linux-stable/include/linux/stop_machine.h

141 lines
3.9 KiB
C
Raw Normal View History

#ifndef _LINUX_STOP_MACHINE
#define _LINUX_STOP_MACHINE
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/smp.h>
#include <linux/list.h>
/*
* stop_cpu[s]() is simplistic per-cpu maximum priority cpu
* monopolization mechanism. The caller can specify a non-sleeping
* function to be executed on a single or multiple cpus preempting all
* other processes and monopolizing those cpus until it finishes.
*
* Resources for this mechanism are preallocated when a cpu is brought
* up and requests are guaranteed to be served as long as the target
* cpus are online.
*/
typedef int (*cpu_stop_fn_t)(void *arg);
#ifdef CONFIG_SMP
struct cpu_stop_work {
struct list_head list; /* cpu_stopper->works */
cpu_stop_fn_t fn;
void *arg;
struct cpu_stop_done *done;
};
int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg);
int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg);
void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
struct cpu_stop_work *work_buf);
int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg);
int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg);
stop_machine: Ensure that a queued callback will be called before cpu_stop_park() cpu_stop_queue_work() checks stopper->enabled before it queues the work, but ->enabled == T can only guarantee cpu_stop_signal_done() if we race with cpu_down(). This is not enough for stop_two_cpus() or stop_machine(), they will deadlock if multi_cpu_stop() won't be called by one of the target CPU's. stop_machine/stop_cpus are fine, they rely on stop_cpus_mutex. But stop_two_cpus() has to check cpu_active() to avoid the same race with hotplug, and this check is very unobvious and probably not even correct if we race with cpu_up(). Change cpu_down() pass to clear ->enabled before cpu_stopper_thread() flushes the pending ->works and returns with KTHREAD_SHOULD_PARK set. Note also that smpboot_thread_call() calls cpu_stop_unpark() which sets enabled == T at CPU_ONLINE stage, so this CPU can't go away until cpu_stopper_thread() is called at least once. This all means that if cpu_stop_queue_work() succeeds, we know that work->fn() will be called. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: heiko.carstens@de.ibm.com Link: http://lkml.kernel.org/r/20151008145131.GA18139@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-08 14:51:31 +00:00
void stop_machine_park(int cpu);
#else /* CONFIG_SMP */
#include <linux/workqueue.h>
struct cpu_stop_work {
struct work_struct work;
cpu_stop_fn_t fn;
void *arg;
};
static inline int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
{
int ret = -ENOENT;
preempt_disable();
if (cpu == smp_processor_id())
ret = fn(arg);
preempt_enable();
return ret;
}
static void stop_one_cpu_nowait_workfn(struct work_struct *work)
{
struct cpu_stop_work *stwork =
container_of(work, struct cpu_stop_work, work);
preempt_disable();
stwork->fn(stwork->arg);
preempt_enable();
}
static inline void stop_one_cpu_nowait(unsigned int cpu,
cpu_stop_fn_t fn, void *arg,
struct cpu_stop_work *work_buf)
{
if (cpu == smp_processor_id()) {
INIT_WORK(&work_buf->work, stop_one_cpu_nowait_workfn);
work_buf->fn = fn;
work_buf->arg = arg;
schedule_work(&work_buf->work);
}
}
static inline int stop_cpus(const struct cpumask *cpumask,
cpu_stop_fn_t fn, void *arg)
{
if (cpumask_test_cpu(raw_smp_processor_id(), cpumask))
return stop_one_cpu(raw_smp_processor_id(), fn, arg);
return -ENOENT;
}
static inline int try_stop_cpus(const struct cpumask *cpumask,
cpu_stop_fn_t fn, void *arg)
{
return stop_cpus(cpumask, fn, arg);
}
#endif /* CONFIG_SMP */
/*
* stop_machine "Bogolock": stop the entire machine, disable
* interrupts. This is a very heavy lock, which is equivalent to
* grabbing every spinlock (and more). So the "read" side to such a
* lock is anything which disables preemption.
*/
#if defined(CONFIG_STOP_MACHINE) && defined(CONFIG_SMP)
/**
* stop_machine: freeze the machine on all CPUs and run this function
* @fn: the function to run
* @data: the data ptr for the @fn()
* @cpus: the cpus to run the @fn() on (NULL = any online cpu)
*
* Description: This causes a thread to be scheduled on every cpu,
* each of which disables interrupts. The result is that no one is
* holding a spinlock or inside any other preempt-disabled region when
* @fn() runs.
*
* This can be thought of as a very heavy write lock, equivalent to
* grabbing every spinlock in the kernel. */
int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus);
int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
const struct cpumask *cpus);
#else /* CONFIG_STOP_MACHINE && CONFIG_SMP */
static inline int stop_machine(cpu_stop_fn_t fn, void *data,
const struct cpumask *cpus)
{
unsigned long flags;
int ret;
local_irq_save(flags);
ret = fn(data);
local_irq_restore(flags);
return ret;
}
static inline int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
const struct cpumask *cpus)
{
return stop_machine(fn, data, cpus);
}
#endif /* CONFIG_STOP_MACHINE && CONFIG_SMP */
#endif /* _LINUX_STOP_MACHINE */