linux-stable/fs/xfs/libxfs/xfs_ag.c

991 lines
25 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* Copyright (c) 2018 Red Hat, Inc.
* All rights reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_rmap_btree.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_rmap.h"
#include "xfs_ag.h"
#include "xfs_ag_resv.h"
#include "xfs_health.h"
#include "xfs_error.h"
#include "xfs_bmap.h"
#include "xfs_defer.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_trace.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
/*
* Passive reference counting access wrappers to the perag structures. If the
* per-ag structure is to be freed, the freeing code is responsible for cleaning
* up objects with passive references before freeing the structure. This is
* things like cached buffers.
*/
struct xfs_perag *
xfs_perag_get(
struct xfs_mount *mp,
xfs_agnumber_t agno)
{
struct xfs_perag *pag;
int ref = 0;
rcu_read_lock();
pag = radix_tree_lookup(&mp->m_perag_tree, agno);
if (pag) {
ASSERT(atomic_read(&pag->pag_ref) >= 0);
ref = atomic_inc_return(&pag->pag_ref);
}
rcu_read_unlock();
trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
return pag;
}
/*
* search from @first to find the next perag with the given tag set.
*/
struct xfs_perag *
xfs_perag_get_tag(
struct xfs_mount *mp,
xfs_agnumber_t first,
xfs: clean up incore inode walk functions This ambitious series aims to cleans up redundant inode walk code in xfs_icache.c, hide implementation details of the quotaoff dquot release code, and eliminates indirect function calls from incore inode walks. The first thing it does is to move all the code that quotaoff calls to release dquots from all incore inodes into xfs_icache.c. Next, it separates the goal of an inode walk from the actual radix tree tags that may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing. Finally, we split the speculative preallocation (blockgc) and quotaoff dquot release code paths into separate functions so that we can keep the implementations cohesive. Christoph suggested last cycle that we 'simply' change quotaoff not to allow deactivating quota entirely, but as these cleanups are to enable one major change in behavior (deferred inode inactivation) I do not want to add a second behavior change (quotaoff) as a dependency. To be blunt: Additional cleanups are not in scope for this series. Next, I made two observations about incore inode radix tree walks -- since there's a 1:1 mapping between the walk goal and the per-inode processing function passed in, we can use the goal to make a direct call to the processing function. Furthermore, the only caller to supply a nonzero iter_flags argument is quotaoff, and there's only one INEW flag. From that observation, I concluded that it's quite possible to remove two parameters from the xfs_inode_walk* function signatures -- the iter_flags, and the execute function pointer. The middle of the series moves the INEW functionality into the one piece (quotaoff) that wants it, and removes the indirect calls. The final observation is that the inode reclaim walk loop is now almost the same as xfs_inode_walk, so it's silly to maintain two copies. Merge the reclaim loop code into xfs_inode_walk. Lastly, refactor the per-ag radix tagging functions since there's duplicated code that can be consolidated. This series is a prerequisite for the next two patchsets, since deferred inode inactivation will add another inode radix tree tag and iterator function to xfs_inode_walk. v2: walk the vfs inode list when running quotaoff instead of the radix tree, then rework the (now completely internal) inode walk function to take the tag as the main parameter. v3: merge the reclaim loop into xfs_inode_walk, then consolidate the radix tree tagging functions v4: rebase to 5.13-rc4 v5: combine with the quotaoff patchset, reorder functions to minimize forward declarations, split inode walk goals from radix tree tags to reduce conceptual confusion v6: start moving the inode cache code towards the xfs_icwalk prefix -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmC5Yv0ACgkQ+H93GTRK tOv7Fg//Z7cKph0zSg6qsukMEMZxscuNcEBydCW1bu9gSx1NpszDpiGqAiO5ZB3X wP2XkCqjuatbNGGvkNLHS/M4sbLX3ELogvYmMRvUhDoaSFxT/KKgxvsyNffiCSS7 xRB/rvWRp9MGRpBWPF0ZUxFU6VBzhCrYdMsNhvW95AEup8S/j+NplwoIif0gzaZZ Q6Fl4Ca9VEBvJQPV+/zkLih19iFItmARJhPHUs4BO1nZv+CzZBFQHg7Ijw7nW92j eSY68W4LH/IQ5cqm+HrD/+Z6ns0P7J2viewzVymkNEGnuX4a0xrQrzQ8ydRsAxTi 9EDrpIe3MbSI5YjJfmRe8G3LX5p7vBpqc8TeyZdRDMGWkFjT33HPlQNb6WxKLQbA mjKdfr8AYZR/UQKW/7oZFrJnOoMpYRAQ4Sn/9BAYZQYm7tiLzuZsrEZ7JBwiUA56 XHmlsDDeLzJeKvjmUu8M3H4oh4Nwf5/I2vJwHjueTfhl83uJP04igIXC4rnq56bM AAAjH9uV11Fo3q0ywAnRtN2HYj8PEJlCMK5CNskILrGeMITsBPGht0SbaA6hDI2h GYmltKInHzuPhHC9NfyPVrVr3BrmPR5cBsVFESiz5A4E9rbuKmmna6Yk8MFlMyl8 