linux-stable/arch/x86/entry/entry_64_compat.S

416 lines
14 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Compatibility mode system call entry point for x86-64.
*
* Copyright 2000-2002 Andi Kleen, SuSE Labs.
*/
#include "calling.h"
#include <asm/asm-offsets.h>
#include <asm/current.h>
#include <asm/errno.h>
#include <asm/ia32_unistd.h>
#include <asm/thread_info.h>
#include <asm/segment.h>
#include <asm/irqflags.h>
#include <asm/asm.h>
#include <asm/smap.h>
#include <linux/linkage.h>
Audit: push audit success and retcode into arch ptrace.h The audit system previously expected arches calling to audit_syscall_exit to supply as arguments if the syscall was a success and what the return code was. Audit also provides a helper AUDITSC_RESULT which was supposed to simplify things by converting from negative retcodes to an audit internal magic value stating success or failure. This helper was wrong and could indicate that a valid pointer returned to userspace was a failed syscall. The fix is to fix the layering foolishness. We now pass audit_syscall_exit a struct pt_reg and it in turns calls back into arch code to collect the return value and to determine if the syscall was a success or failure. We also define a generic is_syscall_success() macro which determines success/failure based on if the value is < -MAX_ERRNO. This works for arches like x86 which do not use a separate mechanism to indicate syscall failure. We make both the is_syscall_success() and regs_return_value() static inlines instead of macros. The reason is because the audit function must take a void* for the regs. (uml calls theirs struct uml_pt_regs instead of just struct pt_regs so audit_syscall_exit can't take a struct pt_regs). Since the audit function takes a void* we need to use static inlines to cast it back to the arch correct structure to dereference it. The other major change is that on some arches, like ia64, MIPS and ppc, we change regs_return_value() to give us the negative value on syscall failure. THE only other user of this macro, kretprobe_example.c, won't notice and it makes the value signed consistently for the audit functions across all archs. In arch/sh/kernel/ptrace_64.c I see that we were using regs[9] in the old audit code as the return value. But the ptrace_64.h code defined the macro regs_return_value() as regs[3]. I have no idea which one is correct, but this patch now uses the regs_return_value() function, so it now uses regs[3]. For powerpc we previously used regs->result but now use the regs_return_value() function which uses regs->gprs[3]. regs->gprs[3] is always positive so the regs_return_value(), much like ia64 makes it negative before calling the audit code when appropriate. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: H. Peter Anvin <hpa@zytor.com> [for x86 portion] Acked-by: Tony Luck <tony.luck@intel.com> [for ia64] Acked-by: Richard Weinberger <richard@nod.at> [for uml] Acked-by: David S. Miller <davem@davemloft.net> [for sparc] Acked-by: Ralf Baechle <ralf@linux-mips.org> [for mips] Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [for ppc]
2012-01-03 19:23:06 +00:00
#include <linux/err.h>
x86: Separate out entry text section Put x86 entry code into a separate link section: .entry.text. Separating the entry text section seems to have performance benefits - caused by more efficient instruction cache usage. Running hackbench with perf stat --repeat showed that the change compresses the icache footprint. The icache load miss rate went down by about 15%: before patch: 19417627 L1-icache-load-misses ( +- 0.147% ) after patch: 16490788 L1-icache-load-misses ( +- 0.180% ) The motivation of the patch was to fix a particular kprobes bug that relates to the entry text section, the performance advantage was discovered accidentally. Whole perf output follows: - results for current tip tree: Performance counter stats for './hackbench/hackbench 10' (500 runs): 19417627 L1-icache-load-misses ( +- 0.147% ) 2676914223 instructions # 0.497 IPC ( +- 0.079% ) 5389516026 cycles ( +- 0.144% ) 0.206267711 seconds time elapsed ( +- 0.138% ) - results for current tip tree with the patch applied: Performance counter stats for './hackbench/hackbench 10' (500 runs): 16490788 L1-icache-load-misses ( +- 0.180% ) 2717734941 instructions # 0.502 IPC ( +- 0.079% ) 5414756975 cycles ( +- 0.148% ) 0.206747566 seconds time elapsed ( +- 0.137% ) Signed-off-by: Jiri Olsa <jolsa@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: masami.hiramatsu.pt@hitachi.com Cc: ananth@in.ibm.com Cc: davem@davemloft.net Cc: 2nddept-manager@sdl.hitachi.co.jp LKML-Reference: <20110307181039.GB15197@jolsa.redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-07 18:10:39 +00:00
.section .entry.text, "ax"
/*
* 32-bit SYSENTER entry.
