linux-stable/net/ipv6/netfilter/nf_conntrack_reasm.c

569 lines
13 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/*
* IPv6 fragment reassembly for connection tracking
*
* Copyright (C)2004 USAGI/WIDE Project
*
* Author:
* Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
*
* Based on: net/ipv6/reassembly.c
*/
#define pr_fmt(fmt) "IPv6-nf: " fmt
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
#include <net/ipv6_frag.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
#include <net/netfilter/ipv6/nf_conntrack_ipv6.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
#include <linux/sysctl.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv6.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
#include <net/netns/generic.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
static const char nf_frags_cache_name[] = "nf-frags";
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
static unsigned int nf_frag_pernet_id __read_mostly;
static struct inet_frags nf_frags;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
static struct nft_ct_frag6_pernet *nf_frag_pernet(struct net *net)
{
return net_generic(net, nf_frag_pernet_id);
}
#ifdef CONFIG_SYSCTL
static struct ctl_table nf_ct_frag6_sysctl_table[] = {
{
.procname = "nf_conntrack_frag6_timeout",
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "nf_conntrack_frag6_low_thresh",
.maxlen = sizeof(unsigned long),
.mode = 0644,
.proc_handler = proc_doulongvec_minmax,
},
{
.procname = "nf_conntrack_frag6_high_thresh",
.maxlen = sizeof(unsigned long),
.mode = 0644,
.proc_handler = proc_doulongvec_minmax,
},
{ }
};
static int nf_ct_frag6_sysctl_register(struct net *net)
{
struct nft_ct_frag6_pernet *nf_frag;
struct ctl_table *table;
struct ctl_table_header *hdr;
table = nf_ct_frag6_sysctl_table;
if (!net_eq(net, &init_net)) {
table = kmemdup(table, sizeof(nf_ct_frag6_sysctl_table),
GFP_KERNEL);
if (table == NULL)
goto err_alloc;
}
nf_frag = nf_frag_pernet(net);
table[0].data = &nf_frag->fqdir->timeout;
table[1].data = &nf_frag->fqdir->low_thresh;
table[1].extra2 = &nf_frag->fqdir->high_thresh;
table[2].data = &nf_frag->fqdir->high_thresh;
table[2].extra1 = &nf_frag->fqdir->low_thresh;
hdr = register_net_sysctl(net, "net/netfilter", table);
if (hdr == NULL)
goto err_reg;
nf_frag->nf_frag_frags_hdr = hdr;
return 0;
err_reg:
if (!net_eq(net, &init_net))
kfree(table);
err_alloc:
return -ENOMEM;
}
static void __net_exit nf_ct_frags6_sysctl_unregister(struct net *net)
{
struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net);
struct ctl_table *table;
table = nf_frag->nf_frag_frags_hdr->ctl_table_arg;
unregister_net_sysctl_table(nf_frag->nf_frag_frags_hdr);
if (!net_eq(net, &init_net))
kfree(table);
}
#else
static int nf_ct_frag6_sysctl_register(struct net *net)
{
return 0;
}
static void __net_exit nf_ct_frags6_sysctl_unregister(struct net *net)
{
}
#endif
static int nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *skb,
struct sk_buff *prev_tail, struct net_device *dev);
static inline u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h)
{
return 1 << (ipv6_get_dsfield(ipv6h) & INET_ECN_MASK);
}
static void nf_ct_frag6_expire(struct timer_list *t)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
struct inet_frag_queue *frag = from_timer(frag, t, timer);
struct frag_queue *fq;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
fq = container_of(frag, struct frag_queue, q);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
ip6frag_expire_frag_queue(fq->q.fqdir->net, fq);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
/* Creation primitives. */
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 19:58:49 +00:00
static struct frag_queue *fq_find(struct net *net, __be32 id, u32 user,
const struct ipv6hdr *hdr, int iif)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net);
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 19:58:49 +00:00
struct frag_v6_compare_key key = {
.id = id,
.saddr = hdr->saddr,
.daddr = hdr->daddr,
.user = user,
.iif = iif,
};
struct inet_frag_queue *q;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
q = inet_frag_find(nf_frag->fqdir, &key);
if (!q)
return NULL;
return container_of(q, struct frag_queue, q);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb,
const struct frag_hdr *fhdr, int nhoff)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
unsigned int payload_len;
struct net_device *dev;
struct sk_buff *prev;
int offset, end, err;
u8 ecn;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (fq->q.flags & INET_FRAG_COMPLETE) {
pr_debug("Already completed\n");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
goto err;
}
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
payload_len = ntohs(ipv6_hdr(skb)->payload_len);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
offset = ntohs(fhdr->frag_off) & ~0x7;
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
end = offset + (payload_len -
((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if ((unsigned int)end > IPV6_MAXPLEN) {
pr_debug("offset is too large.\n");
netfilter: ipv6: nf_defrag: Pass on packets to stack per RFC2460 ipv6_defrag pulls network headers before fragment header. In case of an error, the netfilter layer is currently dropping these packets. This results in failure of some IPv6 standards tests which passed on older kernels due to the netfilter framework using cloning. The test case run here is a check for ICMPv6 error message replies when some invalid IPv6 fragments are sent. This specific test case is listed in https://www.ipv6ready.org/docs/Core_Conformance_Latest.pdf in the Extension Header Processing Order section. A packet with unrecognized option Type 11 is sent and the test expects an ICMP error in line with RFC2460 section 4.2 - 11 - discard the packet and, only if the packet's Destination Address was not a multicast address, send an ICMP Parameter Problem, Code 2, message to the packet's Source Address, pointing to the unrecognized Option Type. Since netfilter layer now drops all invalid IPv6 frag packets, we no longer see the ICMP error message and fail the test case. To fix this, save the transport header. If defrag is unable to process the packet due to RFC2460, restore the transport header and allow packet to be processed by stack. There is no change for other packet processing paths. Tested by confirming that stack sends an ICMP error when it receives these packets. Also tested that fragmented ICMP pings succeed. v1->v2: Instead of cloning always, save the transport_header and restore it in case of this specific error. Update the title and commit message accordingly. Signed-off-by: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-01-13 00:36:27 +00:00
return -EINVAL;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
ecn = ip6_frag_ecn(ipv6_hdr(skb));
if (skb->ip_summed == CHECKSUM_COMPLETE) {
const unsigned char *nh = skb_network_header(skb);
skb->csum = csum_sub(skb->csum,
csum_partial(nh, (u8 *)(fhdr + 1) - nh,
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
0));
}
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/* Is this the final fragment? */
if (!(fhdr->frag_off & htons(IP6_MF))) {
/* If we already have some bits beyond end
* or have different end, the segment is corrupted.
*/
if (end < fq->q.len ||
((fq->q.flags & INET_FRAG_LAST_IN) && end != fq->q.len)) {
pr_debug("already received last fragment\n");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
goto err;
}
fq->q.flags |= INET_FRAG_LAST_IN;
fq->q.len = end;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
} else {
/* Check if the fragment is rounded to 8 bytes.
