linux-stable/net/ipv4/bpf_tcp_ca.c

336 lines
8.7 KiB
C
Raw Normal View History

bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 Facebook */
#include <linux/types.h>
#include <linux/bpf_verifier.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
#include <linux/filter.h>
#include <net/tcp.h>
#include <net/bpf_sk_storage.h>
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
bpf: tcp: Allow bpf-tcp-cc to call bpf_(get|set)sockopt This patch allows the bpf-tcp-cc to call bpf_setsockopt. One use case is to allow a bpf-tcp-cc switching to another cc during init(). For example, when the tcp flow is not ecn ready, the bpf_dctcp can switch to another cc by calling setsockopt(TCP_CONGESTION). During setsockopt(TCP_CONGESTION), the new tcp-cc's init() will be called and this could cause a recursion but it is stopped by the current trampoline's logic (in the prog->active counter). While retiring a bpf-tcp-cc (e.g. in tcp_v[46]_destroy_sock()), the tcp stack calls bpf-tcp-cc's release(). To avoid the retiring bpf-tcp-cc making further changes to the sk, bpf_setsockopt is not available to the bpf-tcp-cc's release(). This will avoid release() making setsockopt() call that will potentially allocate new resources. Although the bpf-tcp-cc already has a more powerful way to read tcp_sock from the PTR_TO_BTF_ID, it is usually expected that bpf_getsockopt and bpf_setsockopt are available together. Thus, bpf_getsockopt() is also added to all tcp_congestion_ops except release(). When the old bpf-tcp-cc is calling setsockopt(TCP_CONGESTION) to switch to a new cc, the old bpf-tcp-cc will be released by bpf_struct_ops_put(). Thus, this patch also puts the bpf_struct_ops_map after a rcu grace period because the trampoline's image cannot be freed while the old bpf-tcp-cc is still running. bpf-tcp-cc can only access icsk_ca_priv as SCALAR. All kernel's tcp-cc is also accessing the icsk_ca_priv as SCALAR. The size of icsk_ca_priv has already been raised a few times to avoid extra kmalloc and memory referencing. The only exception is the kernel's tcp_cdg.c that stores a kmalloc()-ed pointer in icsk_ca_priv. To avoid the old bpf-tcp-cc accidentally overriding this tcp_cdg's pointer value stored in icsk_ca_priv after switching and without over-complicating the bpf's verifier for this one exception in tcp_cdg, this patch does not allow switching to tcp_cdg. If there is a need, bpf_tcp_cdg can be implemented and then use the bpf_sk_storage as the extended storage. bpf_sk_setsockopt proto has only been recently added and used in bpf-sockopt and bpf-iter-tcp, so impose the tcp_cdg limitation in the same proto instead of adding a new proto specifically for bpf-tcp-cc. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210824173007.3976921-1-kafai@fb.com
2021-08-24 17:30:07 +00:00
/* "extern" is to avoid sparse warning. It is only used in bpf_struct_ops.c. */
extern struct bpf_struct_ops bpf_tcp_congestion_ops;
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
static u32 optional_ops[] = {
offsetof(struct tcp_congestion_ops, init),
offsetof(struct tcp_congestion_ops, release),
offsetof(struct tcp_congestion_ops, set_state),
offsetof(struct tcp_congestion_ops, cwnd_event),
offsetof(struct tcp_congestion_ops, in_ack_event),
offsetof(struct tcp_congestion_ops, pkts_acked),
offsetof(struct tcp_congestion_ops, min_tso_segs),
offsetof(struct tcp_congestion_ops, sndbuf_expand),
offsetof(struct tcp_congestion_ops, cong_control),
};
static u32 unsupported_ops[] = {
offsetof(struct tcp_congestion_ops, get_info),
};
static const struct btf_type *tcp_sock_type;
static u32 tcp_sock_id, sock_id;
static int bpf_tcp_ca_init(struct btf *btf)
{
s32 type_id;
type_id = btf_find_by_name_kind(btf, "sock", BTF_KIND_STRUCT);
if (type_id < 0)
return -EINVAL;
sock_id = type_id;
type_id = btf_find_by_name_kind(btf, "tcp_sock", BTF_KIND_STRUCT);
if (type_id < 0)
return -EINVAL;
tcp_sock_id = type_id;
tcp_sock_type = btf_type_by_id(btf, tcp_sock_id);
return 0;
}