*
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
* on 64-bit kernels running on Intel CPUs.
*
* The SYSENTER instruction, in principle, should *only* occur in the
* vDSO. In practice, a small number of Android devices were shipped
* with a copy of Bionic that inlined a SYSENTER instruction. This
* never happened in any of Google's Bionic versions -- it only happened
* in a narrow range of Intel-provided versions.
*
* SYSENTER loads SS, RSP, CS, and RIP from previously programmed MSRs.
* IF and VM in RFLAGS are cleared (IOW: interrupts are off).
* SYSENTER does not save anything on the stack,
* and does not save old RIP (!!!), RSP, or RFLAGS.
*
* Arguments:
* eax system call number
* ebx arg1
* ecx arg2
* edx arg3
* esi arg4
* edi arg5
* ebp user stack
* 0(%ebp) arg6
*/
SYM_CODE_START(entry_SYSENTER_compat)
UNWIND_HINT_EMPTY
/* Interrupts are off on entry. */
x86/entry/64: Allocate and enable the SYSENTER stack This will simplify future changes that want scratch variables early in the SYSENTER handler -- they'll be able to spill registers to the stack. It also lets us get rid of a SWAPGS_UNSAFE_STACK user. This does not depend on CONFIG_IA32_EMULATION=y because we'll want the stack space even without IA32 emulation. As far as I can tell, the reason that this wasn't done from day 1 is that we use IST for #DB and #BP, which is IMO rather nasty and causes a lot more problems than it solves. But, since #DB uses IST, we don't actually need a real stack for SYSENTER (because SYSENTER with TF set will invoke #DB on the IST stack rather than the SYSENTER stack). I want to remove IST usage from these vectors some day, and this patch is a prerequisite for that as well. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150605.312726423@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 14:07:12 +00:00
SWAPGS
x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switching PAGE_TABLE_ISOLATION needs to switch to a different CR3 value when it enters the kernel and switch back when it exits. This essentially needs to be done before leaving assembly code. This is extra challenging because the switching context is tricky: the registers that can be clobbered can vary. It is also hard to store things on the stack because there is an established ABI (ptregs) or the stack is entirely unsafe to use. Establish a set of macros that allow changing to the user and kernel CR3 values. Interactions with SWAPGS: Previous versions of the PAGE_TABLE_ISOLATION code relied on having per-CPU scratch space to save/restore a register that can be used for the CR3 MOV. The %GS register is used to index into our per-CPU space, so SWAPGS *had* to be done before the CR3 switch. That scratch space is gone now, but the semantic that SWAPGS must be done before the CR3 MOV is retained. This is good to keep because it is not that hard to do and it allows to do things like add per-CPU debugging information. What this does in the NMI code is worth pointing out. NMIs can interrupt *any* context and they can also be nested with NMIs interrupting other NMIs. The comments below ".Lnmi_from_kernel" explain the format of the stack during this situation. Changing the format of this stack is hard. Instead of storing the old CR3 value on the stack, this depends on the *regular* register save/restore mechanism and then uses %r14 to keep CR3 during the NMI. It is callee-saved and will not be clobbered by the C NMI handlers that get called. [ PeterZ: ESPFIX optimization ] Based-on-code-from: Andy Lutomirski <luto@kernel.org> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 14:07:35 +00:00
pushq %rax
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
popq %rax
x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switching PAGE_TABLE_ISOLATION needs to switch to a different CR3 value when it enters the kernel and switch back when it exits. This essentially needs to be done before leaving assembly code. This is extra challenging because the switching context is tricky: the registers that can be clobbered can vary. It is also hard to store things on the stack because there is an established ABI (ptregs) or the stack is entirely unsafe to use. Establish a set of macros that allow changing to the user and kernel CR3 values. Interactions with SWAPGS: Previous versions of the PAGE_TABLE_ISOLATION code relied on having per-CPU scratch space to save/restore a register that can be used for the CR3 MOV. The %GS register is used to index into our per-CPU space, so SWAPGS *had* to be done before the CR3 switch. That scratch space is gone now, but the semantic that SWAPGS must be done before the CR3 MOV is retained. This is good to keep because it is not that hard to do and it allows to do things like add per-CPU debugging information. What this does in the NMI code is worth pointing out. NMIs can interrupt *any* context and they can also be nested with NMIs interrupting other NMIs. The comments below ".Lnmi_from_kernel" explain the format of the stack during this situation. Changing the format of this stack is hard. Instead of storing the old CR3 value on the stack, this depends on the *regular* register save/restore mechanism and then uses %r14 to keep CR3 during the NMI. It is callee-saved and will not be clobbered by the C NMI handlers that get called. [ PeterZ: ESPFIX optimization ] Based-on-code-from: Andy Lutomirski <luto@kernel.org> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 14:07:35 +00:00
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
/* Construct struct pt_regs on stack */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq $__USER32_DS /* pt_regs->ss */
pushq $0 /* pt_regs->sp = 0 (placeholder) */
/*
* Push flags. This is nasty. First, interrupts are currently
* off, but we need pt_regs->flags to have IF set. Second, if TS
* was set in usermode, it's still set, and we're singlestepping
* through this code. do_SYSENTER_32() will fix up IF.