FRIA3zVatJ2qQXtsAcdI8AZzMd7ciYhkAgCqFKxv8qK/qxITHh4= =Rxdn -----END PGP SIGNATURE----- Merge tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.14-merge2 xfs: clean up incore inode walk functions This ambitious series aims to cleans up redundant inode walk code in xfs_icache.c, hide implementation details of the quotaoff dquot release code, and eliminates indirect function calls from incore inode walks. The first thing it does is to move all the code that quotaoff calls to release dquots from all incore inodes into xfs_icache.c. Next, it separates the goal of an inode walk from the actual radix tree tags that may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing. Finally, we split the speculative preallocation (blockgc) and quotaoff dquot release code paths into separate functions so that we can keep the implementations cohesive. Christoph suggested last cycle that we 'simply' change quotaoff not to allow deactivating quota entirely, but as these cleanups are to enable one major change in behavior (deferred inode inactivation) I do not want to add a second behavior change (quotaoff) as a dependency. To be blunt: Additional cleanups are not in scope for this series. Next, I made two observations about incore inode radix tree walks -- since there's a 1:1 mapping between the walk goal and the per-inode processing function passed in, we can use the goal to make a direct call to the processing function. Furthermore, the only caller to supply a nonzero iter_flags argument is quotaoff, and there's only one INEW flag. From that observation, I concluded that it's quite possible to remove two parameters from the xfs_inode_walk* function signatures -- the iter_flags, and the execute function pointer. The middle of the series moves the INEW functionality into the one piece (quotaoff) that wants it, and removes the indirect calls. The final observation is that the inode reclaim walk loop is now almost the same as xfs_inode_walk, so it's silly to maintain two copies. Merge the reclaim loop code into xfs_inode_walk. Lastly, refactor the per-ag radix tagging functions since there's duplicated code that can be consolidated. This series is a prerequisite for the next two patchsets, since deferred inode inactivation will add another inode radix tree tag and iterator function to xfs_inode_walk. v2: walk the vfs inode list when running quotaoff instead of the radix tree, then rework the (now completely internal) inode walk function to take the tag as the main parameter. v3: merge the reclaim loop into xfs_inode_walk, then consolidate the radix tree tagging functions v4: rebase to 5.13-rc4 v5: combine with the quotaoff patchset, reorder functions to minimize forward declarations, split inode walk goals from radix tree tags to reduce conceptual confusion v6: start moving the inode cache code towards the xfs_icwalk prefix * tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux: xfs: refactor per-AG inode tagging functions xfs: merge xfs_reclaim_inodes_ag into xfs_inode_walk_ag xfs: pass struct xfs_eofblocks to the inode scan callback xfs: fix radix tree tag signs xfs: make the icwalk processing functions clean up the grab state xfs: clean up inode state flag tests in xfs_blockgc_igrab xfs: remove indirect calls from xfs_inode_walk{,_ag} xfs: remove iter_flags parameter from xfs_inode_walk_* xfs: move xfs_inew_wait call into xfs_dqrele_inode xfs: separate the dqrele_all inode grab logic from xfs_inode_walk_ag_grab xfs: pass the goal of the incore inode walk to xfs_inode_walk() xfs: rename xfs_inode_walk functions to xfs_icwalk xfs: move the inode walk functions further down xfs: detach inode dquots at the end of inactivation xfs: move the quotaoff dqrele inode walk into xfs_icache.c [djwong: added variable names to function declarations while fixing merge conflicts] Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-08 16:26:44 +00:00
unsigned int tag)
{
struct xfs_perag *pag;
int found;
int ref;
rcu_read_lock();
found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
(void **)&pag, first, 1, tag);
if (found <= 0) {
rcu_read_unlock();
return NULL;
}
ref = atomic_inc_return(&pag->pag_ref);
rcu_read_unlock();
trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
return pag;
}
void
xfs_perag_put(
struct xfs_perag *pag)
{
int ref;
ASSERT(atomic_read(&pag->pag_ref) > 0);
ref = atomic_dec_return(&pag->pag_ref);
trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
}
/*
* xfs_initialize_perag_data
*
* Read in each per-ag structure so we can count up the number of
* allocated inodes, free inodes and used filesystem blocks as this
* information is no longer persistent in the superblock. Once we have
* this information, write it into the in-core superblock structure.