* Required by the RFC.
*/
if (end & 0x7) {
/* RFC2460 says always send parameter problem in
* this case. -DaveM
*/
pr_debug("end of fragment not rounded to 8 bytes.\n");
inet_frag_kill(&fq->q);
netfilter: ipv6: nf_defrag: Pass on packets to stack per RFC2460 ipv6_defrag pulls network headers before fragment header. In case of an error, the netfilter layer is currently dropping these packets. This results in failure of some IPv6 standards tests which passed on older kernels due to the netfilter framework using cloning. The test case run here is a check for ICMPv6 error message replies when some invalid IPv6 fragments are sent. This specific test case is listed in https://www.ipv6ready.org/docs/Core_Conformance_Latest.pdf in the Extension Header Processing Order section. A packet with unrecognized option Type 11 is sent and the test expects an ICMP error in line with RFC2460 section 4.2 - 11 - discard the packet and, only if the packet's Destination Address was not a multicast address, send an ICMP Parameter Problem, Code 2, message to the packet's Source Address, pointing to the unrecognized Option Type. Since netfilter layer now drops all invalid IPv6 frag packets, we no longer see the ICMP error message and fail the test case. To fix this, save the transport header. If defrag is unable to process the packet due to RFC2460, restore the transport header and allow packet to be processed by stack. There is no change for other packet processing paths. Tested by confirming that stack sends an ICMP error when it receives these packets. Also tested that fragmented ICMP pings succeed. v1->v2: Instead of cloning always, save the transport_header and restore it in case of this specific error. Update the title and commit message accordingly. Signed-off-by: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-01-13 00:36:27 +00:00
return -EPROTO;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
if (end > fq->q.len) {
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/* Some bits beyond end -> corruption. */
if (fq->q.flags & INET_FRAG_LAST_IN) {
pr_debug("last packet already reached.\n");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
goto err;
}
fq->q.len = end;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
}
if (end == offset)
goto err;
/* Point into the IP datagram 'data' part. */
if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) {
pr_debug("queue: message is too short.\n");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
goto err;
}
if (pskb_trim_rcsum(skb, end - offset)) {
pr_debug("Can't trim\n");
goto err;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
/* Note : skb->rbnode and skb->dev share the same location. */
dev = skb->dev;
/* Makes sure compiler wont do silly aliasing games */
barrier();
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
prev = fq->q.fragments_tail;
err = inet_frag_queue_insert(&fq->q, skb, offset, end);
if (err) {
if (err == IPFRAG_DUP) {
/* No error for duplicates, pretend they got queued. */
kfree_skb(skb);
return -EINPROGRESS;
}
goto insert_error;
}
if (dev)
fq->iif = dev->ifindex;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
fq->q.stamp = skb->tstamp;
fq->q.mono_delivery_time = skb->mono_delivery_time;
fq->q.meat += skb->len;
fq->ecn |= ecn;
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
if (payload_len > fq->q.max_size)
fq->q.max_size = payload_len;
add_frag_mem_limit(fq->q.fqdir, skb->truesize);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/* The first fragment.
* nhoffset is obtained from the first fragment, of course.
*/
if (offset == 0) {
fq->nhoffset = nhoff;
fq->q.flags |= INET_FRAG_FIRST_IN;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
fq->q.meat == fq->q.len) {
unsigned long orefdst = skb->_skb_refdst;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
skb->_skb_refdst = 0UL;
err = nf_ct_frag6_reasm(fq, skb, prev, dev);
skb->_skb_refdst = orefdst;
/* After queue has assumed skb ownership, only 0 or
* -EINPROGRESS must be returned.
*/
return err ? -EINPROGRESS : 0;
}
skb_dst_drop(skb);
return -EINPROGRESS;
insert_error:
inet_frag_kill(&fq->q);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
err:
skb_dst_drop(skb);
netfilter: ipv6: nf_defrag: Pass on packets to stack per RFC2460 ipv6_defrag pulls network headers before fragment header. In case of an error, the netfilter layer is currently dropping these packets. This results in failure of some IPv6 standards tests which passed on older kernels due to the netfilter framework using cloning. The test case run here is a check for ICMPv6 error message replies when some invalid IPv6 fragments are sent. This specific test case is listed in https://www.ipv6ready.org/docs/Core_Conformance_Latest.pdf in the Extension Header Processing Order section. A packet with unrecognized option Type 11 is sent and the test expects an ICMP error in line with RFC2460 section 4.2 - 11 - discard the packet and, only if the packet's Destination Address was not a multicast address, send an ICMP Parameter Problem, Code 2, message to the packet's Source Address, pointing to the unrecognized Option Type. Since netfilter layer now drops all invalid IPv6 frag packets, we no longer see the ICMP error message and fail the test case. To fix this, save the transport header. If defrag is unable to process the packet due to RFC2460, restore the transport header and allow packet to be processed by stack. There is no change for other packet processing paths. Tested by confirming that stack sends an ICMP error when it receives these packets. Also tested that fragmented ICMP pings succeed. v1->v2: Instead of cloning always, save the transport_header and restore it in case of this specific error. Update the title and commit message accordingly. Signed-off-by: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-01-13 00:36:27 +00:00
return -EINVAL;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
/*
* Check if this packet is complete.
*
* It is called with locked fq, and caller must check that
* queue is eligible for reassembly i.e. it is not COMPLETE,
* the last and the first frames arrived and all the bits are here.