static bool is_optional(u32 member_offset)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(optional_ops); i++) {
if (member_offset == optional_ops[i])
return true;
}
return false;
}
static bool is_unsupported(u32 member_offset)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(unsupported_ops); i++) {
if (member_offset == unsupported_ops[i])
return true;
}
return false;
}
extern struct btf *btf_vmlinux;
static bool bpf_tcp_ca_is_valid_access(int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
if (!btf_ctx_access(off, size, type, prog, info))
return false;
if (info->reg_type == PTR_TO_BTF_ID && info->btf_id == sock_id)
/* promote it to tcp_sock */
info->btf_id = tcp_sock_id;
return true;
}
static int bpf_tcp_ca_btf_struct_access(struct bpf_verifier_log *log,
const struct btf *btf,
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
const struct btf_type *t, int off,
int size, enum bpf_access_type atype,
u32 *next_btf_id)
{
size_t end;
if (atype == BPF_READ)
return btf_struct_access(log, btf, t, off, size, atype, next_btf_id);
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
if (t != tcp_sock_type) {
bpf_log(log, "only read is supported\n");
return -EACCES;
}
switch (off) {
case bpf_ctx_range(struct inet_connection_sock, icsk_ca_priv):
end = offsetofend(struct inet_connection_sock, icsk_ca_priv);
break;
case offsetof(struct inet_connection_sock, icsk_ack.pending):
end = offsetofend(struct inet_connection_sock,
icsk_ack.pending);
break;
case offsetof(struct tcp_sock, snd_cwnd):
end = offsetofend(struct tcp_sock, snd_cwnd);
break;
case offsetof(struct tcp_sock, snd_cwnd_cnt):
end = offsetofend(struct tcp_sock, snd_cwnd_cnt);
break;
case offsetof(struct tcp_sock, snd_ssthresh):
end = offsetofend(struct tcp_sock, snd_ssthresh);
break;
case offsetof(struct tcp_sock, ecn_flags):
end = offsetofend(struct tcp_sock, ecn_flags);
break;
default:
bpf_log(log, "no write support to tcp_sock at off %d\n", off);
return -EACCES;
}
if (off + size > end) {
bpf_log(log,
"write access at off %d with size %d beyond the member of tcp_sock ended at %zu\n",
off, size, end);
return -EACCES;
}
return NOT_INIT;
}
BPF_CALL_2(bpf_tcp_send_ack, struct tcp_sock *, tp, u32, rcv_nxt)
{
/* bpf_tcp_ca prog cannot have NULL tp */
__tcp_send_ack((struct sock *)tp, rcv_nxt);
return 0;
}
static const struct bpf_func_proto bpf_tcp_send_ack_proto = {
.func = bpf_tcp_send_ack,
.gpl_only = false,
/* In case we want to report error later */
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_BTF_ID,
.arg1_btf_id = &tcp_sock_id,
.arg2_type = ARG_ANYTHING,
};
bpf: tcp: Allow bpf-tcp-cc to call bpf_(get|set)sockopt This patch allows the bpf-tcp-cc to call bpf_setsockopt. One use case is to allow a bpf-tcp-cc switching to another cc during init(). For example, when the tcp flow is not ecn ready, the bpf_dctcp can switch to another cc by calling setsockopt(TCP_CONGESTION). During setsockopt(TCP_CONGESTION), the new tcp-cc's init() will be called and this could cause a recursion but it is stopped by the current trampoline's logic (in the prog->active counter). While retiring a bpf-tcp-cc (e.g. in tcp_v[46]_destroy_sock()), the tcp stack calls bpf-tcp-cc's release(). To avoid the retiring bpf-tcp-cc making further changes to the sk, bpf_setsockopt is not available to the bpf-tcp-cc's release(). This will avoid release() making setsockopt() call that will potentially allocate new resources. Although the bpf-tcp-cc already has a more powerful way to read tcp_sock from the PTR_TO_BTF_ID, it is usually expected that bpf_getsockopt and bpf_setsockopt are available together. Thus, bpf_getsockopt() is also added to all tcp_congestion_ops except release(). When the old bpf-tcp-cc is calling setsockopt(TCP_CONGESTION) to switch to a new cc, the old bpf-tcp-cc will be released by bpf_struct_ops_put(). Thus, this patch also puts the bpf_struct_ops_map after a rcu grace period because the trampoline's image cannot be freed while the old bpf-tcp-cc is still running. bpf-tcp-cc can only access icsk_ca_priv as SCALAR. All kernel's tcp-cc is also accessing the