*/
int
xfs_initialize_perag_data(
struct xfs_mount *mp,
xfs_agnumber_t agcount)
{
xfs_agnumber_t index;
struct xfs_perag *pag;
struct xfs_sb *sbp = &mp->m_sb;
uint64_t ifree = 0;
uint64_t ialloc = 0;
uint64_t bfree = 0;
uint64_t bfreelst = 0;
uint64_t btree = 0;
uint64_t fdblocks;
int error = 0;
for (index = 0; index < agcount; index++) {
/*
* read the agf, then the agi. This gets us
* all the information we need and populates the
* per-ag structures for us.
*/
error = xfs_alloc_pagf_init(mp, NULL, index, 0);
if (error)
return error;
error = xfs_ialloc_pagi_init(mp, NULL, index);
if (error)
return error;
pag = xfs_perag_get(mp, index);
ifree += pag->pagi_freecount;
ialloc += pag->pagi_count;
bfree += pag->pagf_freeblks;
bfreelst += pag->pagf_flcount;
btree += pag->pagf_btreeblks;
xfs_perag_put(pag);
}
fdblocks = bfree + bfreelst + btree;
/*
* If the new summary counts are obviously incorrect, fail the
* mount operation because that implies the AGFs are also corrupt.
* Clear FS_COUNTERS so that we don't unmount with a dirty log, which
* will prevent xfs_repair from fixing anything.
*/
if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
error = -EFSCORRUPTED;
goto out;
}
/* Overwrite incore superblock counters with just-read data */
spin_lock(&mp->m_sb_lock);
sbp->sb_ifree = ifree;
sbp->sb_icount = ialloc;
sbp->sb_fdblocks = fdblocks;
spin_unlock(&mp->m_sb_lock);
xfs_reinit_percpu_counters(mp);
out:
xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
return error;
}
STATIC void
__xfs_free_perag(
struct rcu_head *head)
{
struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
ASSERT(atomic_read(&pag->pag_ref) == 0);
kmem_free(pag);
}
/*
* Free up the per-ag resources associated with the mount structure.
*/
void
xfs_free_perag(
struct xfs_mount *mp)
{
struct xfs_perag *pag;
xfs_agnumber_t agno;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
spin_lock(&mp->m_perag_lock);
pag = radix_tree_delete(&mp->m_perag_tree, agno);
spin_unlock(&mp->m_perag_lock);
ASSERT(pag);
ASSERT(atomic_read(&pag->pag_ref) == 0);
cancel_delayed_work_sync(&pag->pag_blockgc_work);
xfs_iunlink_destroy(pag);
xfs_buf_hash_destroy(pag);
call_rcu(&pag->rcu_head, __xfs_free_perag);
}
}
int
xfs_initialize_perag(
struct xfs_mount *mp,
xfs_agnumber_t agcount,
xfs_agnumber_t *maxagi)
{
struct xfs_perag *pag;
xfs_agnumber_t index;
xfs_agnumber_t first_initialised = NULLAGNUMBER;
int error;
/*
* Walk the current per-ag tree so we don't try to initialise AGs
* that already exist (growfs case). Allocate and insert all the
* AGs we don't find ready for initialisation.