*/
static int nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *skb,
struct sk_buff *prev_tail, struct net_device *dev)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
void *reasm_data;
int payload_len;
u8 ecn;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
inet_frag_kill(&fq->q);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
ecn = ip_frag_ecn_table[fq->ecn];
if (unlikely(ecn == 0xff))
goto err;
reasm_data = inet_frag_reasm_prepare(&fq->q, skb, prev_tail);
if (!reasm_data)
goto err;
payload_len = ((skb->data - skb_network_header(skb)) -
sizeof(struct ipv6hdr) + fq->q.len -
sizeof(struct frag_hdr));
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (payload_len > IPV6_MAXPLEN) {
net_dbg_ratelimited("nf_ct_frag6_reasm: payload len = %d\n",
payload_len);
goto err;
}
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/* We have to remove fragment header from datagram and to relocate
* header in order to calculate ICV correctly. */
skb_network_header(skb)[fq->nhoffset] = skb_transport_header(skb)[0];
memmove(skb->head + sizeof(struct frag_hdr), skb->head,
(skb->data - skb->head) - sizeof(struct frag_hdr));
skb->mac_header += sizeof(struct frag_hdr);
skb->network_header += sizeof(struct frag_hdr);
skb_reset_transport_header(skb);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
inet: frags: re-introduce skb coalescing for local delivery Before commit d4289fcc9b16 ("net: IP6 defrag: use rbtrees for IPv6 defrag"), a netperf UDP_STREAM test[0] using big IPv6 datagrams (thus generating many fragments) and running over an IPsec tunnel, reported more than 6Gbps throughput. After that patch, the same test gets only 9Mbps when receiving on a be2net nic (driver can make a big difference here, for example, ixgbe doesn't seem to be affected). By reusing the IPv4 defragmentation code, IPv6 lost fragment coalescing (IPv4 fragment coalescing was dropped by commit 14fe22e33462 ("Revert "ipv4: use skb coalescing in defragmentation"")). Without fragment coalescing, be2net runs out of Rx ring entries and starts to drop frames (ethtool reports rx_drops_no_frags errors). Since the netperf traffic is only composed of UDP fragments, any lost packet prevents reassembly of the full datagram. Therefore, fragments which have no possibility to ever get reassembled pile up in the reassembly queue, until the memory accounting exeeds the threshold. At that point no fragment is accepted anymore, which effectively discards all netperf traffic. When reassembly timeout expires, some stale fragments are removed from the reassembly queue, so a few packets can be received, reassembled and delivered to the netperf receiver. But the nic still drops frames and soon the reassembly queue gets filled again with stale fragments. These long time frames where no datagram can be received explain why the performance drop is so significant. Re-introducing fragment coalescing is enough to get the initial performances again (6.6Gbps with be2net): driver doesn't drop frames anymore (no more rx_drops_no_frags errors) and the reassembly engine works at full speed. This patch is quite conservative and only coalesces skbs for local IPv4 and IPv6 delivery (in order to avoid changing skb geometry when forwarding). Coalescing could be extended in the future if need be, as more scenarios would probably benefit from it. [0]: Test configuration Sender: ip xfrm policy flush ip xfrm state flush ip xfrm state add src fc00:1::1 dst fc00:2::1 proto esp spi 0x1000 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:1::1 dst fc00:2::1 ip xfrm policy add src fc00:1::1 dst fc00:2::1 dir in tmpl src fc00:1::1 dst fc00:2::1 proto esp mode transport action allow ip xfrm state add src fc00:2::1 dst fc00:1::1 proto esp spi 0x1001 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:2::1 dst fc00:1::1 ip xfrm policy add src fc00:2::1 dst fc00:1::1 dir out tmpl src fc00:2::1 dst fc00:1::1 proto esp mode transport action allow netserver -D -L fc00:2::1 Receiver: ip xfrm policy flush ip xfrm state flush ip xfrm state add src fc00:2::1 dst fc00:1::1 proto esp spi 0x1001 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:2::1 dst fc00:1::1 ip xfrm policy add src fc00:2::1 dst fc00:1::1 dir in tmpl src fc00:2::1 dst fc00:1::1 proto esp mode transport action allow ip xfrm state add src fc00:1::1 dst fc00:2::1 proto esp spi 0x1000 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:1::1 dst fc00:2::1 ip xfrm policy add src fc00:1::1 dst fc00:2::1 dir out tmpl src fc00:1::1 dst fc00:2::1 proto esp mode transport action allow netperf -H fc00:2::1 -f k -P 0 -L fc00:1::1 -l 60 -t UDP_STREAM -I 99,5 -i 5,5 -T5,5 -6 Signed-off-by: Guillaume Nault <gnault@redhat.com> Acked-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-02 15:15:03 +00:00
inet_frag_reasm_finish(&fq->q, skb, reasm_data, false);
skb->ignore_df = 1;
skb->dev = dev;
ipv6_hdr(skb)->payload_len = htons(payload_len);
ipv6_change_dsfield(ipv6_hdr(skb), 0xff, ecn);
IP6CB(skb)->frag_max_size = sizeof(struct ipv6hdr) + fq->q.max_size;
IP6CB(skb)->flags |= IP6SKB_FRAGMENTED;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/* Yes, and fold redundant checksum back. 8) */
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->csum = csum_partial(skb_network_header(skb),
skb_network_header_len(skb),
skb->csum);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
fq->q.rb_fragments = RB_ROOT;
fq->q.fragments_tail = NULL;
fq->q.last_run_head = NULL;
return 0;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
err:
inet_frag_kill(&fq->q);
return -EINVAL;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
/*
* find the header just before Fragment Header.
*
* if success return 0 and set ...
* (*prevhdrp): the value of "Next Header Field" in the header
* just before Fragment Header.
* (*prevhoff): the offset of "Next Header Field" in the header
* just before Fragment Header.
* (*fhoff) : the offset of Fragment Header.
*
* Based on ipv6_skip_hdr() in net/ipv6/exthdr.c
*
*/
static int
find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff)
{
u8 nexthdr = ipv6_hdr(skb)->nexthdr;
const int netoff = skb_network_offset(skb);
u8 prev_nhoff = netoff + offsetof(struct ipv6hdr, nexthdr);
int start = netoff + sizeof(struct ipv6hdr);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
int len = skb->len - start;
u8 prevhdr = NEXTHDR_IPV6;
while (nexthdr != NEXTHDR_FRAGMENT) {
struct ipv6_opt_hdr hdr;
int hdrlen;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (!ipv6_ext_hdr(nexthdr)) {
return -1;
}
if (nexthdr == NEXTHDR_NONE) {
pr_debug("next header is none\n");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
return -1;
}
if (len < (int)sizeof(struct ipv6_opt_hdr)) {
pr_debug("too short\n");
return -1;
}
if (skb_copy_bits(skb, start, &hdr, sizeof(hdr)))
BUG();