icsk_ca_priv as SCALAR. The size of icsk_ca_priv has already been raised a few times to avoid extra kmalloc and memory referencing. The only exception is the kernel's tcp_cdg.c that stores a kmalloc()-ed pointer in icsk_ca_priv. To avoid the old bpf-tcp-cc accidentally overriding this tcp_cdg's pointer value stored in icsk_ca_priv after switching and without over-complicating the bpf's verifier for this one exception in tcp_cdg, this patch does not allow switching to tcp_cdg. If there is a need, bpf_tcp_cdg can be implemented and then use the bpf_sk_storage as the extended storage. bpf_sk_setsockopt proto has only been recently added and used in bpf-sockopt and bpf-iter-tcp, so impose the tcp_cdg limitation in the same proto instead of adding a new proto specifically for bpf-tcp-cc. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210824173007.3976921-1-kafai@fb.com
2021-08-24 17:30:07 +00:00
static u32 prog_ops_moff(const struct bpf_prog *prog)
{
const struct btf_member *m;
const struct btf_type *t;
u32 midx;
midx = prog->expected_attach_type;
t = bpf_tcp_congestion_ops.type;
m = &btf_type_member(t)[midx];
return btf_member_bit_offset(t, m) / 8;
}
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
static const struct bpf_func_proto *
bpf_tcp_ca_get_func_proto(enum bpf_func_id func_id,
const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_tcp_send_ack:
return &bpf_tcp_send_ack_proto;
case BPF_FUNC_sk_storage_get:
return &bpf_sk_storage_get_proto;
case BPF_FUNC_sk_storage_delete:
return &bpf_sk_storage_delete_proto;
bpf: tcp: Allow bpf-tcp-cc to call bpf_(get|set)sockopt This patch allows the bpf-tcp-cc to call bpf_setsockopt. One use case is to allow a bpf-tcp-cc switching to another cc during init(). For example, when the tcp flow is not ecn ready, the bpf_dctcp can switch to another cc by calling setsockopt(TCP_CONGESTION). During setsockopt(TCP_CONGESTION), the new tcp-cc's init() will be called and this could cause a recursion but it is stopped by the current trampoline's logic (in the prog->active counter). While retiring a bpf-tcp-cc (e.g. in tcp_v[46]_destroy_sock()), the tcp stack calls bpf-tcp-cc's release(). To avoid the retiring bpf-tcp-cc making further changes to the sk, bpf_setsockopt is not available to the bpf-tcp-cc's release(). This will avoid release() making setsockopt() call that will potentially allocate new resources. Although the bpf-tcp-cc already has a more powerful way to read tcp_sock from the PTR_TO_BTF_ID, it is usually expected that bpf_getsockopt and bpf_setsockopt are available together. Thus, bpf_getsockopt() is also added to all tcp_congestion_ops except release(). When the old bpf-tcp-cc is calling setsockopt(TCP_CONGESTION) to switch to a new cc, the old bpf-tcp-cc will be released by bpf_struct_ops_put(). Thus, this patch also puts the bpf_struct_ops_map after a rcu grace period because the trampoline's image cannot be freed while the old bpf-tcp-cc is still running. bpf-tcp-cc can only access icsk_ca_priv as SCALAR. All kernel's tcp-cc is also accessing the icsk_ca_priv as SCALAR. The size of icsk_ca_priv has already been raised a few times to avoid extra kmalloc and memory referencing. The only exception is the kernel's tcp_cdg.c that stores a kmalloc()-ed pointer in icsk_ca_priv. To avoid the old bpf-tcp-cc accidentally overriding this tcp_cdg's pointer value stored in icsk_ca_priv after switching and without over-complicating the bpf's verifier for this one exception in tcp_cdg, this patch does not allow switching to tcp_cdg. If there is a need, bpf_tcp_cdg can be implemented and then use the bpf_sk_storage as the extended storage. bpf_sk_setsockopt proto has only been recently added and used in bpf-sockopt and bpf-iter-tcp, so impose the tcp_cdg limitation in the same proto instead of adding a new proto specifically for bpf-tcp-cc. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210824173007.3976921-1-kafai@fb.com
2021-08-24 17:30:07 +00:00
case BPF_FUNC_setsockopt:
/* Does not allow release() to call setsockopt.
