linux-stable/drivers/net/ethernet/intel/ice/ice_common.c

5960 lines
166 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018-2023, Intel Corporation. */
#include "ice_common.h"
2018-03-20 14:58:08 +00:00
#include "ice_sched.h"
#include "ice_adminq_cmd.h"
#include "ice_flow.h"
#include "ice_ptp_hw.h"
#define ICE_PF_RESET_WAIT_COUNT 300
#define ICE_MAX_NETLIST_SIZE 10
ice: Print human-friendly PHY types Provide human readable description of PHY capabilities and report_mode. Sample output: Old: [ 286.130405] ice 0000:16:00.0: get phy caps - report_mode = 0x2 [ 286.130409] ice 0000:16:00.0: phy_type_low = 0x108021020502000 [ 286.130412] ice 0000:16:00.0: phy_type_high = 0x0 [ 286.130415] ice 0000:16:00.0: caps = 0xc8 [ 286.130419] ice 0000:16:00.0: low_power_ctrl_an = 0x4 [ 286.130421] ice 0000:16:00.0: eee_cap = 0x0 [ 286.130424] ice 0000:16:00.0: eeer_value = 0x0 [ 286.130427] ice 0000:16:00.0: link_fec_options = 0xdf [ 286.130430] ice 0000:16:00.0: module_compliance_enforcement = 0x0 [ 286.130433] ice 0000:16:00.0: extended_compliance_code = 0xb [ 286.130435] ice 0000:16:00.0: module_type[0] = 0x11 [ 286.130438] ice 0000:16:00.0: module_type[1] = 0x1 [ 286.130441] ice 0000:16:00.0: module_type[2] = 0x0 New: [ 1128.297347] ice 0000:16:00.0: get phy caps dump [ 1128.297351] ice 0000:16:00.0: phy_caps_active: phy_type_low: 0x0108021020502000 [ 1128.297355] ice 0000:16:00.0: phy_caps_active: bit(13): 10G_SFI_DA [ 1128.297359] ice 0000:16:00.0: phy_caps_active: bit(20): 25GBASE_CR [ 1128.297362] ice 0000:16:00.0: phy_caps_active: bit(22): 25GBASE_CR1 [ 1128.297365] ice 0000:16:00.0: phy_caps_active: bit(29): 25G_AUI_C2C [ 1128.297368] ice 0000:16:00.0: phy_caps_active: bit(36): 50GBASE_CR2 [ 1128.297371] ice 0000:16:00.0: phy_caps_active: bit(41): 50G_LAUI2 [ 1128.297374] ice 0000:16:00.0: phy_caps_active: bit(51): 100GBASE_CR4 [ 1128.297377] ice 0000:16:00.0: phy_caps_active: bit(56): 100G_CAUI4 [ 1128.297380] ice 0000:16:00.0: phy_caps_active: phy_type_high: 0x0000000000000000 [ 1128.297383] ice 0000:16:00.0: phy_caps_active: report_mode = 0x4 [ 1128.297386] ice 0000:16:00.0: phy_caps_active: caps = 0xc8 [ 1128.297389] ice 0000:16:00.0: phy_caps_active: low_power_ctrl_an = 0x4 [ 1128.297392] ice 0000:16:00.0: phy_caps_active: eee_cap = 0x0 [ 1128.297394] ice 0000:16:00.0: phy_caps_active: eeer_value = 0x0 [ 1128.297397] ice 0000:16:00.0: phy_caps_active: link_fec_options = 0xdf [ 1128.297400] ice 0000:16:00.0: phy_caps_active: module_compliance_enforcement = 0x0 [ 1128.297402] ice 0000:16:00.0: phy_caps_active: extended_compliance_code = 0xb [ 1128.297405] ice 0000:16:00.0: phy_caps_active: module_type[0] = 0x11 [ 1128.297408] ice 0000:16:00.0: phy_caps_active: module_type[1] = 0x1 [ 1128.297411] ice 0000:16:00.0: phy_caps_active: module_type[2] = 0x0 Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Co-developed-by: Lukasz Plachno <lukasz.plachno@intel.com> Signed-off-by: Lukasz Plachno <lukasz.plachno@intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-17 07:12:12 +00:00
static const char * const ice_link_mode_str_low[] = {
[0] = "100BASE_TX",
[1] = "100M_SGMII",
[2] = "1000BASE_T",
[3] = "1000BASE_SX",
[4] = "1000BASE_LX",
[5] = "1000BASE_KX",
[6] = "1G_SGMII",
[7] = "2500BASE_T",
[8] = "2500BASE_X",
[9] = "2500BASE_KX",
[10] = "5GBASE_T",
[11] = "5GBASE_KR",
[12] = "10GBASE_T",
[13] = "10G_SFI_DA",
[14] = "10GBASE_SR",
[15] = "10GBASE_LR",
[16] = "10GBASE_KR_CR1",
[17] = "10G_SFI_AOC_ACC",
[18] = "10G_SFI_C2C",
[19] = "25GBASE_T",
[20] = "25GBASE_CR",
[21] = "25GBASE_CR_S",
[22] = "25GBASE_CR1",
[23] = "25GBASE_SR",
[24] = "25GBASE_LR",
[25] = "25GBASE_KR",
[26] = "25GBASE_KR_S",
[27] = "25GBASE_KR1",
[28] = "25G_AUI_AOC_ACC",
[29] = "25G_AUI_C2C",
[30] = "40GBASE_CR4",
[31] = "40GBASE_SR4",
[32] = "40GBASE_LR4",
[33] = "40GBASE_KR4",
[34] = "40G_XLAUI_AOC_ACC",
[35] = "40G_XLAUI",
[36] = "50GBASE_CR2",
[37] = "50GBASE_SR2",
[38] = "50GBASE_LR2",
[39] = "50GBASE_KR2",
[40] = "50G_LAUI2_AOC_ACC",
[41] = "50G_LAUI2",
[42] = "50G_AUI2_AOC_ACC",
[43] = "50G_AUI2",
[44] = "50GBASE_CP",
[45] = "50GBASE_SR",
[46] = "50GBASE_FR",
[47] = "50GBASE_LR",
[48] = "50GBASE_KR_PAM4",
[49] = "50G_AUI1_AOC_ACC",
[50] = "50G_AUI1",
[51] = "100GBASE_CR4",
[52] = "100GBASE_SR4",
[53] = "100GBASE_LR4",
[54] = "100GBASE_KR4",
[55] = "100G_CAUI4_AOC_ACC",
[56] = "100G_CAUI4",
[57] = "100G_AUI4_AOC_ACC",
[58] = "100G_AUI4",
[59] = "100GBASE_CR_PAM4",
[60] = "100GBASE_KR_PAM4",
[61] = "100GBASE_CP2",
[62] = "100GBASE_SR2",
[63] = "100GBASE_DR",
};
static const char * const ice_link_mode_str_high[] = {
[0] = "100GBASE_KR2_PAM4",
[1] = "100G_CAUI2_AOC_ACC",
[2] = "100G_CAUI2",
[3] = "100G_AUI2_AOC_ACC",
[4] = "100G_AUI2",
};
/**
* ice_dump_phy_type - helper function to dump phy_type
* @hw: pointer to the HW structure
* @low: 64 bit value for phy_type_low
* @high: 64 bit value for phy_type_high
* @prefix: prefix string to differentiate multiple dumps
*/
static void
ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
{
ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
if (low & BIT_ULL(i))
ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
prefix, i, ice_link_mode_str_low[i]);
}
ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
if (high & BIT_ULL(i))
ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
prefix, i, ice_link_mode_str_high[i]);
}
}
/**
* ice_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the MAC type of the adapter based on the
* vendor ID and device ID stored in the HW structure.
*/
static int ice_set_mac_type(struct ice_hw *hw)
{
if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
return -ENODEV;
switch (hw->device_id) {
case ICE_DEV_ID_E810C_BACKPLANE:
case ICE_DEV_ID_E810C_QSFP:
case ICE_DEV_ID_E810C_SFP:
case ICE_DEV_ID_E810_XXV_BACKPLANE:
case ICE_DEV_ID_E810_XXV_QSFP:
case ICE_DEV_ID_E810_XXV_SFP:
hw->mac_type = ICE_MAC_E810;
break;
case ICE_DEV_ID_E823C_10G_BASE_T:
case ICE_DEV_ID_E823C_BACKPLANE:
case ICE_DEV_ID_E823C_QSFP:
case ICE_DEV_ID_E823C_SFP:
case ICE_DEV_ID_E823C_SGMII:
case ICE_DEV_ID_E822C_10G_BASE_T:
case ICE_DEV_ID_E822C_BACKPLANE:
case ICE_DEV_ID_E822C_QSFP:
case ICE_DEV_ID_E822C_SFP:
case ICE_DEV_ID_E822C_SGMII:
case ICE_DEV_ID_E822L_10G_BASE_T:
case ICE_DEV_ID_E822L_BACKPLANE:
case ICE_DEV_ID_E822L_SFP:
case ICE_DEV_ID_E822L_SGMII:
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
hw->mac_type = ICE_MAC_GENERIC;
break;
case ICE_DEV_ID_E825C_BACKPLANE:
case ICE_DEV_ID_E825C_QSFP:
case ICE_DEV_ID_E825C_SFP:
case ICE_DEV_ID_E825C_SGMII:
hw->mac_type = ICE_MAC_GENERIC_3K_E825;
break;
case ICE_DEV_ID_E830_BACKPLANE:
case ICE_DEV_ID_E830_QSFP56:
case ICE_DEV_ID_E830_SFP:
case ICE_DEV_ID_E830_SFP_DD:
hw->mac_type = ICE_MAC_E830;
break;
default:
hw->mac_type = ICE_MAC_UNKNOWN;
break;
}
ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
return 0;
}
/**
* ice_is_generic_mac - check if device's mac_type is generic
* @hw: pointer to the hardware structure
*
* Return: true if mac_type is generic (with SBQ support), false if not
*/
bool ice_is_generic_mac(struct ice_hw *hw)
{
return (hw->mac_type == ICE_MAC_GENERIC ||
hw->mac_type == ICE_MAC_GENERIC_3K_E825);
}
/**
* ice_is_e810
* @hw: pointer to the hardware structure
*
* returns true if the device is E810 based, false if not.
*/
bool ice_is_e810(struct ice_hw *hw)
{
return hw->mac_type == ICE_MAC_E810;
}
/**
* ice_is_e810t
* @hw: pointer to the hardware structure
*
* returns true if the device is E810T based, false if not.
*/
bool ice_is_e810t(struct ice_hw *hw)
{
switch (hw->device_id) {
case ICE_DEV_ID_E810C_SFP:
switch (hw->subsystem_device_id) {
case ICE_SUBDEV_ID_E810T:
case ICE_SUBDEV_ID_E810T2:
case ICE_SUBDEV_ID_E810T3:
case ICE_SUBDEV_ID_E810T4:
case ICE_SUBDEV_ID_E810T6:
case ICE_SUBDEV_ID_E810T7:
return true;
}
break;
case ICE_DEV_ID_E810C_QSFP:
switch (hw->subsystem_device_id) {
case ICE_SUBDEV_ID_E810T2:
case ICE_SUBDEV_ID_E810T3:
case ICE_SUBDEV_ID_E810T5:
return true;
}
break;
default:
break;
}
return false;
}
/**
* ice_is_e823
* @hw: pointer to the hardware structure
*
* returns true if the device is E823-L or E823-C based, false if not.
*/
bool ice_is_e823(struct ice_hw *hw)
{
switch (hw->device_id) {
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_SFP:
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823C_BACKPLANE:
case ICE_DEV_ID_E823C_QSFP:
case ICE_DEV_ID_E823C_SFP:
case ICE_DEV_ID_E823C_10G_BASE_T:
case ICE_DEV_ID_E823C_SGMII:
return true;
default:
return false;
}
}
/**
* ice_is_e825c - Check if a device is E825C family device
* @hw: pointer to the hardware structure
*
* Return: true if the device is E825-C based, false if not.
*/
bool ice_is_e825c(struct ice_hw *hw)
{
switch (hw->device_id) {
case ICE_DEV_ID_E825C_BACKPLANE:
case ICE_DEV_ID_E825C_QSFP:
case ICE_DEV_ID_E825C_SFP:
case ICE_DEV_ID_E825C_SGMII:
return true;
default:
return false;
}
}
/**
* ice_clear_pf_cfg - Clear PF configuration
* @hw: pointer to the hardware structure
*
* Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
* configuration, flow director filters, etc.).
*/
int ice_clear_pf_cfg(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_manage_mac_read - manage MAC address read command
* @hw: pointer to the HW struct
* @buf: a virtual buffer to hold the manage MAC read response
* @buf_size: Size of the virtual buffer
* @cd: pointer to command details structure or NULL
*
* This function is used to return per PF station MAC address (0x0107).
* NOTE: Upon successful completion of this command, MAC address information
* is returned in user specified buffer. Please interpret user specified
* buffer as "manage_mac_read" response.
* Response such as various MAC addresses are stored in HW struct (port.mac)
* ice_discover_dev_caps is expected to be called before this function is
* called.
*/
static int
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_read_resp *resp;
struct ice_aqc_manage_mac_read *cmd;
struct ice_aq_desc desc;
int status;
u16 flags;
u8 i;
cmd = &desc.params.mac_read;
if (buf_size < sizeof(*resp))
return -EINVAL;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (status)
return status;
resp = buf;
flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
return -EIO;
}
/* A single port can report up to two (LAN and WoL) addresses */
for (i = 0; i < cmd->num_addr; i++)
if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
ether_addr_copy(hw->port_info->mac.lan_addr,
resp[i].mac_addr);
ether_addr_copy(hw->port_info->mac.perm_addr,
resp[i].mac_addr);
break;
}
return 0;
}
/**
* ice_aq_get_phy_caps - returns PHY capabilities
* @pi: port information structure
* @qual_mods: report qualified modules
* @report_mode: report mode capabilities
* @pcaps: structure for PHY capabilities to be filled
* @cd: pointer to command details structure or NULL
*
* Returns the various PHY capabilities supported on the Port (0x0600)
*/
int
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_phy_caps *cmd;
u16 pcaps_size = sizeof(*pcaps);
struct ice_aq_desc desc;
ice: Print human-friendly PHY types Provide human readable description of PHY capabilities and report_mode. Sample output: Old: [ 286.130405] ice 0000:16:00.0: get phy caps - report_mode = 0x2 [ 286.130409] ice 0000:16:00.0: phy_type_low = 0x108021020502000 [ 286.130412] ice 0000:16:00.0: phy_type_high = 0x0 [ 286.130415] ice 0000:16:00.0: caps = 0xc8 [ 286.130419] ice 0000:16:00.0: low_power_ctrl_an = 0x4 [ 286.130421] ice 0000:16:00.0: eee_cap = 0x0 [ 286.130424] ice 0000:16:00.0: eeer_value = 0x0 [ 286.130427] ice 0000:16:00.0: link_fec_options = 0xdf [ 286.130430] ice 0000:16:00.0: module_compliance_enforcement = 0x0 [ 286.130433] ice 0000:16:00.0: extended_compliance_code = 0xb [ 286.130435] ice 0000:16:00.0: module_type[0] = 0x11 [ 286.130438] ice 0000:16:00.0: module_type[1] = 0x1 [ 286.130441] ice 0000:16:00.0: module_type[2] = 0x0 New: [ 1128.297347] ice 0000:16:00.0: get phy caps dump [ 1128.297351] ice 0000:16:00.0: phy_caps_active: phy_type_low: 0x0108021020502000 [ 1128.297355] ice 0000:16:00.0: phy_caps_active: bit(13): 10G_SFI_DA [ 1128.297359] ice 0000:16:00.0: phy_caps_active: bit(20): 25GBASE_CR [ 1128.297362] ice 0000:16:00.0: phy_caps_active: bit(22): 25GBASE_CR1 [ 1128.297365] ice 0000:16:00.0: phy_caps_active: bit(29): 25G_AUI_C2C [ 1128.297368] ice 0000:16:00.0: phy_caps_active: bit(36): 50GBASE_CR2 [ 1128.297371] ice 0000:16:00.0: phy_caps_active: bit(41): 50G_LAUI2 [ 1128.297374] ice 0000:16:00.0: phy_caps_active: bit(51): 100GBASE_CR4 [ 1128.297377] ice 0000:16:00.0: phy_caps_active: bit(56): 100G_CAUI4 [ 1128.297380] ice 0000:16:00.0: phy_caps_active: phy_type_high: 0x0000000000000000 [ 1128.297383] ice 0000:16:00.0: phy_caps_active: report_mode = 0x4 [ 1128.297386] ice 0000:16:00.0: phy_caps_active: caps = 0xc8 [ 1128.297389] ice 0000:16:00.0: phy_caps_active: low_power_ctrl_an = 0x4 [ 1128.297392] ice 0000:16:00.0: phy_caps_active: eee_cap = 0x0 [ 1128.297394] ice 0000:16:00.0: phy_caps_active: eeer_value = 0x0 [ 1128.297397] ice 0000:16:00.0: phy_caps_active: link_fec_options = 0xdf [ 1128.297400] ice 0000:16:00.0: phy_caps_active: module_compliance_enforcement = 0x0 [ 1128.297402] ice 0000:16:00.0: phy_caps_active: extended_compliance_code = 0xb [ 1128.297405] ice 0000:16:00.0: phy_caps_active: module_type[0] = 0x11 [ 1128.297408] ice 0000:16:00.0: phy_caps_active: module_type[1] = 0x1 [ 1128.297411] ice 0000:16:00.0: phy_caps_active: module_type[2] = 0x0 Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Co-developed-by: Lukasz Plachno <lukasz.plachno@intel.com> Signed-off-by: Lukasz Plachno <lukasz.plachno@intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-17 07:12:12 +00:00
const char *prefix;
struct ice_hw *hw;
int status;
cmd = &desc.params.get_phy;
if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
return -EINVAL;
hw = pi->hw;
if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
!ice_fw_supports_report_dflt_cfg(hw))
return -EINVAL;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
if (qual_mods)
cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
cmd->param0 |= cpu_to_le16(report_mode);
status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
ice: Print human-friendly PHY types Provide human readable description of PHY capabilities and report_mode. Sample output: Old: [ 286.130405] ice 0000:16:00.0: get phy caps - report_mode = 0x2 [ 286.130409] ice 0000:16:00.0: phy_type_low = 0x108021020502000 [ 286.130412] ice 0000:16:00.0: phy_type_high = 0x0 [ 286.130415] ice 0000:16:00.0: caps = 0xc8 [ 286.130419] ice 0000:16:00.0: low_power_ctrl_an = 0x4 [ 286.130421] ice 0000:16:00.0: eee_cap = 0x0 [ 286.130424] ice 0000:16:00.0: eeer_value = 0x0 [ 286.130427] ice 0000:16:00.0: link_fec_options = 0xdf [ 286.130430] ice 0000:16:00.0: module_compliance_enforcement = 0x0 [ 286.130433] ice 0000:16:00.0: extended_compliance_code = 0xb [ 286.130435] ice 0000:16:00.0: module_type[0] = 0x11 [ 286.130438] ice 0000:16:00.0: module_type[1] = 0x1 [ 286.130441] ice 0000:16:00.0: module_type[2] = 0x0 New: [ 1128.297347] ice 0000:16:00.0: get phy caps dump [ 1128.297351] ice 0000:16:00.0: phy_caps_active: phy_type_low: 0x0108021020502000 [ 1128.297355] ice 0000:16:00.0: phy_caps_active: bit(13): 10G_SFI_DA [ 1128.297359] ice 0000:16:00.0: phy_caps_active: bit(20): 25GBASE_CR [ 1128.297362] ice 0000:16:00.0: phy_caps_active: bit(22): 25GBASE_CR1 [ 1128.297365] ice 0000:16:00.0: phy_caps_active: bit(29): 25G_AUI_C2C [ 1128.297368] ice 0000:16:00.0: phy_caps_active: bit(36): 50GBASE_CR2 [ 1128.297371] ice 0000:16:00.0: phy_caps_active: bit(41): 50G_LAUI2 [ 1128.297374] ice 0000:16:00.0: phy_caps_active: bit(51): 100GBASE_CR4 [ 1128.297377] ice 0000:16:00.0: phy_caps_active: bit(56): 100G_CAUI4 [ 1128.297380] ice 0000:16:00.0: phy_caps_active: phy_type_high: 0x0000000000000000 [ 1128.297383] ice 0000:16:00.0: phy_caps_active: report_mode = 0x4 [ 1128.297386] ice 0000:16:00.0: phy_caps_active: caps = 0xc8 [ 1128.297389] ice 0000:16:00.0: phy_caps_active: low_power_ctrl_an = 0x4 [ 1128.297392] ice 0000:16:00.0: phy_caps_active: eee_cap = 0x0 [ 1128.297394] ice 0000:16:00.0: phy_caps_active: eeer_value = 0x0 [ 1128.297397] ice 0000:16:00.0: phy_caps_active: link_fec_options = 0xdf [ 1128.297400] ice 0000:16:00.0: phy_caps_active: module_compliance_enforcement = 0x0 [ 1128.297402] ice 0000:16:00.0: phy_caps_active: extended_compliance_code = 0xb [ 1128.297405] ice 0000:16:00.0: phy_caps_active: module_type[0] = 0x11 [ 1128.297408] ice 0000:16:00.0: phy_caps_active: module_type[1] = 0x1 [ 1128.297411] ice 0000:16:00.0: phy_caps_active: module_type[2] = 0x0 Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Co-developed-by: Lukasz Plachno <lukasz.plachno@intel.com> Signed-off-by: Lukasz Plachno <lukasz.plachno@intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-17 07:12:12 +00:00
ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
switch (report_mode) {
case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
prefix = "phy_caps_media";
break;
case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
prefix = "phy_caps_no_media";
break;
case ICE_AQC_REPORT_ACTIVE_CFG:
prefix = "phy_caps_active";
break;
case ICE_AQC_REPORT_DFLT_CFG:
prefix = "phy_caps_default";
break;
default:
prefix = "phy_caps_invalid";
}
ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
le64_to_cpu(pcaps->phy_type_high), prefix);
ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
prefix, report_mode);
ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
pcaps->low_power_ctrl_an);
ice: Print human-friendly PHY types Provide human readable description of PHY capabilities and report_mode. Sample output: Old: [ 286.130405] ice 0000:16:00.0: get phy caps - report_mode = 0x2 [ 286.130409] ice 0000:16:00.0: phy_type_low = 0x108021020502000 [ 286.130412] ice 0000:16:00.0: phy_type_high = 0x0 [ 286.130415] ice 0000:16:00.0: caps = 0xc8 [ 286.130419] ice 0000:16:00.0: low_power_ctrl_an = 0x4 [ 286.130421] ice 0000:16:00.0: eee_cap = 0x0 [ 286.130424] ice 0000:16:00.0: eeer_value = 0x0 [ 286.130427] ice 0000:16:00.0: link_fec_options = 0xdf [ 286.130430] ice 0000:16:00.0: module_compliance_enforcement = 0x0 [ 286.130433] ice 0000:16:00.0: extended_compliance_code = 0xb [ 286.130435] ice 0000:16:00.0: module_type[0] = 0x11 [ 286.130438] ice 0000:16:00.0: module_type[1] = 0x1 [ 286.130441] ice 0000:16:00.0: module_type[2] = 0x0 New: [ 1128.297347] ice 0000:16:00.0: get phy caps dump [ 1128.297351] ice 0000:16:00.0: phy_caps_active: phy_type_low: 0x0108021020502000 [ 1128.297355] ice 0000:16:00.0: phy_caps_active: bit(13): 10G_SFI_DA [ 1128.297359] ice 0000:16:00.0: phy_caps_active: bit(20): 25GBASE_CR [ 1128.297362] ice 0000:16:00.0: phy_caps_active: bit(22): 25GBASE_CR1 [ 1128.297365] ice 0000:16:00.0: phy_caps_active: bit(29): 25G_AUI_C2C [ 1128.297368] ice 0000:16:00.0: phy_caps_active: bit(36): 50GBASE_CR2 [ 1128.297371] ice 0000:16:00.0: phy_caps_active: bit(41): 50G_LAUI2 [ 1128.297374] ice 0000:16:00.0: phy_caps_active: bit(51): 100GBASE_CR4 [ 1128.297377] ice 0000:16:00.0: phy_caps_active: bit(56): 100G_CAUI4 [ 1128.297380] ice 0000:16:00.0: phy_caps_active: phy_type_high: 0x0000000000000000 [ 1128.297383] ice 0000:16:00.0: phy_caps_active: report_mode = 0x4 [ 1128.297386] ice 0000:16:00.0: phy_caps_active: caps = 0xc8 [ 1128.297389] ice 0000:16:00.0: phy_caps_active: low_power_ctrl_an = 0x4 [ 1128.297392] ice 0000:16:00.0: phy_caps_active: eee_cap = 0x0 [ 1128.297394] ice 0000:16:00.0: phy_caps_active: eeer_value = 0x0 [ 1128.297397] ice 0000:16:00.0: phy_caps_active: link_fec_options = 0xdf [ 1128.297400] ice 0000:16:00.0: phy_caps_active: module_compliance_enforcement = 0x0 [ 1128.297402] ice 0000:16:00.0: phy_caps_active: extended_compliance_code = 0xb [ 1128.297405] ice 0000:16:00.0: phy_caps_active: module_type[0] = 0x11 [ 1128.297408] ice 0000:16:00.0: phy_caps_active: module_type[1] = 0x1 [ 1128.297411] ice 0000:16:00.0: phy_caps_active: module_type[2] = 0x0 Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Co-developed-by: Lukasz Plachno <lukasz.plachno@intel.com> Signed-off-by: Lukasz Plachno <lukasz.plachno@intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-17 07:12:12 +00:00
ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
pcaps->eee_cap);
ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
pcaps->eeer_value);
ice: Print human-friendly PHY types Provide human readable description of PHY capabilities and report_mode. Sample output: Old: [ 286.130405] ice 0000:16:00.0: get phy caps - report_mode = 0x2 [ 286.130409] ice 0000:16:00.0: phy_type_low = 0x108021020502000 [ 286.130412] ice 0000:16:00.0: phy_type_high = 0x0 [ 286.130415] ice 0000:16:00.0: caps = 0xc8 [ 286.130419] ice 0000:16:00.0: low_power_ctrl_an = 0x4 [ 286.130421] ice 0000:16:00.0: eee_cap = 0x0 [ 286.130424] ice 0000:16:00.0: eeer_value = 0x0 [ 286.130427] ice 0000:16:00.0: link_fec_options = 0xdf [ 286.130430] ice 0000:16:00.0: module_compliance_enforcement = 0x0 [ 286.130433] ice 0000:16:00.0: extended_compliance_code = 0xb [ 286.130435] ice 0000:16:00.0: module_type[0] = 0x11 [ 286.130438] ice 0000:16:00.0: module_type[1] = 0x1 [ 286.130441] ice 0000:16:00.0: module_type[2] = 0x0 New: [ 1128.297347] ice 0000:16:00.0: get phy caps dump [ 1128.297351] ice 0000:16:00.0: phy_caps_active: phy_type_low: 0x0108021020502000 [ 1128.297355] ice 0000:16:00.0: phy_caps_active: bit(13): 10G_SFI_DA [ 1128.297359] ice 0000:16:00.0: phy_caps_active: bit(20): 25GBASE_CR [ 1128.297362] ice 0000:16:00.0: phy_caps_active: bit(22): 25GBASE_CR1 [ 1128.297365] ice 0000:16:00.0: phy_caps_active: bit(29): 25G_AUI_C2C [ 1128.297368] ice 0000:16:00.0: phy_caps_active: bit(36): 50GBASE_CR2 [ 1128.297371] ice 0000:16:00.0: phy_caps_active: bit(41): 50G_LAUI2 [ 1128.297374] ice 0000:16:00.0: phy_caps_active: bit(51): 100GBASE_CR4 [ 1128.297377] ice 0000:16:00.0: phy_caps_active: bit(56): 100G_CAUI4 [ 1128.297380] ice 0000:16:00.0: phy_caps_active: phy_type_high: 0x0000000000000000 [ 1128.297383] ice 0000:16:00.0: phy_caps_active: report_mode = 0x4 [ 1128.297386] ice 0000:16:00.0: phy_caps_active: caps = 0xc8 [ 1128.297389] ice 0000:16:00.0: phy_caps_active: low_power_ctrl_an = 0x4 [ 1128.297392] ice 0000:16:00.0: phy_caps_active: eee_cap = 0x0 [ 1128.297394] ice 0000:16:00.0: phy_caps_active: eeer_value = 0x0 [ 1128.297397] ice 0000:16:00.0: phy_caps_active: link_fec_options = 0xdf [ 1128.297400] ice 0000:16:00.0: phy_caps_active: module_compliance_enforcement = 0x0 [ 1128.297402] ice 0000:16:00.0: phy_caps_active: extended_compliance_code = 0xb [ 1128.297405] ice 0000:16:00.0: phy_caps_active: module_type[0] = 0x11 [ 1128.297408] ice 0000:16:00.0: phy_caps_active: module_type[1] = 0x1 [ 1128.297411] ice 0000:16:00.0: phy_caps_active: module_type[2] = 0x0 Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Co-developed-by: Lukasz Plachno <lukasz.plachno@intel.com> Signed-off-by: Lukasz Plachno <lukasz.plachno@intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-17 07:12:12 +00:00
ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
pcaps->link_fec_options);
ice: Print human-friendly PHY types Provide human readable description of PHY capabilities and report_mode. Sample output: Old: [ 286.130405] ice 0000:16:00.0: get phy caps - report_mode = 0x2 [ 286.130409] ice 0000:16:00.0: phy_type_low = 0x108021020502000 [ 286.130412] ice 0000:16:00.0: phy_type_high = 0x0 [ 286.130415] ice 0000:16:00.0: caps = 0xc8 [ 286.130419] ice 0000:16:00.0: low_power_ctrl_an = 0x4 [ 286.130421] ice 0000:16:00.0: eee_cap = 0x0 [ 286.130424] ice 0000:16:00.0: eeer_value = 0x0 [ 286.130427] ice 0000:16:00.0: link_fec_options = 0xdf [ 286.130430] ice 0000:16:00.0: module_compliance_enforcement = 0x0 [ 286.130433] ice 0000:16:00.0: extended_compliance_code = 0xb [ 286.130435] ice 0000:16:00.0: module_type[0] = 0x11 [ 286.130438] ice 0000:16:00.0: module_type[1] = 0x1 [ 286.130441] ice 0000:16:00.0: module_type[2] = 0x0 New: [ 1128.297347] ice 0000:16:00.0: get phy caps dump [ 1128.297351] ice 0000:16:00.0: phy_caps_active: phy_type_low: 0x0108021020502000 [ 1128.297355] ice 0000:16:00.0: phy_caps_active: bit(13): 10G_SFI_DA [ 1128.297359] ice 0000:16:00.0: phy_caps_active: bit(20): 25GBASE_CR [ 1128.297362] ice 0000:16:00.0: phy_caps_active: bit(22): 25GBASE_CR1 [ 1128.297365] ice 0000:16:00.0: phy_caps_active: bit(29): 25G_AUI_C2C [ 1128.297368] ice 0000:16:00.0: phy_caps_active: bit(36): 50GBASE_CR2 [ 1128.297371] ice 0000:16:00.0: phy_caps_active: bit(41): 50G_LAUI2 [ 1128.297374] ice 0000:16:00.0: phy_caps_active: bit(51): 100GBASE_CR4 [ 1128.297377] ice 0000:16:00.0: phy_caps_active: bit(56): 100G_CAUI4 [ 1128.297380] ice 0000:16:00.0: phy_caps_active: phy_type_high: 0x0000000000000000 [ 1128.297383] ice 0000:16:00.0: phy_caps_active: report_mode = 0x4 [ 1128.297386] ice 0000:16:00.0: phy_caps_active: caps = 0xc8 [ 1128.297389] ice 0000:16:00.0: phy_caps_active: low_power_ctrl_an = 0x4 [ 1128.297392] ice 0000:16:00.0: phy_caps_active: eee_cap = 0x0 [ 1128.297394] ice 0000:16:00.0: phy_caps_active: eeer_value = 0x0 [ 1128.297397] ice 0000:16:00.0: phy_caps_active: link_fec_options = 0xdf [ 1128.297400] ice 0000:16:00.0: phy_caps_active: module_compliance_enforcement = 0x0 [ 1128.297402] ice 0000:16:00.0: phy_caps_active: extended_compliance_code = 0xb [ 1128.297405] ice 0000:16:00.0: phy_caps_active: module_type[0] = 0x11 [ 1128.297408] ice 0000:16:00.0: phy_caps_active: module_type[1] = 0x1 [ 1128.297411] ice 0000:16:00.0: phy_caps_active: module_type[2] = 0x0 Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Co-developed-by: Lukasz Plachno <lukasz.plachno@intel.com> Signed-off-by: Lukasz Plachno <lukasz.plachno@intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-17 07:12:12 +00:00
ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
prefix, pcaps->module_compliance_enforcement);
ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
prefix, pcaps->extended_compliance_code);
ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
pcaps->module_type[0]);
ice: Print human-friendly PHY types Provide human readable description of PHY capabilities and report_mode. Sample output: Old: [ 286.130405] ice 0000:16:00.0: get phy caps - report_mode = 0x2 [ 286.130409] ice 0000:16:00.0: phy_type_low = 0x108021020502000 [ 286.130412] ice 0000:16:00.0: phy_type_high = 0x0 [ 286.130415] ice 0000:16:00.0: caps = 0xc8 [ 286.130419] ice 0000:16:00.0: low_power_ctrl_an = 0x4 [ 286.130421] ice 0000:16:00.0: eee_cap = 0x0 [ 286.130424] ice 0000:16:00.0: eeer_value = 0x0 [ 286.130427] ice 0000:16:00.0: link_fec_options = 0xdf [ 286.130430] ice 0000:16:00.0: module_compliance_enforcement = 0x0 [ 286.130433] ice 0000:16:00.0: extended_compliance_code = 0xb [ 286.130435] ice 0000:16:00.0: module_type[0] = 0x11 [ 286.130438] ice 0000:16:00.0: module_type[1] = 0x1 [ 286.130441] ice 0000:16:00.0: module_type[2] = 0x0 New: [ 1128.297347] ice 0000:16:00.0: get phy caps dump [ 1128.297351] ice 0000:16:00.0: phy_caps_active: phy_type_low: 0x0108021020502000 [ 1128.297355] ice 0000:16:00.0: phy_caps_active: bit(13): 10G_SFI_DA [ 1128.297359] ice 0000:16:00.0: phy_caps_active: bit(20): 25GBASE_CR [ 1128.297362] ice 0000:16:00.0: phy_caps_active: bit(22): 25GBASE_CR1 [ 1128.297365] ice 0000:16:00.0: phy_caps_active: bit(29): 25G_AUI_C2C [ 1128.297368] ice 0000:16:00.0: phy_caps_active: bit(36): 50GBASE_CR2 [ 1128.297371] ice 0000:16:00.0: phy_caps_active: bit(41): 50G_LAUI2 [ 1128.297374] ice 0000:16:00.0: phy_caps_active: bit(51): 100GBASE_CR4 [ 1128.297377] ice 0000:16:00.0: phy_caps_active: bit(56): 100G_CAUI4 [ 1128.297380] ice 0000:16:00.0: phy_caps_active: phy_type_high: 0x0000000000000000 [ 1128.297383] ice 0000:16:00.0: phy_caps_active: report_mode = 0x4 [ 1128.297386] ice 0000:16:00.0: phy_caps_active: caps = 0xc8 [ 1128.297389] ice 0000:16:00.0: phy_caps_active: low_power_ctrl_an = 0x4 [ 1128.297392] ice 0000:16:00.0: phy_caps_active: eee_cap = 0x0 [ 1128.297394] ice 0000:16:00.0: phy_caps_active: eeer_value = 0x0 [ 1128.297397] ice 0000:16:00.0: phy_caps_active: link_fec_options = 0xdf [ 1128.297400] ice 0000:16:00.0: phy_caps_active: module_compliance_enforcement = 0x0 [ 1128.297402] ice 0000:16:00.0: phy_caps_active: extended_compliance_code = 0xb [ 1128.297405] ice 0000:16:00.0: phy_caps_active: module_type[0] = 0x11 [ 1128.297408] ice 0000:16:00.0: phy_caps_active: module_type[1] = 0x1 [ 1128.297411] ice 0000:16:00.0: phy_caps_active: module_type[2] = 0x0 Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Co-developed-by: Lukasz Plachno <lukasz.plachno@intel.com> Signed-off-by: Lukasz Plachno <lukasz.plachno@intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-17 07:12:12 +00:00
ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
pcaps->module_type[1]);
ice: Print human-friendly PHY types Provide human readable description of PHY capabilities and report_mode. Sample output: Old: [ 286.130405] ice 0000:16:00.0: get phy caps - report_mode = 0x2 [ 286.130409] ice 0000:16:00.0: phy_type_low = 0x108021020502000 [ 286.130412] ice 0000:16:00.0: phy_type_high = 0x0 [ 286.130415] ice 0000:16:00.0: caps = 0xc8 [ 286.130419] ice 0000:16:00.0: low_power_ctrl_an = 0x4 [ 286.130421] ice 0000:16:00.0: eee_cap = 0x0 [ 286.130424] ice 0000:16:00.0: eeer_value = 0x0 [ 286.130427] ice 0000:16:00.0: link_fec_options = 0xdf [ 286.130430] ice 0000:16:00.0: module_compliance_enforcement = 0x0 [ 286.130433] ice 0000:16:00.0: extended_compliance_code = 0xb [ 286.130435] ice 0000:16:00.0: module_type[0] = 0x11 [ 286.130438] ice 0000:16:00.0: module_type[1] = 0x1 [ 286.130441] ice 0000:16:00.0: module_type[2] = 0x0 New: [ 1128.297347] ice 0000:16:00.0: get phy caps dump [ 1128.297351] ice 0000:16:00.0: phy_caps_active: phy_type_low: 0x0108021020502000 [ 1128.297355] ice 0000:16:00.0: phy_caps_active: bit(13): 10G_SFI_DA [ 1128.297359] ice 0000:16:00.0: phy_caps_active: bit(20): 25GBASE_CR [ 1128.297362] ice 0000:16:00.0: phy_caps_active: bit(22): 25GBASE_CR1 [ 1128.297365] ice 0000:16:00.0: phy_caps_active: bit(29): 25G_AUI_C2C [ 1128.297368] ice 0000:16:00.0: phy_caps_active: bit(36): 50GBASE_CR2 [ 1128.297371] ice 0000:16:00.0: phy_caps_active: bit(41): 50G_LAUI2 [ 1128.297374] ice 0000:16:00.0: phy_caps_active: bit(51): 100GBASE_CR4 [ 1128.297377] ice 0000:16:00.0: phy_caps_active: bit(56): 100G_CAUI4 [ 1128.297380] ice 0000:16:00.0: phy_caps_active: phy_type_high: 0x0000000000000000 [ 1128.297383] ice 0000:16:00.0: phy_caps_active: report_mode = 0x4 [ 1128.297386] ice 0000:16:00.0: phy_caps_active: caps = 0xc8 [ 1128.297389] ice 0000:16:00.0: phy_caps_active: low_power_ctrl_an = 0x4 [ 1128.297392] ice 0000:16:00.0: phy_caps_active: eee_cap = 0x0 [ 1128.297394] ice 0000:16:00.0: phy_caps_active: eeer_value = 0x0 [ 1128.297397] ice 0000:16:00.0: phy_caps_active: link_fec_options = 0xdf [ 1128.297400] ice 0000:16:00.0: phy_caps_active: module_compliance_enforcement = 0x0 [ 1128.297402] ice 0000:16:00.0: phy_caps_active: extended_compliance_code = 0xb [ 1128.297405] ice 0000:16:00.0: phy_caps_active: module_type[0] = 0x11 [ 1128.297408] ice 0000:16:00.0: phy_caps_active: module_type[1] = 0x1 [ 1128.297411] ice 0000:16:00.0: phy_caps_active: module_type[2] = 0x0 Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Co-developed-by: Lukasz Plachno <lukasz.plachno@intel.com> Signed-off-by: Lukasz Plachno <lukasz.plachno@intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-17 07:12:12 +00:00
ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
pcaps->module_type[2]);
if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
sizeof(pi->phy.link_info.module_type));
}
return status;
}
/**
* ice_aq_get_link_topo_handle - get link topology node return status
* @pi: port information structure
* @node_type: requested node type
* @cd: pointer to command details structure or NULL
*
* Get link topology node return status for specified node type (0x06E0)
*
* Node type cage can be used to determine if cage is present. If AQC
* returns error (ENOENT), then no cage present. If no cage present, then
* connection type is backplane or BASE-T.
*/
static int
ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_link_topo *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.get_link_topo;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
cmd->addr.topo_params.node_type_ctx =
(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
ICE_AQC_LINK_TOPO_NODE_CTX_S);
/* set node type */
cmd->addr.topo_params.node_type_ctx |=
(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_get_netlist_node
* @hw: pointer to the hw struct
* @cmd: get_link_topo AQ structure
* @node_part_number: output node part number if node found
* @node_handle: output node handle parameter if node found
*
* Get netlist node handle.
*/
int
ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
u8 *node_part_number, u16 *node_handle)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
desc.params.get_link_topo = *cmd;
if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
return -EINTR;
if (node_handle)
*node_handle =
le16_to_cpu(desc.params.get_link_topo.addr.handle);
if (node_part_number)
*node_part_number = desc.params.get_link_topo.node_part_num;
return 0;
}
/**
* ice_find_netlist_node
* @hw: pointer to the hw struct
* @node_type_ctx: type of netlist node to look for
* @node_part_number: node part number to look for
* @node_handle: output parameter if node found - optional
*
ice: cleanup ice_find_netlist_node The ice_find_netlist_node function was introduced in commit 8a3a565ff210 ("ice: add admin commands to access cgu configuration"). Variations of this function were reviewed concurrently on both intel-wired-lan[1][2], and netdev [3][4] [1]: https://lore.kernel.org/intel-wired-lan/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ [2]: https://lore.kernel.org/intel-wired-lan/20230817000058.2433236-5-jacob.e.keller@intel.com/ [3]: https://lore.kernel.org/netdev/20230918212814.435688-1-anthony.l.nguyen@intel.com/ [4]: https://lore.kernel.org/netdev/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ The variant I posted had a few changes due to review feedback which were never incorporated into the DPLL series: * Replace the references to ancient and long removed ICE_SUCCESS and ICE_ERR_DOES_NOT_EXIST status codes in the function comment. * Return -ENOENT instead of -ENOTBLK, as a more common way to indicate that an entry doesn't exist. * Avoid the use of memset() and use simple static initialization for the cmd variable. * Use FIELD_PREP to assign the node_type_ctx. * Remove an unnecessary local variable to keep track of rec_node_handle, just pass the node_handle pointer directly into ice_aq_get_netlist_node. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-19 17:32:25 +00:00
* Scan the netlist for a node handle of the given node type and part number.
*
* If node_handle is non-NULL it will be modified on function exit. It is only
* valid if the function returns zero, and should be ignored on any non-zero
* return value.
*
* Returns: 0 if the node is found, -ENOENT if no handle was found, and
* a negative error code on failure to access the AQ.
*/
ice: fix linking when CONFIG_PTP_1588_CLOCK=n The recent support for DPLL introduced by commit 8a3a565ff210 ("ice: add admin commands to access cgu configuration") and commit d7999f5ea64b ("ice: implement dpll interface to control cgu") broke linking the ice driver if CONFIG_PTP_1588_CLOCK=n: ld: vmlinux.o: in function `ice_init_feature_support': (.text+0x8702b8): undefined reference to `ice_is_phy_rclk_present' ld: (.text+0x8702cd): undefined reference to `ice_is_cgu_present' ld: (.text+0x8702d9): undefined reference to `ice_is_clock_mux_present_e810t' ld: vmlinux.o: in function `ice_dpll_init_info_direct_pins': ice_dpll.c:(.text+0x894167): undefined reference to `ice_cgu_get_pin_freq_supp' ld: ice_dpll.c:(.text+0x894197): undefined reference to `ice_cgu_get_pin_name' ld: ice_dpll.c:(.text+0x8941a8): undefined reference to `ice_cgu_get_pin_type' ld: vmlinux.o: in function `ice_dpll_update_state': ice_dpll.c:(.text+0x894494): undefined reference to `ice_get_cgu_state' ld: vmlinux.o: in function `ice_dpll_init': (.text+0x8953d5): undefined reference to `ice_get_cgu_rclk_pin_info' The first commit broke things by calling functions in ice_init_feature_support that are compiled as part of ice_ptp_hw.o, including: * ice_is_phy_rclk_present * ice_is_clock_mux_present_e810t * ice_is_cgU_present The second commit continued the break by calling several CGU functions defined in ice_ptp_hw.c in the DPLL code. Because the ice_dpll.c file is compiled unconditionally, it will not link when CONFIG_PTP_1588_CLOCK=n. It might be possible to break this dependency and expose those functions without CONFIG_PTP_1588_CLOCK, but that is not clear to me. For the DPLL case, simply compile ice_dpll.o only when we have CONFIG_PTP_1588_CLOCK. Add stub no-op implementation of ice_dpll_init() and ice_dpll_uninit() when CONFIG_PTP_1588_CLOCK=n into ice_dpll.h The other functions are part of checking the netlist to see if hardware features are enabled. These checks don't really belong in ice_ptp_hw.c, and make more sense as part of the ice_common.c file. We already have ice_is_gps_in_netlist() in ice_common.c which is doing a similar check. Move the functions into ice_common.c and rename them to have the similar postfix of "in_netlist()" to be more expressive of what they are actually checking. This also makes the ice_find_netlist_node only called from within ice_common.c, so its safe to mark it static and stop declaring it in the ice_common.h header as well. Fixes: 8a3a565ff210 ("ice: add admin commands to access cgu configuration") Fixes: d7999f5ea64b ("ice: implement dpll interface to control cgu") Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202309191214.TaYEct4H-lkp@intel.com Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Reviewed-by: Simon Horman <horms@kernel.org> Tested-by: Simon Horman <horms@kernel.org> # build-tested Link: https://lore.kernel.org/r/20231002185132.1575271-1-anthony.l.nguyen@intel.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-10-02 18:51:32 +00:00
static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
u8 node_part_number, u16 *node_handle)
{
u8 idx;
for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
ice: cleanup ice_find_netlist_node The ice_find_netlist_node function was introduced in commit 8a3a565ff210 ("ice: add admin commands to access cgu configuration"). Variations of this function were reviewed concurrently on both intel-wired-lan[1][2], and netdev [3][4] [1]: https://lore.kernel.org/intel-wired-lan/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ [2]: https://lore.kernel.org/intel-wired-lan/20230817000058.2433236-5-jacob.e.keller@intel.com/ [3]: https://lore.kernel.org/netdev/20230918212814.435688-1-anthony.l.nguyen@intel.com/ [4]: https://lore.kernel.org/netdev/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ The variant I posted had a few changes due to review feedback which were never incorporated into the DPLL series: * Replace the references to ancient and long removed ICE_SUCCESS and ICE_ERR_DOES_NOT_EXIST status codes in the function comment. * Return -ENOENT instead of -ENOTBLK, as a more common way to indicate that an entry doesn't exist. * Avoid the use of memset() and use simple static initialization for the cmd variable. * Use FIELD_PREP to assign the node_type_ctx. * Remove an unnecessary local variable to keep track of rec_node_handle, just pass the node_handle pointer directly into ice_aq_get_netlist_node. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-19 17:32:25 +00:00
struct ice_aqc_get_link_topo cmd = {};
u8 rec_node_part_number;
int status;
cmd.addr.topo_params.node_type_ctx =
ice: cleanup ice_find_netlist_node The ice_find_netlist_node function was introduced in commit 8a3a565ff210 ("ice: add admin commands to access cgu configuration"). Variations of this function were reviewed concurrently on both intel-wired-lan[1][2], and netdev [3][4] [1]: https://lore.kernel.org/intel-wired-lan/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ [2]: https://lore.kernel.org/intel-wired-lan/20230817000058.2433236-5-jacob.e.keller@intel.com/ [3]: https://lore.kernel.org/netdev/20230918212814.435688-1-anthony.l.nguyen@intel.com/ [4]: https://lore.kernel.org/netdev/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ The variant I posted had a few changes due to review feedback which were never incorporated into the DPLL series: * Replace the references to ancient and long removed ICE_SUCCESS and ICE_ERR_DOES_NOT_EXIST status codes in the function comment. * Return -ENOENT instead of -ENOTBLK, as a more common way to indicate that an entry doesn't exist. * Avoid the use of memset() and use simple static initialization for the cmd variable. * Use FIELD_PREP to assign the node_type_ctx. * Remove an unnecessary local variable to keep track of rec_node_handle, just pass the node_handle pointer directly into ice_aq_get_netlist_node. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-19 17:32:25 +00:00
FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
node_type_ctx);
cmd.addr.topo_params.index = idx;
status = ice_aq_get_netlist_node(hw, &cmd,
&rec_node_part_number,
ice: cleanup ice_find_netlist_node The ice_find_netlist_node function was introduced in commit 8a3a565ff210 ("ice: add admin commands to access cgu configuration"). Variations of this function were reviewed concurrently on both intel-wired-lan[1][2], and netdev [3][4] [1]: https://lore.kernel.org/intel-wired-lan/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ [2]: https://lore.kernel.org/intel-wired-lan/20230817000058.2433236-5-jacob.e.keller@intel.com/ [3]: https://lore.kernel.org/netdev/20230918212814.435688-1-anthony.l.nguyen@intel.com/ [4]: https://lore.kernel.org/netdev/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ The variant I posted had a few changes due to review feedback which were never incorporated into the DPLL series: * Replace the references to ancient and long removed ICE_SUCCESS and ICE_ERR_DOES_NOT_EXIST status codes in the function comment. * Return -ENOENT instead of -ENOTBLK, as a more common way to indicate that an entry doesn't exist. * Avoid the use of memset() and use simple static initialization for the cmd variable. * Use FIELD_PREP to assign the node_type_ctx. * Remove an unnecessary local variable to keep track of rec_node_handle, just pass the node_handle pointer directly into ice_aq_get_netlist_node. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-19 17:32:25 +00:00
node_handle);
if (status)
return status;
ice: cleanup ice_find_netlist_node The ice_find_netlist_node function was introduced in commit 8a3a565ff210 ("ice: add admin commands to access cgu configuration"). Variations of this function were reviewed concurrently on both intel-wired-lan[1][2], and netdev [3][4] [1]: https://lore.kernel.org/intel-wired-lan/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ [2]: https://lore.kernel.org/intel-wired-lan/20230817000058.2433236-5-jacob.e.keller@intel.com/ [3]: https://lore.kernel.org/netdev/20230918212814.435688-1-anthony.l.nguyen@intel.com/ [4]: https://lore.kernel.org/netdev/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ The variant I posted had a few changes due to review feedback which were never incorporated into the DPLL series: * Replace the references to ancient and long removed ICE_SUCCESS and ICE_ERR_DOES_NOT_EXIST status codes in the function comment. * Return -ENOENT instead of -ENOTBLK, as a more common way to indicate that an entry doesn't exist. * Avoid the use of memset() and use simple static initialization for the cmd variable. * Use FIELD_PREP to assign the node_type_ctx. * Remove an unnecessary local variable to keep track of rec_node_handle, just pass the node_handle pointer directly into ice_aq_get_netlist_node. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-19 17:32:25 +00:00
if (rec_node_part_number == node_part_number)
return 0;
}
ice: cleanup ice_find_netlist_node The ice_find_netlist_node function was introduced in commit 8a3a565ff210 ("ice: add admin commands to access cgu configuration"). Variations of this function were reviewed concurrently on both intel-wired-lan[1][2], and netdev [3][4] [1]: https://lore.kernel.org/intel-wired-lan/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ [2]: https://lore.kernel.org/intel-wired-lan/20230817000058.2433236-5-jacob.e.keller@intel.com/ [3]: https://lore.kernel.org/netdev/20230918212814.435688-1-anthony.l.nguyen@intel.com/ [4]: https://lore.kernel.org/netdev/20230913204943.1051233-7-vadim.fedorenko@linux.dev/ The variant I posted had a few changes due to review feedback which were never incorporated into the DPLL series: * Replace the references to ancient and long removed ICE_SUCCESS and ICE_ERR_DOES_NOT_EXIST status codes in the function comment. * Return -ENOENT instead of -ENOTBLK, as a more common way to indicate that an entry doesn't exist. * Avoid the use of memset() and use simple static initialization for the cmd variable. * Use FIELD_PREP to assign the node_type_ctx. * Remove an unnecessary local variable to keep track of rec_node_handle, just pass the node_handle pointer directly into ice_aq_get_netlist_node. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-19 17:32:25 +00:00
return -ENOENT;
}
/**
* ice_is_media_cage_present
* @pi: port information structure
*
* Returns true if media cage is present, else false. If no cage, then
* media type is backplane or BASE-T.
*/
static bool ice_is_media_cage_present(struct ice_port_info *pi)
{
/* Node type cage can be used to determine if cage is present. If AQC
* returns error (ENOENT), then no cage present. If no cage present then
* connection type is backplane or BASE-T.