*/
for (index = 0; index < agcount; index++) {
pag = xfs_perag_get(mp, index);
if (pag) {
xfs_perag_put(pag);
continue;
}
pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
if (!pag) {
error = -ENOMEM;
goto out_unwind_new_pags;
}
pag->pag_agno = index;
pag->pag_mount = mp;
error = radix_tree_preload(GFP_NOFS);
if (error)
goto out_free_pag;
spin_lock(&mp->m_perag_lock);
if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
WARN_ON_ONCE(1);
spin_unlock(&mp->m_perag_lock);
radix_tree_preload_end();
error = -EEXIST;
goto out_free_pag;
}
spin_unlock(&mp->m_perag_lock);
radix_tree_preload_end();
#ifdef __KERNEL__
/* Place kernel structure only init below this point. */
spin_lock_init(&pag->pag_ici_lock);
spin_lock_init(&pag->pagb_lock);
spin_lock_init(&pag->pag_state_lock);
INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
init_waitqueue_head(&pag->pagb_wait);
pag->pagb_count = 0;
pag->pagb_tree = RB_ROOT;
#endif /* __KERNEL__ */
error = xfs_buf_hash_init(pag);
if (error)
goto out_remove_pag;
error = xfs_iunlink_init(pag);
if (error)
goto out_hash_destroy;
/* first new pag is fully initialized */
if (first_initialised == NULLAGNUMBER)
first_initialised = index;
}
index = xfs_set_inode_alloc(mp, agcount);
if (maxagi)
*maxagi = index;
mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
return 0;
out_hash_destroy:
xfs_buf_hash_destroy(pag);
out_remove_pag:
radix_tree_delete(&mp->m_perag_tree, index);
out_free_pag:
kmem_free(pag);
out_unwind_new_pags:
/* unwind any prior newly initialized pags */
for (index = first_initialised; index < agcount; index++) {
pag = radix_tree_delete(&mp->m_perag_tree, index);
if (!pag)
break;
xfs_buf_hash_destroy(pag);
xfs_iunlink_destroy(pag);
kmem_free(pag);
}
return error;
}
static int
xfs_get_aghdr_buf(
struct xfs_mount *mp,
xfs_daddr_t blkno,
size_t numblks,
struct xfs_buf **bpp,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
int error;
error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
if (error)
return error;
bp->b_maps[0].bm_bn = blkno;
bp->b_ops = ops;
*bpp = bp;
return 0;
}
static inline bool is_log_ag(struct xfs_mount *mp, struct aghdr_init_data *id)
{
return mp->m_sb.sb_logstart > 0 &&
id->agno == XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart);
}
/*
* Generic btree root block init function
*/
static void
xfs_btroot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
}
/* Finish initializing a free space btree. */
static void
xfs_freesp_init_recs(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_alloc_rec *arec;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
if (is_log_ag(mp, id)) {
struct xfs_alloc_rec *nrec;
xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
mp->m_sb.sb_logstart);
ASSERT(start >= mp->m_ag_prealloc_blocks);
if (start != mp->m_ag_prealloc_blocks) {
/*
* Modify first record to pad stripe align of log
*/
arec->ar_blockcount = cpu_to_be32(start -
mp->m_ag_prealloc_blocks);
nrec = arec + 1;
/*
* Insert second record at start of internal log
* which then gets trimmed.
*/
nrec->ar_startblock = cpu_to_be32(
be32_to_cpu(arec->ar_startblock) +
be32_to_cpu(arec->ar_blockcount));
arec = nrec;
be16_add_cpu(&block->bb_numrecs, 1);
}
/*
* Change record start to after the internal log
*/
be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
}
/*
* Calculate the record block count and check for the case where
* the log might have consumed all available space in the AG. If
* so, reset the record count to 0 to avoid exposure of an invalid
* record start block.
*/
arec->ar_blockcount = cpu_to_be32(id->agsize -
be32_to_cpu(arec->ar_startblock));
if (!arec->ar_blockcount)
block->bb_numrecs = 0;
}
/*
* Alloc btree root block init functions
*/
static void
xfs_bnoroot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno);
xfs_freesp_init_recs(mp, bp, id);
}
static void
xfs_cntroot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno);
xfs_freesp_init_recs(mp, bp, id);
}
/*
* Reverse map root block init
*/
static void
xfs_rmaproot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_rmap_rec *rrec;
xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
/*
* mark the AG header regions as static metadata The BNO
* btree block is the first block after the headers, so
* it's location defines the size of region the static
* metadata consumes.