if (nexthdr == NEXTHDR_AUTH)
hdrlen = ipv6_authlen(&hdr);
else
hdrlen = ipv6_optlen(&hdr);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
prevhdr = nexthdr;
prev_nhoff = start;
nexthdr = hdr.nexthdr;
len -= hdrlen;
start += hdrlen;
}
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (len < 0)
return -1;
*prevhdrp = prevhdr;
*prevhoff = prev_nhoff;
*fhoff = start;
return 0;
}
int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
netfilter: ipv6: nf_defrag: Pass on packets to stack per RFC2460 ipv6_defrag pulls network headers before fragment header. In case of an error, the netfilter layer is currently dropping these packets. This results in failure of some IPv6 standards tests which passed on older kernels due to the netfilter framework using cloning. The test case run here is a check for ICMPv6 error message replies when some invalid IPv6 fragments are sent. This specific test case is listed in https://www.ipv6ready.org/docs/Core_Conformance_Latest.pdf in the Extension Header Processing Order section. A packet with unrecognized option Type 11 is sent and the test expects an ICMP error in line with RFC2460 section 4.2 - 11 - discard the packet and, only if the packet's Destination Address was not a multicast address, send an ICMP Parameter Problem, Code 2, message to the packet's Source Address, pointing to the unrecognized Option Type. Since netfilter layer now drops all invalid IPv6 frag packets, we no longer see the ICMP error message and fail the test case. To fix this, save the transport header. If defrag is unable to process the packet due to RFC2460, restore the transport header and allow packet to be processed by stack. There is no change for other packet processing paths. Tested by confirming that stack sends an ICMP error when it receives these packets. Also tested that fragmented ICMP pings succeed. v1->v2: Instead of cloning always, save the transport_header and restore it in case of this specific error. Update the title and commit message accordingly. Signed-off-by: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-01-13 00:36:27 +00:00
u16 savethdr = skb->transport_header;
ipv6/netfilter: Discard first fragment not including all headers Packets are processed even though the first fragment don't include all headers through the upper layer header. This breaks TAHI IPv6 Core Conformance Test v6LC.1.3.6. Referring to RFC8200 SECTION 4.5: "If the first fragment does not include all headers through an Upper-Layer header, then that fragment should be discarded and an ICMP Parameter Problem, Code 3, message should be sent to the source of the fragment, with the Pointer field set to zero." The fragment needs to be validated the same way it is done in commit 2efdaaaf883a ("IPv6: reply ICMP error if the first fragment don't include all headers") for ipv6. Wrap the validation into a common function, ipv6_frag_thdr_truncated() to check for truncation in the upper layer header. This validation does not fullfill all aspects of RFC 8200, section 4.5, but is at the moment sufficient to pass mentioned TAHI test. In netfilter, utilize the fragment offset returned by find_prev_fhdr() to let ipv6_frag_thdr_truncated() start it's traverse from the fragment header. Return 0 to drop the fragment in the netfilter. This is the same behaviour as used on other protocol errors in this function, e.g. when nf_ct_frag6_queue() returns -EPROTO. The Fragment will later be picked up by ipv6_frag_rcv() in reassembly.c. ipv6_frag_rcv() will then send an appropriate ICMP Parameter Problem message back to the source. References commit 2efdaaaf883a ("IPv6: reply ICMP error if the first fragment don't include all headers") Signed-off-by: Georg Kohmann <geokohma@cisco.com> Acked-by: Pablo Neira Ayuso <pablo@netfilter.org> Link: https://lore.kernel.org/r/20201111115025.28879-1-geokohma@cisco.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-11 11:50:25 +00:00
u8 nexthdr = NEXTHDR_FRAGMENT;
int fhoff, nhoff, ret;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
struct frag_hdr *fhdr;
struct frag_queue *fq;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
struct ipv6hdr *hdr;
u8 prevhdr;
/* Jumbo payload inhibits frag. header */
if (ipv6_hdr(skb)->payload_len == 0) {
pr_debug("payload len = 0\n");
return 0;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
if (find_prev_fhdr(skb, &prevhdr, &nhoff, &fhoff) < 0)
return 0;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
ipv6/netfilter: Discard first fragment not including all headers Packets are processed even though the first fragment don't include all headers through the upper layer header. This breaks TAHI IPv6 Core Conformance Test v6LC.1.3.6. Referring to RFC8200 SECTION 4.5: "If the first fragment does not include all headers through an Upper-Layer header, then that fragment should be discarded and an ICMP Parameter Problem, Code 3, message should be sent to the source of the fragment, with the Pointer field set to zero." The fragment needs to be validated the same way it is done in commit 2efdaaaf883a ("IPv6: reply ICMP error if the first fragment don't include all headers") for ipv6. Wrap the validation into a common function, ipv6_frag_thdr_truncated() to check for truncation in the upper layer header. This validation does not fullfill all aspects of RFC 8200, section 4.5, but is at the moment sufficient to pass mentioned TAHI test. In netfilter, utilize the fragment offset returned by find_prev_fhdr() to let ipv6_frag_thdr_truncated() start it's traverse from the fragment header. Return 0 to drop the fragment in the netfilter. This is the same behaviour as used on other protocol errors in this function, e.g. when nf_ct_frag6_queue() returns -EPROTO. The Fragment will later be picked up by ipv6_frag_rcv() in reassembly.c. ipv6_frag_rcv() will then send an appropriate ICMP Parameter Problem message back to the source. References commit 2efdaaaf883a ("IPv6: reply ICMP error if the first fragment don't include all headers") Signed-off-by: Georg Kohmann <geokohma@cisco.com> Acked-by: Pablo Neira Ayuso <pablo@netfilter.org> Link: https://lore.kernel.org/r/20201111115025.28879-1-geokohma@cisco.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-11 11:50:25 +00:00
/* Discard the first fragment if it does not include all headers
* RFC 8200, Section 4.5
*/
if (ipv6frag_thdr_truncated(skb, fhoff, &nexthdr)) {
