CPUs within a die Both ACPI and DT provide the ability to describe additional layers of topology between that of individual cores and higher level constructs such as the level at which the last level cache is shared. In ACPI this can be represented in PPTT as a Processor Hierarchy Node Structure [1] that is the parent of the CPU cores and in turn has a parent Processor Hierarchy Nodes Structure representing a higher level of topology. For example Kunpeng 920 has 6 or 8 clusters in each NUMA node, and each cluster has 4 cpus. All clusters share L3 cache data, but each cluster has local L3 tag. On the other hand, each clusters will share some internal system bus. +-----------------------------------+ +---------+ | +------+ +------+ +--------------------------+ | | | CPU0 | | cpu1 | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ cluster | | tag | | | | | CPU2 | | CPU3 | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +----+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | L3 | | data | +-----------------------------------+ | | | +------+ +------+ | +-----------+ | | | | | | | | | | | | | +------+ +------+ +----+ L3 | | | | | | tag | | | | +------+ +------+ | | | | | | | | | | | +-----------+ | | | +------+ +------+ +--------------------------+ | +-----------------------------------| | | +-----------------------------------| | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ | | tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +---+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +--+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | +---------+ +-----------------------------------+ That means spreading tasks among clusters will bring more bandwidth while packing tasks within one cluster will lead to smaller cache synchronization latency. So both kernel and userspace will have a chance to leverage this topology to deploy tasks accordingly to achieve either smaller cache latency within one cluster or an even distribution of load among clusters for higher throughput. This patch exposes cluster topology to both kernel and userspace. Libraried like hwloc will know cluster by cluster_cpus and related sysfs attributes. PoC of HWLOC support at [2]. Note this patch only handle the ACPI case. Special consideration is needed for SMT processors, where it is necessary to move 2 levels up the hierarchy from the leaf nodes (thus skipping the processor core level). Note that arm64 / ACPI does not provide any means of identifying a die level in the topology but that may be unrelate to the cluster level. [1] ACPI Specification 6.3 - section 5.2.29.1 processor hierarchy node structure (Type 0) [2] https://github.com/hisilicon/hwloc/tree/linux-cluster Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Tian Tao <tiantao6@hisilicon.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-2-21cnbao@gmail.com
2021-09-24 08:51:02 +00:00
const struct cpumask *cpu_clustergroup_mask(int cpu)
{
return &cpu_topology[cpu].cluster_sibling;
}
void update_siblings_masks(unsigned int cpuid)
{
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_online_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpuid_topo->llc_id == cpu_topo->llc_id) {
cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
}
if (cpuid_topo->package_id != cpu_topo->package_id)
continue;
topology: Represent clusters of CPUs within a die Both ACPI and DT provide the ability to describe additional layers of topology between that of individual cores and higher level constructs such as the level at which the last level cache is shared. In ACPI this can be represented in PPTT as a Processor Hierarchy Node Structure [1] that is the parent of the CPU cores and in turn has a parent Processor Hierarchy Nodes Structure representing a higher level of topology. For example Kunpeng 920 has 6 or 8 clusters in each NUMA node, and each cluster has 4 cpus. All clusters share L3 cache data, but each cluster has local L3 tag. On the other hand, each clusters will share some internal system bus. +-----------------------------------+ +---------+ | +------+ +------+ +--------------------------+ | | | CPU0 | | cpu1 | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ cluster | | tag | | | | | CPU2 | | CPU3 | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +----+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | L3 | | data | +-----------------------------------+ | | | +------+ +------+ | +-----------+ | | | | | | | | | | | | | +------+ +------+ +----+ L3 | | | | | | tag | | | | +------+ +------+ | | | | | | | | | | | +-----------+ | | | +------+ +------+ +--------------------------+ | +-----------------------------------| | | +-----------------------------------| | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ | | tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +---+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +--+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | +---------+ +-----------------------------------+ That means spreading tasks among clusters will bring more bandwidth while packing tasks within one cluster will lead to smaller cache synchronization latency. So both kernel and userspace will have a chance to leverage this topology to deploy tasks accordingly to achieve either smaller cache latency within one cluster or an even distribution of load among clusters for higher throughput. This patch exposes cluster topology to both kernel and userspace. Libraried like hwloc will know cluster by cluster_cpus and related sysfs attributes. PoC of HWLOC support at [2]. Note this patch only handle the ACPI case. Special consideration is needed for SMT processors, where it is necessary to move 2 levels up the hierarchy from the leaf nodes (thus skipping the processor core level). Note that arm64 / ACPI does not provide any means of identifying a die level in the topology but that may be unrelate to the cluster level. [1] ACPI Specification 6.3 - section 5.2.29.1 processor hierarchy node structure (Type 0) [2] https://github.com/hisilicon/hwloc/tree/linux-cluster Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Tian Tao <tiantao6@hisilicon.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-2-21cnbao@gmail.com