*
* Note: unlike mkfs, we never have to account for log
* space when growing the data regions
*/
rrec = XFS_RMAP_REC_ADDR(block, 1);
rrec->rm_startblock = 0;
rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
rrec->rm_offset = 0;
/* account freespace btree root blocks */
rrec = XFS_RMAP_REC_ADDR(block, 2);
rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(2);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
rrec->rm_offset = 0;
/* account inode btree root blocks */
rrec = XFS_RMAP_REC_ADDR(block, 3);
rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
XFS_IBT_BLOCK(mp));
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
rrec->rm_offset = 0;
/* account for rmap btree root */
rrec = XFS_RMAP_REC_ADDR(block, 4);
rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(1);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
rrec->rm_offset = 0;
/* account for refc btree root */
if (xfs_has_reflink(mp)) {
rrec = XFS_RMAP_REC_ADDR(block, 5);
rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
rrec->rm_blockcount = cpu_to_be32(1);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
}
/* account for the log space */
if (is_log_ag(mp, id)) {
rrec = XFS_RMAP_REC_ADDR(block,
be16_to_cpu(block->bb_numrecs) + 1);
rrec->rm_startblock = cpu_to_be32(
XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
}
}
/*
* Initialise new secondary superblocks with the pre-grow geometry, but mark
* them as "in progress" so we know they haven't yet been activated. This will
* get cleared when the update with the new geometry information is done after
* changes to the primary are committed. This isn't strictly necessary, but we
* get it for free with the delayed buffer write lists and it means we can tell
* if a grow operation didn't complete properly after the fact.
*/
static void
xfs_sbblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_dsb *dsb = bp->b_addr;
xfs_sb_to_disk(dsb, &mp->m_sb);
dsb->sb_inprogress = 1;
}
static void
xfs_agfblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_agf *agf = bp->b_addr;
xfs_extlen_t tmpsize;
agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
agf->agf_seqno = cpu_to_be32(id->agno);
agf->agf_length = cpu_to_be32(id->agsize);
agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
if (xfs_has_rmapbt(mp)) {
agf->agf_roots[XFS_BTNUM_RMAPi] =
cpu_to_be32(XFS_RMAP_BLOCK(mp));
agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
agf->agf_rmap_blocks = cpu_to_be32(1);
}
agf->agf_flfirst = cpu_to_be32(1);
agf->agf_fllast = 0;
agf->agf_flcount = 0;
tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
agf->agf_freeblks = cpu_to_be32(tmpsize);
agf->agf_longest = cpu_to_be32(tmpsize);
if (xfs_has_crc(mp))
uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
if (xfs_has_reflink(mp)) {
agf->agf_refcount_root = cpu_to_be32(
xfs_refc_block(mp));
agf->agf_refcount_level = cpu_to_be32(1);
agf->agf_refcount_blocks = cpu_to_be32(1);
}
if (is_log_ag(mp, id)) {
int64_t logblocks = mp->m_sb.sb_logblocks;
be32_add_cpu(&agf->agf_freeblks, -logblocks);
agf->agf_longest = cpu_to_be32(id->agsize -
XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
}
}
static void
xfs_agflblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
__be32 *agfl_bno;
int bucket;
if (xfs_has_crc(mp)) {
agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
agfl->agfl_seqno = cpu_to_be32(id->agno);
uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
}
agfl_bno = xfs_buf_to_agfl_bno(bp);
for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
}
static void
xfs_agiblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_agi *agi = bp->b_addr;
int bucket;
agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
agi->agi_seqno = cpu_to_be32(id->agno);
agi->agi_length = cpu_to_be32(id->agsize);
agi->agi_count = 0;
agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
agi->agi_level = cpu_to_be32(1);
agi->agi_freecount = 0;
agi->agi_newino = cpu_to_be32(NULLAGINO);
agi->agi_dirino = cpu_to_be32(NULLAGINO);
if (xfs_has_crc(mp))
uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
if (xfs_has_finobt(mp)) {
agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
agi->agi_free_level = cpu_to_be32(1);
}
for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
if (xfs_has_inobtcounts(mp)) {
agi->agi_iblocks = cpu_to_be32(1);
if (xfs_has_finobt(mp))
agi->agi_fblocks = cpu_to_be32(1);
}
}
typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
struct aghdr_init_data *id);
static int
xfs_ag_init_hdr(
struct xfs_mount *mp,
struct aghdr_init_data *id,
aghdr_init_work_f work,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
int error;
error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
if (error)
return error;
(*work)(mp, bp, id);
xfs_buf_delwri_queue(bp, &id->buffer_list);
xfs_buf_relse(bp);
return 0;
}
struct xfs_aghdr_grow_data {
xfs_daddr_t daddr;
size_t numblks;
const struct xfs_buf_ops *ops;
aghdr_init_work_f work;
xfs_btnum_t type;
bool need_init;
};
/*
* Prepare new AG headers to be written to disk. We use uncached buffers here,
* as it is assumed these new AG headers are currently beyond the currently
* valid filesystem address space. Using cached buffers would trip over EOFS
* corruption detection alogrithms in the buffer cache lookup routines.