ipv6/netfilter: Discard first fragment not including all headers Packets are processed even though the first fragment don't include all headers through the upper layer header. This breaks TAHI IPv6 Core Conformance Test v6LC.1.3.6. Referring to RFC8200 SECTION 4.5: "If the first fragment does not include all headers through an Upper-Layer header, then that fragment should be discarded and an ICMP Parameter Problem, Code 3, message should be sent to the source of the fragment, with the Pointer field set to zero." The fragment needs to be validated the same way it is done in commit 2efdaaaf883a ("IPv6: reply ICMP error if the first fragment don't include all headers") for ipv6. Wrap the validation into a common function, ipv6_frag_thdr_truncated() to check for truncation in the upper layer header. This validation does not fullfill all aspects of RFC 8200, section 4.5, but is at the moment sufficient to pass mentioned TAHI test. In netfilter, utilize the fragment offset returned by find_prev_fhdr() to let ipv6_frag_thdr_truncated() start it's traverse from the fragment header. Return 0 to drop the fragment in the netfilter. This is the same behaviour as used on other protocol errors in this function, e.g. when nf_ct_frag6_queue() returns -EPROTO. The Fragment will later be picked up by ipv6_frag_rcv() in reassembly.c. ipv6_frag_rcv() will then send an appropriate ICMP Parameter Problem message back to the source. References commit 2efdaaaf883a ("IPv6: reply ICMP error if the first fragment don't include all headers") Signed-off-by: Georg Kohmann <geokohma@cisco.com> Acked-by: Pablo Neira Ayuso <pablo@netfilter.org> Link: https://lore.kernel.org/r/20201111115025.28879-1-geokohma@cisco.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-11 11:50:25 +00:00
pr_debug("Drop incomplete fragment\n");
return 0;
}
if (!pskb_may_pull(skb, fhoff + sizeof(*fhdr)))
return -ENOMEM;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
skb_set_transport_header(skb, fhoff);
hdr = ipv6_hdr(skb);
fhdr = (struct frag_hdr *)skb_transport_header(skb);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
ipv6: orphan skbs in reassembly unit Andrey reported a use-after-free in IPv6 stack. Issue here is that we free the socket while it still has skb in TX path and in some queues. It happens here because IPv6 reassembly unit messes skb->truesize, breaking skb_set_owner_w() badly. We fixed a similar issue for IPV4 in commit 8282f27449bf ("inet: frag: Always orphan skbs inside ip_defrag()") Acked-by: Joe Stringer <joe@ovn.org> ================================================================== BUG: KASAN: use-after-free in sock_wfree+0x118/0x120 Read of size 8 at addr ffff880062da0060 by task a.out/4140 page:ffffea00018b6800 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0x100000000008100(slab|head) raw: 0100000000008100 0000000000000000 0000000000000000 0000000180130013 raw: dead000000000100 dead000000000200 ffff88006741f140 0000000000000000 page dumped because: kasan: bad access detected CPU: 0 PID: 4140 Comm: a.out Not tainted 4.10.0-rc3+ #59 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:15 dump_stack+0x292/0x398 lib/dump_stack.c:51 describe_address mm/kasan/report.c:262 kasan_report_error+0x121/0x560 mm/kasan/report.c:370 kasan_report mm/kasan/report.c:392 __asan_report_load8_noabort+0x3e/0x40 mm/kasan/report.c:413 sock_flag ./arch/x86/include/asm/bitops.h:324 sock_wfree+0x118/0x120 net/core/sock.c:1631 skb_release_head_state+0xfc/0x250 net/core/skbuff.c:655 skb_release_all+0x15/0x60 net/core/skbuff.c:668 __kfree_skb+0x15/0x20 net/core/skbuff.c:684 kfree_skb+0x16e/0x4e0 net/core/skbuff.c:705 inet_frag_destroy+0x121/0x290 net/ipv4/inet_fragment.c:304 inet_frag_put ./include/net/inet_frag.h:133 nf_ct_frag6_gather+0x1125/0x38b0 net/ipv6/netfilter/nf_conntrack_reasm.c:617 ipv6_defrag+0x21b/0x350 net/ipv6/netfilter/nf_defrag_ipv6_hooks.c:68 nf_hook_entry_hookfn ./include/linux/netfilter.h:102 nf_hook_slow+0xc3/0x290 net/netfilter/core.c:310 nf_hook ./include/linux/netfilter.h:212 __ip6_local_out+0x52c/0xaf0 net/ipv6/output_core.c:160 ip6_local_out+0x2d/0x170 net/ipv6/output_core.c:170 ip6_send_skb+0xa1/0x340 net/ipv6/ip6_output.c:1722 ip6_push_pending_frames+0xb3/0xe0 net/ipv6/ip6_output.c:1742 rawv6_push_pending_frames net/ipv6/raw.c:613 rawv6_sendmsg+0x2cff/0x4130 net/ipv6/raw.c:927 inet_sendmsg+0x164/0x5b0 net/ipv4/af_inet.c:744 sock_sendmsg_nosec net/socket.c:635 sock_sendmsg+0xca/0x110 net/socket.c:645 sock_write_iter+0x326/0x620 net/socket.c:848 new_sync_write fs/read_write.c:499 __vfs_write+0x483/0x760 fs/read_write.c:512 vfs_write+0x187/0x530 fs/read_write.c:560 SYSC_write fs/read_write.c:607 SyS_write+0xfb/0x230 fs/read_write.c:599 entry_SYSCALL_64_fastpath+0x1f/0xc2 arch/x86/entry/entry_64.S:203 RIP: 0033:0x7ff26e6f5b79 RSP: 002b:00007ff268e0ed98 EFLAGS: 00000206 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007ff268e0f9c0 RCX: 00007ff26e6f5b79 RDX: 0000000000000010 RSI: 0000000020f50fe1 RDI: 0000000000000003 RBP: 00007ff26ebc1220 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000206 R12: 0000000000000000 R13: 00007ff268e0f9c0 R14: 00007ff26efec040 R15: 0000000000000003 The buggy address belongs to the object at ffff880062da0000 which belongs to the cache RAWv6 of size 1504 The buggy address ffff880062da0060 is located 96 bytes inside of 1504-byte region [ffff880062da0000, ffff880062da05e0) Freed by task 4113: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:57 save_stack+0x43/0xd0 mm/kasan/kasan.c:502 set_track mm/kasan/kasan.c:514 kasan_slab_free+0x73/0xc0 mm/kasan/kasan.c:578 slab_free_hook mm/slub.c:1352 slab_free_freelist_hook mm/slub.c:1374 slab_free mm/slub.c:2951 kmem_cache_free+0xb2/0x2c0 mm/slub.c:2973 sk_prot_free net/core/sock.c:1377 __sk_destruct+0x49c/0x6e0 net/core/sock.c:1452 sk_destruct+0x47/0x80 net/core/sock.c:1460 __sk_free+0x57/0x230 net/core/sock.c:1468 sk_free+0x23/0x30 net/core/sock.c:1479 sock_put ./include/net/sock.h:1638 sk_common_release+0x31e/0x4e0 net/core/sock.c:2782 rawv6_close+0x54/0x80 net/ipv6/raw.c:1214 inet_release+0xed/0x1c0 net/ipv4/af_inet.c:425 inet6_release+0x50/0x70 net/ipv6/af_inet6.c:431 sock_release+0x8d/0x1e0 net/socket.c:599 sock_close+0x16/0x20 net/socket.c:1063 __fput+0x332/0x7f0 fs/file_table.c:208 ____fput+0x15/0x20 fs/file_table.c:244 task_work_run+0x19b/0x270 kernel/task_work.c:116 exit_task_work ./include/linux/task_work.h:21 do_exit+0x186b/0x2800 kernel/exit.c:839 do_group_exit+0x149/0x420 kernel/exit.c:943 SYSC_exit_group kernel/exit.c:954 SyS_exit_group+0x1d/0x20 kernel/exit.c:952 entry_SYSCALL_64_fastpath+0x1f/0xc2 arch/x86/entry/entry_64.S:203 Allocated by task 4115: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:57 save_stack+0x43/0xd0 mm/kasan/kasan.c:502 set_track mm/kasan/kasan.c:514 kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:605 kasan_slab_alloc+0x12/0x20 mm/kasan/kasan.c:544 slab_post_alloc_hook mm/slab.h:432 slab_alloc_node mm/slub.c:2708 slab_alloc mm/slub.c:2716 kmem_cache_alloc+0x1af/0x250 mm/slub.c:2721 sk_prot_alloc+0x65/0x2a0 net/core/sock.c:1334 sk_alloc+0x105/0x1010 net/core/sock.c:1396 inet6_create+0x44d/0x1150 net/ipv6/af_inet6.c:183 __sock_create+0x4f6/0x880 net/socket.c:1199 sock_create net/socket.c:1239 SYSC_socket net/socket.c:1269 SyS_socket+0xf9/0x230 net/socket.c:1249 entry_SYSCALL_64_fastpath+0x1f/0xc2 arch/x86/entry/entry_64.S:203 Memory state around the buggy address: ffff880062d9ff00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff880062d9ff80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff880062da0000: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff880062da0080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff880062da0100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-01 22:45:06 +00:00