*/
return !ice_aq_get_link_topo_handle(pi,
ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
NULL);
}
/**
* ice_get_media_type - Gets media type
* @pi: port information structure
*/
static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
{
struct ice_link_status *hw_link_info;
if (!pi)
return ICE_MEDIA_UNKNOWN;
hw_link_info = &pi->phy.link_info;
if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
/* If more than one media type is selected, report unknown */
return ICE_MEDIA_UNKNOWN;
if (hw_link_info->phy_type_low) {
/* 1G SGMII is a special case where some DA cable PHYs
* may show this as an option when it really shouldn't
* be since SGMII is meant to be between a MAC and a PHY
* in a backplane. Try to detect this case and handle it
*/
if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
(hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
return ICE_MEDIA_DA;
switch (hw_link_info->phy_type_low) {
case ICE_PHY_TYPE_LOW_1000BASE_SX:
case ICE_PHY_TYPE_LOW_1000BASE_LX:
case ICE_PHY_TYPE_LOW_10GBASE_SR:
case ICE_PHY_TYPE_LOW_10GBASE_LR:
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
case ICE_PHY_TYPE_LOW_25GBASE_SR:
case ICE_PHY_TYPE_LOW_25GBASE_LR:
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
case ICE_PHY_TYPE_LOW_100GBASE_DR:
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
return ICE_MEDIA_FIBER;
case ICE_PHY_TYPE_LOW_100BASE_TX:
case ICE_PHY_TYPE_LOW_1000BASE_T:
case ICE_PHY_TYPE_LOW_2500BASE_T:
case ICE_PHY_TYPE_LOW_5GBASE_T:
case ICE_PHY_TYPE_LOW_10GBASE_T:
case ICE_PHY_TYPE_LOW_25GBASE_T:
return ICE_MEDIA_BASET;
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
case ICE_PHY_TYPE_LOW_25GBASE_CR:
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
case ICE_PHY_TYPE_LOW_50GBASE_CP:
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
return ICE_MEDIA_DA;
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
case ICE_PHY_TYPE_LOW_40G_XLAUI:
case ICE_PHY_TYPE_LOW_50G_LAUI2:
case ICE_PHY_TYPE_LOW_50G_AUI2:
case ICE_PHY_TYPE_LOW_50G_AUI1:
case ICE_PHY_TYPE_LOW_100G_AUI4:
case ICE_PHY_TYPE_LOW_100G_CAUI4:
if (ice_is_media_cage_present(pi))
return ICE_MEDIA_DA;
fallthrough;
case ICE_PHY_TYPE_LOW_1000BASE_KX:
case ICE_PHY_TYPE_LOW_2500BASE_KX:
case ICE_PHY_TYPE_LOW_2500BASE_X:
case ICE_PHY_TYPE_LOW_5GBASE_KR:
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
case ICE_PHY_TYPE_LOW_25GBASE_KR:
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
return ICE_MEDIA_BACKPLANE;
}
} else {
switch (hw_link_info->phy_type_high) {
case ICE_PHY_TYPE_HIGH_100G_AUI2:
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
if (ice_is_media_cage_present(pi))
return ICE_MEDIA_DA;
fallthrough;
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
return ICE_MEDIA_BACKPLANE;
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
return ICE_MEDIA_FIBER;
}
}
return ICE_MEDIA_UNKNOWN;
}
/**
* ice_get_link_status_datalen
* @hw: pointer to the HW struct
*
* Returns datalength for the Get Link Status AQ command, which is bigger for
* newer adapter families handled by ice driver.
*/
static u16 ice_get_link_status_datalen(struct ice_hw *hw)
{
switch (hw->mac_type) {
case ICE_MAC_E830:
return ICE_AQC_LS_DATA_SIZE_V2;
case ICE_MAC_E810:
default:
return ICE_AQC_LS_DATA_SIZE_V1;
}
}
/**
* ice_aq_get_link_info
* @pi: port information structure
* @ena_lse: enable/disable LinkStatusEvent reporting
* @link: pointer to link status structure - optional
* @cd: pointer to command details structure or NULL
*
* Get Link Status (0x607). Returns the link status of the adapter.
*/
int
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
struct ice_link_status *link, struct ice_sq_cd *cd)
{
struct ice_aqc_get_link_status_data link_data = { 0 };
struct ice_aqc_get_link_status *resp;
struct ice_link_status *li_old, *li;
enum ice_media_type *hw_media_type;
struct ice_fc_info *hw_fc_info;
bool tx_pause, rx_pause;
struct ice_aq_desc desc;
struct ice_hw *hw;
u16 cmd_flags;
int status;
if (!pi)
return -EINVAL;
hw = pi->hw;
li_old = &pi->phy.link_info_old;
hw_media_type = &pi->phy.media_type;
li = &pi->phy.link_info;
hw_fc_info = &pi->fc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
resp = &desc.params.get_link_status;
resp->cmd_flags = cpu_to_le16(cmd_flags);
resp->lport_num = pi->lport;
status = ice_aq_send_cmd(hw, &desc, &link_data,
ice_get_link_status_datalen(hw), cd);
if (status)
return status;
/* save off old link status information */
*li_old = *li;
/* update current link status information */
li->link_speed = le16_to_cpu(link_data.link_speed);
li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
*hw_media_type = ice_get_media_type(pi);
li->link_info = link_data.link_info;
li->link_cfg_err = link_data.link_cfg_err;
li->an_info = link_data.an_info;
li->ext_info = link_data.ext_info;
li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
li->topo_media_conflict = link_data.topo_media_conflict;
li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
ICE_AQ_CFG_PACING_TYPE_M);
/* update fc info */
tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
if (tx_pause && rx_pause)
hw_fc_info->current_mode = ICE_FC_FULL;
else if (tx_pause)
hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
else if (rx_pause)
hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
else
hw_fc_info->current_mode = ICE_FC_NONE;
li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
ice_debug(hw, ICE_DBG_LINK, "get link info\n");
ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
(unsigned long long)li->phy_type_low);
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
(unsigned long long)li->phy_type_high);
ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
li->max_frame_size);
ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
/* save link status information */
if (link)
*link = *li;
/* flag cleared so calling functions don't call AQ again */
pi->phy.get_link_info = false;
return 0;
}
/**
* ice_fill_tx_timer_and_fc_thresh
* @hw: pointer to the HW struct
* @cmd: pointer to MAC cfg structure
*
* Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
* descriptor
*/
static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
struct ice_aqc_set_mac_cfg *cmd)
{
u32 val, fc_thres_m;
/* We read back the transmit timer and FC threshold value of
* LFC. Thus, we will use index =
* PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
*
* Also, because we are operating on transmit timer and FC
* threshold of LFC, we don't turn on any bit in tx_tmr_priority
*/
#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
if (hw->mac_type == ICE_MAC_E830) {
/* Retrieve the transmit timer */
val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
cmd->tx_tmr_value =
le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
/* Retrieve the fc threshold */
val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
} else {
/* Retrieve the transmit timer */
val = rd32(hw,
E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
cmd->tx_tmr_value =
le16_encode_bits(val,
E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
/* Retrieve the fc threshold */
val = rd32(hw,
E800_REFRESH_TMR(E800_IDX_OF_LFC));
fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
}
cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
}
/**
* ice_aq_set_mac_cfg
* @hw: pointer to the HW struct
* @max_frame_size: Maximum Frame Size to be supported
* @cd: pointer to command details structure or NULL
*
* Set MAC configuration (0x0603)
*/
int
ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
{
struct ice_aqc_set_mac_cfg *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_mac_cfg;
if (max_frame_size == 0)
return -EINVAL;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
cmd->max_frame_size = cpu_to_le16(max_frame_size);
ice_fill_tx_timer_and_fc_thresh(hw, cmd);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
/**
* ice_init_fltr_mgmt_struct - initializes filter management list and locks
* @hw: pointer to the HW struct
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
*/
static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
{
struct ice_switch_info *sw;
int status;
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
sizeof(*hw->switch_info), GFP_KERNEL);
sw = hw->switch_info;
if (!sw)
return -ENOMEM;
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
INIT_LIST_HEAD(&sw->vsi_list_map_head);
ice: allow adding advanced rules Define dummy packet headers to allow adding advanced rules in HW. This header is used as admin queue command parameter for adding a rule. The firmware will extract correct fields and will use them in look ups. Define each supported packets header and offsets to words used in recipe. Supported headers: - MAC + IPv4 + UDP - MAC + VLAN + IPv4 + UDP - MAC + IPv4 + TCP - MAC + VLAN + IPv4 + TCP - MAC + IPv6 + UDP - MAC + VLAN + IPv6 + UDP - MAC + IPv6 + TCP - MAC + VLAN + IPv6 + TCP Add code for creating an advanced rule. Rule needs to match defined dummy packet, if not return error, which means that this type of rule isn't currently supported. The first step in adding advanced rule is searching for an advanced recipe matching this kind of rule. If it doesn't exist new recipe is created. Dummy packet has to be filled with the correct header field value from the rule definition. It will be used to do look up in HW. Support searching for existing advance rule entry. It is used in case of adding the same rule on different VSI. In this case, instead of creating new rule, the existing one should be updated with refreshed VSI list. Add initialization for prof_res_bm_init flag to zero so that the possible resource for fv in the files can be initialized. Co-developed-by: Dan Nowlin <dan.nowlin@intel.com> Signed-off-by: Dan Nowlin <dan.nowlin@intel.com> Signed-off-by: Grishma Kotecha <grishma.kotecha@intel.com> Signed-off-by: Wojciech Drewek <wojciech.drewek@intel.com> Tested-by: Sandeep Penigalapati <sandeep.penigalapati@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-08-06 08:49:01 +00:00
sw->prof_res_bm_init = 0;
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
status = ice_init_def_sw_recp(hw);
if (status) {
devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
return status;
}
return 0;
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
}
/**
* ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
* @hw: pointer to the HW struct
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
*/
static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_vsi_list_map_info *v_pos_map;
struct ice_vsi_list_map_info *v_tmp_map;
struct ice_sw_recipe *recps;
u8 i;
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
list_entry) {
list_del(&v_pos_map->list_entry);
devm_kfree(ice_hw_to_dev(hw), v_pos_map);
}
recps = sw->recp_list;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
recps[i].root_rid = i;
list_for_each_entry_safe(rg_entry, tmprg_entry,
&recps[i].rg_list, l_entry) {
list_del(&rg_entry->l_entry);
devm_kfree(ice_hw_to_dev(hw), rg_entry);
}
if (recps[i].adv_rule) {
struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
struct ice_adv_fltr_mgmt_list_entry *lst_itr;
mutex_destroy(&recps[i].filt_rule_lock);
list_for_each_entry_safe(lst_itr, tmp_entry,
&recps[i].filt_rules,
list_entry) {
list_del(&lst_itr->list_entry);
devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
devm_kfree(ice_hw_to_dev(hw), lst_itr);
}
} else {
struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
mutex_destroy(&recps[i].filt_rule_lock);
list_for_each_entry_safe(lst_itr, tmp_entry,
&recps[i].filt_rules,
list_entry) {
list_del(&lst_itr->list_entry);
devm_kfree(ice_hw_to_dev(hw), lst_itr);
}
}
devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
}
ice_rm_all_sw_replay_rule_info(hw);
devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
devm_kfree(ice_hw_to_dev(hw), sw);
}
/**
* ice_get_itr_intrl_gran
* @hw: pointer to the HW struct
*
* Determines the ITR/INTRL granularities based on the maximum aggregate
* bandwidth according to the device's configuration during power-on.
*/
static void ice_get_itr_intrl_gran(struct ice_hw *hw)
{
u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
rd32(hw, GL_PWR_MODE_CTL));
switch (max_agg_bw) {
case ICE_MAX_AGG_BW_200G:
case ICE_MAX_AGG_BW_100G:
case ICE_MAX_AGG_BW_50G:
hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
break;
case ICE_MAX_AGG_BW_25G:
hw->itr_gran = ICE_ITR_GRAN_MAX_25;
hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
break;
}
}
/**
* ice_init_hw - main hardware initialization routine
* @hw: pointer to the hardware structure
*/
int ice_init_hw(struct ice_hw *hw)
{
struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
void *mac_buf __free(kfree) = NULL;
u16 mac_buf_len;
int status;
/* Set MAC type based on DeviceID */
status = ice_set_mac_type(hw);
if (status)
return status;
hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
status = ice_reset(hw, ICE_RESET_PFR);
if (status)
return status;
ice_get_itr_intrl_gran(hw);
ice: separate out control queue lock creation The ice_init_all_ctrlq and ice_shutdown_all_ctrlq functions create and destroy the locks used to protect the send and receive process of each control queue. This is problematic, as the driver may use these functions to shutdown and re-initialize the control queues at run time. For example, it may do this in response to a device reset. If the driver failed to recover from a reset, it might leave the control queues offline. In this case, the locks will no longer be initialized. A later call to ice_sq_send_cmd will then attempt to acquire a lock that has been destroyed. It is incorrect behavior to access a lock that has been destroyed. Indeed, ice_aq_send_cmd already tries to avoid accessing an offline control queue, but the check occurs inside the lock. The root of the problem is that the locks are destroyed at run time. Modify ice_init_all_ctrlq and ice_shutdown_all_ctrlq such that they no longer create or destroy the locks. Introduce new functions, ice_create_all_ctrlq and ice_destroy_all_ctrlq. Call these functions in ice_init_hw and ice_deinit_hw. Now, the control queue locks will remain valid for the life of the driver, and will not be destroyed until the driver unloads. This also allows removing a duplicate check of the sq.count and rq.count values when shutting down the controlqs. The ice_shutdown_ctrlq function already checks this value under the lock. Previously commit dec64ff10ed9 ("ice: use [sr]q.count when checking if queue is initialized") needed this check to happen outside the lock, because it prevented duplicate attempts at destroying the locks. The driver may now safely use ice_init_all_ctrlq and ice_shutdown_all_ctrlq while handling reset events, without causing the locks to be invalid. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2019-06-26 09:20:16 +00:00
status = ice_create_all_ctrlq(hw);
if (status)
goto err_unroll_cqinit;
ice: configure FW logging Users want the ability to debug FW issues by retrieving the FW logs from the E8xx devices. Use debugfs to allow the user to configure the log level and number of messages for FW logging. If FW logging is supported on the E8xx then the file 'fwlog' will be created under the PCI device ID for the ice driver. If the file does not exist then either the E8xx doesn't support FW logging or debugfs is not enabled on the system. One thing users want to do is control which events are reported. The user can read and write the 'fwlog/modules/<module name>' to get/set the log levels. Each module in the FW that supports logging ht as a file under 'fwlog/modules' that supports reading (to see what the current log level is) and writing (to change the log level). The format to set the log levels for a module are: # echo <log level> > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/<module> The supported log levels are: * none * error * warning * normal * verbose Each level includes the messages from the previous/lower level The modules that are supported are: * general * ctrl * link * link_topo * dnl * i2c * sdp * mdio * adminq * hdma * lldp * dcbx * dcb * xlr * nvm * auth * vpd * iosf * parser * sw * scheduler * txq * rsvd * post * watchdog * task_dispatch * mng * synce * health * tsdrv * pfreg * mdlver * all The module 'all' is a special module which allows the user to read or write to all of the modules. The following example command would set the DCB module to the 'normal' log level: # echo normal > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/dcb If the user wants to set the DCB, Link, and the AdminQ modules to 'verbose' then the commands are: # echo verbose > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/dcb # echo verbose > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/link # echo verbose > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/adminq If the user wants to set all modules to the 'warning' level then the command is: # echo warning > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/all If the user wants to disable logging for a module then they can set the level to 'none'. An example setting the 'watchdog' module is: # echo none > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/watchdog If the user wants to see what the log level is for a specific module then the command is: # cat /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/dcb This will return the log level for the DCB module. If the user wants to see the log level for all the modules then the command is: # cat /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/all Writing to the module file will update the configuration, but NOT enable the configuration (that is a separate command). In addition to configuring the modules, the user can also configure the number of log messages (nr_messages) to include in a single Admin Receive Queue (ARQ) event.The range is 1-128 (1 means push every log message, 128 means push only when the max AQ command buffer is full). The suggested value is 10. To see/change the resolution the user can read/write the 'fwlog/nr_messages' file. An example changing the value to 50 is # echo 50 > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/nr_messages To see the current value of 'nr_messages' then the command is: # cat /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/nr_messages Signed-off-by: Paul M Stillwell Jr <paul.m.stillwell.jr@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2023-12-13 05:07:12 +00:00
status = ice_fwlog_init(hw);
if (status)
ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
status);
status = ice_clear_pf_cfg(hw);
if (status)
goto err_unroll_cqinit;
/* Set bit to enable Flow Director filters */
wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
INIT_LIST_HEAD(&hw->fdir_list_head);
ice_clear_pxe_mode(hw);
status = ice_init_nvm(hw);
if (status)
goto err_unroll_cqinit;
2018-03-20 14:58:08 +00:00
status = ice_get_caps(hw);
if (status)
goto err_unroll_cqinit;
if (!hw->port_info)
hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
sizeof(*hw->port_info),
GFP_KERNEL);
2018-03-20 14:58:08 +00:00
if (!hw->port_info) {
status = -ENOMEM;
2018-03-20 14:58:08 +00:00
goto err_unroll_cqinit;
}
/* set the back pointer to HW */
2018-03-20 14:58:08 +00:00
hw->port_info->hw = hw;
/* Initialize port_info struct with switch configuration data */
status = ice_get_initial_sw_cfg(hw);
if (status)
goto err_unroll_alloc;
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
hw->evb_veb = true;
/* init xarray for identifying scheduling nodes uniquely */
xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
/* Query the allocated resources for Tx scheduler */
2018-03-20 14:58:08 +00:00
status = ice_sched_query_res_alloc(hw);
if (status) {
ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
2018-03-20 14:58:08 +00:00
goto err_unroll_alloc;
}
ice_sched_get_psm_clk_freq(hw);
2018-03-20 14:58:08 +00:00
/* Initialize port_info struct with scheduler data */
status = ice_sched_init_port(hw->port_info);
if (status)
goto err_unroll_sched;
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
if (!pcaps) {
status = -ENOMEM;
goto err_unroll_sched;
}
/* Initialize port_info struct with PHY capabilities */
status = ice_aq_get_phy_caps(hw->port_info, false,
ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
NULL);
if (status)
dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
status);
/* Initialize port_info struct with link information */
status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
if (status)
goto err_unroll_sched;
/* need a valid SW entry point to build a Tx tree */
if (!hw->sw_entry_point_layer) {
ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
status = -EIO;
goto err_unroll_sched;
}
INIT_LIST_HEAD(&hw->agg_list);
/* Initialize max burst size */
if (!hw->max_burst_size)
ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
status = ice_init_fltr_mgmt_struct(hw);
if (status)
goto err_unroll_sched;
/* Get MAC information */
/* A single port can report up to two (LAN and WoL) addresses */
mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
GFP_KERNEL);
if (!mac_buf) {
status = -ENOMEM;
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
goto err_unroll_fltr_mgmt_struct;
}
mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
if (status)
goto err_unroll_fltr_mgmt_struct;
/* enable jumbo frame support at MAC level */
status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
if (status)
goto err_unroll_fltr_mgmt_struct;
/* Obtain counter base index which would be used by flow director */
status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
if (status)
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
goto err_unroll_fltr_mgmt_struct;
status = ice_init_hw_tbls(hw);
if (status)
goto err_unroll_fltr_mgmt_struct;
mutex_init(&hw->tnl_lock);
return 0;
ice: Add support for switch filter programming A VSI needs traffic directed towards it. This is done by programming filter rules on the switch (embedded vSwitch) element in the hardware, which connects the VSI to the ingress/egress port. This patch introduces data structures and functions necessary to add remove or update switch rules on the switch element. This is a pretty low level function that is generic enough to add a whole range of filters. This patch also introduces two top level functions ice_add_mac and ice_remove mac which through a series of intermediate helper functions eventually call ice_aq_sw_rules to add/delete simple MAC based filters. It's worth noting that one invocation of ice_add_mac/ice_remove_mac is capable of adding/deleting multiple MAC filters. Also worth noting is the fact that the driver maintains a list of currently active filters, so every filter addition/removal causes an update to this list. This is done for a couple of reasons: 1) If two VSIs try to add the same filters, we need to detect it and do things a little differently (i.e. use VSI lists, described below) as the same filter can't be added more than once. 2) In the event of a hardware reset we can simply walk through this list and restore the filters. VSI Lists: In a multi-VSI situation, it's possible that multiple VSIs want to add the same filter rule. For example, two VSIs that want to receive broadcast traffic would both add a filter for destination MAC ff:ff:ff:ff:ff:ff. This can become cumbersome to maintain and so this is handled using a VSI list. A VSI list is resource that can be allocated in the hardware using the ice_aq_alloc_free_res admin queue command. Simply put, a VSI list can be thought of as a subscription list containing a set of VSIs to which the packet should be forwarded, should the filter match. For example, if VSI-0 has already added a broadcast filter, and VSI-1 wants to do the same thing, the filter creation flow will detect this, allocate a VSI list and update the switch rule so that broadcast traffic will now be forwarded to the VSI list which contains VSI-0 and VSI-1. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:12 +00:00
err_unroll_fltr_mgmt_struct:
ice_cleanup_fltr_mgmt_struct(hw);
err_unroll_sched:
ice_sched_cleanup_all(hw);
2018-03-20 14:58:08 +00:00
err_unroll_alloc:
devm_kfree(ice_hw_to_dev(hw), hw->port_info);
err_unroll_cqinit:
ice: separate out control queue lock creation The ice_init_all_ctrlq and ice_shutdown_all_ctrlq functions create and destroy the locks used to protect the send and receive process of each control queue. This is problematic, as the driver may use these functions to shutdown and re-initialize the control queues at run time. For example, it may do this in response to a device reset. If the driver failed to recover from a reset, it might leave the control queues offline. In this case, the locks will no longer be initialized. A later call to ice_sq_send_cmd will then attempt to acquire a lock that has been destroyed. It is incorrect behavior to access a lock that has been destroyed. Indeed, ice_aq_send_cmd already tries to avoid accessing an offline control queue, but the check occurs inside the lock. The root of the problem is that the locks are destroyed at run time. Modify ice_init_all_ctrlq and ice_shutdown_all_ctrlq such that they no longer create or destroy the locks. Introduce new functions, ice_create_all_ctrlq and ice_destroy_all_ctrlq. Call these functions in ice_init_hw and ice_deinit_hw. Now, the control queue locks will remain valid for the life of the driver, and will not be destroyed until the driver unloads. This also allows removing a duplicate check of the sq.count and rq.count values when shutting down the controlqs. The ice_shutdown_ctrlq function already checks this value under the lock. Previously commit dec64ff10ed9 ("ice: use [sr]q.count when checking if queue is initialized") needed this check to happen outside the lock, because it prevented duplicate attempts at destroying the locks. The driver may now safely use ice_init_all_ctrlq and ice_shutdown_all_ctrlq while handling reset events, without causing the locks to be invalid. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2019-06-26 09:20:16 +00:00
ice_destroy_all_ctrlq(hw);
return status;
}
/**
* ice_deinit_hw - unroll initialization operations done by ice_init_hw
* @hw: pointer to the hardware structure
*
* This should be called only during nominal operation, not as a result of
* ice_init_hw() failing since ice_init_hw() will take care of unrolling
* applicable initializations if it fails for any reason.
*/
void ice_deinit_hw(struct ice_hw *hw)
{
ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
ice_cleanup_fltr_mgmt_struct(hw);
2018-03-20 14:58:08 +00:00
ice_sched_cleanup_all(hw);
ice_sched_clear_agg(hw);
ice_free_seg(hw);
ice_free_hw_tbls(hw);
mutex_destroy(&hw->tnl_lock);
ice: configure FW logging Users want the ability to debug FW issues by retrieving the FW logs from the E8xx devices. Use debugfs to allow the user to configure the log level and number of messages for FW logging. If FW logging is supported on the E8xx then the file 'fwlog' will be created under the PCI device ID for the ice driver. If the file does not exist then either the E8xx doesn't support FW logging or debugfs is not enabled on the system. One thing users want to do is control which events are reported. The user can read and write the 'fwlog/modules/<module name>' to get/set the log levels. Each module in the FW that supports logging ht as a file under 'fwlog/modules' that supports reading (to see what the current log level is) and writing (to change the log level). The format to set the log levels for a module are: # echo <log level> > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/<module> The supported log levels are: * none * error * warning * normal * verbose Each level includes the messages from the previous/lower level The modules that are supported are: * general * ctrl * link * link_topo * dnl * i2c * sdp * mdio * adminq * hdma * lldp * dcbx * dcb * xlr * nvm * auth * vpd * iosf * parser * sw * scheduler * txq * rsvd * post * watchdog * task_dispatch * mng * synce * health * tsdrv * pfreg * mdlver * all The module 'all' is a special module which allows the user to read or write to all of the modules. The following example command would set the DCB module to the 'normal' log level: # echo normal > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/dcb If the user wants to set the DCB, Link, and the AdminQ modules to 'verbose' then the commands are: # echo verbose > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/dcb # echo verbose > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/link # echo verbose > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/adminq If the user wants to set all modules to the 'warning' level then the command is: # echo warning > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/all If the user wants to disable logging for a module then they can set the level to 'none'. An example setting the 'watchdog' module is: # echo none > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/watchdog If the user wants to see what the log level is for a specific module then the command is: # cat /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/dcb This will return the log level for the DCB module. If the user wants to see the log level for all the modules then the command is: # cat /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/modules/all Writing to the module file will update the configuration, but NOT enable the configuration (that is a separate command). In addition to configuring the modules, the user can also configure the number of log messages (nr_messages) to include in a single Admin Receive Queue (ARQ) event.The range is 1-128 (1 means push every log message, 128 means push only when the max AQ command buffer is full). The suggested value is 10. To see/change the resolution the user can read/write the 'fwlog/nr_messages' file. An example changing the value to 50 is # echo 50 > /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/nr_messages To see the current value of 'nr_messages' then the command is: # cat /sys/kernel/debug/ice/0000\:18\:00.0/fwlog/nr_messages Signed-off-by: Paul M Stillwell Jr <paul.m.stillwell.jr@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2023-12-13 05:07:12 +00:00
ice_fwlog_deinit(hw);
ice: separate out control queue lock creation The ice_init_all_ctrlq and ice_shutdown_all_ctrlq functions create and destroy the locks used to protect the send and receive process of each control queue. This is problematic, as the driver may use these functions to shutdown and re-initialize the control queues at run time. For example, it may do this in response to a device reset. If the driver failed to recover from a reset, it might leave the control queues offline. In this case, the locks will no longer be initialized. A later call to ice_sq_send_cmd will then attempt to acquire a lock that has been destroyed. It is incorrect behavior to access a lock that has been destroyed. Indeed, ice_aq_send_cmd already tries to avoid accessing an offline control queue, but the check occurs inside the lock. The root of the problem is that the locks are destroyed at run time. Modify ice_init_all_ctrlq and ice_shutdown_all_ctrlq such that they no longer create or destroy the locks. Introduce new functions, ice_create_all_ctrlq and ice_destroy_all_ctrlq. Call these functions in ice_init_hw and ice_deinit_hw. Now, the control queue locks will remain valid for the life of the driver, and will not be destroyed until the driver unloads. This also allows removing a duplicate check of the sq.count and rq.count values when shutting down the controlqs. The ice_shutdown_ctrlq function already checks this value under the lock. Previously commit dec64ff10ed9 ("ice: use [sr]q.count when checking if queue is initialized") needed this check to happen outside the lock, because it prevented duplicate attempts at destroying the locks. The driver may now safely use ice_init_all_ctrlq and ice_shutdown_all_ctrlq while handling reset events, without causing the locks to be invalid. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2019-06-26 09:20:16 +00:00
ice_destroy_all_ctrlq(hw);
/* Clear VSI contexts if not already cleared */
ice_clear_all_vsi_ctx(hw);
}
/**
* ice_check_reset - Check to see if a global reset is complete
* @hw: pointer to the hardware structure
*/
int ice_check_reset(struct ice_hw *hw)
{
u32 cnt, reg = 0, grst_timeout, uld_mask;
/* Poll for Device Active state in case a recent CORER, GLOBR,
* or EMPR has occurred. The grst delay value is in 100ms units.