*
* This is a non-transactional function, but the prepared buffers are added to a
* delayed write buffer list supplied by the caller so they can submit them to
* disk and wait on them as required.
*/
int
xfs_ag_init_headers(
struct xfs_mount *mp,
struct aghdr_init_data *id)
{
struct xfs_aghdr_grow_data aghdr_data[] = {
{ /* SB */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_sb_buf_ops,
.work = &xfs_sbblock_init,
.need_init = true
},
{ /* AGF */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_agf_buf_ops,
.work = &xfs_agfblock_init,
.need_init = true
},
{ /* AGFL */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_agfl_buf_ops,
.work = &xfs_agflblock_init,
.need_init = true
},
{ /* AGI */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_agi_buf_ops,
.work = &xfs_agiblock_init,
.need_init = true
},
{ /* BNO root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_bnobt_buf_ops,
.work = &xfs_bnoroot_init,
.need_init = true
},
{ /* CNT root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_cntbt_buf_ops,
.work = &xfs_cntroot_init,
.need_init = true
},
{ /* INO root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_inobt_buf_ops,
.work = &xfs_btroot_init,
.type = XFS_BTNUM_INO,
.need_init = true
},
{ /* FINO root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_finobt_buf_ops,
.work = &xfs_btroot_init,
.type = XFS_BTNUM_FINO,
.need_init = xfs_has_finobt(mp)
},
{ /* RMAP root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_rmapbt_buf_ops,
.work = &xfs_rmaproot_init,
.need_init = xfs_has_rmapbt(mp)
},
{ /* REFC root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_refcountbt_buf_ops,
.work = &xfs_btroot_init,
.type = XFS_BTNUM_REFC,
.need_init = xfs_has_reflink(mp)
},
{ /* NULL terminating block */
.daddr = XFS_BUF_DADDR_NULL,
}
};
struct xfs_aghdr_grow_data *dp;
int error = 0;
/* Account for AG free space in new AG */
id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
if (!dp->need_init)
continue;
id->daddr = dp->daddr;
id->numblks = dp->numblks;
id->type = dp->type;
error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
if (error)
break;
}
return error;
}
int
xfs_ag_shrink_space(
struct xfs_mount *mp,
struct xfs_trans **tpp,
xfs_agnumber_t agno,
xfs_extlen_t delta)
{
struct xfs_alloc_arg args = {
.tp = *tpp,
.mp = mp,
.type = XFS_ALLOCTYPE_THIS_BNO,
.minlen = delta,
.maxlen = delta,
.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
.resv = XFS_AG_RESV_NONE,
.prod = 1
};
struct xfs_buf *agibp, *agfbp;
struct xfs_agi *agi;
struct xfs_agf *agf;
xfs_agblock_t aglen;
int error, err2;
ASSERT(agno == mp->m_sb.sb_agcount - 1);
error = xfs_ialloc_read_agi(mp, *tpp, agno, &agibp);
if (error)
return error;
agi = agibp->b_addr;
error = xfs_alloc_read_agf(mp, *tpp, agno, 0, &agfbp);
if (error)
return error;
agf = agfbp->b_addr;
aglen = be32_to_cpu(agi->agi_length);
/* some extra paranoid checks before we shrink the ag */
if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
return -EFSCORRUPTED;
if (delta >= aglen)
return -EINVAL;
args.fsbno = XFS_AGB_TO_FSB(mp, agno, aglen - delta);
/*
* Make sure that the last inode cluster cannot overlap with the new
* end of the AG, even if it's sparse.
*/
error = xfs_ialloc_check_shrink(*tpp, agno, agibp, aglen - delta);
if (error)
return error;
/*
* Disable perag reservations so it doesn't cause the allocation request
* to fail. We'll reestablish reservation before we return.