2021-09-24 08:51:02 +00:00
if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
cpuid_topo->cluster_id != -1) {
cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
}
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
}
static void clear_cpu_topology(int cpu)
{
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpumask_clear(&cpu_topo->llc_sibling);
cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
topology: Represent clusters of CPUs within a die Both ACPI and DT provide the ability to describe additional layers of topology between that of individual cores and higher level constructs such as the level at which the last level cache is shared. In ACPI this can be represented in PPTT as a Processor Hierarchy Node Structure [1] that is the parent of the CPU cores and in turn has a parent Processor Hierarchy Nodes Structure representing a higher level of topology. For example Kunpeng 920 has 6 or 8 clusters in each NUMA node, and each cluster has 4 cpus. All clusters share L3 cache data, but each cluster has local L3 tag. On the other hand, each clusters will share some internal system bus. +-----------------------------------+ +---------+ | +------+ +------+ +--------------------------+ | | | CPU0 | | cpu1 | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ cluster | | tag | | | | | CPU2 | | CPU3 | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +----+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | L3 | | data | +-----------------------------------+ | | | +------+ +------+ | +-----------+ | | | | | | | | | | | | | +------+ +------+ +----+ L3 | | | | | | tag | | | | +------+ +------+ | | | | | | | | | | | +-----------+ | | | +------+ +------+ +--------------------------+ | +-----------------------------------| | | +-----------------------------------| | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ | | tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +---+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +--+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | +---------+ +-----------------------------------+ That means spreading tasks among clusters will bring more bandwidth while packing tasks within one cluster will lead to smaller cache synchronization latency. So both kernel and userspace will have a chance to leverage this topology to deploy tasks accordingly to achieve either smaller cache latency within one cluster or an even distribution of load among clusters for higher throughput. This patch exposes cluster topology to both kernel and userspace. Libraried like hwloc will know cluster by cluster_cpus and related sysfs attributes. PoC of HWLOC support at [2]. Note this patch only handle the ACPI case. Special consideration is needed for SMT processors, where it is necessary to move 2 levels up the hierarchy from the leaf nodes (thus skipping the processor core level). Note that arm64 / ACPI does not provide any means of identifying a die level in the topology but that may be unrelate to the cluster level. [1] ACPI Specification 6.3 - section 5.2.29.1 processor hierarchy node structure (Type 0) [2] https://github.com/hisilicon/hwloc/tree/linux-cluster Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Tian Tao <tiantao6@hisilicon.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-2-21cnbao@gmail.com
2021-09-24 08:51:02 +00:00
cpumask_clear(&cpu_topo->cluster_sibling);
cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
cpumask_clear(&cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
}
void __init reset_cpu_topology(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpu_topo->thread_id = -1;
cpu_topo->core_id = -1;
topology: Represent clusters of CPUs within a die Both ACPI and DT provide the ability to describe additional layers of topology between that of individual cores and higher level constructs such as the level at which the last level cache is shared. In ACPI this can be represented in PPTT as a Processor Hierarchy Node Structure [1] that is the parent of the CPU cores and in turn has a parent Processor Hierarchy Nodes Structure representing a higher level of topology. For example Kunpeng 920 has 6 or 8 clusters in each NUMA node, and each cluster has 4 cpus. All clusters share L3 cache data, but each cluster has local L3 tag. On the other hand, each clusters will share some internal system bus. +-----------------------------------+ +---------+ | +------+ +------+ +--------------------------+ | | | CPU0 | | cpu1 | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ cluster | | tag | | | | | CPU2 | | CPU3 | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +----+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | L3 | | data | +-----------------------------------+ | | | +------+ +------+ | +-----------+ | | | | | | | | | | | | | +------+ +------+ +----+ L3 | | | | | | tag | | | | +------+ +------+ | | | | | | | | | | | +-----------+ | | | +------+ +------+ +--------------------------+ | +-----------------------------------| | | +-----------------------------------| | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ | | tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +---+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +--+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | +---------+ +-----------------------------------+ That means spreading tasks among clusters will bring more bandwidth while packing tasks within one cluster will lead to smaller cache synchronization latency. So both kernel and userspace will have a chance to leverage this topology to deploy tasks accordingly to achieve either smaller cache latency within one cluster or an even distribution of load among clusters for higher throughput. This patch exposes cluster topology to both kernel and userspace. Libraried like hwloc will know cluster by cluster_cpus and related sysfs attributes. PoC of HWLOC support at [2]. Note this patch only handle the ACPI case. Special consideration is needed for SMT processors, where it is necessary to move 2 levels up the hierarchy from the leaf nodes (thus skipping the processor core level). Note that arm64 / ACPI does not provide any means of identifying a die level in the topology but that may be unrelate to the cluster level. [1] ACPI Specification 6.3 - section 5.2.29.1 processor hierarchy node structure (Type 0) [2] https://github.com/hisilicon/hwloc/tree/linux-cluster Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Tian Tao <tiantao6@hisilicon.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-2-21cnbao@gmail.com
2021-09-24 08:51:02 +00:00
cpu_topo->cluster_id = -1;
cpu_topo->package_id = -1;
cpu_topo->llc_id = -1;
clear_cpu_topology(cpu);
}
}
void remove_cpu_topology(unsigned int cpu)
{
int sibling;
for_each_cpu(sibling, topology_core_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
for_each_cpu(sibling, topology_sibling_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
arch_topology: Fix missing clear cluster_cpumask in remove_cpu_topology() When testing cpu online and offline, warning happened like this: [ 146.746743] WARNING: CPU: 92 PID: 974 at kernel/sched/topology.c:2215 build_sched_domains+0x81c/0x11b0 [ 146.749988] CPU: 92 PID: 974 Comm: kworker/92:2 Not tainted 5.15.0 #9 [ 146.750402] Hardware name: Huawei TaiShan 2280 V2/BC82AMDDA, BIOS 1.79 08/21/2021 [ 146.751213] Workqueue: events cpuset_hotplug_workfn [ 146.751629] pstate: 00400009 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 146.752048] pc : build_sched_domains+0x81c/0x11b0 [ 146.752461] lr : build_sched_domains+0x414/0x11b0 [ 146.752860] sp : ffff800040a83a80 [ 146.753247] x29: ffff800040a83a80 x28: ffff20801f13a980 x27: ffff20800448ae00 [ 146.753644] x26: ffff800012a858e8 x25: ffff800012ea48c0 x24: 0000000000000000 [ 146.754039] x23: ffff800010ab7d60 x22: ffff800012f03758 x21: 000000000000005f [ 146.754427] x20: 000000000000005c x19: ffff004080012840 x18: ffffffffffffffff [ 146.754814] x17: 3661613030303230 x16: 30303078303a3239 x15: ffff800011f92b48 [ 146.755197] x14: ffff20be3f95cef6 x13: 2e6e69616d6f642d x12: 6465686373204c4c [ 146.755578] x11: ffff20bf7fc83a00 x10: 0000000000000040 x9 : 0000000000000000 [ 146.755957] x8 : 0000000000000002 x7 : ffffffffe0000000 x6 : 0000000000000002 [ 146.756334] x5 : 0000000090000000 x4 : 00000000f0000000 x3 : 0000000000000001 [ 146.756705] x2 : 0000000000000080 x1 : ffff800012f03860 x0 : 0000000000000001 [ 146.757070] Call trace: [ 146.757421] build_sched_domains+0x81c/0x11b0 [ 146.757771] partition_sched_domains_locked+0x57c/0x978 [ 146.758118] rebuild_sched_domains_locked+0x44c/0x7f0 [ 146.758460] rebuild_sched_domains+0x2c/0x48 [ 146.758791] cpuset_hotplug_workfn+0x3fc/0x888 [ 146.759114] process_one_work+0x1f4/0x480 [ 146.759429] worker_thread+0x48/0x460 [ 146.759734] kthread+0x158/0x168 [ 146.760030] ret_from_fork+0x10/0x20 [ 146.760318] ---[ end trace 82c44aad6900e81a ]--- For some architectures like risc-v and arm64 which use common code clear_cpu_topology() in shutting down CPUx, When CONFIG_SCHED_CLUSTER is set, cluster_sibling in cpu_topology of each sibling adjacent to CPUx is missed clearing, this causes checking failed in topology_span_sane() and rebuilding topology failure at end when CPU online. Different sibling's cluster_sibling in cpu_topology[] when CPU92 offline (CPU 92, 93, 94, 95 are in one cluster): Before revision: CPU [92] [93] [94] [95] cluster_sibling [92] [92-95] [92-95] [92-95] After revision: CPU [92] [93] [94] [95] cluster_sibling [92] [93-95] [93-95] [93-95] Signed-off-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Barry Song <song.bao.hua@hisilicon.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20211110095856.469360-1-bobo.shaobowang@huawei.com
2021-11-10 09:58:56 +00:00
for_each_cpu(sibling, topology_cluster_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
for_each_cpu(sibling, topology_llc_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
clear_cpu_topology(cpu);
}
__weak int __init parse_acpi_topology(void)
{
return 0;
}
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
void __init init_cpu_topology(void)
{
reset_cpu_topology();
/*
* Discard anything that was parsed if we hit an error so we
* don't use partial information.
*/
if (parse_acpi_topology())
reset_cpu_topology();
else if (of_have_populated_dt() && parse_dt_topology())
reset_cpu_topology();
}
#endif