* Add 1sec for outstanding AQ commands that can take a long time.
*/
grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
rd32(hw, GLGEN_RSTCTL)) + 10;
for (cnt = 0; cnt < grst_timeout; cnt++) {
mdelay(100);
reg = rd32(hw, GLGEN_RSTAT);
if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
break;
}
if (cnt == grst_timeout) {
ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
return -EIO;
}
#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
GLNVM_ULD_PCIER_DONE_1_M |\
GLNVM_ULD_CORER_DONE_M |\
GLNVM_ULD_GLOBR_DONE_M |\
GLNVM_ULD_POR_DONE_M |\
GLNVM_ULD_POR_DONE_1_M |\
GLNVM_ULD_PCIER_DONE_2_M)
uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
GLNVM_ULD_PE_DONE_M : 0);
/* Device is Active; check Global Reset processes are done */
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
reg = rd32(hw, GLNVM_ULD) & uld_mask;
if (reg == uld_mask) {
ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
break;
}
mdelay(10);
}
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
reg);
return -EIO;
}
return 0;
}
/**
* ice_pf_reset - Reset the PF
* @hw: pointer to the hardware structure
*
* If a global reset has been triggered, this function checks
* for its completion and then issues the PF reset
*/
static int ice_pf_reset(struct ice_hw *hw)
{
u32 cnt, reg;
/* If at function entry a global reset was already in progress, i.e.
* state is not 'device active' or any of the reset done bits are not
* set in GLNVM_ULD, there is no need for a PF Reset; poll until the
* global reset is done.
*/
if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
(rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
/* poll on global reset currently in progress until done */
if (ice_check_reset(hw))
return -EIO;
return 0;
}
/* Reset the PF */
reg = rd32(hw, PFGEN_CTRL);
wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
/* Wait for the PFR to complete. The wait time is the global config lock
* timeout plus the PFR timeout which will account for a possible reset
* that is occurring during a download package operation.
*/
for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
ICE_PF_RESET_WAIT_COUNT; cnt++) {
reg = rd32(hw, PFGEN_CTRL);
if (!(reg & PFGEN_CTRL_PFSWR_M))
break;
mdelay(1);
}
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
return -EIO;
}
return 0;
}
/**
* ice_reset - Perform different types of reset
* @hw: pointer to the hardware structure
* @req: reset request
*
* This function triggers a reset as specified by the req parameter.
*
* Note:
* If anything other than a PF reset is triggered, PXE mode is restored.
* This has to be cleared using ice_clear_pxe_mode again, once the AQ
* interface has been restored in the rebuild flow.
*/
int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
{
u32 val = 0;
switch (req) {
case ICE_RESET_PFR:
return ice_pf_reset(hw);
case ICE_RESET_CORER:
ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
val = GLGEN_RTRIG_CORER_M;
break;
case ICE_RESET_GLOBR:
ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
val = GLGEN_RTRIG_GLOBR_M;
break;
ice: Refactor VSI allocation, deletion and rebuild flow This patch refactors aspects of the VSI allocation, deletion and rebuild flow. Some of the more noteworthy changes are described below. 1) On reset, all switch filters applied in the hardware are lost. In the rebuild flow, only MAC and broadcast filters are being restored. Instead, use a new function ice_replay_all_fltr to restore all the filters that were previously added. To do this, remove calls to ice_remove_vsi_fltr to prevent cleaning out the internal bookkeeping structures that ice_replay_all_fltr uses to replay filters. 2) Introduce a new state bit __ICE_PREPARED_FOR_RESET to distinguish the PF that requested the reset (and consequently prepared for it) from the rest of the PFs. These other PFs will prepare for reset only when they receive an interrupt from the firmware. 3) Use new functions ice_add_vsi and ice_free_vsi to create and destroy VSIs respectively. These functions accept a handle to uniquely identify a VSI. This same handle is required to rebuild the VSI post reset. To prevent confusion, the existing ice_vsi_add was renamed to ice_vsi_init. 4) Enhance ice_vsi_setup for the upcoming SR-IOV changes and expose a new wrapper function ice_pf_vsi_setup to create PF VSIs. Rework the error handling path in ice_setup_pf_sw. 5) Introduce a new function ice_vsi_release_all to release all PF VSIs. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-08-09 13:29:50 +00:00
default:
return -EINVAL;
}
val |= rd32(hw, GLGEN_RTRIG);
wr32(hw, GLGEN_RTRIG, val);
ice_flush(hw);
/* wait for the FW to be ready */
return ice_check_reset(hw);
}
/**
* ice_copy_rxq_ctx_to_hw
* @hw: pointer to the hardware structure
* @ice_rxq_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Copies rxq context from dense structure to HW register space
*/
static int
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
{
u8 i;
if (!ice_rxq_ctx)
return -EINVAL;
if (rxq_index > QRX_CTRL_MAX_INDEX)
return -EINVAL;
/* Copy each dword separately to HW */
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
wr32(hw, QRX_CONTEXT(i, rxq_index),
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
}
return 0;
}
/* LAN Rx Queue Context */
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
{ 0 }
};
/**
* ice_write_rxq_ctx
* @hw: pointer to the hardware structure
* @rlan_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Converts rxq context from sparse to dense structure and then writes
* it to HW register space and enables the hardware to prefetch descriptors
* instead of only fetching them on demand
*/
int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
u32 rxq_index)
{
u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
if (!rlan_ctx)
return -EINVAL;
rlan_ctx->prefena = 1;
ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
}
/* LAN Tx Queue Context */
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
{ 0 }
};
/* Sideband Queue command wrappers */
/**
* ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
* @hw: pointer to the HW struct
* @desc: descriptor describing the command
* @buf: buffer to use for indirect commands (NULL for direct commands)
* @buf_size: size of buffer for indirect commands (0 for direct commands)
* @cd: pointer to command details structure
*/
static int
ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
void *buf, u16 buf_size, struct ice_sq_cd *cd)
{
return ice_sq_send_cmd(hw, ice_get_sbq(hw),
(struct ice_aq_desc *)desc, buf, buf_size, cd);
}
/**
* ice_sbq_rw_reg - Fill Sideband Queue command
* @hw: pointer to the HW struct
* @in: message info to be filled in descriptor
*/
int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
{
struct ice_sbq_cmd_desc desc = {0};
struct ice_sbq_msg_req msg = {0};
u16 msg_len;
int status;
msg_len = sizeof(msg);
msg.dest_dev = in->dest_dev;
msg.opcode = in->opcode;
msg.flags = ICE_SBQ_MSG_FLAGS;
msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
if (in->opcode)
msg.data = cpu_to_le32(in->data);
else
/* data read comes back in completion, so shorten the struct by
* sizeof(msg.data)
*/
msg_len -= sizeof(msg.data);
desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
desc.param0.cmd_len = cpu_to_le16(msg_len);
status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
if (!status && !in->opcode)
in->data = le32_to_cpu
(((struct ice_sbq_msg_cmpl *)&msg)->data);
return status;
}
/* FW Admin Queue command wrappers */
/* Software lock/mutex that is meant to be held while the Global Config Lock
* in firmware is acquired by the software to prevent most (but not all) types
* of AQ commands from being sent to FW
*/
DEFINE_MUTEX(ice_global_cfg_lock_sw);
/**
* ice_should_retry_sq_send_cmd
* @opcode: AQ opcode
*
* Decide if we should retry the send command routine for the ATQ, depending
* on the opcode.
*/
static bool ice_should_retry_sq_send_cmd(u16 opcode)
{
switch (opcode) {
case ice_aqc_opc_get_link_topo:
case ice_aqc_opc_lldp_stop:
case ice_aqc_opc_lldp_start:
case ice_aqc_opc_lldp_filter_ctrl:
return true;
}
return false;
}
/**
* ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
* @hw: pointer to the HW struct
* @cq: pointer to the specific Control queue
* @desc: prefilled descriptor describing the command
* @buf: buffer to use for indirect commands (or NULL for direct commands)
* @buf_size: size of buffer for indirect commands (or 0 for direct commands)
* @cd: pointer to command details structure
*
* Retry sending the FW Admin Queue command, multiple times, to the FW Admin
* Queue if the EBUSY AQ error is returned.
*/
static int
ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_aq_desc *desc, void *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc_cpy;
bool is_cmd_for_retry;
u8 idx = 0;
u16 opcode;
int status;
opcode = le16_to_cpu(desc->opcode);
is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
memset(&desc_cpy, 0, sizeof(desc_cpy));
if (is_cmd_for_retry) {
/* All retryable cmds are direct, without buf. */
WARN_ON(buf);
memcpy(&desc_cpy, desc, sizeof(desc_cpy));
}
do {
status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
if (!is_cmd_for_retry || !status ||
hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
break;
memcpy(desc, &desc_cpy, sizeof(desc_cpy));
msleep(ICE_SQ_SEND_DELAY_TIME_MS);
} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
return status;
}
/**
* ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
* @hw: pointer to the HW struct
* @desc: descriptor describing the command
* @buf: buffer to use for indirect commands (NULL for direct commands)
* @buf_size: size of buffer for indirect commands (0 for direct commands)
* @cd: pointer to command details structure
*
* Helper function to send FW Admin Queue commands to the FW Admin Queue.
*/
int
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd = &desc->params.res_owner;
bool lock_acquired = false;
int status;
/* When a package download is in process (i.e. when the firmware's
* Global Configuration Lock resource is held), only the Download
* Package, Get Version, Get Package Info List, Upload Section,
* Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
* Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
* Recipes to Profile Association, and Release Resource (with resource
* ID set to Global Config Lock) AdminQ commands are allowed; all others
* must block until the package download completes and the Global Config
* Lock is released. See also ice_acquire_global_cfg_lock().
*/
switch (le16_to_cpu(desc->opcode)) {
case ice_aqc_opc_download_pkg:
case ice_aqc_opc_get_pkg_info_list:
case ice_aqc_opc_get_ver:
case ice_aqc_opc_upload_section:
case ice_aqc_opc_update_pkg:
case ice_aqc_opc_set_port_params:
case ice_aqc_opc_get_vlan_mode_parameters:
case ice_aqc_opc_set_vlan_mode_parameters:
case ice_aqc_opc_add_recipe:
case ice_aqc_opc_recipe_to_profile:
case ice_aqc_opc_get_recipe:
case ice_aqc_opc_get_recipe_to_profile:
break;
case ice_aqc_opc_release_res:
if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
break;
fallthrough;
default:
mutex_lock(&ice_global_cfg_lock_sw);
lock_acquired = true;
break;
}
status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
if (lock_acquired)
mutex_unlock(&ice_global_cfg_lock_sw);
return status;
}
/**
* ice_aq_get_fw_ver
* @hw: pointer to the HW struct
* @cd: pointer to command details structure or NULL
*
* Get the firmware version (0x0001) from the admin queue commands
*/
int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
{
struct ice_aqc_get_ver *resp;
struct ice_aq_desc desc;
int status;
resp = &desc.params.get_ver;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status) {
hw->fw_branch = resp->fw_branch;
hw->fw_maj_ver = resp->fw_major;
hw->fw_min_ver = resp->fw_minor;
hw->fw_patch = resp->fw_patch;
hw->fw_build = le32_to_cpu(resp->fw_build);
hw->api_branch = resp->api_branch;
hw->api_maj_ver = resp->api_major;
hw->api_min_ver = resp->api_minor;
hw->api_patch = resp->api_patch;
}
return status;
}
/**
* ice_aq_send_driver_ver
* @hw: pointer to the HW struct
* @dv: driver's major, minor version
* @cd: pointer to command details structure or NULL
*
* Send the driver version (0x0002) to the firmware
*/
int
ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
struct ice_sq_cd *cd)
{
struct ice_aqc_driver_ver *cmd;
struct ice_aq_desc desc;
u16 len;
cmd = &desc.params.driver_ver;
if (!dv)
return -EINVAL;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
cmd->major_ver = dv->major_ver;
cmd->minor_ver = dv->minor_ver;
cmd->build_ver = dv->build_ver;
cmd->subbuild_ver = dv->subbuild_ver;
len = 0;
while (len < sizeof(dv->driver_string) &&
isascii(dv->driver_string[len]) && dv->driver_string[len])
len++;
return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
}
/**
* ice_aq_q_shutdown
* @hw: pointer to the HW struct
* @unloading: is the driver unloading itself
*
* Tell the Firmware that we're shutting down the AdminQ and whether
* or not the driver is unloading as well (0x0003).
*/
int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
{
struct ice_aqc_q_shutdown *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.q_shutdown;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
if (unloading)
cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_req_res
* @hw: pointer to the HW struct
* @res: resource ID
* @access: access type
* @sdp_number: resource number
* @timeout: the maximum time in ms that the driver may hold the resource
* @cd: pointer to command details structure or NULL
*
* Requests common resource using the admin queue commands (0x0008).
* When attempting to acquire the Global Config Lock, the driver can
* learn of three states:
* 1) 0 - acquired lock, and can perform download package
* 2) -EIO - did not get lock, driver should fail to load
* 3) -EALREADY - did not get lock, but another driver has
* successfully downloaded the package; the driver does
* not have to download the package and can continue
* loading
*
* Note that if the caller is in an acquire lock, perform action, release lock
* phase of operation, it is possible that the FW may detect a timeout and issue
* a CORER. In this case, the driver will receive a CORER interrupt and will
* have to determine its cause. The calling thread that is handling this flow
* will likely get an error propagated back to it indicating the Download
* Package, Update Package or the Release Resource AQ commands timed out.
*/
static int
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd_resp;
struct ice_aq_desc desc;
int status;
cmd_resp = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
cmd_resp->res_id = cpu_to_le16(res);
cmd_resp->access_type = cpu_to_le16(access);
cmd_resp->res_number = cpu_to_le32(sdp_number);
cmd_resp->timeout = cpu_to_le32(*timeout);
*timeout = 0;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
/* The completion specifies the maximum time in ms that the driver
* may hold the resource in the Timeout field.
*/
/* Global config lock response utilizes an additional status field.
*
* If the Global config lock resource is held by some other driver, the
* command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
* and the timeout field indicates the maximum time the current owner
* of the resource has to free it.
*/
if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
*timeout = le32_to_cpu(cmd_resp->timeout);
return 0;
} else if (le16_to_cpu(cmd_resp->status) ==
ICE_AQ_RES_GLBL_IN_PROG) {
*timeout = le32_to_cpu(cmd_resp->timeout);
return -EIO;
} else if (le16_to_cpu(cmd_resp->status) ==
ICE_AQ_RES_GLBL_DONE) {
return -EALREADY;
}
/* invalid FW response, force a timeout immediately */
*timeout = 0;
return -EIO;
}
/* If the resource is held by some other driver, the command completes
* with a busy return value and the timeout field indicates the maximum
* time the current owner of the resource has to free it.
*/
if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
*timeout = le32_to_cpu(cmd_resp->timeout);
return status;
}
/**
* ice_aq_release_res
* @hw: pointer to the HW struct
* @res: resource ID
* @sdp_number: resource number
* @cd: pointer to command details structure or NULL
*
* release common resource using the admin queue commands (0x0009)
*/
static int
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
cmd->res_id = cpu_to_le16(res);
cmd->res_number = cpu_to_le32(sdp_number);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_acquire_res
* @hw: pointer to the HW structure
* @res: resource ID
* @access: access type (read or write)
* @timeout: timeout in milliseconds
*
* This function will attempt to acquire the ownership of a resource.
*/
int
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, u32 timeout)
{
#define ICE_RES_POLLING_DELAY_MS 10
u32 delay = ICE_RES_POLLING_DELAY_MS;
u32 time_left = timeout;
int status;
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
/* A return code of -EALREADY means that another driver has
* previously acquired the resource and performed any necessary updates;
* in this case the caller does not obtain the resource and has no
* further work to do.
*/
if (status == -EALREADY)
goto ice_acquire_res_exit;
if (status)
ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
/* If necessary, poll until the current lock owner timeouts */
timeout = time_left;
while (status && timeout && time_left) {
mdelay(delay);
timeout = (timeout > delay) ? timeout - delay : 0;
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
if (status == -EALREADY)
/* lock free, but no work to do */
break;
if (!status)
/* lock acquired */
break;
}
if (status && status != -EALREADY)
ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
ice_acquire_res_exit:
if (status == -EALREADY) {
if (access == ICE_RES_WRITE)
ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
else
ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
}
return status;
}
/**
* ice_release_res
* @hw: pointer to the HW structure
* @res: resource ID
*
* This function will release a resource using the proper Admin Command.
*/
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
{
unsigned long timeout;
int status;
/* there are some rare cases when trying to release the resource
* results in an admin queue timeout, so handle them correctly
*/
timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
do {
status = ice_aq_release_res(hw, res, 0, NULL);
if (status != -EIO)
break;
usleep_range(1000, 2000);
} while (time_before(jiffies, timeout));
}
/**
* ice_aq_alloc_free_res - command to allocate/free resources
* @hw: pointer to the HW struct
* @buf: Indirect buffer to hold data parameters and response
* @buf_size: size of buffer for indirect commands
* @opc: pass in the command opcode
*
* Helper function to allocate/free resources using the admin queue commands
*/
int ice_aq_alloc_free_res(struct ice_hw *hw,
struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
enum ice_adminq_opc opc)
{
struct ice_aqc_alloc_free_res_cmd *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.sw_res_ctrl;
if (!buf || buf_size < flex_array_size(buf, elem, 1))
return -EINVAL;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
cmd->num_entries = cpu_to_le16(1);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
}
/**
* ice_alloc_hw_res - allocate resource
* @hw: pointer to the HW struct
* @type: type of resource
* @num: number of resources to allocate
* @btm: allocate from bottom
* @res: pointer to array that will receive the resources
*/
int
ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
{
struct ice_aqc_alloc_free_res_elem *buf;
u16 buf_len;
int status;
buf_len = struct_size(buf, elem, num);
buf = kzalloc(buf_len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Prepare buffer to allocate resource. */
buf->num_elems = cpu_to_le16(num);
buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
if (btm)
buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
if (status)
goto ice_alloc_res_exit;
memcpy(res, buf->elem, sizeof(*buf->elem) * num);
ice_alloc_res_exit:
kfree(buf);
return status;
}
/**
* ice_free_hw_res - free allocated HW resource
* @hw: pointer to the HW struct
* @type: type of resource to free
* @num: number of resources
* @res: pointer to array that contains the resources to free
*/
int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
{
struct ice_aqc_alloc_free_res_elem *buf;
u16 buf_len;
int status;
buf_len = struct_size(buf, elem, num);
buf = kzalloc(buf_len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Prepare buffer to free resource. */
buf->num_elems = cpu_to_le16(num);
buf->res_type = cpu_to_le16(type);
memcpy(buf->elem, res, sizeof(*buf->elem) * num);
status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
if (status)
ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
kfree(buf);
return status;
}
/**
* ice_get_num_per_func - determine number of resources per PF
* @hw: pointer to the HW structure
* @max: value to be evenly split between each PF
*
* Determine the number of valid functions by going through the bitmap returned
* from parsing capabilities and use this to calculate the number of resources
* per PF based on the max value passed in.
*/
static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
{
u8 funcs;
#define ICE_CAPS_VALID_FUNCS_M 0xFF
funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
ICE_CAPS_VALID_FUNCS_M);
if (!funcs)
return 0;
return max / funcs;
}
2018-03-20 14:58:08 +00:00
/**
* ice_parse_common_caps - parse common device/function capabilities
* @hw: pointer to the HW struct
* @caps: pointer to common capabilities structure
* @elem: the capability element to parse
* @prefix: message prefix for tracing capabilities
2018-03-20 14:58:08 +00:00
*
* Given a capability element, extract relevant details into the common
* capability structure.
*
* Returns: true if the capability matches one of the common capability ids,
* false otherwise.
*/
static bool
ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
struct ice_aqc_list_caps_elem *elem, const char *prefix)
{
u32 logical_id = le32_to_cpu(elem->logical_id);
u32 phys_id = le32_to_cpu(elem->phys_id);
u32 number = le32_to_cpu(elem->number);
u16 cap = le16_to_cpu(elem->cap);
bool found = true;
switch (cap) {
case ICE_AQC_CAPS_VALID_FUNCTIONS:
caps->valid_functions = number;
ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
caps->valid_functions);
break;
case ICE_AQC_CAPS_SRIOV:
caps->sr_iov_1_1 = (number == 1);
ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
caps->sr_iov_1_1);
break;
case ICE_AQC_CAPS_DCB:
caps->dcb = (number == 1);
caps->active_tc_bitmap = logical_id;
caps->maxtc = phys_id;
ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
caps->active_tc_bitmap);
ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
break;
case ICE_AQC_CAPS_RSS:
caps->rss_table_size = number;
caps->rss_table_entry_width = logical_id;
ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
caps->rss_table_size);
ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
caps->rss_table_entry_width);
break;
case ICE_AQC_CAPS_RXQS:
caps->num_rxq = number;
caps->rxq_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
caps->num_rxq);
ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
caps->rxq_first_id);
break;
case ICE_AQC_CAPS_TXQS:
caps->num_txq = number;
caps->txq_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
caps->num_txq);
ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
caps->txq_first_id);
break;
case ICE_AQC_CAPS_MSIX:
caps->num_msix_vectors = number;
caps->msix_vector_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
caps->num_msix_vectors);
ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
caps->msix_vector_first_id);
break;
case ICE_AQC_CAPS_PENDING_NVM_VER:
caps->nvm_update_pending_nvm = true;
ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
break;
case ICE_AQC_CAPS_PENDING_OROM_VER:
caps->nvm_update_pending_orom = true;
ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
break;
case ICE_AQC_CAPS_PENDING_NET_VER:
caps->nvm_update_pending_netlist = true;
ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
break;
case ICE_AQC_CAPS_NVM_MGMT:
caps->nvm_unified_update =
(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
true : false;
ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
caps->nvm_unified_update);
break;
case ICE_AQC_CAPS_RDMA:
caps->rdma = (number == 1);
ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
break;
case ICE_AQC_CAPS_MAX_MTU:
caps->max_mtu = number;
ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
prefix, caps->max_mtu);
break;
ice: support immediate firmware activation via devlink reload The ice hardware contains an embedded chip with firmware which can be updated using devlink flash. The firmware which runs on this chip is referred to as the Embedded Management Processor firmware (EMP firmware). Activating the new firmware image currently requires that the system be rebooted. This is not ideal as rebooting the system can cause unwanted downtime. In practical terms, activating the firmware does not always require a full system reboot. In many cases it is possible to activate the EMP firmware immediately. There are a couple of different scenarios to cover. * The EMP firmware itself can be reloaded by issuing a special update to the device called an Embedded Management Processor reset (EMP reset). This reset causes the device to reset and reload the EMP firmware. * PCI configuration changes are only reloaded after a cold PCIe reset. Unfortunately there is no generic way to trigger this for a PCIe device without a system reboot. When performing a flash update, firmware is capable of responding with some information about the specific update requirements. The driver updates the flash by programming a secondary inactive bank with the contents of the new image, and then issuing a command to request to switch the active bank starting from the next load. The response to the final command for updating the inactive NVM flash bank includes an indication of the minimum reset required to fully update the device. This can be one of the following: * A full power on is required * A cold PCIe reset is required * An EMP reset is required The response to the command to switch flash banks includes an indication of whether or not the firmware will allow an EMP reset request. For most updates, an EMP reset is sufficient to load the new EMP firmware without issues. In some cases, this reset is not sufficient because the PCI configuration space has changed. When this could cause incompatibility with the new EMP image, the firmware is capable of rejecting the EMP reset request. Add logic to ice_fw_update.c to handle the response data flash update AdminQ commands. For the reset level, issue a devlink status notification informing the user of how to complete the update with a simple suggestion like "Activate new firmware by rebooting the system". Cache the status of whether or not firmware will restrict the EMP reset for use in implementing devlink reload. Implement support for devlink reload with the "fw_activate" flag. This allows user space to request the firmware be activated immediately. For the .reload_down handler, we will issue a request for the EMP reset using the appropriate firmware AdminQ command. If we know that the firmware will not allow an EMP reset, simply exit with a suitable netlink extended ACK message indicating that the EMP reset is not available. For the .reload_up handler, simply wait until the driver has finished resetting. Logic to handle processing of an EMP reset already exists in the driver as part of its reset and rebuild flows. Implement support for the devlink reload interface with the "fw_activate" action. This allows userspace to request activation of firmware without a reboot. Note that support for indicating the required reset and EMP reset restriction is not supported on old versions of firmware. The driver can determine if the two features are supported by checking the device capabilities report. I confirmed support has existed since at least version 5.5.2 as reported by the 'fw.mgmt' version. Support to issue the EMP reset request has existed in all version of the EMP firmware for the ice hardware. Check the device capabilities report to determine whether or not the indications are reported by the running firmware. If the reset requirement indication is not supported, always assume a full power on is necessary. If the reset restriction capability is not supported, always assume the EMP reset is available. Users can verify if the EMP reset has activated the firmware by using the devlink info report to check that the 'running' firmware version has updated. For example a user might do the following: # Check current version $ devlink dev info # Update the device $ devlink dev flash pci/0000:af:00.0 file firmware.bin # Confirm stored version updated $ devlink dev info # Reload to activate new firmware $ devlink dev reload pci/0000:af:00.0 action fw_activate # Confirm running version updated $ devlink dev info Finally, this change does *not* implement basic driver-only reload support. I did look into trying to do this. However, it requires significant refactor of how the ice driver probes and loads everything. The ice driver probe and allocation flows were not designed with such a reload in mind. Refactoring the flow to support this is beyond the scope of this change. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Gurucharan G <gurucharanx.g@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-10-27 23:22:55 +00:00
case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
caps->pcie_reset_avoidance = (number > 0);
ice_debug(hw, ICE_DBG_INIT,
"%s: pcie_reset_avoidance = %d\n", prefix,
caps->pcie_reset_avoidance);
break;
case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
caps->reset_restrict_support = (number == 1);
ice_debug(hw, ICE_DBG_INIT,
"%s: reset_restrict_support = %d\n", prefix,
caps->reset_restrict_support);
break;
case ICE_AQC_CAPS_FW_LAG_SUPPORT:
caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
prefix, caps->roce_lag);
caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
prefix, caps->sriov_lag);
break;
default:
/* Not one of the recognized common capabilities */
found = false;
}
return found;
}
/**
* ice_recalc_port_limited_caps - Recalculate port limited capabilities
* @hw: pointer to the HW structure
* @caps: pointer to capabilities structure to fix
*
* Re-calculate the capabilities that are dependent on the number of physical
* ports; i.e. some features are not supported or function differently on
* devices with more than 4 ports.