skb_orphan(skb);
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 19:58:49 +00:00
fq = fq_find(net, fhdr->identification, user, hdr,
skb->dev ? skb->dev->ifindex : 0);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (fq == NULL) {
pr_debug("Can't find and can't create new queue\n");
return -ENOMEM;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
spin_lock_bh(&fq->q.lock);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
netfilter: ipv6: nf_defrag: Pass on packets to stack per RFC2460 ipv6_defrag pulls network headers before fragment header. In case of an error, the netfilter layer is currently dropping these packets. This results in failure of some IPv6 standards tests which passed on older kernels due to the netfilter framework using cloning. The test case run here is a check for ICMPv6 error message replies when some invalid IPv6 fragments are sent. This specific test case is listed in https://www.ipv6ready.org/docs/Core_Conformance_Latest.pdf in the Extension Header Processing Order section. A packet with unrecognized option Type 11 is sent and the test expects an ICMP error in line with RFC2460 section 4.2 - 11 - discard the packet and, only if the packet's Destination Address was not a multicast address, send an ICMP Parameter Problem, Code 2, message to the packet's Source Address, pointing to the unrecognized Option Type. Since netfilter layer now drops all invalid IPv6 frag packets, we no longer see the ICMP error message and fail the test case. To fix this, save the transport header. If defrag is unable to process the packet due to RFC2460, restore the transport header and allow packet to be processed by stack. There is no change for other packet processing paths. Tested by confirming that stack sends an ICMP error when it receives these packets. Also tested that fragmented ICMP pings succeed. v1->v2: Instead of cloning always, save the transport_header and restore it in case of this specific error. Update the title and commit message accordingly. Signed-off-by: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-01-13 00:36:27 +00:00
ret = nf_ct_frag6_queue(fq, skb, fhdr, nhoff);
if (ret == -EPROTO) {
skb->transport_header = savethdr;
ret = 0;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
spin_unlock_bh(&fq->q.lock);
inet_frag_put(&fq->q);
return ret;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
EXPORT_SYMBOL_GPL(nf_ct_frag6_gather);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
static int nf_ct_net_init(struct net *net)
{
struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net);
int res;
res = fqdir_init(&nf_frag->fqdir, &nf_frags, net);
if (res < 0)
return res;
nf_frag->fqdir->high_thresh = IPV6_FRAG_HIGH_THRESH;
nf_frag->fqdir->low_thresh = IPV6_FRAG_LOW_THRESH;
nf_frag->fqdir->timeout = IPV6_FRAG_TIMEOUT;
res = nf_ct_frag6_sysctl_register(net);
if (res < 0)
fqdir_exit(nf_frag->fqdir);
return res;
}
inet: fix various use-after-free in defrags units syzbot reported another issue caused by my recent patches. [1] The issue here is that fqdir_exit() is initiating a work queue and immediately returns. A bit later cleanup_net() was able to free the MIB (percpu data) and the whole struct net was freed, but we had active frag timers that fired and triggered use-after-free. We need to make sure that timers can catch fqdir->dead being set, to bailout. Since RCU is used for the reader side, this means we want to respect an RCU grace period between these operations : 1) qfdir->dead = 1; 2) netns dismantle (freeing of various data structure) This patch uses new new (struct pernet_operations)->pre_exit infrastructure to ensures a full RCU grace period happens between fqdir_pre_exit() and fqdir_exit() This also means we can use a regular work queue, we no longer need rcu_work. Tested: $ time for i in {1..1000}; do unshare -n /bin/false;done real 0m2.585s user 0m0.160s sys 0m2.214s [1] BUG: KASAN: use-after-free in ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152 Read of size 8 at addr ffff88808b9fe330 by task syz-executor.4/11860 CPU: 1 PID: 11860 Comm: syz-executor.4 Not tainted 5.2.0-rc2+ #22 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152 call_timer_fn+0x193/0x720 kernel/time/timer.c:1322 expire_timers kernel/time/timer.c:1366 [inline] __run_timers kernel/time/timer.c:1685 [inline] __run_timers kernel/time/timer.c:1653 [inline] run_timer_softirq+0x66f/0x1740 kernel/time/timer.c:1698 __do_softirq+0x25c/0x94c kernel/softirq.c:293 invoke_softirq kernel/softirq.c:374 [inline] irq_exit+0x180/0x1d0 kernel/softirq.c:414 exiting_irq arch/x86/include/asm/apic.h:536 [inline] smp_apic_timer_interrupt+0x13b/0x550 arch/x86/kernel/apic/apic.c:1068 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:806 </IRQ> RIP: 0010:tomoyo_domain_quota_is_ok+0x131/0x540 security/tomoyo/util.c:1035 Code: 24 4c 3b 65 d0 0f 84 9c 00 00 00 e8 19 1d 73 fe 49 8d 7c 24 18 48 ba 00 00 00 00 00 fc ff df 48 89 f8 48 c1 e8 03 0f b6 04 10 <48> 89 fa 83 e2 07 38 d0 7f 08 84 c0 0f 85 69 03 00 00 41 0f b6 5c RSP: 0018:ffff88806ae079c0 EFLAGS: 00000a02 ORIG_RAX: ffffffffffffff13 RAX: 0000000000000000 RBX: 0000000000000010 RCX: ffffc9000e655000 RDX: dffffc0000000000 RSI: ffffffff82fd88a7 RDI: ffff888086202398 RBP: ffff88806ae07a00 R08: ffff88808b6c8700 R09: ffffed100d5c0f4d R10: ffffed100d5c0f4c R11: 0000000000000000 R12: ffff888086202380 R13: 0000000000000030 R14: 00000000000000d3 R15: 0000000000000000 tomoyo_supervisor+0x2e8/0xef0 security/tomoyo/common.c:2087 tomoyo_audit_path_number_log security/tomoyo/file.c:235 [inline] tomoyo_path_number_perm+0x42f/0x520 security/tomoyo/file.c:734 tomoyo_file_ioctl+0x23/0x30 security/tomoyo/tomoyo.c:335 security_file_ioctl+0x77/0xc0 security/security.c:1370 ksys_ioctl+0x57/0xd0 fs/ioctl.c:711 __do_sys_ioctl fs/ioctl.c:720 [inline] __se_sys_ioctl fs/ioctl.c:718 [inline] __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x4592c9 Code: fd b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 cb b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f8db5e44c78 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00000000004592c9 RDX: 0000000020000080 RSI: 00000000000089f1 RDI: 0000000000000006 RBP: 000000000075bf20 