*/
error = xfs_ag_resv_free(agibp->b_pag);
if (error)
return error;
/* internal log shouldn't also show up in the free space btrees */
error = xfs_alloc_vextent(&args);
if (!error && args.agbno == NULLAGBLOCK)
error = -ENOSPC;
if (error) {
/*
* if extent allocation fails, need to roll the transaction to
* ensure that the AGFL fixup has been committed anyway.
*/
xfs_trans_bhold(*tpp, agfbp);
err2 = xfs_trans_roll(tpp);
if (err2)
return err2;
xfs_trans_bjoin(*tpp, agfbp);
goto resv_init_out;
}
/*
* if successfully deleted from freespace btrees, need to confirm
* per-AG reservation works as expected.
*/
be32_add_cpu(&agi->agi_length, -delta);
be32_add_cpu(&agf->agf_length, -delta);
err2 = xfs_ag_resv_init(agibp->b_pag, *tpp);
if (err2) {
be32_add_cpu(&agi->agi_length, delta);
be32_add_cpu(&agf->agf_length, delta);
if (err2 != -ENOSPC)
goto resv_err;
__xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true);
/*
* Roll the transaction before trying to re-init the per-ag
* reservation. The new transaction is clean so it will cancel
* without any side effects.
*/
error = xfs_defer_finish(tpp);
if (error)
return error;
error = -ENOSPC;
goto resv_init_out;
}
xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
return 0;
resv_init_out:
err2 = xfs_ag_resv_init(agibp->b_pag, *tpp);
if (!err2)
return error;
resv_err:
xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return err2;
}
/*
* Extent the AG indicated by the @id by the length passed in
*/
int
xfs_ag_extend_space(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct aghdr_init_data *id,
xfs_extlen_t len)
{
struct xfs_buf *bp;
struct xfs_agi *agi;
struct xfs_agf *agf;
int error;
/*
* Change the agi length.
*/
error = xfs_ialloc_read_agi(mp, tp, id->agno, &bp);
if (error)
return error;
agi = bp->b_addr;
be32_add_cpu(&agi->agi_length, len);
ASSERT(id->agno == mp->m_sb.sb_agcount - 1 ||
be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks);
xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
/*
* Change agf length.
*/
error = xfs_alloc_read_agf(mp, tp, id->agno, 0, &bp);
if (error)
return error;
agf = bp->b_addr;
be32_add_cpu(&agf->agf_length, len);
ASSERT(agf->agf_length == agi->agi_length);
xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
/*
* Free the new space.
*
* XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
* this doesn't actually exist in the rmap btree.
*/
error = xfs_rmap_free(tp, bp, bp->b_pag,
be32_to_cpu(agf->agf_length) - len,
len, &XFS_RMAP_OINFO_SKIP_UPDATE);
if (error)
return error;
return xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id->agno,
be32_to_cpu(agf->agf_length) - len),
len, &XFS_RMAP_OINFO_SKIP_UPDATE,
XFS_AG_RESV_NONE);
}
/* Retrieve AG geometry. */
int
xfs_ag_get_geometry(
struct xfs_mount *mp,
xfs_agnumber_t agno,
struct xfs_ag_geometry *ageo)
{
struct xfs_buf *agi_bp;
struct xfs_buf *agf_bp;
struct xfs_agi *agi;
struct xfs_agf *agf;
struct xfs_perag *pag;
unsigned int freeblks;
int error;
if (agno >= mp->m_sb.sb_agcount)
return -EINVAL;
/* Lock the AG headers. */
error = xfs_ialloc_read_agi(mp, NULL, agno, &agi_bp);
if (error)
return error;
error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agf_bp);
if (error)
goto out_agi;
pag = agi_bp->b_pag;
/* Fill out form. */
memset(ageo, 0, sizeof(*ageo));
ageo->ag_number = agno;
agi = agi_bp->b_addr;
ageo->ag_icount = be32_to_cpu(agi->agi_count);
ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
agf = agf_bp->b_addr;
ageo->ag_length = be32_to_cpu(agf->agf_length);
freeblks = pag->pagf_freeblks +
pag->pagf_flcount +
pag->pagf_btreeblks -
xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
ageo->ag_freeblks = freeblks;
xfs_ag_geom_health(pag, ageo);
/* Release resources. */
xfs_buf_relse(agf_bp);
out_agi:
xfs_buf_relse(agi_bp);
return error;
}