2018-03-20 14:58:08 +00:00
*/
static void
ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
{
/* This assumes device capabilities are always scanned before function
* capabilities during the initialization flow.
*/
if (hw->dev_caps.num_funcs > 4) {
/* Max 4 TCs per port */
caps->maxtc = 4;
ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
caps->maxtc);
if (caps->rdma) {
ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
caps->rdma = 0;
}
/* print message only when processing device capabilities
* during initialization.
*/
if (caps == &hw->dev_caps.common_cap)
dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
}
}
/**
* ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
* @cap: pointer to the capability element to parse
*
* Extract function capabilities for ICE_AQC_CAPS_VF.
*/
static void
ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
struct ice_aqc_list_caps_elem *cap)
{
u32 logical_id = le32_to_cpu(cap->logical_id);
u32 number = le32_to_cpu(cap->number);
func_p->num_allocd_vfs = number;
func_p->vf_base_id = logical_id;
ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
func_p->num_allocd_vfs);
ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
func_p->vf_base_id);
}
/**
* ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
* @cap: pointer to the capability element to parse
*
* Extract function capabilities for ICE_AQC_CAPS_VSI.
*/
static void
ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
struct ice_aqc_list_caps_elem *cap)
{
func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
le32_to_cpu(cap->number));
ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
func_p->guar_num_vsi);
}
/**
* ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
* @cap: pointer to the capability element to parse
*
* Extract function capabilities for ICE_AQC_CAPS_1588.
*/
static void
ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
struct ice_aqc_list_caps_elem *cap)
{
struct ice_ts_func_info *info = &func_p->ts_func_info;
u32 number = le32_to_cpu(cap->number);
info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
func_p->common_cap.ieee_1588 = info->ena;
info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
} else {
/* Unknown clock frequency, so assume a (probably incorrect)
* default to avoid out-of-bounds look ups of frequency
* related information.
*/
ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
info->clk_freq);
info->time_ref = ICE_TIME_REF_FREQ_25_000;
}
ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
func_p->common_cap.ieee_1588);
ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
info->src_tmr_owned);
ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
info->tmr_ena);
ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
info->tmr_index_owned);
ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
info->tmr_index_assoc);
ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
info->clk_freq);
ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
info->clk_src);
}
/**
* ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
*
* Extract function capabilities for ICE_AQC_CAPS_FD.
*/
static void
ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
{
u32 reg_val, gsize, bsize;
reg_val = rd32(hw, GLQF_FD_SIZE);
switch (hw->mac_type) {
case ICE_MAC_E830:
gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
break;
case ICE_MAC_E810:
default:
gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
}
func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
func_p->fd_fltr_best_effort = bsize;
ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
func_p->fd_fltr_guar);
ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
func_p->fd_fltr_best_effort);
}
/**
* ice_parse_func_caps - Parse function capabilities
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
* @buf: buffer containing the function capability records
* @cap_count: the number of capabilities
*
* Helper function to parse function (0x000A) capabilities list. For
* capabilities shared between device and function, this relies on
* ice_parse_common_caps.
*
* Loop through the list of provided capabilities and extract the relevant
* data into the function capabilities structured.
*/
static void
ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
void *buf, u32 cap_count)
2018-03-20 14:58:08 +00:00
{
struct ice_aqc_list_caps_elem *cap_resp;
u32 i;
cap_resp = buf;
2018-03-20 14:58:08 +00:00
memset(func_p, 0, sizeof(*func_p));
2018-03-20 14:58:08 +00:00
for (i = 0; i < cap_count; i++) {
u16 cap = le16_to_cpu(cap_resp[i].cap);
bool found;
2018-03-20 14:58:08 +00:00
found = ice_parse_common_caps(hw, &func_p->common_cap,
&cap_resp[i], "func caps");
switch (cap) {
case ICE_AQC_CAPS_VF:
ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
break;
2018-03-20 14:58:08 +00:00
case ICE_AQC_CAPS_VSI:
ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_1588:
ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_FD:
ice_parse_fdir_func_caps(hw, func_p);
2018-03-20 14:58:08 +00:00
break;
default:
/* Don't list common capabilities as unknown */
if (!found)
ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
i, cap);
2018-03-20 14:58:08 +00:00
break;
}
}
ice_recalc_port_limited_caps(hw, &func_p->common_cap);
}
/**
* ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
*/
static void
ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
u32 number = le32_to_cpu(cap->number);
dev_p->num_funcs = hweight32(number);
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
dev_p->num_funcs);
}
/**
* ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_VF for device capabilities.
*/
static void
ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
u32 number = le32_to_cpu(cap->number);
dev_p->num_vfs_exposed = number;
ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
dev_p->num_vfs_exposed);
}
/**
* ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_VSI for device capabilities.
*/
static void
ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
u32 number = le32_to_cpu(cap->number);
dev_p->num_vsi_allocd_to_host = number;
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
dev_p->num_vsi_allocd_to_host);
}
/**
* ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_1588 for device capabilities.
*/
static void
ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
u32 logical_id = le32_to_cpu(cap->logical_id);
u32 phys_id = le32_to_cpu(cap->phys_id);
u32 number = le32_to_cpu(cap->number);
info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
dev_p->common_cap.ieee_1588 = info->ena;
info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
info->ena_ports = logical_id;
info->tmr_own_map = phys_id;
ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
dev_p->common_cap.ieee_1588);
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
info->tmr0_owner);
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
info->tmr0_owned);
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
info->tmr0_ena);
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
info->tmr1_owner);
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
info->tmr1_owned);
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
info->tmr1_ena);
ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
info->ts_ll_read);
ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
info->ts_ll_int_read);
ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
info->ena_ports);
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
info->tmr_own_map);
}
/**
* ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_FD for device capabilities.
*/
static void
ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
u32 number = le32_to_cpu(cap->number);
dev_p->num_flow_director_fltr = number;
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
dev_p->num_flow_director_fltr);
}
ice: read internal temperature sensor Since 4.30 firmware exposes internal thermal sensor reading via admin queue commands. Expose those readouts via hwmon API when supported. Datasheet: Get Sensor Reading Command (Opcode: 0x0632) +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Flags | 1-0 | | | | Opcode | 2-3 | 0x0632 | Command opcode | | Datalen | 4-5 | 0 | No external buffer. | | Return value | 6-7 | | Return value. | | Cookie High | 8-11 | Cookie | | | Cookie Low | 12-15 | Cookie | | | Sensor | 16 | | 0x00: Internal temp | | | | | 0x01-0xFF: Reserved. | | Format | 17 | Requested response | Only 0x00 is supported. | | | | format | 0x01-0xFF: Reserved. | | Reserved | 18-23 | | | | Data Address high | 24-27 | Response buffer | | | | | address | | | Data Address low | 28-31 | Response buffer | | | | | address | | +--------------------+--------+--------------------+-------------------------+ Get Sensor Reading Response (Opcode: 0x0632) +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Flags | 1-0 | | | | Opcode | 2-3 | 0x0632 | Command opcode | | Datalen | 4-5 | 0 | No external buffer | | Return value | 6-7 | | Return value. | | | | | EINVAL: Invalid | | | | | parameters | | | | | ENOENT: Unsupported | | | | | sensor | | | | | EIO: Sensor access | | | | | error | | Cookie High | 8-11 | Cookie | | | Cookie Low | 12-15 | Cookie | | | Sensor Reading | 16-23 | | Format of the reading | | | | | is dependent on request | | Data Address high | 24-27 | Response buffer | | | | | address | | | Data Address low | 28-31 | Response buffer | | | | | address | | +--------------------+--------+--------------------+-------------------------+ Sensor Reading for Sensor 0x00 (Internal Chip Temperature): +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Thermal Sensor | 0 | | Reading in degrees | | reading | | | Celsius. Signed int8 | | Warning High | 1 | | Warning High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Critical High | 2 | | Critical High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Fatal High | 3 | | Fatal High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Reserved | 4-7 | | | +--------------------+--------+--------------------+-------------------------+ Driver provides current reading from HW as well as device specific thresholds for thermal alarm (Warning, Critical, Fatal) events. $ sensors Output ========================================================= ice-pci-b100 Adapter: PCI adapter temp1: +62.0°C (high = +95.0°C, crit = +105.0°C) (emerg = +115.0°C) Tested on Intel Corporation Ethernet Controller E810-C for SFP Co-developed-by: Marcin Domagala <marcinx.domagala@intel.com> Signed-off-by: Marcin Domagala <marcinx.domagala@intel.com> Co-developed-by: Eric Joyner <eric.joyner@intel.com> Signed-off-by: Eric Joyner <eric.joyner@intel.com> Reviewed-by: Marcin Szycik <marcin.szycik@linux.intel.com> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Konrad Knitter <konrad.knitter@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-12-01 18:08:39 +00:00
/**
* ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
* enabled sensors.
*/
static void
ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
dev_p->supported_sensors = le32_to_cpu(cap->number);
ice_debug(hw, ICE_DBG_INIT,
"dev caps: supported sensors (bitmap) = 0x%x\n",
dev_p->supported_sensors);
}
/**
* ice_parse_dev_caps - Parse device capabilities
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @buf: buffer containing the device capability records
* @cap_count: the number of capabilities
*
* Helper device to parse device (0x000B) capabilities list. For
* capabilities shared between device and function, this relies on
* ice_parse_common_caps.
*
* Loop through the list of provided capabilities and extract the relevant
* data into the device capabilities structured.
*/
static void
ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
void *buf, u32 cap_count)
{
struct ice_aqc_list_caps_elem *cap_resp;
u32 i;
cap_resp = buf;
memset(dev_p, 0, sizeof(*dev_p));
for (i = 0; i < cap_count; i++) {
u16 cap = le16_to_cpu(cap_resp[i].cap);
bool found;
found = ice_parse_common_caps(hw, &dev_p->common_cap,
&cap_resp[i], "dev caps");
switch (cap) {
case ICE_AQC_CAPS_VALID_FUNCTIONS:
ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2018-03-20 14:58:08 +00:00
break;
case ICE_AQC_CAPS_VF:
ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2018-03-20 14:58:08 +00:00
break;
case ICE_AQC_CAPS_VSI:
ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_1588:
ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
break;
ice: read internal temperature sensor Since 4.30 firmware exposes internal thermal sensor reading via admin queue commands. Expose those readouts via hwmon API when supported. Datasheet: Get Sensor Reading Command (Opcode: 0x0632) +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Flags | 1-0 | | | | Opcode | 2-3 | 0x0632 | Command opcode | | Datalen | 4-5 | 0 | No external buffer. | | Return value | 6-7 | | Return value. | | Cookie High | 8-11 | Cookie | | | Cookie Low | 12-15 | Cookie | | | Sensor | 16 | | 0x00: Internal temp | | | | | 0x01-0xFF: Reserved. | | Format | 17 | Requested response | Only 0x00 is supported. | | | | format | 0x01-0xFF: Reserved. | | Reserved | 18-23 | | | | Data Address high | 24-27 | Response buffer | | | | | address | | | Data Address low | 28-31 | Response buffer | | | | | address | | +--------------------+--------+--------------------+-------------------------+ Get Sensor Reading Response (Opcode: 0x0632) +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Flags | 1-0 | | | | Opcode | 2-3 | 0x0632 | Command opcode | | Datalen | 4-5 | 0 | No external buffer | | Return value | 6-7 | | Return value. | | | | | EINVAL: Invalid | | | | | parameters | | | | | ENOENT: Unsupported | | | | | sensor | | | | | EIO: Sensor access | | | | | error | | Cookie High | 8-11 | Cookie | | | Cookie Low | 12-15 | Cookie | | | Sensor Reading | 16-23 | | Format of the reading | | | | | is dependent on request | | Data Address high | 24-27 | Response buffer | | | | | address | | | Data Address low | 28-31 | Response buffer | | | | | address | | +--------------------+--------+--------------------+-------------------------+ Sensor Reading for Sensor 0x00 (Internal Chip Temperature): +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Thermal Sensor | 0 | | Reading in degrees | | reading | | | Celsius. Signed int8 | | Warning High | 1 | | Warning High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Critical High | 2 | | Critical High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Fatal High | 3 | | Fatal High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Reserved | 4-7 | | | +--------------------+--------+--------------------+-------------------------+ Driver provides current reading from HW as well as device specific thresholds for thermal alarm (Warning, Critical, Fatal) events. $ sensors Output ========================================================= ice-pci-b100 Adapter: PCI adapter temp1: +62.0°C (high = +95.0°C, crit = +105.0°C) (emerg = +115.0°C) Tested on Intel Corporation Ethernet Controller E810-C for SFP Co-developed-by: Marcin Domagala <marcinx.domagala@intel.com> Signed-off-by: Marcin Domagala <marcinx.domagala@intel.com> Co-developed-by: Eric Joyner <eric.joyner@intel.com> Signed-off-by: Eric Joyner <eric.joyner@intel.com> Reviewed-by: Marcin Szycik <marcin.szycik@linux.intel.com> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Konrad Knitter <konrad.knitter@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-12-01 18:08:39 +00:00
case ICE_AQC_CAPS_FD:
ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2018-03-20 14:58:08 +00:00
break;
ice: read internal temperature sensor Since 4.30 firmware exposes internal thermal sensor reading via admin queue commands. Expose those readouts via hwmon API when supported. Datasheet: Get Sensor Reading Command (Opcode: 0x0632) +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Flags | 1-0 | | | | Opcode | 2-3 | 0x0632 | Command opcode | | Datalen | 4-5 | 0 | No external buffer. | | Return value | 6-7 | | Return value. | | Cookie High | 8-11 | Cookie | | | Cookie Low | 12-15 | Cookie | | | Sensor | 16 | | 0x00: Internal temp | | | | | 0x01-0xFF: Reserved. | | Format | 17 | Requested response | Only 0x00 is supported. | | | | format | 0x01-0xFF: Reserved. | | Reserved | 18-23 | | | | Data Address high | 24-27 | Response buffer | | | | | address | | | Data Address low | 28-31 | Response buffer | | | | | address | | +--------------------+--------+--------------------+-------------------------+ Get Sensor Reading Response (Opcode: 0x0632) +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Flags | 1-0 | | | | Opcode | 2-3 | 0x0632 | Command opcode | | Datalen | 4-5 | 0 | No external buffer | | Return value | 6-7 | | Return value. | | | | | EINVAL: Invalid | | | | | parameters | | | | | ENOENT: Unsupported | | | | | sensor | | | | | EIO: Sensor access | | | | | error | | Cookie High | 8-11 | Cookie | | | Cookie Low | 12-15 | Cookie | | | Sensor Reading | 16-23 | | Format of the reading | | | | | is dependent on request | | Data Address high | 24-27 | Response buffer | | | | | address | | | Data Address low | 28-31 | Response buffer | | | | | address | | +--------------------+--------+--------------------+-------------------------+ Sensor Reading for Sensor 0x00 (Internal Chip Temperature): +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Thermal Sensor | 0 | | Reading in degrees | | reading | | | Celsius. Signed int8 | | Warning High | 1 | | Warning High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Critical High | 2 | | Critical High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Fatal High | 3 | | Fatal High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Reserved | 4-7 | | | +--------------------+--------+--------------------+-------------------------+ Driver provides current reading from HW as well as device specific thresholds for thermal alarm (Warning, Critical, Fatal) events. $ sensors Output ========================================================= ice-pci-b100 Adapter: PCI adapter temp1: +62.0°C (high = +95.0°C, crit = +105.0°C) (emerg = +115.0°C) Tested on Intel Corporation Ethernet Controller E810-C for SFP Co-developed-by: Marcin Domagala <marcinx.domagala@intel.com> Signed-off-by: Marcin Domagala <marcinx.domagala@intel.com> Co-developed-by: Eric Joyner <eric.joyner@intel.com> Signed-off-by: Eric Joyner <eric.joyner@intel.com> Reviewed-by: Marcin Szycik <marcin.szycik@linux.intel.com> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Konrad Knitter <konrad.knitter@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-12-01 18:08:39 +00:00
case ICE_AQC_CAPS_SENSOR_READING:
ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
break;
2018-03-20 14:58:08 +00:00
default:
/* Don't list common capabilities as unknown */
if (!found)
ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
i, cap);
2018-03-20 14:58:08 +00:00
break;
}
}
ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
}
/**
* ice_is_pf_c827 - check if pf contains c827 phy
* @hw: pointer to the hw struct
*/
bool ice_is_pf_c827(struct ice_hw *hw)
{
struct ice_aqc_get_link_topo cmd = {};
u8 node_part_number;
u16 node_handle;
int status;
if (hw->mac_type != ICE_MAC_E810)
return false;
if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
return true;
cmd.addr.topo_params.node_type_ctx =
FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
cmd.addr.topo_params.index = 0;
status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
&node_handle);
if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
return false;
if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
return true;
return false;
}
ice: fix linking when CONFIG_PTP_1588_CLOCK=n The recent support for DPLL introduced by commit 8a3a565ff210 ("ice: add admin commands to access cgu configuration") and commit d7999f5ea64b ("ice: implement dpll interface to control cgu") broke linking the ice driver if CONFIG_PTP_1588_CLOCK=n: ld: vmlinux.o: in function `ice_init_feature_support': (.text+0x8702b8): undefined reference to `ice_is_phy_rclk_present' ld: (.text+0x8702cd): undefined reference to `ice_is_cgu_present' ld: (.text+0x8702d9): undefined reference to `ice_is_clock_mux_present_e810t' ld: vmlinux.o: in function `ice_dpll_init_info_direct_pins': ice_dpll.c:(.text+0x894167): undefined reference to `ice_cgu_get_pin_freq_supp' ld: ice_dpll.c:(.text+0x894197): undefined reference to `ice_cgu_get_pin_name' ld: ice_dpll.c:(.text+0x8941a8): undefined reference to `ice_cgu_get_pin_type' ld: vmlinux.o: in function `ice_dpll_update_state': ice_dpll.c:(.text+0x894494): undefined reference to `ice_get_cgu_state' ld: vmlinux.o: in function `ice_dpll_init': (.text+0x8953d5): undefined reference to `ice_get_cgu_rclk_pin_info' The first commit broke things by calling functions in ice_init_feature_support that are compiled as part of ice_ptp_hw.o, including: * ice_is_phy_rclk_present * ice_is_clock_mux_present_e810t * ice_is_cgU_present The second commit continued the break by calling several CGU functions defined in ice_ptp_hw.c in the DPLL code. Because the ice_dpll.c file is compiled unconditionally, it will not link when CONFIG_PTP_1588_CLOCK=n. It might be possible to break this dependency and expose those functions without CONFIG_PTP_1588_CLOCK, but that is not clear to me. For the DPLL case, simply compile ice_dpll.o only when we have CONFIG_PTP_1588_CLOCK. Add stub no-op implementation of ice_dpll_init() and ice_dpll_uninit() when CONFIG_PTP_1588_CLOCK=n into ice_dpll.h The other functions are part of checking the netlist to see if hardware features are enabled. These checks don't really belong in ice_ptp_hw.c, and make more sense as part of the ice_common.c file. We already have ice_is_gps_in_netlist() in ice_common.c which is doing a similar check. Move the functions into ice_common.c and rename them to have the similar postfix of "in_netlist()" to be more expressive of what they are actually checking. This also makes the ice_find_netlist_node only called from within ice_common.c, so its safe to mark it static and stop declaring it in the ice_common.h header as well. Fixes: 8a3a565ff210 ("ice: add admin commands to access cgu configuration") Fixes: d7999f5ea64b ("ice: implement dpll interface to control cgu") Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202309191214.TaYEct4H-lkp@intel.com Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Reviewed-by: Simon Horman <horms@kernel.org> Tested-by: Simon Horman <horms@kernel.org> # build-tested Link: https://lore.kernel.org/r/20231002185132.1575271-1-anthony.l.nguyen@intel.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-10-02 18:51:32 +00:00
/**
* ice_is_phy_rclk_in_netlist
* @hw: pointer to the hw struct
*
* Check if the PHY Recovered Clock device is present in the netlist
*/
bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
{
if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
return false;
return true;
}
/**
* ice_is_clock_mux_in_netlist
* @hw: pointer to the hw struct
*
* Check if the Clock Multiplexer device is present in the netlist
*/
bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
{
if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
NULL))
return false;
return true;
}
/**
* ice_is_cgu_in_netlist - check for CGU presence
* @hw: pointer to the hw struct
*
* Check if the Clock Generation Unit (CGU) device is present in the netlist.
* Save the CGU part number in the hw structure for later use.
* Return:
* * true - cgu is present
* * false - cgu is not present
*/
bool ice_is_cgu_in_netlist(struct ice_hw *hw)
{
if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
NULL)) {
hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
return true;
} else if (!ice_find_netlist_node(hw,
ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
NULL)) {
hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
return true;
}
return false;
}
/**
* ice_is_gps_in_netlist
* @hw: pointer to the hw struct
*
* Check if the GPS generic device is present in the netlist
*/
bool ice_is_gps_in_netlist(struct ice_hw *hw)
{
if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
return false;
return true;
}
2018-03-20 14:58:08 +00:00
/**
* ice_aq_list_caps - query function/device capabilities
* @hw: pointer to the HW struct
* @buf: a buffer to hold the capabilities
* @buf_size: size of the buffer
* @cap_count: if not NULL, set to the number of capabilities reported
* @opc: capabilities type to discover, device or function
2018-03-20 14:58:08 +00:00
* @cd: pointer to command details structure or NULL
*
* Get the function (0x000A) or device (0x000B) capabilities description from
* firmware and store it in the buffer.
*
* If the cap_count pointer is not NULL, then it is set to the number of
* capabilities firmware will report. Note that if the buffer size is too
* small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
* cap_count will still be updated in this case. It is recommended that the
* buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
* firmware could return) to avoid this.
2018-03-20 14:58:08 +00:00
*/
int
ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2018-03-20 14:58:08 +00:00
{
struct ice_aqc_list_caps *cmd;
struct ice_aq_desc desc;
int status;
2018-03-20 14:58:08 +00:00
cmd = &desc.params.get_cap;
if (opc != ice_aqc_opc_list_func_caps &&
opc != ice_aqc_opc_list_dev_caps)
return -EINVAL;
2018-03-20 14:58:08 +00:00
ice_fill_dflt_direct_cmd_desc(&desc, opc);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (cap_count)
*cap_count = le32_to_cpu(cmd->count);
return status;
}
/**
* ice_discover_dev_caps - Read and extract device capabilities
* @hw: pointer to the hardware structure
* @dev_caps: pointer to device capabilities structure
*
* Read the device capabilities and extract them into the dev_caps structure
* for later use.
*/
int
ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
{
u32 cap_count = 0;
void *cbuf;
int status;
cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
if (!cbuf)
return -ENOMEM;
/* Although the driver doesn't know the number of capabilities the
* device will return, we can simply send a 4KB buffer, the maximum
* possible size that firmware can return.
*/
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
ice_aqc_opc_list_dev_caps, NULL);
2018-03-20 14:58:08 +00:00
if (!status)
ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
kfree(cbuf);
2018-03-20 14:58:08 +00:00
return status;
}
/**
* ice_discover_func_caps - Read and extract function capabilities
2018-03-20 14:58:08 +00:00
* @hw: pointer to the hardware structure
* @func_caps: pointer to function capabilities structure
*
* Read the function capabilities and extract them into the func_caps structure
* for later use.
2018-03-20 14:58:08 +00:00
*/
static int
ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2018-03-20 14:58:08 +00:00
{
u32 cap_count = 0;
void *cbuf;
int status;
2018-03-20 14:58:08 +00:00
cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
if (!cbuf)
return -ENOMEM;
2018-03-20 14:58:08 +00:00
/* Although the driver doesn't know the number of capabilities the
* device will return, we can simply send a 4KB buffer, the maximum
* possible size that firmware can return.
*/
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2018-03-20 14:58:08 +00:00
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
ice_aqc_opc_list_func_caps, NULL);
if (!status)
ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
kfree(cbuf);
2018-03-20 14:58:08 +00:00
return status;
}
/**
* ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
* @hw: pointer to the hardware structure
*/
void ice_set_safe_mode_caps(struct ice_hw *hw)
{
struct ice_hw_func_caps *func_caps = &hw->func_caps;
struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
struct ice_hw_common_caps cached_caps;
u32 num_funcs;
/* cache some func_caps values that should be restored after memset */
cached_caps = func_caps->common_cap;
/* unset func capabilities */
memset(func_caps, 0, sizeof(*func_caps));
#define ICE_RESTORE_FUNC_CAP(name) \
func_caps->common_cap.name = cached_caps.name
/* restore cached values */
ICE_RESTORE_FUNC_CAP(valid_functions);
ICE_RESTORE_FUNC_CAP(txq_first_id);
ICE_RESTORE_FUNC_CAP(rxq_first_id);
ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
ICE_RESTORE_FUNC_CAP(max_mtu);
ICE_RESTORE_FUNC_CAP(nvm_unified_update);
ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
/* one Tx and one Rx queue in safe mode */
func_caps->common_cap.num_rxq = 1;
func_caps->common_cap.num_txq = 1;
/* two MSIX vectors, one for traffic and one for misc causes */
func_caps->common_cap.num_msix_vectors = 2;
func_caps->guar_num_vsi = 1;
/* cache some dev_caps values that should be restored after memset */
cached_caps = dev_caps->common_cap;
num_funcs = dev_caps->num_funcs;
/* unset dev capabilities */
memset(dev_caps, 0, sizeof(*dev_caps));
#define ICE_RESTORE_DEV_CAP(name) \
dev_caps->common_cap.name = cached_caps.name
/* restore cached values */
ICE_RESTORE_DEV_CAP(valid_functions);
ICE_RESTORE_DEV_CAP(txq_first_id);
ICE_RESTORE_DEV_CAP(rxq_first_id);
ICE_RESTORE_DEV_CAP(msix_vector_first_id);
ICE_RESTORE_DEV_CAP(max_mtu);
ICE_RESTORE_DEV_CAP(nvm_unified_update);
ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
dev_caps->num_funcs = num_funcs;
/* one Tx and one Rx queue per function in safe mode */
dev_caps->common_cap.num_rxq = num_funcs;
dev_caps->common_cap.num_txq = num_funcs;
/* two MSIX vectors per function */
dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
}
/**
* ice_get_caps - get info about the HW
* @hw: pointer to the hardware structure
*/
int ice_get_caps(struct ice_hw *hw)
{
int status;
status = ice_discover_dev_caps(hw, &hw->dev_caps);
if (status)
return status;
return ice_discover_func_caps(hw, &hw->func_caps);
}
/**
* ice_aq_manage_mac_write - manage MAC address write command
* @hw: pointer to the HW struct
* @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
* @flags: flags to control write behavior
* @cd: pointer to command details structure or NULL
*
* This function is used to write MAC address to the NVM (0x0108).
*/
int
ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_write *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.mac_write;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
cmd->flags = flags;
ether_addr_copy(cmd->mac_addr, mac_addr);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_clear_pxe_mode
* @hw: pointer to the HW struct
*
* Tell the firmware that the driver is taking over from PXE (0x0110).
*/
static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_clear_pxe_mode - clear pxe operations mode
* @hw: pointer to the HW struct
*
* Make sure all PXE mode settings are cleared, including things
* like descriptor fetch/write-back mode.