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f8db5e456d4 R13: 00000000004cc770 R14: 00000000004d5cd8 R15: 00000000ffffffff Allocated by task 9047: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:497 slab_post_alloc_hook mm/slab.h:437 [inline] slab_alloc mm/slab.c:3326 [inline] kmem_cache_alloc+0x11a/0x6f0 mm/slab.c:3488 kmem_cache_zalloc include/linux/slab.h:732 [inline] net_alloc net/core/net_namespace.c:386 [inline] copy_net_ns+0xed/0x340 net/core/net_namespace.c:426 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 2541: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kmem_cache_free+0x86/0x260 mm/slab.c:3698 net_free net/core/net_namespace.c:402 [inline] net_drop_ns.part.0+0x70/0x90 net/core/net_namespace.c:409 net_drop_ns net/core/net_namespace.c:408 [inline] cleanup_net+0x538/0x960 net/core/net_namespace.c:571 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff88808b9fe100 which belongs to the cache net_namespace of size 6784 The buggy address is located 560 bytes inside of 6784-byte region [ffff88808b9fe100, ffff88808b9ffb80) The buggy address belongs to the page: page:ffffea00022e7f80 refcount:1 mapcount:0 mapping:ffff88821b6f60c0 index:0x0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea000256f288 ffffea0001bbef08 ffff88821b6f60c0 raw: 0000000000000000 ffff88808b9fe100 0000000100000001 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88808b9fe200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88808b9fe280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff88808b9fe300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88808b9fe380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88808b9fe400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 3c8fc8782044 ("inet: frags: rework rhashtable dismantle") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-18 18:09:00 +00:00
static void nf_ct_net_pre_exit(struct net *net)
{
struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net);
fqdir_pre_exit(nf_frag->fqdir);
inet: fix various use-after-free in defrags units syzbot reported another issue caused by my recent patches. [1] The issue here is that fqdir_exit() is initiating a work queue and immediately returns. A bit later cleanup_net() was able to free the MIB (percpu data) and the whole struct net was freed, but we had active frag timers that fired and triggered use-after-free. We need to make sure that timers can catch fqdir->dead being set, to bailout. Since RCU is used for the reader side, this means we want to respect an RCU grace period between these operations : 1) qfdir->dead = 1; 2) netns dismantle (freeing of various data structure) This patch uses new new (struct pernet_operations)->pre_exit infrastructure to ensures a full RCU grace period happens between fqdir_pre_exit() and fqdir_exit() This also means we can use a regular work queue, we no longer need rcu_work. Tested: $ time for i in {1..1000}; do unshare -n /bin/false;done real 0m2.585s user 0m0.160s sys 0m2.214s [1] BUG: KASAN: use-after-free in ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152 Read of size 8 at addr ffff88808b9fe330 by task syz-executor.4/11860 CPU: 1 PID: 11860 Comm: syz-executor.4 Not tainted 5.2.0-rc2+ #22 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152 call_timer_fn+0x193/0x720 kernel/time/timer.c:1322 expire_timers kernel/time/timer.c:1366 [inline] __run_timers kernel/time/timer.c:1685 [inline] __run_timers kernel/time/timer.c:1653 [inline] run_timer_softirq+0x66f/0x1740 kernel/time/timer.c:1698 __do_softirq+0x25c/0x94c kernel/softirq.c:293 invoke_softirq kernel/softirq.c:374 [inline] irq_exit+0x180/0x1d0 kernel/softirq.c:414 exiting_irq arch/x86/include/asm/apic.h:536 [inline] smp_apic_timer_interrupt+0x13b/0x550 arch/x86/kernel/apic/apic.c:1068 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:806 </IRQ> RIP: 0010:tomoyo_domain_quota_is_ok+0x131/0x540 security/tomoyo/util.c:1035 Code: 24 4c 3b 65 d0 0f 84 9c 00 00 00 e8 19 1d 73 fe 49 8d 7c 24 18 48 ba 00 00 00 00 00 fc ff df 48 89 f8 48 c1 e8 03 0f b6 04 10 <48> 89 fa 83 e2 07 38 d0 7f 08 84 c0 0f 85 69 03 00 00 41 0f b6 5c RSP: 0018:ffff88806ae079c0 EFLAGS: 00000a02 ORIG_RAX: ffffffffffffff13 RAX: 0000000000000000 RBX: 0000000000000010 RCX: ffffc9000e655000 RDX: dffffc0000000000 RSI: ffffffff82fd88a7 RDI: ffff888086202398 RBP: ffff88806ae07a00 R08: ffff88808b6c8700 R09: ffffed100d5c0f4d R10: ffffed100d5c0f4c R11: 0000000000000000 R12: ffff888086202380 R13: 0000000000000030 R14: 00000000000000d3 R15: 0000000000000000 tomoyo_supervisor+0x2e8/0xef0 security/tomoyo/common.c:2087 tomoyo_audit_path_number_log security/tomoyo/file.c:235 [inline] tomoyo_path_number_perm+0x42f/0x520 security/tomoyo/file.c:734 tomoyo_file_ioctl+0x23/0x30 security/tomoyo/tomoyo.c:335 security_file_ioctl+0x77/0xc0 security/security.c:1370 ksys_ioctl+0x57/0xd0 fs/ioctl.c:711 __do_sys_ioctl fs/ioctl.c:720 [inline] __se_sys_ioctl fs/ioctl.c:718 [inline] __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x4592c9 Code: fd b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 cb b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f8db5e44c78 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00000000004592c9 RDX: 0000000020000080 RSI: 00000000000089f1 RDI: 0000000000000006 RBP: 000000000075bf20 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f8db5e456d4 R13: 00000000004cc770 R14: 00000000004d5cd8 R15: 00000000ffffffff Allocated by task 9047: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:497 slab_post_alloc_hook mm/slab.h:437 [inline] slab_alloc mm/slab.c:3326 [inline] kmem_cache_alloc+0x11a/0x6f0 mm/slab.c:3488 kmem_cache_zalloc include/linux/slab.h:732 [inline] net_alloc net/core/net_namespace.c:386 [inline] copy_net_ns+0xed/0x340 net/core/net_namespace.c:426 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 2541: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kmem_cache_free+0x86/0x260 mm/slab.c:3698 net_free net/core/net_namespace.c:402 [inline] net_drop_ns.part.0+0x70/0x90 net/core/net_namespace.c:409 net_drop_ns net/core/net_namespace.c:408 [inline] cleanup_net+0x538/0x960 net/core/net_namespace.c:571 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff88808b9fe100 which belongs to the cache net_namespace of size 6784 The buggy address is located 560 bytes inside of 6784-byte region [ffff88808b9fe100, ffff88808b9ffb80) The buggy address belongs to the page: page:ffffea00022e7f80 refcount:1 mapcount:0 mapping:ffff88821b6f60c0 index:0x0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea000256f288 ffffea0001bbef08 ffff88821b6f60c0 raw: 0000000000000000 ffff88808b9fe100 0000000100000001 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88808b9fe200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88808b9fe280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff88808b9fe300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88808b9fe380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88808b9fe400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 3c8fc8782044 ("inet: frags: rework rhashtable dismantle") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-18 18:09:00 +00:00