* release() is called when the current bpf-tcp-cc
* is retiring. It is not allowed to call
* setsockopt() to make further changes which
* may potentially allocate new resources.
*/
if (prog_ops_moff(prog) !=
offsetof(struct tcp_congestion_ops, release))
return &bpf_sk_setsockopt_proto;
return NULL;
case BPF_FUNC_getsockopt:
/* Since get/setsockopt is usually expected to
* be available together, disable getsockopt for
* release also to avoid usage surprise.
* The bpf-tcp-cc already has a more powerful way
* to read tcp_sock from the PTR_TO_BTF_ID.
*/
if (prog_ops_moff(prog) !=
offsetof(struct tcp_congestion_ops, release))
return &bpf_sk_getsockopt_proto;
return NULL;
default:
return bpf_base_func_proto(func_id);
}
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
}
BTF_SET_START(bpf_tcp_ca_kfunc_ids)
BTF_ID(func, tcp_reno_ssthresh)
BTF_ID(func, tcp_reno_cong_avoid)
BTF_ID(func, tcp_reno_undo_cwnd)
BTF_ID(func, tcp_slow_start)
BTF_ID(func, tcp_cong_avoid_ai)
bpf: Limit static tcp-cc functions in the .BTF_ids list to x86 During the discussion in [0]. It was pointed out that static functions in ppc64 is prefixed with ".". For example, the 'readelf -s vmlinux.ppc': 89326: c000000001383280 24 NOTYPE LOCAL DEFAULT 31 cubictcp_init 89327: c000000000c97c50 168 FUNC LOCAL DEFAULT 2 .cubictcp_init The one with FUNC type is ".cubictcp_init" instead of "cubictcp_init". The "." seems to be done by arch/powerpc/include/asm/ppc_asm.h. This caused that pahole cannot generate the BTF for these tcp-cc kernel functions because pahole only captures the FUNC type and "cubictcp_init" is not. It then failed the kernel compilation in ppc64. This behavior is only reported in ppc64 so far. I tried arm64, s390, and sparc64 and did not observe this "." prefix and NOTYPE behavior. Since the kfunc call is only supported in the x86_64 and x86_32 JIT, this patch limits those tcp-cc functions to x86 only to avoid unnecessary compilation issue in other ARCHs. In the future, we can examine if it is better to change all those functions from static to extern. [0] https://lore.kernel.org/bpf/4e051459-8532-7b61-c815-f3435767f8a0@kernel.org/ Fixes: e78aea8b2170 ("bpf: tcp: Put some tcp cong functions in allowlist for bpf-tcp-cc") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Michal Suchánek <msuchanek@suse.de> Cc: Jiri Slaby <jslaby@suse.com> Cc: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/bpf/20210508005011.3863757-1-kafai@fb.com
2021-05-08 00:50:11 +00:00
#ifdef CONFIG_X86
#ifdef CONFIG_DYNAMIC_FTRACE
#if IS_BUILTIN(CONFIG_TCP_CONG_CUBIC)
BTF_ID(func, cubictcp_init)
BTF_ID(func, cubictcp_recalc_ssthresh)
BTF_ID(func, cubictcp_cong_avoid)
BTF_ID(func, cubictcp_state)
BTF_ID(func, cubictcp_cwnd_event)
BTF_ID(func, cubictcp_acked)
#endif
#if IS_BUILTIN(CONFIG_TCP_CONG_DCTCP)
BTF_ID(func, dctcp_init)
BTF_ID(func, dctcp_update_alpha)
BTF_ID(func, dctcp_cwnd_event)
BTF_ID(func, dctcp_ssthresh)
BTF_ID(func, dctcp_cwnd_undo)
BTF_ID(func, dctcp_state)
#endif
#if IS_BUILTIN(CONFIG_TCP_CONG_BBR)
BTF_ID(func, bbr_init)
BTF_ID(func, bbr_main)
BTF_ID(func, bbr_sndbuf_expand)
BTF_ID(func, bbr_undo_cwnd)
BTF_ID(func, bbr_cwnd_event)
BTF_ID(func, bbr_ssthresh)
BTF_ID(func, bbr_min_tso_segs)
BTF_ID(func, bbr_set_state)
#endif
#endif /* CONFIG_DYNAMIC_FTRACE */