*/
void ice_clear_pxe_mode(struct ice_hw *hw)
{
if (ice_check_sq_alive(hw, &hw->adminq))
ice_aq_clear_pxe_mode(hw);
}
/**
* ice_aq_set_port_params - set physical port parameters.
* @pi: pointer to the port info struct
* @double_vlan: if set double VLAN is enabled
* @cd: pointer to command details structure or NULL
*
* Set Physical port parameters (0x0203)
*/
int
ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_port_params *cmd;
struct ice_hw *hw = pi->hw;
struct ice_aq_desc desc;
u16 cmd_flags = 0;
cmd = &desc.params.set_port_params;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
if (double_vlan)
cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
cmd->cmd_flags = cpu_to_le16(cmd_flags);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_is_100m_speed_supported
* @hw: pointer to the HW struct
*
* returns true if 100M speeds are supported by the device,
* false otherwise.
*/
bool ice_is_100m_speed_supported(struct ice_hw *hw)
{
switch (hw->device_id) {
case ICE_DEV_ID_E822C_SGMII:
case ICE_DEV_ID_E822L_SGMII:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823C_SGMII:
return true;
default:
return false;
}
}
/**
* ice_get_link_speed_based_on_phy_type - returns link speed
* @phy_type_low: lower part of phy_type
* @phy_type_high: higher part of phy_type
*
* This helper function will convert an entry in PHY type structure
* [phy_type_low, phy_type_high] to its corresponding link speed.
* Note: In the structure of [phy_type_low, phy_type_high], there should
* be one bit set, as this function will convert one PHY type to its
* speed.
* If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
* If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
*/
static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
{
u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
switch (phy_type_low) {
case ICE_PHY_TYPE_LOW_100BASE_TX:
case ICE_PHY_TYPE_LOW_100M_SGMII:
speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
break;
case ICE_PHY_TYPE_LOW_1000BASE_T:
case ICE_PHY_TYPE_LOW_1000BASE_SX:
case ICE_PHY_TYPE_LOW_1000BASE_LX:
case ICE_PHY_TYPE_LOW_1000BASE_KX:
case ICE_PHY_TYPE_LOW_1G_SGMII:
speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
break;
case ICE_PHY_TYPE_LOW_2500BASE_T:
case ICE_PHY_TYPE_LOW_2500BASE_X:
case ICE_PHY_TYPE_LOW_2500BASE_KX:
speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
break;
case ICE_PHY_TYPE_LOW_5GBASE_T:
case ICE_PHY_TYPE_LOW_5GBASE_KR:
speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
break;
case ICE_PHY_TYPE_LOW_10GBASE_T:
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
case ICE_PHY_TYPE_LOW_10GBASE_SR:
case ICE_PHY_TYPE_LOW_10GBASE_LR:
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
break;
case ICE_PHY_TYPE_LOW_25GBASE_T:
case ICE_PHY_TYPE_LOW_25GBASE_CR:
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
case ICE_PHY_TYPE_LOW_25GBASE_SR:
case ICE_PHY_TYPE_LOW_25GBASE_LR:
case ICE_PHY_TYPE_LOW_25GBASE_KR:
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
break;
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_40G_XLAUI:
speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
break;
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_LAUI2:
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI2:
case ICE_PHY_TYPE_LOW_50GBASE_CP:
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI1:
speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
break;
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_CAUI4:
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_AUI4:
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
case ICE_PHY_TYPE_LOW_100GBASE_DR:
speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
break;
default:
speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
break;
}
switch (phy_type_high) {
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_AUI2:
speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
break;
default:
speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
break;
}
if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
return ICE_AQ_LINK_SPEED_UNKNOWN;
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
return ICE_AQ_LINK_SPEED_UNKNOWN;
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
return speed_phy_type_low;
else
return speed_phy_type_high;
}
/**
* ice_update_phy_type
* @phy_type_low: pointer to the lower part of phy_type
* @phy_type_high: pointer to the higher part of phy_type
* @link_speeds_bitmap: targeted link speeds bitmap
*
* Note: For the link_speeds_bitmap structure, you can check it at
* [ice_aqc_get_link_status->link_speed]. Caller can pass in
* link_speeds_bitmap include multiple speeds.
*
* Each entry in this [phy_type_low, phy_type_high] structure will
* present a certain link speed. This helper function will turn on bits
* in [phy_type_low, phy_type_high] structure based on the value of
* link_speeds_bitmap input parameter.
*/
void
ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
u16 link_speeds_bitmap)
{
u64 pt_high;
u64 pt_low;
int index;
u16 speed;
/* We first check with low part of phy_type */
for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
pt_low = BIT_ULL(index);
speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
if (link_speeds_bitmap & speed)
*phy_type_low |= BIT_ULL(index);
}
/* We then check with high part of phy_type */
for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
pt_high = BIT_ULL(index);
speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
if (link_speeds_bitmap & speed)
*phy_type_high |= BIT_ULL(index);
}
}
/**
* ice_aq_set_phy_cfg
* @hw: pointer to the HW struct
* @pi: port info structure of the interested logical port
* @cfg: structure with PHY configuration data to be set
* @cd: pointer to command details structure or NULL
*
* Set the various PHY configuration parameters supported on the Port.
* One or more of the Set PHY config parameters may be ignored in an MFP
* mode as the PF may not have the privilege to set some of the PHY Config
* parameters. This status will be indicated by the command response (0x0601).
*/
int
ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
int status;
if (!cfg)
return -EINVAL;
/* Ensure that only valid bits of cfg->caps can be turned on. */
if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
cfg->caps);
cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
}
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
desc.params.set_phy.lport_num = pi->lport;
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
(unsigned long long)le64_to_cpu(cfg->phy_type_low));
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
(unsigned long long)le64_to_cpu(cfg->phy_type_high));
ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
cfg->low_power_ctrl_an);
ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
cfg->link_fec_opt);
status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
status = 0;
if (!status)
pi->phy.curr_user_phy_cfg = *cfg;
return status;
}
/**
* ice_update_link_info - update status of the HW network link
* @pi: port info structure of the interested logical port
*/
int ice_update_link_info(struct ice_port_info *pi)
{
struct ice_link_status *li;
int status;
if (!pi)
return -EINVAL;
li = &pi->phy.link_info;
status = ice_aq_get_link_info(pi, true, NULL, NULL);
if (status)
return status;
if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return -ENOMEM;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
pcaps, NULL);
}
return status;
}
/**
* ice_cache_phy_user_req
* @pi: port information structure
* @cache_data: PHY logging data
* @cache_mode: PHY logging mode
*
* Log the user request on (FC, FEC, SPEED) for later use.
*/
static void
ice_cache_phy_user_req(struct ice_port_info *pi,
struct ice_phy_cache_mode_data cache_data,
enum ice_phy_cache_mode cache_mode)
{
if (!pi)
return;
switch (cache_mode) {
case ICE_FC_MODE:
pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
break;
case ICE_SPEED_MODE:
pi->phy.curr_user_speed_req =
cache_data.data.curr_user_speed_req;
break;
case ICE_FEC_MODE:
pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
break;
default:
break;
}
}
/**
* ice_caps_to_fc_mode
* @caps: PHY capabilities
*
* Convert PHY FC capabilities to ice FC mode
*/
enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
{
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
return ICE_FC_FULL;
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
return ICE_FC_TX_PAUSE;
if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
return ICE_FC_RX_PAUSE;
return ICE_FC_NONE;
}
/**
* ice_caps_to_fec_mode
* @caps: PHY capabilities
* @fec_options: Link FEC options
*
* Convert PHY FEC capabilities to ice FEC mode
*/
enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
{
if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
return ICE_FEC_AUTO;
if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
ICE_AQC_PHY_FEC_25G_KR_REQ))
return ICE_FEC_BASER;
if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
ICE_AQC_PHY_FEC_25G_RS_544_REQ |
ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
return ICE_FEC_RS;
return ICE_FEC_NONE;
}
/**
* ice_cfg_phy_fc - Configure PHY FC data based on FC mode
* @pi: port information structure
* @cfg: PHY configuration data to set FC mode
* @req_mode: FC mode to configure
*/
int
ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
enum ice_fc_mode req_mode)
{
struct ice_phy_cache_mode_data cache_data;
u8 pause_mask = 0x0;
if (!pi || !cfg)
return -EINVAL;
switch (req_mode) {
case ICE_FC_FULL:
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
break;
case ICE_FC_RX_PAUSE:
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
break;
case ICE_FC_TX_PAUSE:
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
break;
default:
break;
}
/* clear the old pause settings */
cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
ICE_AQC_PHY_EN_RX_LINK_PAUSE);
/* set the new capabilities */
cfg->caps |= pause_mask;
/* Cache user FC request */
cache_data.data.curr_user_fc_req = req_mode;
ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
return 0;
}
/**
* ice_set_fc
* @pi: port information structure
* @aq_failures: pointer to status code, specific to ice_set_fc routine
* @ena_auto_link_update: enable automatic link update
*
* Set the requested flow control mode.
*/
int
ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
{
struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_hw *hw;
int status;
if (!pi || !aq_failures)
return -EINVAL;
*aq_failures = 0;
hw = pi->hw;
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return -ENOMEM;
/* Get the current PHY config */
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
pcaps, NULL);
if (status) {
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
goto out;
}
ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
/* Configure the set PHY data */
status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
if (status)
goto out;
/* If the capabilities have changed, then set the new config */
if (cfg.caps != pcaps->caps) {
int retry_count, retry_max = 10;
/* Auto restart link so settings take effect */
if (ena_auto_link_update)
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
if (status) {
*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
goto out;
}
/* Update the link info
* It sometimes takes a really long time for link to
* come back from the atomic reset. Thus, we wait a
* little bit.
*/
for (retry_count = 0; retry_count < retry_max; retry_count++) {
status = ice_update_link_info(pi);
if (!status)
break;
mdelay(100);
}
if (status)
*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
}
out:
return status;
}
/**
* ice_phy_caps_equals_cfg
* @phy_caps: PHY capabilities
* @phy_cfg: PHY configuration
*
* Helper function to determine if PHY capabilities matches PHY
* configuration
*/
bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
struct ice_aqc_set_phy_cfg_data *phy_cfg)
{
u8 caps_mask, cfg_mask;
if (!phy_caps || !phy_cfg)
return false;
/* These bits are not common between capabilities and configuration.
* Do not use them to determine equality.
*/
caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
ICE_AQC_GET_PHY_EN_MOD_QUAL);
cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
phy_caps->phy_type_high != phy_cfg->phy_type_high ||
((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
phy_caps->eee_cap != phy_cfg->eee_cap ||
phy_caps->eeer_value != phy_cfg->eeer_value ||
phy_caps->link_fec_options != phy_cfg->link_fec_opt)
return false;
return true;
}
/**
* ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
* @pi: port information structure
* @caps: PHY ability structure to copy date from
* @cfg: PHY configuration structure to copy data to
*
* Helper function to copy AQC PHY get ability data to PHY set configuration
* data structure
*/
void
ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *caps,
struct ice_aqc_set_phy_cfg_data *cfg)
{
if (!pi || !caps || !cfg)
return;
memset(cfg, 0, sizeof(*cfg));
cfg->phy_type_low = caps->phy_type_low;
cfg->phy_type_high = caps->phy_type_high;
cfg->caps = caps->caps;
cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
cfg->eee_cap = caps->eee_cap;
cfg->eeer_value = caps->eeer_value;
cfg->link_fec_opt = caps->link_fec_options;
cfg->module_compliance_enforcement =
caps->module_compliance_enforcement;
}
/**
* ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
* @pi: port information structure
* @cfg: PHY configuration data to set FEC mode
* @fec: FEC mode to configure
*/
int
ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
enum ice_fec_mode fec)
{
struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
struct ice_hw *hw;
int status;
if (!pi || !cfg)
return -EINVAL;
hw = pi->hw;
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return -ENOMEM;
status = ice_aq_get_phy_caps(pi, false,
(ice_fw_supports_report_dflt_cfg(hw) ?
ICE_AQC_REPORT_DFLT_CFG :
ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
if (status)
goto out;
cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
cfg->link_fec_opt = pcaps->link_fec_options;
switch (fec) {
case ICE_FEC_BASER:
/* Clear RS bits, and AND BASE-R ability
* bits and OR request bits.
*/
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
ICE_AQC_PHY_FEC_25G_KR_REQ;
break;
case ICE_FEC_RS:
/* Clear BASE-R bits, and AND RS ability
* bits and OR request bits.
*/
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
ICE_AQC_PHY_FEC_25G_RS_544_REQ;
break;
case ICE_FEC_NONE:
/* Clear all FEC option bits. */
cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
break;
case ICE_FEC_AUTO:
/* AND auto FEC bit, and all caps bits. */
cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
cfg->link_fec_opt |= pcaps->link_fec_options;
break;
default:
status = -EINVAL;
break;
}
if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
!ice_fw_supports_report_dflt_cfg(hw)) {
struct ice_link_default_override_tlv tlv = { 0 };
status = ice_get_link_default_override(&tlv, pi);
if (status)
goto out;
if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
(tlv.options & ICE_LINK_OVERRIDE_EN))
cfg->link_fec_opt = tlv.fec_options;
}
out:
return status;
}
ice: Support link events, reset and rebuild Link events are posted to a PF's admin receive queue (ARQ). This patch adds the ability to detect and process link events. This patch also adds the ability to process resets. The driver can process the following resets: 1) EMP Reset (EMPR) 2) Global Reset (GLOBR) 3) Core Reset (CORER) 4) Physical Function Reset (PFR) EMPR is the largest level of reset that the driver can handle. An EMPR resets the manageability block and also the data path, including PHY and link for all the PFs. The affected PFs are notified of this event through a miscellaneous interrupt. GLOBR is a subset of EMPR. It does everything EMPR does except that it doesn't reset the manageability block. CORER is a subset of GLOBR. It does everything GLOBR does but doesn't reset PHY and link. PFR is a subset of CORER and affects only the given physical function. In other words, PFR can be thought of as a CORER for a single PF. Since only the issuing PF is affected, a PFR doesn't result in the miscellaneous interrupt being triggered. All the resets have the following in common: 1) Tx/Rx is halted and all queues are stopped. 2) All the VSIs and filters programmed for the PF are lost and have to be reprogrammed. 3) Control queue interfaces are reset and have to be reprogrammed. In the rebuild flow, control queues are reinitialized, VSIs are reallocated and filters are restored. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:18 +00:00
/**
* ice_get_link_status - get status of the HW network link
* @pi: port information structure
* @link_up: pointer to bool (true/false = linkup/linkdown)
*
* Variable link_up is true if link is up, false if link is down.
* The variable link_up is invalid if status is non zero. As a
* result of this call, link status reporting becomes enabled
*/
int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
ice: Support link events, reset and rebuild Link events are posted to a PF's admin receive queue (ARQ). This patch adds the ability to detect and process link events. This patch also adds the ability to process resets. The driver can process the following resets: 1) EMP Reset (EMPR) 2) Global Reset (GLOBR) 3) Core Reset (CORER) 4) Physical Function Reset (PFR) EMPR is the largest level of reset that the driver can handle. An EMPR resets the manageability block and also the data path, including PHY and link for all the PFs. The affected PFs are notified of this event through a miscellaneous interrupt. GLOBR is a subset of EMPR. It does everything EMPR does except that it doesn't reset the manageability block. CORER is a subset of GLOBR. It does everything GLOBR does but doesn't reset PHY and link. PFR is a subset of CORER and affects only the given physical function. In other words, PFR can be thought of as a CORER for a single PF. Since only the issuing PF is affected, a PFR doesn't result in the miscellaneous interrupt being triggered. All the resets have the following in common: 1) Tx/Rx is halted and all queues are stopped. 2) All the VSIs and filters programmed for the PF are lost and have to be reprogrammed. 3) Control queue interfaces are reset and have to be reprogrammed. In the rebuild flow, control queues are reinitialized, VSIs are reallocated and filters are restored. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:18 +00:00
{
struct ice_phy_info *phy_info;
int status = 0;
ice: Support link events, reset and rebuild Link events are posted to a PF's admin receive queue (ARQ). This patch adds the ability to detect and process link events. This patch also adds the ability to process resets. The driver can process the following resets: 1) EMP Reset (EMPR) 2) Global Reset (GLOBR) 3) Core Reset (CORER) 4) Physical Function Reset (PFR) EMPR is the largest level of reset that the driver can handle. An EMPR resets the manageability block and also the data path, including PHY and link for all the PFs. The affected PFs are notified of this event through a miscellaneous interrupt. GLOBR is a subset of EMPR. It does everything EMPR does except that it doesn't reset the manageability block. CORER is a subset of GLOBR. It does everything GLOBR does but doesn't reset PHY and link. PFR is a subset of CORER and affects only the given physical function. In other words, PFR can be thought of as a CORER for a single PF. Since only the issuing PF is affected, a PFR doesn't result in the miscellaneous interrupt being triggered. All the resets have the following in common: 1) Tx/Rx is halted and all queues are stopped. 2) All the VSIs and filters programmed for the PF are lost and have to be reprogrammed. 3) Control queue interfaces are reset and have to be reprogrammed. In the rebuild flow, control queues are reinitialized, VSIs are reallocated and filters are restored. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:18 +00:00
if (!pi || !link_up)
return -EINVAL;
ice: Support link events, reset and rebuild Link events are posted to a PF's admin receive queue (ARQ). This patch adds the ability to detect and process link events. This patch also adds the ability to process resets. The driver can process the following resets: 1) EMP Reset (EMPR) 2) Global Reset (GLOBR) 3) Core Reset (CORER) 4) Physical Function Reset (PFR) EMPR is the largest level of reset that the driver can handle. An EMPR resets the manageability block and also the data path, including PHY and link for all the PFs. The affected PFs are notified of this event through a miscellaneous interrupt. GLOBR is a subset of EMPR. It does everything EMPR does except that it doesn't reset the manageability block. CORER is a subset of GLOBR. It does everything GLOBR does but doesn't reset PHY and link. PFR is a subset of CORER and affects only the given physical function. In other words, PFR can be thought of as a CORER for a single PF. Since only the issuing PF is affected, a PFR doesn't result in the miscellaneous interrupt being triggered. All the resets have the following in common: 1) Tx/Rx is halted and all queues are stopped. 2) All the VSIs and filters programmed for the PF are lost and have to be reprogrammed. 3) Control queue interfaces are reset and have to be reprogrammed. In the rebuild flow, control queues are reinitialized, VSIs are reallocated and filters are restored. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:18 +00:00
phy_info = &pi->phy;
if (phy_info->get_link_info) {
status = ice_update_link_info(pi);
if (status)
ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
ice: Support link events, reset and rebuild Link events are posted to a PF's admin receive queue (ARQ). This patch adds the ability to detect and process link events. This patch also adds the ability to process resets. The driver can process the following resets: 1) EMP Reset (EMPR) 2) Global Reset (GLOBR) 3) Core Reset (CORER) 4) Physical Function Reset (PFR) EMPR is the largest level of reset that the driver can handle. An EMPR resets the manageability block and also the data path, including PHY and link for all the PFs. The affected PFs are notified of this event through a miscellaneous interrupt. GLOBR is a subset of EMPR. It does everything EMPR does except that it doesn't reset the manageability block. CORER is a subset of GLOBR. It does everything GLOBR does but doesn't reset PHY and link. PFR is a subset of CORER and affects only the given physical function. In other words, PFR can be thought of as a CORER for a single PF. Since only the issuing PF is affected, a PFR doesn't result in the miscellaneous interrupt being triggered. All the resets have the following in common: 1) Tx/Rx is halted and all queues are stopped. 2) All the VSIs and filters programmed for the PF are lost and have to be reprogrammed. 3) Control queue interfaces are reset and have to be reprogrammed. In the rebuild flow, control queues are reinitialized, VSIs are reallocated and filters are restored. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-20 14:58:18 +00:00
status);
}
*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
return status;
}
/**
* ice_aq_set_link_restart_an
* @pi: pointer to the port information structure
* @ena_link: if true: enable link, if false: disable link
* @cd: pointer to command details structure or NULL
*
* Sets up the link and restarts the Auto-Negotiation over the link.
*/
int
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
struct ice_sq_cd *cd)
{
struct ice_aqc_restart_an *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.restart_an;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
cmd->lport_num = pi->lport;
if (ena_link)
cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
else
cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_event_mask
* @hw: pointer to the HW struct
* @port_num: port number of the physical function
* @mask: event mask to be set
* @cd: pointer to command details structure or NULL
*
* Set event mask (0x0613)
*/
int
ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_event_mask *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_event_mask;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
cmd->lport_num = port_num;
cmd->event_mask = cpu_to_le16(mask);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_mac_loopback
* @hw: pointer to the HW struct
* @ena_lpbk: Enable or Disable loopback
* @cd: pointer to command details structure or NULL
*
* Enable/disable loopback on a given port
*/
int
ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
{
struct ice_aqc_set_mac_lb *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_mac_lb;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
if (ena_lpbk)
cmd->lb_mode = ICE_AQ_MAC_LB_EN;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_port_id_led
* @pi: pointer to the port information
* @is_orig_mode: is this LED set to original mode (by the net-list)
* @cd: pointer to command details structure or NULL
*
* Set LED value for the given port (0x06e9)
*/
int
ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_port_id_led *cmd;
struct ice_hw *hw = pi->hw;
struct ice_aq_desc desc;
cmd = &desc.params.set_port_id_led;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
if (is_orig_mode)
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
else
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_get_port_options
* @hw: pointer to the HW struct
* @options: buffer for the resultant port options
* @option_count: input - size of the buffer in port options structures,
* output - number of returned port options
* @lport: logical port to call the command with (optional)
* @lport_valid: when false, FW uses port owned by the PF instead of lport,
* when PF owns more than 1 port it must be true
* @active_option_idx: index of active port option in returned buffer
* @active_option_valid: active option in returned buffer is valid
* @pending_option_idx: index of pending port option in returned buffer
* @pending_option_valid: pending option in returned buffer is valid
*
* Calls Get Port Options AQC (0x06ea) and verifies result.
*/
int
ice_aq_get_port_options(struct ice_hw *hw,
struct ice_aqc_get_port_options_elem *options,
u8 *option_count, u8 lport, bool lport_valid,
u8 *active_option_idx, bool *active_option_valid,
u8 *pending_option_idx, bool *pending_option_valid)
{
struct ice_aqc_get_port_options *cmd;
struct ice_aq_desc desc;
int status;
u8 i;
/* options buffer shall be able to hold max returned options */
if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
return -EINVAL;
cmd = &desc.params.get_port_options;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
if (lport_valid)
cmd->lport_num = lport;
cmd->lport_num_valid = lport_valid;
status = ice_aq_send_cmd(hw, &desc, options,
*option_count * sizeof(*options), NULL);
if (status)
return status;
/* verify direct FW response & set output parameters */
*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
cmd->port_options_count);
ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
cmd->port_options);
if (*active_option_valid) {
*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
cmd->port_options);
if (*active_option_idx > (*option_count - 1))
return -EIO;
ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
*active_option_idx);
}
*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
cmd->pending_port_option_status);
if (*pending_option_valid) {
*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
cmd->pending_port_option_status);
if (*pending_option_idx > (*option_count - 1))
return -EIO;
ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
*pending_option_idx);
}
/* mask output options fields */
for (i = 0; i < *option_count; i++) {
options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
options[i].pmd);
options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
options[i].max_lane_speed);
ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
options[i].pmd, options[i].max_lane_speed);
}
return 0;
}
/**
* ice_aq_set_port_option
* @hw: pointer to the HW struct
* @lport: logical port to call the command with
* @lport_valid: when false, FW uses port owned by the PF instead of lport,
* when PF owns more than 1 port it must be true
* @new_option: new port option to be written
*
* Calls Set Port Options AQC (0x06eb).
*/
int
ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
u8 new_option)
{
struct ice_aqc_set_port_option *cmd;
struct ice_aq_desc desc;
if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
return -EINVAL;
cmd = &desc.params.set_port_option;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
if (lport_valid)
cmd->lport_num = lport;
cmd->lport_num_valid = lport_valid;
cmd->selected_port_option = new_option;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_sff_eeprom
* @hw: pointer to the HW struct
* @lport: bits [7:0] = logical port, bit [8] = logical port valid
* @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
* @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
* @page: QSFP page
* @set_page: set or ignore the page
* @data: pointer to data buffer to be read/written to the I2C device.
* @length: 1-16 for read, 1 for write.
* @write: 0 read, 1 for write.
* @cd: pointer to command details structure or NULL
*
* Read/Write SFF EEPROM (0x06EE)
*/
int
ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
bool write, struct ice_sq_cd *cd)
{
struct ice_aqc_sff_eeprom *cmd;
struct ice_aq_desc desc;
u16 i2c_bus_addr;
int status;
if (!data || (mem_addr & 0xff00))
return -EINVAL;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
cmd = &desc.params.read_write_sff_param;
desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
cmd->lport_num = (u8)(lport & 0xff);
cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
if (write)
i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
status = ice_aq_send_cmd(hw, &desc, data, length, cd);
return status;
}
2023-06-07 13:09:57 +00:00
static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
{
switch (type) {
case ICE_LUT_VSI:
return ICE_LUT_VSI_SIZE;
case ICE_LUT_GLOBAL:
return ICE_LUT_GLOBAL_SIZE;
case ICE_LUT_PF:
return ICE_LUT_PF_SIZE;
}
WARN_ONCE(1, "incorrect type passed");
return ICE_LUT_VSI_SIZE;
}
static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
{
switch (size) {
case ICE_LUT_VSI_SIZE:
return ICE_AQC_LUT_SIZE_SMALL;
case ICE_LUT_GLOBAL_SIZE:
return ICE_AQC_LUT_SIZE_512;
case ICE_LUT_PF_SIZE:
return ICE_AQC_LUT_SIZE_2K;
}
WARN_ONCE(1, "incorrect size passed");
return 0;
}
/**
* __ice_aq_get_set_rss_lut
* @hw: pointer to the hardware structure
* @params: RSS LUT parameters
* @set: set true to set the table, false to get the table
*
* Internal function to get (0x0B05) or set (0x0B03) RSS look up table
*/
static int
2023-06-07 13:09:57 +00:00
__ice_aq_get_set_rss_lut(struct ice_hw *hw,
struct ice_aq_get_set_rss_lut_params *params, bool set)
{
2023-06-07 13:09:57 +00:00
u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
enum ice_lut_type lut_type = params->lut_type;
struct ice_aqc_get_set_rss_lut *desc_params;
enum ice_aqc_lut_flags flags;
enum ice_lut_size lut_size;
struct ice_aq_desc desc;
2023-06-07 13:09:57 +00:00
u8 *lut = params->lut;
2023-06-07 13:09:57 +00:00
if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
2023-06-07 13:09:57 +00:00
lut_size = ice_lut_type_to_size(lut_type);
if (lut_size > params->lut_size)
return -EINVAL;
else if (set && lut_size != params->lut_size)
return -EINVAL;
2023-06-07 13:09:57 +00:00
opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
ice_fill_dflt_direct_cmd_desc(&desc, opcode);
if (set)
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2023-06-07 13:09:57 +00:00
desc_params = &desc.params.get_set_rss_lut;
vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
2023-06-07 13:09:57 +00:00
if (lut_type == ICE_LUT_GLOBAL)
glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
params->global_lut_id);
2023-06-07 13:09:57 +00:00
flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
desc_params->flags = cpu_to_le16(flags);
2023-06-07 13:09:57 +00:00
return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
}
/**
* ice_aq_get_rss_lut
* @hw: pointer to the hardware structure
* @get_params: RSS LUT parameters used to specify which RSS LUT to get
*
* get the RSS lookup table, PF or VSI type
*/
int
ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
{
return __ice_aq_get_set_rss_lut(hw, get_params, false);
}
/**
* ice_aq_set_rss_lut
* @hw: pointer to the hardware structure
* @set_params: RSS LUT parameters used to specify how to set the RSS LUT
*
* set the RSS lookup table, PF or VSI type
*/
int
ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
{
return __ice_aq_get_set_rss_lut(hw, set_params, true);
}
/**
* __ice_aq_get_set_rss_key
* @hw: pointer to the HW struct
* @vsi_id: VSI FW index
* @key: pointer to key info struct
* @set: set true to set the key, false to get the key
*
* get (0x0B04) or set (0x0B02) the RSS key per VSI
*/
static int
__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
struct ice_aqc_get_set_rss_keys *key, bool set)
{
2023-06-07 13:09:57 +00:00
struct ice_aqc_get_set_rss_key *desc_params;
u16 key_size = sizeof(*key);
struct ice_aq_desc desc;
if (set) {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
} else {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
}
2023-06-07 13:09:57 +00:00
desc_params = &desc.params.get_set_rss_key;
desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
}
/**
* ice_aq_get_rss_key
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @key: pointer to key info struct
*
* get the RSS key per VSI
*/
int
ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
struct ice_aqc_get_set_rss_keys *key)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
return -EINVAL;
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
key, false);
}
/**
* ice_aq_set_rss_key
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @keys: pointer to key info struct
*
* set the RSS key per VSI
*/
int
ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
struct ice_aqc_get_set_rss_keys *keys)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
return -EINVAL;
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
keys, true);
}
/**
* ice_aq_add_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: Number of added queue groups
* @qg_list: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* Add Tx LAN queue (0x0C30)
*
* NOTE:
* Prior to calling add Tx LAN queue:
* Initialize the following as part of the Tx queue context:
* Completion queue ID if the queue uses Completion queue, Quanta profile,
* Cache profile and Packet shaper profile.