}
static void nf_ct_net_exit(struct net *net)
{
struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net);
nf_ct_frags6_sysctl_unregister(net);
fqdir_exit(nf_frag->fqdir);
}
static struct pernet_operations nf_ct_net_ops = {
inet: fix various use-after-free in defrags units syzbot reported another issue caused by my recent patches. [1] The issue here is that fqdir_exit() is initiating a work queue and immediately returns. A bit later cleanup_net() was able to free the MIB (percpu data) and the whole struct net was freed, but we had active frag timers that fired and triggered use-after-free. We need to make sure that timers can catch fqdir->dead being set, to bailout. Since RCU is used for the reader side, this means we want to respect an RCU grace period between these operations : 1) qfdir->dead = 1; 2) netns dismantle (freeing of various data structure) This patch uses new new (struct pernet_operations)->pre_exit infrastructure to ensures a full RCU grace period happens between fqdir_pre_exit() and fqdir_exit() This also means we can use a regular work queue, we no longer need rcu_work. Tested: $ time for i in {1..1000}; do unshare -n /bin/false;done real 0m2.585s user 0m0.160s sys 0m2.214s [1] BUG: KASAN: use-after-free in ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152 Read of size 8 at addr ffff88808b9fe330 by task syz-executor.4/11860 CPU: 1 PID: 11860 Comm: syz-executor.4 Not tainted 5.2.0-rc2+ #22 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152 call_timer_fn+0x193/0x720 kernel/time/timer.c:1322 expire_timers kernel/time/timer.c:1366 [inline] __run_timers kernel/time/timer.c:1685 [inline] __run_timers kernel/time/timer.c:1653 [inline] run_timer_softirq+0x66f/0x1740 kernel/time/timer.c:1698 __do_softirq+0x25c/0x94c kernel/softirq.c:293 invoke_softirq kernel/softirq.c:374 [inline] irq_exit+0x180/0x1d0 kernel/softirq.c:414 exiting_irq arch/x86/include/asm/apic.h:536 [inline] smp_apic_timer_interrupt+0x13b/0x550 arch/x86/kernel/apic/apic.c:1068 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:806 </IRQ> RIP: 0010:tomoyo_domain_quota_is_ok+0x131/0x540 security/tomoyo/util.c:1035 Code: 24 4c 3b 65 d0 0f 84 9c 00 00 00 e8 19 1d 73 fe 49 8d 7c 24 18 48 ba 00 00 00 00 00 fc ff df 48 89 f8 48 c1 e8 03 0f b6 04 10 <48> 89 fa 83 e2 07 38 d0 7f 08 84 c0 0f 85 69 03 00 00 41 0f b6 5c RSP: 0018:ffff88806ae079c0 EFLAGS: 00000a02 ORIG_RAX: ffffffffffffff13 RAX: 0000000000000000 RBX: 0000000000000010 RCX: ffffc9000e655000 RDX: dffffc0000000000 RSI: ffffffff82fd88a7 RDI: ffff888086202398 RBP: ffff88806ae07a00 R08: ffff88808b6c8700 R09: ffffed100d5c0f4d R10: ffffed100d5c0f4c R11: 0000000000000000 R12: ffff888086202380 R13: 0000000000000030 R14: 00000000000000d3 R15: 0000000000000000 tomoyo_supervisor+0x2e8/0xef0 security/tomoyo/common.c:2087 tomoyo_audit_path_number_log security/tomoyo/file.c:235 [inline] tomoyo_path_number_perm+0x42f/0x520 security/tomoyo/file.c:734 tomoyo_file_ioctl+0x23/0x30 security/tomoyo/tomoyo.c:335 security_file_ioctl+0x77/0xc0 security/security.c:1370 ksys_ioctl+0x57/0xd0 fs/ioctl.c:711 __do_sys_ioctl fs/ioctl.c:720 [inline] __se_sys_ioctl fs/ioctl.c:718 [inline] __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x4592c9 Code: fd b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 cb b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f8db5e44c78 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00000000004592c9 RDX: 0000000020000080 RSI: 00000000000089f1 RDI: 0000000000000006 RBP: 000000000075bf20 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f8db5e456d4 R13: 00000000004cc770 R14: 00000000004d5cd8 R15: 00000000ffffffff Allocated by task 9047: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:497 slab_post_alloc_hook mm/slab.h:437 [inline] slab_alloc mm/slab.c:3326 [inline] kmem_cache_alloc+0x11a/0x6f0 mm/slab.c:3488 kmem_cache_zalloc include/linux/slab.h:732 [inline] net_alloc net/core/net_namespace.c:386 [inline] copy_net_ns+0xed/0x340 net/core/net_namespace.c:426 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 2541: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kmem_cache_free+0x86/0x260 mm/slab.c:3698 net_free net/core/net_namespace.c:402 [inline] net_drop_ns.part.0+0x70/0x90 net/core/net_namespace.c:409 net_drop_ns net/core/net_namespace.c:408 [inline] cleanup_net+0x538/0x960 net/core/net_namespace.c:571 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff88808b9fe100 which belongs to the cache net_namespace of size 6784 The buggy address is located 560 bytes inside of 6784-byte region [ffff88808b9fe100, ffff88808b9ffb80) The buggy address belongs to the page: page:ffffea00022e7f80 refcount:1 mapcount:0 mapping:ffff88821b6f60c0 index:0x0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea000256f288 ffffea0001bbef08 ffff88821b6f60c0 raw: 0000000000000000 ffff88808b9fe100 0000000100000001 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88808b9fe200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88808b9fe280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff88808b9fe300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88808b9fe380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88808b9fe400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 3c8fc8782044 ("inet: frags: rework rhashtable dismantle") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-18 18:09:00 +00:00
.init = nf_ct_net_init,
.pre_exit = nf_ct_net_pre_exit,
.exit = nf_ct_net_exit,
.id = &nf_frag_pernet_id,
.size = sizeof(struct nft_ct_frag6_pernet),
};
static const struct rhashtable_params nfct_rhash_params = {
.head_offset = offsetof(struct inet_frag_queue, node),
.hashfn = ip6frag_key_hashfn,
.obj_hashfn = ip6frag_obj_hashfn,
.obj_cmpfn = ip6frag_obj_cmpfn,
.automatic_shrinking = true,
};
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
int nf_ct_frag6_init(void)
{
int ret = 0;
nf_frags.constructor = ip6frag_init;
nf_frags.destructor = NULL;
nf_frags.qsize = sizeof(struct frag_queue);
nf_frags.frag_expire = nf_ct_frag6_expire;
nf_frags.frags_cache_name = nf_frags_cache_name;
nf_frags.rhash_params = nfct_rhash_params;
ret = inet_frags_init(&nf_frags);
if (ret)
goto out;
ret = register_pernet_subsys(&nf_ct_net_ops);
if (ret)
inet_frags_fini(&nf_frags);
out:
return ret;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
void nf_ct_frag6_cleanup(void)
{
unregister_pernet_subsys(&nf_ct_net_ops);
inet_frags_fini(&nf_frags);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}