bpf: Limit static tcp-cc functions in the .BTF_ids list to x86 During the discussion in [0]. It was pointed out that static functions in ppc64 is prefixed with ".". For example, the 'readelf -s vmlinux.ppc': 89326: c000000001383280 24 NOTYPE LOCAL DEFAULT 31 cubictcp_init 89327: c000000000c97c50 168 FUNC LOCAL DEFAULT 2 .cubictcp_init The one with FUNC type is ".cubictcp_init" instead of "cubictcp_init". The "." seems to be done by arch/powerpc/include/asm/ppc_asm.h. This caused that pahole cannot generate the BTF for these tcp-cc kernel functions because pahole only captures the FUNC type and "cubictcp_init" is not. It then failed the kernel compilation in ppc64. This behavior is only reported in ppc64 so far. I tried arm64, s390, and sparc64 and did not observe this "." prefix and NOTYPE behavior. Since the kfunc call is only supported in the x86_64 and x86_32 JIT, this patch limits those tcp-cc functions to x86 only to avoid unnecessary compilation issue in other ARCHs. In the future, we can examine if it is better to change all those functions from static to extern. [0] https://lore.kernel.org/bpf/4e051459-8532-7b61-c815-f3435767f8a0@kernel.org/ Fixes: e78aea8b2170 ("bpf: tcp: Put some tcp cong functions in allowlist for bpf-tcp-cc") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Michal Suchánek <msuchanek@suse.de> Cc: Jiri Slaby <jslaby@suse.com> Cc: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/bpf/20210508005011.3863757-1-kafai@fb.com
2021-05-08 00:50:11 +00:00
#endif /* CONFIG_X86 */
BTF_SET_END(bpf_tcp_ca_kfunc_ids)
static bool bpf_tcp_ca_check_kfunc_call(u32 kfunc_btf_id)
{
return btf_id_set_contains(&bpf_tcp_ca_kfunc_ids, kfunc_btf_id);
}
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
static const struct bpf_verifier_ops bpf_tcp_ca_verifier_ops = {
.get_func_proto = bpf_tcp_ca_get_func_proto,
.is_valid_access = bpf_tcp_ca_is_valid_access,
.btf_struct_access = bpf_tcp_ca_btf_struct_access,
.check_kfunc_call = bpf_tcp_ca_check_kfunc_call,
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
};
static int bpf_tcp_ca_init_member(const struct btf_type *t,
const struct btf_member *member,
void *kdata, const void *udata)
{
const struct tcp_congestion_ops *utcp_ca;
struct tcp_congestion_ops *tcp_ca;
int prog_fd;
u32 moff;
utcp_ca = (const struct tcp_congestion_ops *)udata;
tcp_ca = (struct tcp_congestion_ops *)kdata;
moff = btf_member_bit_offset(t, member) / 8;
switch (moff) {
case offsetof(struct tcp_congestion_ops, flags):
if (utcp_ca->flags & ~TCP_CONG_MASK)
return -EINVAL;
tcp_ca->flags = utcp_ca->flags;
return 1;
case offsetof(struct tcp_congestion_ops, name):
if (bpf_obj_name_cpy(tcp_ca->name, utcp_ca->name,
sizeof(tcp_ca->name)) <= 0)
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 00:35:08 +00:00
return -EINVAL;
if (tcp_ca_find(utcp_ca->name))
return -EEXIST;
return 1;
}
if (!btf_type_resolve_func_ptr(btf_vmlinux, member->type, NULL))
return 0;
/* Ensure bpf_prog is provided for compulsory func ptr */
prog_fd = (int)(*(unsigned long *)(udata + moff));
if (!prog_fd && !is_optional(moff) && !is_unsupported(moff))
return -EINVAL;
return 0;
}
static int bpf_tcp_ca_check_member(const struct btf_type *t,
const struct btf_member *member)
{
if (is_unsupported(btf_member_bit_offset(t, member) / 8))
return -ENOTSUPP;
return 0;
}
static int bpf_tcp_ca_reg(void *kdata)
{
return tcp_register_congestion_control(kdata);
}
static void bpf_tcp_ca_unreg(void *kdata)
{
tcp_unregister_congestion_control(kdata);
}
struct bpf_struct_ops bpf_tcp_congestion_ops = {
.verifier_ops = &bpf_tcp_ca_verifier_ops,
.reg = bpf_tcp_ca_reg,
.unreg = bpf_tcp_ca_unreg,
.check_member = bpf_tcp_ca_check_member,
.init_member = bpf_tcp_ca_init_member,
.init = bpf_tcp_ca_init,
.name = "tcp_congestion_ops",
};