*
* After add Tx LAN queue AQ command is completed:
* Interrupts should be associated with specific queues,
* Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
* flow.
*/
static int
ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_add_tx_qgrp *list;
struct ice_aqc_add_txqs *cmd;
struct ice_aq_desc desc;
u16 i, sum_size = 0;
cmd = &desc.params.add_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
if (!qg_list)
return -EINVAL;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return -EINVAL;
for (i = 0, list = qg_list; i < num_qgrps; i++) {
sum_size += struct_size(list, txqs, list->num_txqs);
list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
list->num_txqs);
}
if (buf_size != sum_size)
return -EINVAL;
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
cmd->num_qgrps = num_qgrps;
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
}
/**
* ice_aq_dis_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: number of groups in the list
* @qg_list: the list of groups to disable
* @buf_size: the total size of the qg_list buffer in bytes
* @rst_src: if called due to reset, specifies the reset source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* Disable LAN Tx queue (0x0C31)
*/
static int
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd)
{
struct ice_aqc_dis_txq_item *item;
struct ice_aqc_dis_txqs *cmd;
struct ice_aq_desc desc;
u16 vmvf_and_timeout;
u16 i, sz = 0;
int status;
cmd = &desc.params.dis_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
/* qg_list can be NULL only in VM/VF reset flow */
if (!qg_list && !rst_src)
return -EINVAL;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return -EINVAL;
cmd->num_entries = num_qgrps;
vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
switch (rst_src) {
case ICE_VM_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
break;
case ICE_VF_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
/* In this case, FW expects vmvf_num to be absolute VF ID */
vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
ICE_AQC_Q_DIS_VMVF_NUM_M;
break;
case ICE_NO_RESET:
default:
break;
}
cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
/* flush pipe on time out */
cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
/* If no queue group info, we are in a reset flow. Issue the AQ */
if (!qg_list)
goto do_aq;
/* set RD bit to indicate that command buffer is provided by the driver
* and it needs to be read by the firmware
*/
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
for (i = 0, item = qg_list; i < num_qgrps; i++) {
u16 item_size = struct_size(item, q_id, item->num_qs);
/* If the num of queues is even, add 2 bytes of padding */
if ((item->num_qs % 2) == 0)
item_size += 2;
sz += item_size;
item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
}
if (buf_size != sz)
return -EINVAL;
do_aq:
status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
if (status) {
if (!qg_list)
ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
vmvf_num, hw->adminq.sq_last_status);
else
ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
le16_to_cpu(qg_list[0].q_id[0]),
hw->adminq.sq_last_status);
}
return status;
}
/**
* ice_aq_cfg_lan_txq
* @hw: pointer to the hardware structure
* @buf: buffer for command
* @buf_size: size of buffer in bytes
* @num_qs: number of queues being configured
* @oldport: origination lport
* @newport: destination lport
* @cd: pointer to command details structure or NULL
*
* Move/Configure LAN Tx queue (0x0C32)
*
* There is a better AQ command to use for moving nodes, so only coding
* this one for configuring the node.
*/
int
ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
struct ice_sq_cd *cd)
{
struct ice_aqc_cfg_txqs *cmd;
struct ice_aq_desc desc;
int status;
cmd = &desc.params.cfg_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
if (!buf)
return -EINVAL;
cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
cmd->num_qs = num_qs;
cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
cmd->blocked_cgds = 0;
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (status)
ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
hw->adminq.sq_last_status);
return status;
}
/**
* ice_aq_add_rdma_qsets
* @hw: pointer to the hardware structure
* @num_qset_grps: Number of RDMA Qset groups
* @qset_list: list of Qset groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* Add Tx RDMA Qsets (0x0C33)
*/
static int
ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
struct ice_aqc_add_rdma_qset_data *qset_list,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aqc_add_rdma_qset_data *list;
struct ice_aqc_add_rdma_qset *cmd;
struct ice_aq_desc desc;
u16 i, sum_size = 0;
cmd = &desc.params.add_rdma_qset;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
return -EINVAL;
for (i = 0, list = qset_list; i < num_qset_grps; i++) {
u16 num_qsets = le16_to_cpu(list->num_qsets);
sum_size += struct_size(list, rdma_qsets, num_qsets);
list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
num_qsets);
}
if (buf_size != sum_size)
return -EINVAL;
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
cmd->num_qset_grps = num_qset_grps;
return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
}
/* End of FW Admin Queue command wrappers */
/**
2024-02-27 00:14:54 +00:00
* ice_pack_ctx_byte - write a byte to a packed context structure
* @src_ctx: unpacked source context structure
* @dest_ctx: packed destination context data
* @ce_info: context element description
*/
2024-02-27 00:14:54 +00:00
static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
u8 src_byte, dest_byte, mask;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
src_byte = *from;
src_byte <<= shift_width;
src_byte &= mask;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_byte, dest, sizeof(dest_byte));
dest_byte &= ~mask; /* get the bits not changing */
dest_byte |= src_byte; /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_byte, sizeof(dest_byte));
}
/**
2024-02-27 00:14:54 +00:00
* ice_pack_ctx_word - write a word to a packed context structure
* @src_ctx: unpacked source context structure
* @dest_ctx: packed destination context data
* @ce_info: context element description
*/
2024-02-27 00:14:54 +00:00
static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
u16 src_word, mask;
__le16 dest_word;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_word = *(u16 *)from;
src_word <<= shift_width;
src_word &= mask;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_word, dest, sizeof(dest_word));
dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
dest_word |= cpu_to_le16(src_word); /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_word, sizeof(dest_word));
}
/**
2024-02-27 00:14:54 +00:00
* ice_pack_ctx_dword - write a dword to a packed context structure
* @src_ctx: unpacked source context structure
* @dest_ctx: packed destination context data
* @ce_info: context element description
*/
2024-02-27 00:14:54 +00:00
static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
u32 src_dword, mask;
__le32 dest_dword;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_dword = *(u32 *)from;
src_dword <<= shift_width;
src_dword &= mask;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_dword, dest, sizeof(dest_dword));
dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_dword, sizeof(dest_dword));
}
/**
2024-02-27 00:14:54 +00:00
* ice_pack_ctx_qword - write a qword to a packed context structure
* @src_ctx: unpacked source context structure
* @dest_ctx: packed destination context data
* @ce_info: context element description
*/
2024-02-27 00:14:54 +00:00
static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
u64 src_qword, mask;
__le64 dest_qword;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_qword = *(u64 *)from;
src_qword <<= shift_width;
src_qword &= mask;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_qword, dest, sizeof(dest_qword));
dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_qword, sizeof(dest_qword));
}
/**
* ice_set_ctx - set context bits in packed structure
* @hw: pointer to the hardware structure
* @src_ctx: pointer to a generic non-packed context structure
* @dest_ctx: pointer to memory for the packed structure
* @ce_info: List of Rx context elements
*/
int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
int f;
for (f = 0; ce_info[f].width; f++) {
/* We have to deal with each element of the FW response
* using the correct size so that we are correct regardless
* of the endianness of the machine.
*/
if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
f, ce_info[f].width, ce_info[f].size_of);
continue;
}
switch (ce_info[f].size_of) {
case sizeof(u8):
2024-02-27 00:14:54 +00:00
ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u16):
2024-02-27 00:14:54 +00:00
ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u32):
2024-02-27 00:14:54 +00:00
ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u64):
2024-02-27 00:14:54 +00:00
ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
break;
default:
return -EINVAL;
}
}
return 0;
}
/**
* ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @tc: TC number
* @q_handle: software queue handle
*/
struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
{
struct ice_vsi_ctx *vsi;
struct ice_q_ctx *q_ctx;
vsi = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi)
return NULL;
if (q_handle >= vsi->num_lan_q_entries[tc])
return NULL;
if (!vsi->lan_q_ctx[tc])
return NULL;
q_ctx = vsi->lan_q_ctx[tc];
return &q_ctx[q_handle];
}
/**
* ice_ena_vsi_txq
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @q_handle: software queue handle
* @num_qgrps: Number of added queue groups
* @buf: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* This function adds one LAN queue
*/
int
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_txsched_elem_data node = { 0 };
struct ice_sched_node *parent;
struct ice_q_ctx *q_ctx;
struct ice_hw *hw;
int status;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return -EIO;
if (num_qgrps > 1 || buf->num_txqs > 1)
return -ENOSPC;
hw = pi->hw;
if (!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
mutex_lock(&pi->sched_lock);
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
if (!q_ctx) {
ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
q_handle);
status = -EINVAL;
goto ena_txq_exit;
}
/* find a parent node */
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
ICE_SCHED_NODE_OWNER_LAN);
if (!parent) {
status = -EINVAL;
goto ena_txq_exit;
}
buf->parent_teid = parent->info.node_teid;
node.parent_teid = parent->info.node_teid;
/* Mark that the values in the "generic" section as valid. The default
* value in the "generic" section is zero. This means that :
* - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
* - 0 priority among siblings, indicated by Bit 1-3.
* - WFQ, indicated by Bit 4.
* - 0 Adjustment value is used in PSM credit update flow, indicated by
* Bit 5-6.
* - Bit 7 is reserved.
* Without setting the generic section as valid in valid_sections, the
* Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
*/
buf->txqs[0].info.valid_sections =
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
ICE_AQC_ELEM_VALID_EIR;
buf->txqs[0].info.generic = 0;
buf->txqs[0].info.cir_bw.bw_profile_idx =
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->txqs[0].info.cir_bw.bw_alloc =
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
buf->txqs[0].info.eir_bw.bw_profile_idx =
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->txqs[0].info.eir_bw.bw_alloc =
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
/* add the LAN queue */
status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
if (status) {
ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
le16_to_cpu(buf->txqs[0].txq_id),
hw->adminq.sq_last_status);
goto ena_txq_exit;
}
node.node_teid = buf->txqs[0].q_teid;
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
q_ctx->q_handle = q_handle;
q_ctx->q_teid = le32_to_cpu(node.node_teid);
/* add a leaf node into scheduler tree queue layer */
status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
if (!status)
status = ice_sched_replay_q_bw(pi, q_ctx);
ena_txq_exit:
mutex_unlock(&pi->sched_lock);
return status;
}
/**
* ice_dis_vsi_txq
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @num_queues: number of queues
* @q_handles: pointer to software queue handle array
* @q_ids: pointer to the q_id array
* @q_teids: pointer to queue node teids
* @rst_src: if called due to reset, specifies the reset source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* This function removes queues and their corresponding nodes in SW DB
*/
int
ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
u16 *q_handles, u16 *q_ids, u32 *q_teids,
enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd)
{
DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
u16 i, buf_size = __struct_size(qg_list);
struct ice_q_ctx *q_ctx;
int status = -ENOENT;
struct ice_hw *hw;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return -EIO;
hw = pi->hw;
if (!num_queues) {
/* if queue is disabled already yet the disable queue command
* has to be sent to complete the VF reset, then call
* ice_aq_dis_lan_txq without any queue information
*/
if (rst_src)
return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
vmvf_num, NULL);
return -EIO;
}
mutex_lock(&pi->sched_lock);
for (i = 0; i < num_queues; i++) {
struct ice_sched_node *node;
node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
if (!node)
continue;
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
if (!q_ctx) {
ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
q_handles[i]);
continue;
}
if (q_ctx->q_handle != q_handles[i]) {
ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
q_ctx->q_handle, q_handles[i]);
continue;
}
qg_list->parent_teid = node->info.parent_teid;
qg_list->num_qs = 1;
qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
vmvf_num, cd);
if (status)
break;
ice_free_sched_node(pi, node);
q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
q_ctx->q_teid = ICE_INVAL_TEID;
}
mutex_unlock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_vsi_qs - configure the new/existing VSI queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @maxqs: max queues array per TC
* @owner: LAN or RDMA
*
* This function adds/updates the VSI queues per TC.
*/
static int
ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
u16 *maxqs, u8 owner)
{
int status = 0;
u8 i;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return -EIO;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return -EINVAL;
mutex_lock(&pi->sched_lock);
ice_for_each_traffic_class(i) {
/* configuration is possible only if TC node is present */
if (!ice_sched_get_tc_node(pi, i))
continue;
status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
ice_is_tc_ena(tc_bitmap, i));
if (status)
break;
}
mutex_unlock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_vsi_lan - configure VSI LAN queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @max_lanqs: max LAN queues array per TC
*
* This function adds/updates the VSI LAN queues per TC.
*/
int
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
u16 *max_lanqs)
{
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
ICE_SCHED_NODE_OWNER_LAN);
}
/**
* ice_cfg_vsi_rdma - configure the VSI RDMA queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @max_rdmaqs: max RDMA queues array per TC
*
* This function adds/updates the VSI RDMA queues per TC.
*/
int
ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
u16 *max_rdmaqs)
{
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
ICE_SCHED_NODE_OWNER_RDMA);
}
/**
* ice_ena_vsi_rdma_qset
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @rdma_qset: pointer to RDMA Qset
* @num_qsets: number of RDMA Qsets
* @qset_teid: pointer to Qset node TEIDs
*
* This function adds RDMA Qset
*/
int
ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
{
struct ice_aqc_txsched_elem_data node = { 0 };
struct ice_aqc_add_rdma_qset_data *buf;
struct ice_sched_node *parent;
struct ice_hw *hw;
u16 i, buf_size;
int ret;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return -EIO;
hw = pi->hw;
if (!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
buf_size = struct_size(buf, rdma_qsets, num_qsets);
buf = kzalloc(buf_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
mutex_lock(&pi->sched_lock);
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
ICE_SCHED_NODE_OWNER_RDMA);
if (!parent) {
ret = -EINVAL;
goto rdma_error_exit;
}
buf->parent_teid = parent->info.node_teid;
node.parent_teid = parent->info.node_teid;
buf->num_qsets = cpu_to_le16(num_qsets);
for (i = 0; i < num_qsets; i++) {
buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
buf->rdma_qsets[i].info.valid_sections =
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
ICE_AQC_ELEM_VALID_EIR;
buf->rdma_qsets[i].info.generic = 0;
buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->rdma_qsets[i].info.cir_bw.bw_alloc =
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->rdma_qsets[i].info.eir_bw.bw_alloc =
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
}
ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
if (ret) {
ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
goto rdma_error_exit;
}
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
for (i = 0; i < num_qsets; i++) {
node.node_teid = buf->rdma_qsets[i].qset_teid;
ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
&node, NULL);
if (ret)
break;
qset_teid[i] = le32_to_cpu(node.node_teid);
}
rdma_error_exit:
mutex_unlock(&pi->sched_lock);
kfree(buf);
return ret;
}
/**
* ice_dis_vsi_rdma_qset - free RDMA resources
* @pi: port_info struct
* @count: number of RDMA Qsets to free
* @qset_teid: TEID of Qset node
* @q_id: list of queue IDs being disabled
*/
int
ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
u16 *q_id)
{
DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
u16 qg_size = __struct_size(qg_list);
struct ice_hw *hw;
int status = 0;
int i;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return -EIO;
hw = pi->hw;
mutex_lock(&pi->sched_lock);
for (i = 0; i < count; i++) {
struct ice_sched_node *node;
node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
if (!node)
continue;
qg_list->parent_teid = node->info.parent_teid;
qg_list->num_qs = 1;
qg_list->q_id[0] =
cpu_to_le16(q_id[i] |
ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
ICE_NO_RESET, 0, NULL);
if (status)
break;
ice_free_sched_node(pi, node);
}
mutex_unlock(&pi->sched_lock);
return status;
}
/**
* ice_aq_get_cgu_abilities - get cgu abilities
* @hw: pointer to the HW struct
* @abilities: CGU abilities
*
* Get CGU abilities (0x0C61)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_get_cgu_abilities(struct ice_hw *hw,
struct ice_aqc_get_cgu_abilities *abilities)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
}
/**
* ice_aq_set_input_pin_cfg - set input pin config
* @hw: pointer to the HW struct
* @input_idx: Input index
* @flags1: Input flags
* @flags2: Input flags
* @freq: Frequency in Hz
* @phase_delay: Delay in ps
*
* Set CGU input config (0x0C62)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
u32 freq, s32 phase_delay)
{
struct ice_aqc_set_cgu_input_config *cmd;
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
cmd = &desc.params.set_cgu_input_config;
cmd->input_idx = input_idx;
cmd->flags1 = flags1;
cmd->flags2 = flags2;
cmd->freq = cpu_to_le32(freq);
cmd->phase_delay = cpu_to_le32(phase_delay);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_get_input_pin_cfg - get input pin config
* @hw: pointer to the HW struct
* @input_idx: Input index
* @status: Pin status
* @type: Pin type
* @flags1: Input flags
* @flags2: Input flags
* @freq: Frequency in Hz
* @phase_delay: Delay in ps
*
* Get CGU input config (0x0C63)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
{
struct ice_aqc_get_cgu_input_config *cmd;
struct ice_aq_desc desc;
int ret;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
cmd = &desc.params.get_cgu_input_config;
cmd->input_idx = input_idx;
ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!ret) {
if (status)
*status = cmd->status;
if (type)
*type = cmd->type;
if (flags1)
*flags1 = cmd->flags1;
if (flags2)
*flags2 = cmd->flags2;
if (freq)
*freq = le32_to_cpu(cmd->freq);
if (phase_delay)
*phase_delay = le32_to_cpu(cmd->phase_delay);
}
return ret;
}
/**
* ice_aq_set_output_pin_cfg - set output pin config
* @hw: pointer to the HW struct
* @output_idx: Output index
* @flags: Output flags
* @src_sel: Index of DPLL block
* @freq: Output frequency
* @phase_delay: Output phase compensation
*
* Set CGU output config (0x0C64)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
u8 src_sel, u32 freq, s32 phase_delay)
{
struct ice_aqc_set_cgu_output_config *cmd;
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
cmd = &desc.params.set_cgu_output_config;
cmd->output_idx = output_idx;
cmd->flags = flags;
cmd->src_sel = src_sel;
cmd->freq = cpu_to_le32(freq);
cmd->phase_delay = cpu_to_le32(phase_delay);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_get_output_pin_cfg - get output pin config
* @hw: pointer to the HW struct
* @output_idx: Output index
* @flags: Output flags
* @src_sel: Internal DPLL source
* @freq: Output frequency
* @src_freq: Source frequency
*
* Get CGU output config (0x0C65)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
u8 *src_sel, u32 *freq, u32 *src_freq)
{
struct ice_aqc_get_cgu_output_config *cmd;
struct ice_aq_desc desc;
int ret;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
cmd = &desc.params.get_cgu_output_config;
cmd->output_idx = output_idx;
ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!ret) {
if (flags)
*flags = cmd->flags;
if (src_sel)
*src_sel = cmd->src_sel;
if (freq)
*freq = le32_to_cpu(cmd->freq);
if (src_freq)
*src_freq = le32_to_cpu(cmd->src_freq);
}
return ret;
}
/**
* ice_aq_get_cgu_dpll_status - get dpll status
* @hw: pointer to the HW struct
* @dpll_num: DPLL index
* @ref_state: Reference clock state
* @config: current DPLL config
* @dpll_state: current DPLL state
* @phase_offset: Phase offset in ns
* @eec_mode: EEC_mode
*
* Get CGU DPLL status (0x0C66)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
u8 *dpll_state, u8 *config, s64 *phase_offset,
u8 *eec_mode)
{
struct ice_aqc_get_cgu_dpll_status *cmd;
struct ice_aq_desc desc;
int status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
cmd = &desc.params.get_cgu_dpll_status;
cmd->dpll_num = dpll_num;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!status) {
*ref_state = cmd->ref_state;
*dpll_state = cmd->dpll_state;
*config = cmd->config;
*phase_offset = le32_to_cpu(cmd->phase_offset_h);
*phase_offset <<= 32;
*phase_offset += le32_to_cpu(cmd->phase_offset_l);
ice: dpll: fix phase offset value Stop dividing the phase_offset value received from firmware. This fault is present since the initial implementation. The phase_offset value received from firmware is in 0.01ps resolution. Dpll subsystem is using the value in 0.001ps, raw value is adjusted before providing it to the user. The user can observe the value of phase offset with response to `pin-get` netlink message of dpll subsystem for an active pin: $ ./tools/net/ynl/cli.py --spec Documentation/netlink/specs/dpll.yaml \ --do pin-get --json '{"id":2}' Where example of correct response would be: {'board-label': 'C827_0-RCLKA', 'capabilities': 6, 'clock-id': 4658613174691613800, 'frequency': 1953125, 'id': 2, 'module-name': 'ice', 'parent-device': [{'direction': 'input', 'parent-id': 6, 'phase-offset': -216839550, 'prio': 9, 'state': 'connected'}, {'direction': 'input', 'parent-id': 7, 'phase-offset': -42930, 'prio': 8, 'state': 'connected'}], 'phase-adjust': 0, 'phase-adjust-max': 16723, 'phase-adjust-min': -16723, 'type': 'mux'} Provided phase-offset value (-42930) shall be divided by the user with DPLL_PHASE_OFFSET_DIVIDER to get actual value of -42.930 ps. Before the fix, the response was not correct: {'board-label': 'C827_0-RCLKA', 'capabilities': 6, 'clock-id': 4658613174691613800, 'frequency': 1953125, 'id': 2, 'module-name': 'ice', 'parent-device': [{'direction': 'input', 'parent-id': 6, 'phase-offset': -216839, 'prio': 9, 'state': 'connected'}, {'direction': 'input', 'parent-id': 7, 'phase-offset': -42, 'prio': 8, 'state': 'connected'}], 'phase-adjust': 0, 'phase-adjust-max': 16723, 'phase-adjust-min': -16723, 'type': 'mux'} Where phase-offset value (-42), after division (DPLL_PHASE_OFFSET_DIVIDER) would be: -0.042 ps. Fixes: 8a3a565ff210 ("ice: add admin commands to access cgu configuration") Fixes: 90e1c90750d7 ("ice: dpll: implement phase related callbacks") Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Arkadiusz Kubalewski <arkadiusz.kubalewski@intel.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2023-12-18 14:58:55 +00:00
*phase_offset = sign_extend64(*phase_offset, 47);
*eec_mode = cmd->eec_mode;
}
return status;
}
/**
* ice_aq_set_cgu_dpll_config - set dpll config
* @hw: pointer to the HW struct
* @dpll_num: DPLL index
* @ref_state: Reference clock state
* @config: DPLL config
* @eec_mode: EEC mode
*
* Set CGU DPLL config (0x0C67)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
u8 config, u8 eec_mode)
{
struct ice_aqc_set_cgu_dpll_config *cmd;
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
cmd = &desc.params.set_cgu_dpll_config;
cmd->dpll_num = dpll_num;
cmd->ref_state = ref_state;
cmd->config = config;
cmd->eec_mode = eec_mode;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_set_cgu_ref_prio - set input reference priority
* @hw: pointer to the HW struct
* @dpll_num: DPLL index
* @ref_idx: Reference pin index
* @ref_priority: Reference input priority
*
* Set CGU reference priority (0x0C68)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
u8 ref_priority)
{
struct ice_aqc_set_cgu_ref_prio *cmd;
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
cmd = &desc.params.set_cgu_ref_prio;
cmd->dpll_num = dpll_num;
cmd->ref_idx = ref_idx;
cmd->ref_priority = ref_priority;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_get_cgu_ref_prio - get input reference priority
* @hw: pointer to the HW struct
* @dpll_num: DPLL index
* @ref_idx: Reference pin index
* @ref_prio: Reference input priority
*
* Get CGU reference priority (0x0C69)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
u8 *ref_prio)
{
struct ice_aqc_get_cgu_ref_prio *cmd;
struct ice_aq_desc desc;
int status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
cmd = &desc.params.get_cgu_ref_prio;
cmd->dpll_num = dpll_num;
cmd->ref_idx = ref_idx;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!status)
*ref_prio = cmd->ref_priority;
return status;
}
/**
* ice_aq_get_cgu_info - get cgu info
* @hw: pointer to the HW struct
* @cgu_id: CGU ID
* @cgu_cfg_ver: CGU config version
* @cgu_fw_ver: CGU firmware version
*
* Get CGU info (0x0C6A)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
u32 *cgu_fw_ver)
{
struct ice_aqc_get_cgu_info *cmd;
struct ice_aq_desc desc;
int status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
cmd = &desc.params.get_cgu_info;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!status) {
*cgu_id = le32_to_cpu(cmd->cgu_id);
*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
}
return status;
}
/**
* ice_aq_set_phy_rec_clk_out - set RCLK phy out
* @hw: pointer to the HW struct
* @phy_output: PHY reference clock output pin
* @enable: GPIO state to be applied
* @freq: PHY output frequency
*
* Set phy recovered clock as reference (0x0630)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
u32 *freq)
{
struct ice_aqc_set_phy_rec_clk_out *cmd;
struct ice_aq_desc desc;
int status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
cmd = &desc.params.set_phy_rec_clk_out;
cmd->phy_output = phy_output;
cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
cmd->freq = cpu_to_le32(*freq);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!status)
*freq = le32_to_cpu(cmd->freq);
return status;
}
/**
* ice_aq_get_phy_rec_clk_out - get phy recovered signal info
* @hw: pointer to the HW struct
* @phy_output: PHY reference clock output pin
* @port_num: Port number
* @flags: PHY flags
* @node_handle: PHY output frequency
*
* Get PHY recovered clock output info (0x0631)
* Return: 0 on success or negative value on failure.
*/
int
ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
u8 *flags, u16 *node_handle)
{
struct ice_aqc_get_phy_rec_clk_out *cmd;
struct ice_aq_desc desc;
int status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
cmd = &desc.params.get_phy_rec_clk_out;
cmd->phy_output = *phy_output;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!status) {
*phy_output = cmd->phy_output;
if (port_num)
*port_num = cmd->port_num;
if (flags)
*flags = cmd->flags;
if (node_handle)
*node_handle = le16_to_cpu(cmd->node_handle);
}
return status;
}
ice: read internal temperature sensor Since 4.30 firmware exposes internal thermal sensor reading via admin queue commands. Expose those readouts via hwmon API when supported. Datasheet: Get Sensor Reading Command (Opcode: 0x0632) +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Flags | 1-0 | | | | Opcode | 2-3 | 0x0632 | Command opcode | | Datalen | 4-5 | 0 | No external buffer. | | Return value | 6-7 | | Return value. | | Cookie High | 8-11 | Cookie | | | Cookie Low | 12-15 | Cookie | | | Sensor | 16 | | 0x00: Internal temp | | | | | 0x01-0xFF: Reserved. | | Format | 17 | Requested response | Only 0x00 is supported. | | | | format | 0x01-0xFF: Reserved. | | Reserved | 18-23 | | | | Data Address high | 24-27 | Response buffer | | | | | address | | | Data Address low | 28-31 | Response buffer | | | | | address | | +--------------------+--------+--------------------+-------------------------+ Get Sensor Reading Response (Opcode: 0x0632) +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Flags | 1-0 | | | | Opcode | 2-3 | 0x0632 | Command opcode | | Datalen | 4-5 | 0 | No external buffer | | Return value | 6-7 | | Return value. | | | | | EINVAL: Invalid | | | | | parameters | | | | | ENOENT: Unsupported | | | | | sensor | | | | | EIO: Sensor access | | | | | error | | Cookie High | 8-11 | Cookie | | | Cookie Low | 12-15 | Cookie | | | Sensor Reading | 16-23 | | Format of the reading | | | | | is dependent on request | | Data Address high | 24-27 | Response buffer | | | | | address | | | Data Address low | 28-31 | Response buffer | | | | | address | | +--------------------+--------+--------------------+-------------------------+ Sensor Reading for Sensor 0x00 (Internal Chip Temperature): +--------------------+--------+--------------------+-------------------------+ | Name | Bytes | Value | Remarks | +--------------------+--------+--------------------+-------------------------+ | Thermal Sensor | 0 | | Reading in degrees | | reading | | | Celsius. Signed int8 | | Warning High | 1 | | Warning High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Critical High | 2 | | Critical High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Fatal High | 3 | | Fatal High threshold | | threshold | | | in degrees Celsius. | | | | | Unsigned int8. | | | | | 0xFF when unsupported | | Reserved | 4-7 | | | +--------------------+--------+--------------------+-------------------------+ Driver provides current reading from HW as well as device specific thresholds for thermal alarm (Warning, Critical, Fatal) events. $ sensors Output ========================================================= ice-pci-b100 Adapter: PCI adapter temp1: +62.0°C (high = +95.0°C, crit = +105.0°C) (emerg = +115.0°C) Tested on Intel Corporation Ethernet Controller E810-C for SFP Co-developed-by: Marcin Domagala <marcinx.domagala@intel.com> Signed-off-by: Marcin Domagala <marcinx.domagala@intel.com> Co-developed-by: Eric Joyner <eric.joyner@intel.com> Signed-off-by: Eric Joyner <eric.joyner@intel.com> Reviewed-by: Marcin Szycik <marcin.szycik@linux.intel.com> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Konrad Knitter <konrad.knitter@intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-12-01 18:08:39 +00:00
/**
* ice_aq_get_sensor_reading
* @hw: pointer to the HW struct
* @data: pointer to data to be read from the sensor
*
* Get sensor reading (0x0632)
*/
int ice_aq_get_sensor_reading(struct ice_hw *hw,
struct ice_aqc_get_sensor_reading_resp *data)
{
struct ice_aqc_get_sensor_reading *cmd;
struct ice_aq_desc desc;
int status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
cmd = &desc.params.get_sensor_reading;
#define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0
#define ICE_INTERNAL_TEMP_SENSOR 0
cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!status)
memcpy(data, &desc.params.get_sensor_reading_resp,
sizeof(*data));
return status;
}
/**
* ice_replay_pre_init - replay pre initialization
* @hw: pointer to the HW struct
*
* Initializes required config data for VSI, FD, ACL, and RSS before replay.
*/
static int ice_replay_pre_init(struct ice_hw *hw)
{
struct ice_switch_info *sw = hw->switch_info;
u8 i;
/* Delete old entries from replay filter list head if there is any */
ice_rm_all_sw_replay_rule_info(hw);
/* In start of replay, move entries into replay_rules list, it
* will allow adding rules entries back to filt_rules list,
* which is operational list.
*/
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
list_replace_init(&sw->recp_list[i].filt_rules,
&sw->recp_list[i].filt_replay_rules);
ice_sched_replay_agg_vsi_preinit(hw);
return 0;
}
/**
* ice_replay_vsi - replay VSI configuration
* @hw: pointer to the HW struct
* @vsi_handle: driver VSI handle
*
* Restore all VSI configuration after reset. It is required to call this
* function with main VSI first.
*/
int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
{
int status;
if (!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
/* Replay pre-initialization if there is any */
if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
status = ice_replay_pre_init(hw);
if (status)
return status;
}
/* Replay per VSI all RSS configurations */
status = ice_replay_rss_cfg(hw, vsi_handle);
if (status)
return status;
/* Replay per VSI all filters */
status = ice_replay_vsi_all_fltr(hw, vsi_handle);
if (!status)
status = ice_replay_vsi_agg(hw, vsi_handle);
return status;
}
/**
* ice_replay_post - post replay configuration cleanup
* @hw: pointer to the HW struct
*
* Post replay cleanup.
*/
void ice_replay_post(struct ice_hw *hw)
{
/* Delete old entries from replay filter list head */
ice_rm_all_sw_replay_rule_info(hw);
ice_sched_replay_agg(hw);
}
/**
* ice_stat_update40 - read 40 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @reg: offset of 64 bit HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
void
ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
u64 *prev_stat, u64 *cur_stat)
{
u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. Thus, save the value from the first read
* without adding to the statistic value so that we report stats which
* count up from zero.
*/
if (!prev_stat_loaded) {
*prev_stat = new_data;
return;
}
/* Calculate the difference between the new and old values, and then
* add it to the software stat value.
*/
if (new_data >= *prev_stat)
*cur_stat += new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
/* Update the previously stored value to prepare for next read */
*prev_stat = new_data;
}
/**
* ice_stat_update32 - read 32 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @reg: offset of HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
void
ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
u64 *prev_stat, u64 *cur_stat)
{
u32 new_data;
new_data = rd32(hw, reg);
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. Thus, save the value from the first read
* without adding to the statistic value so that we report stats which
* count up from zero.
*/
if (!prev_stat_loaded) {
*prev_stat = new_data;
return;
}
/* Calculate the difference between the new and old values, and then
* add it to the software stat value.
*/
if (new_data >= *prev_stat)
*cur_stat += new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
/* Update the previously stored value to prepare for next read */
*prev_stat = new_data;
}
/**
* ice_sched_query_elem - query element information from HW
* @hw: pointer to the HW struct
* @node_teid: node TEID to be queried
* @buf: buffer to element information
*
* This function queries HW element information
*/
int
ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
struct ice_aqc_txsched_elem_data *buf)
{
u16 buf_size, num_elem_ret = 0;
int status;
buf_size = sizeof(*buf);
memset(buf, 0, buf_size);
buf->node_teid = cpu_to_le32(node_teid);
status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
NULL);
if (status || num_elem_ret != 1)
ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
return status;
}
/**
* ice_aq_read_i2c
* @hw: pointer to the hw struct
* @topo_addr: topology address for a device to communicate with
* @bus_addr: 7-bit I2C bus address
* @addr: I2C memory address (I2C offset) with up to 16 bits
* @params: I2C parameters: bit [7] - Repeated start,
* bits [6:5] data offset size,
* bit [4] - I2C address type,
* bits [3:0] - data size to read (0-16 bytes)
* @data: pointer to data (0 to 16 bytes) to be read from the I2C device
* @cd: pointer to command details structure or NULL
*
* Read I2C (0x06E2)
*/
int
ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
u16 bus_addr, __le16 addr, u8 params, u8 *data,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc = { 0 };
struct ice_aqc_i2c *cmd;
u8 data_size;
int status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
cmd = &desc.params.read_write_i2c;
if (!data)
return -EINVAL;
data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
cmd->topo_addr = topo_addr;
cmd->i2c_params = params;
cmd->i2c_addr = addr;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status) {
struct ice_aqc_read_i2c_resp *resp;
u8 i;
resp = &desc.params.read_i2c_resp;
for (i = 0; i < data_size; i++) {
*data = resp->i2c_data[i];
data++;
}
}
return status;
}
/**
* ice_aq_write_i2c
* @hw: pointer to the hw struct
* @topo_addr: topology address for a device to communicate with
* @bus_addr: 7-bit I2C bus address
* @addr: I2C memory address (I2C offset) with up to 16 bits
* @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
* @data: pointer to data (0 to 4 bytes) to be written to the I2C device
* @cd: pointer to command details structure or NULL
*
* Write I2C (0x06E3)
*
* * Return:
* * 0 - Successful write to the i2c device
* * -EINVAL - Data size greater than 4 bytes
* * -EIO - FW error
*/
int
ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
ice: make writes to /dev/gnssX synchronous The current ice driver's GNSS write implementation buffers writes and works through them asynchronously in a kthread. That's bad because: - The GNSS write_raw operation is supposed to be synchronous[1][2]. - There is no upper bound on the number of pending writes. Userspace can submit writes much faster than the driver can process, consuming unlimited amounts of kernel memory. A patch that's currently on review[3] ("[v3,net] ice: Write all GNSS buffers instead of first one") would add one more problem: - The possibility of waiting for a very long time to flush the write work when doing rmmod, softlockups. To fix these issues, simplify the implementation: Drop the buffering, the write_work, and make the writes synchronous. I tested this with gpsd and ubxtool. [1] https://events19.linuxfoundation.org/wp-content/uploads/2017/12/The-GNSS-Subsystem-Johan-Hovold-Hovold-Consulting-AB.pdf "User interface" slide. [2] A comment in drivers/gnss/core.c:gnss_write(): /* Ignoring O_NONBLOCK, write_raw() is synchronous. */ [3] https://patchwork.ozlabs.org/project/intel-wired-lan/patch/20230217120541.16745-1-karol.kolacinski@intel.com/ Fixes: d6b98c8d242a ("ice: add write functionality for GNSS TTY") Signed-off-by: Michal Schmidt <mschmidt@redhat.com> Reviewed-by: Simon Horman <simon.horman@corigine.com> Tested-by: Sunitha Mekala <sunithax.d.mekala@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-06-06 17:12:53 +00:00
u16 bus_addr, __le16 addr, u8 params, const u8 *data,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc = { 0 };
struct ice_aqc_i2c *cmd;
u8 data_size;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
cmd = &desc.params.read_write_i2c;
data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
/* data_size limited to 4 */
if (data_size > 4)
return -EINVAL;
cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
cmd->topo_addr = topo_addr;
cmd->i2c_params = params;
cmd->i2c_addr = addr;
memcpy(cmd->i2c_data, data, data_size);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_gpio
* @hw: pointer to the hw struct
* @gpio_ctrl_handle: GPIO controller node handle
* @pin_idx: IO Number of the GPIO that needs to be set
* @value: SW provide IO value to set in the LSB
* @cd: pointer to command details structure or NULL
*
* Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
*/
int
ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
struct ice_sq_cd *cd)
{
struct ice_aqc_gpio *cmd;
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
cmd = &desc.params.read_write_gpio;
cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
cmd->gpio_num = pin_idx;
cmd->gpio_val = value ? 1 : 0;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_get_gpio
* @hw: pointer to the hw struct
* @gpio_ctrl_handle: GPIO controller node handle
* @pin_idx: IO Number of the GPIO that needs to be set
* @value: IO value read
* @cd: pointer to command details structure or NULL
*
* Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
* the topology
*/
int
ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
bool *value, struct ice_sq_cd *cd)
{
struct ice_aqc_gpio *cmd;
struct ice_aq_desc desc;
int status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
cmd = &desc.params.read_write_gpio;
cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
cmd->gpio_num = pin_idx;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (status)
return status;
*value = !!cmd->gpio_val;
return 0;
}
/**
* ice_is_fw_api_min_ver
* @hw: pointer to the hardware structure
* @maj: major version
* @min: minor version
* @patch: patch version
*
* Checks if the firmware API is minimum version
*/
static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
{
if (hw->api_maj_ver == maj) {
if (hw->api_min_ver > min)
return true;
if (hw->api_min_ver == min && hw->api_patch >= patch)
return true;
} else if (hw->api_maj_ver > maj) {
return true;
}
return false;
}
/**
* ice_fw_supports_link_override
* @hw: pointer to the hardware structure
*
* Checks if the firmware supports link override
*/
bool ice_fw_supports_link_override(struct ice_hw *hw)
{
return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
ICE_FW_API_LINK_OVERRIDE_MIN,
ICE_FW_API_LINK_OVERRIDE_PATCH);
}
/**
* ice_get_link_default_override
* @ldo: pointer to the link default override struct
* @pi: pointer to the port info struct
*
* Gets the link default override for a port
*/
int
ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
struct ice_port_info *pi)
{
u16 i, tlv, tlv_len, tlv_start, buf, offset;
struct ice_hw *hw = pi->hw;
int status;
status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
return status;
}
/* Each port has its own config; calculate for our port */
tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
/* link options first */
status = ice_read_sr_word(hw, tlv_start, &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
return status;
}
ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
ICE_LINK_OVERRIDE_PHY_CFG_S;
/* link PHY config */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
status = ice_read_sr_word(hw, offset, &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
return status;
}
ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
/* PHY types low */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
status = ice_read_sr_word(hw, (offset + i), &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
return status;
}
/* shift 16 bits at a time to fill 64 bits */
ldo->phy_type_low |= ((u64)buf << (i * 16));
}
/* PHY types high */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
status = ice_read_sr_word(hw, (offset + i), &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
return status;
}
/* shift 16 bits at a time to fill 64 bits */
ldo->phy_type_high |= ((u64)buf << (i * 16));
}
return status;
}
/**
* ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
* @caps: get PHY capability data
*/
bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
{
if (caps->caps & ICE_AQC_PHY_AN_MODE ||
caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
ICE_AQC_PHY_AN_EN_CLAUSE73 |
ICE_AQC_PHY_AN_EN_CLAUSE37))
return true;
return false;
}
/**
* ice_aq_set_lldp_mib - Set the LLDP MIB
* @hw: pointer to the HW struct
* @mib_type: Local, Remote or both Local and Remote MIBs
* @buf: pointer to the caller-supplied buffer to store the MIB block
* @buf_size: size of the buffer (in bytes)
* @cd: pointer to command details structure or NULL
*
* Set the LLDP MIB. (0x0A08)
*/
int
ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_lldp_set_local_mib *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.lldp_set_mib;
if (buf_size == 0 || !buf)
return -EINVAL;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
desc.datalen = cpu_to_le16(buf_size);
cmd->type = mib_type;
cmd->length = cpu_to_le16(buf_size);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
* @hw: pointer to HW struct
*/
bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
{
if (hw->mac_type != ICE_MAC_E810)
return false;
return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
ICE_FW_API_LLDP_FLTR_MIN,
ICE_FW_API_LLDP_FLTR_PATCH);
}
/**
* ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
* @hw: pointer to HW struct
* @vsi_num: absolute HW index for VSI
* @add: boolean for if adding or removing a filter
*/
int
ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
{
struct ice_aqc_lldp_filter_ctrl *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.lldp_filter_ctrl;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
if (add)
cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
else
cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
cmd->vsi_num = cpu_to_le16(vsi_num);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
ice: Add 'Execute Pending LLDP MIB' Admin Queue command In DCB Willing Mode (FW managed LLDP), when the link partner changes configuration which requires fewer TCs, the TCs that are no longer needed are suspended by EMP FW, removed, and never resumed. This occurs before a MIB change event is indicated to SW. The permanent suspension and removal of these TC nodes in the scheduler prevents RDMA from being able to destroy QPs associated with this TC, requiring a CORE reset to recover. A new DCBX configuration change flow is defined to allow SW driver and other SW components (RDMA) to properly adjust to the configuration changes before they are taking effect in HW. This flow includes a two-way handshake between EMP FW<->LAN SW<->RDMA SW. List of changes: - Add 'Execute Pending LLDP MIB' AQC. - Add 'Pending Event Enable' bit. - Add additional logic to ignore Pending Event Enable' request while 'LLDP MIB Chnage' event is disabled. - Add 'Execute Pending LLDP MIB' AQC sending function to FW, which is needed to take place MIB Event change. Signed-off-by: Tsotne Chakhvadze <tsotne.chakhvadze@intel.com> Co-developed-by: Karen Sornek <karen.sornek@intel.com> Signed-off-by: Karen Sornek <karen.sornek@intel.com> Co-developed-by: Dave Ertman <david.m.ertman@intel.com> Signed-off-by: Dave Ertman <david.m.ertman@intel.com> Co-developed-by: Anatolii Gerasymenko <anatolii.gerasymenko@intel.com> Signed-off-by: Anatolii Gerasymenko <anatolii.gerasymenko@intel.com> Tested-by: Arpana Arland <arpanax.arland@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-24 12:07:27 +00:00
/**
* ice_lldp_execute_pending_mib - execute LLDP pending MIB request
* @hw: pointer to HW struct
*/
int ice_lldp_execute_pending_mib(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_fw_supports_report_dflt_cfg
* @hw: pointer to the hardware structure
*
* Checks if the firmware supports report default configuration
*/
bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
{
return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
ICE_FW_API_REPORT_DFLT_CFG_MIN,
ICE_FW_API_REPORT_DFLT_CFG_PATCH);
}
/* each of the indexes into the following array match the speed of a return
* value from the list of AQ returned speeds like the range:
* ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
* ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
* array. The array is defined as 15 elements long because the link_speed
* returned by the firmware is a 16 bit * value, but is indexed
* by [fls(speed) - 1]
*/
ice: fix out-of-bounds KASAN warning in virtchnl KASAN reported: [ 9793.708867] BUG: KASAN: global-out-of-bounds in ice_get_link_speed+0x16/0x30 [ice] [ 9793.709205] Read of size 4 at addr ffffffffc1271b1c by task kworker/6:1/402 [ 9793.709222] CPU: 6 PID: 402 Comm: kworker/6:1 Kdump: loaded Tainted: G B OE 6.1.0+ #3 [ 9793.709235] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.00.01.0014.070920180847 07/09/2018 [ 9793.709245] Workqueue: ice ice_service_task [ice] [ 9793.709575] Call Trace: [ 9793.709582] <TASK> [ 9793.709588] dump_stack_lvl+0x44/0x5c [ 9793.709613] print_report+0x17f/0x47b [ 9793.709632] ? __cpuidle_text_end+0x5/0x5 [ 9793.709653] ? ice_get_link_speed+0x16/0x30 [ice] [ 9793.709986] ? ice_get_link_speed+0x16/0x30 [ice] [ 9793.710317] kasan_report+0xb7/0x140 [ 9793.710335] ? ice_get_link_speed+0x16/0x30 [ice] [ 9793.710673] ice_get_link_speed+0x16/0x30 [ice] [ 9793.711006] ice_vc_notify_vf_link_state+0x14c/0x160 [ice] [ 9793.711351] ? ice_vc_repr_cfg_promiscuous_mode+0x120/0x120 [ice] [ 9793.711698] ice_vc_process_vf_msg+0x7a7/0xc00 [ice] [ 9793.712074] __ice_clean_ctrlq+0x98f/0xd20 [ice] [ 9793.712534] ? ice_bridge_setlink+0x410/0x410 [ice] [ 9793.712979] ? __request_module+0x320/0x520 [ 9793.713014] ? ice_process_vflr_event+0x27/0x130 [ice] [ 9793.713489] ice_service_task+0x11cf/0x1950 [ice] [ 9793.713948] ? io_schedule_timeout+0xb0/0xb0 [ 9793.713972] process_one_work+0x3d0/0x6a0 [ 9793.714003] worker_thread+0x8a/0x610 [ 9793.714031] ? process_one_work+0x6a0/0x6a0 [ 9793.714049] kthread+0x164/0x1a0 [ 9793.714071] ? kthread_complete_and_exit+0x20/0x20 [ 9793.714100] ret_from_fork+0x1f/0x30 [ 9793.714137] </TASK> [ 9793.714151] The buggy address belongs to the variable: [ 9793.714158] ice_aq_to_link_speed+0x3c/0xffffffffffff3520 [ice] [ 9793.714632] Memory state around the buggy address: [ 9793.714642] ffffffffc1271a00: f9 f9 f9 f9 00 00 05 f9 f9 f9 f9 f9 00 00 02 f9 [ 9793.714656] ffffffffc1271a80: f9 f9 f9 f9 00 00 04 f9 f9 f9 f9 f9 00 00 00 00 [ 9793.714670] >ffffffffc1271b00: 00 00 00 04 f9 f9 f9 f9 04 f9 f9 f9 f9 f9 f9 f9 [ 9793.714680] ^ [ 9793.714690] ffffffffc1271b80: 00 00 00 00 00 04 f9 f9 f9 f9 f9 f9 00 00 00 00 [ 9793.714704] ffffffffc1271c00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 The ICE_AQ_LINK_SPEED_UNKNOWN define is BIT(15). The value is bigger than both legacy and normal link speed tables. Add one element (0 - unknown) to both tables. There is no need to explicitly set table size, leave it empty. Fixes: 1d0e28a9be1f ("ice: Remove and replace ice speed defines with ethtool.h versions") Signed-off-by: Michal Swiatkowski <michal.swiatkowski@linux.intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan G <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
2023-01-04 08:25:17 +00:00
static const u32 ice_aq_to_link_speed[] = {
SPEED_10, /* BIT(0) */
SPEED_100,
SPEED_1000,
SPEED_2500,
SPEED_5000,
SPEED_10000,
SPEED_20000,
SPEED_25000,
SPEED_40000,
SPEED_50000,
SPEED_100000, /* BIT(10) */
SPEED_200000,
};
/**
* ice_get_link_speed - get integer speed from table
* @index: array index from fls(aq speed) - 1
*
* Returns: u32 value containing integer speed
*/
u32 ice_get_link_speed(u16 index)
{
ice: fix out-of-bounds KASAN warning in virtchnl KASAN reported: [ 9793.708867] BUG: KASAN: global-out-of-bounds in ice_get_link_speed+0x16/0x30 [ice] [ 9793.709205] Read of size 4 at addr ffffffffc1271b1c by task kworker/6:1/402 [ 9793.709222] CPU: 6 PID: 402 Comm: kworker/6:1 Kdump: loaded Tainted: G B OE 6.1.0+ #3 [ 9793.709235] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.00.01.0014.070920180847 07/09/2018 [ 9793.709245] Workqueue: ice ice_service_task [ice] [ 9793.709575] Call Trace: [ 9793.709582] <TASK> [ 9793.709588] dump_stack_lvl+0x44/0x5c [ 9793.709613] print_report+0x17f/0x47b [ 9793.709632] ? __cpuidle_text_end+0x5/0x5 [ 9793.709653] ? ice_get_link_speed+0x16/0x30 [ice] [ 9793.709986] ? ice_get_link_speed+0x16/0x30 [ice] [ 9793.710317] kasan_report+0xb7/0x140 [ 9793.710335] ? ice_get_link_speed+0x16/0x30 [ice] [ 9793.710673] ice_get_link_speed+0x16/0x30 [ice] [ 9793.711006] ice_vc_notify_vf_link_state+0x14c/0x160 [ice] [ 9793.711351] ? ice_vc_repr_cfg_promiscuous_mode+0x120/0x120 [ice] [ 9793.711698] ice_vc_process_vf_msg+0x7a7/0xc00 [ice] [ 9793.712074] __ice_clean_ctrlq+0x98f/0xd20 [ice] [ 9793.712534] ? ice_bridge_setlink+0x410/0x410 [ice] [ 9793.712979] ? __request_module+0x320/0x520 [ 9793.713014] ? ice_process_vflr_event+0x27/0x130 [ice] [ 9793.713489] ice_service_task+0x11cf/0x1950 [ice] [ 9793.713948] ? io_schedule_timeout+0xb0/0xb0 [ 9793.713972] process_one_work+0x3d0/0x6a0 [ 9793.714003] worker_thread+0x8a/0x610 [ 9793.714031] ? process_one_work+0x6a0/0x6a0 [ 9793.714049] kthread+0x164/0x1a0 [ 9793.714071] ? kthread_complete_and_exit+0x20/0x20 [ 9793.714100] ret_from_fork+0x1f/0x30 [ 9793.714137] </TASK> [ 9793.714151] The buggy address belongs to the variable: [ 9793.714158] ice_aq_to_link_speed+0x3c/0xffffffffffff3520 [ice] [ 9793.714632] Memory state around the buggy address: [ 9793.714642] ffffffffc1271a00: f9 f9 f9 f9 00 00 05 f9 f9 f9 f9 f9 00 00 02 f9 [ 9793.714656] ffffffffc1271a80: f9 f9 f9 f9 00 00 04 f9 f9 f9 f9 f9 00 00 00 00 [ 9793.714670] >ffffffffc1271b00: 00 00 00 04 f9 f9 f9 f9 04 f9 f9 f9 f9 f9 f9 f9 [ 9793.714680] ^ [ 9793.714690] ffffffffc1271b80: 00 00 00 00 00 04 f9 f9 f9 f9 f9 f9 00 00 00 00 [ 9793.714704] ffffffffc1271c00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 The ICE_AQ_LINK_SPEED_UNKNOWN define is BIT(15). The value is bigger than both legacy and normal link speed tables. Add one element (0 - unknown) to both tables. There is no need to explicitly set table size, leave it empty. Fixes: 1d0e28a9be1f ("ice: Remove and replace ice speed defines with ethtool.h versions") Signed-off-by: Michal Swiatkowski <michal.swiatkowski@linux.intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Tested-by: Gurucharan G <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
2023-01-04 08:25:17 +00:00
if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
return 0;
return ice_aq_to_link_speed[index];
}