*/
pushfq /* pt_regs->flags (except IF = 0) */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq $__USER32_CS /* pt_regs->cs */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->ip = 0 (placeholder) */
SYM_INNER_LABEL(entry_SYSENTER_compat_after_hwframe, SYM_L_GLOBAL)
/*
* User tracing code (ptrace or signal handlers) might assume that
* the saved RAX contains a 32-bit number when we're invoking a 32-bit
* syscall. Just in case the high bits are nonzero, zero-extend
* the syscall number. (This could almost certainly be deleted
* with no ill effects.)
*/
movl %eax, %eax
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq %rax /* pt_regs->orig_ax */
pushq %rdi /* pt_regs->di */
pushq %rsi /* pt_regs->si */
pushq %rdx /* pt_regs->dx */
pushq %rcx /* pt_regs->cx */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq $-ENOSYS /* pt_regs->ax */
x86/entry/64/compat: Fix "x86/entry/64/compat: Preserve r8-r11 in int $0x80" Commit: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") was busted: my original patch had a minor conflict with some of the nospec changes, but "git apply" is very clever and silently accepted the patch by making the same changes to a different function in the same file. There was obviously a huge offset, but "git apply" for some reason doesn't feel any need to say so. Move the changes to the correct function. Now the test_syscall_vdso_32 selftests passes. If anyone cares to observe the original problem, try applying the patch at: https://lore.kernel.org/lkml/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org/raw to the kernel at 316d097c4cd4e7f2ef50c40cff2db266593c4ec4: - "git am" and "git apply" accept the patch without any complaints at all - "patch -p1" at least prints out a message about the huge offset. Reported-by: zhijianx.li@intel.com Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org #v4.17+ Fixes: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") Link: http://lkml.kernel.org/r/6012b922485401bc42676e804171ded262fc2ef2.1530078306.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-27 05:45:52 +00:00
pushq $0 /* pt_regs->r8 = 0 */
xorl %r8d, %r8d /* nospec r8 */
x86/entry/64/compat: Fix "x86/entry/64/compat: Preserve r8-r11 in int $0x80" Commit: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") was busted: my original patch had a minor conflict with some of the nospec changes, but "git apply" is very clever and silently accepted the patch by making the same changes to a different function in the same file. There was obviously a huge offset, but "git apply" for some reason doesn't feel any need to say so. Move the changes to the correct function. Now the test_syscall_vdso_32 selftests passes. If anyone cares to observe the original problem, try applying the patch at: https://lore.kernel.org/lkml/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org/raw to the kernel at 316d097c4cd4e7f2ef50c40cff2db266593c4ec4: - "git am" and "git apply" accept the patch without any complaints at all - "patch -p1" at least prints out a message about the huge offset. Reported-by: zhijianx.li@intel.com Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org #v4.17+ Fixes: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") Link: http://lkml.kernel.org/r/6012b922485401bc42676e804171ded262fc2ef2.1530078306.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-27 05:45:52 +00:00
pushq $0 /* pt_regs->r9 = 0 */
xorl %r9d, %r9d /* nospec r9 */
x86/entry/64/compat: Fix "x86/entry/64/compat: Preserve r8-r11 in int $0x80" Commit: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") was busted: my original patch had a minor conflict with some of the nospec changes, but "git apply" is very clever and silently accepted the patch by making the same changes to a different function in the same file. There was obviously a huge offset, but "git apply" for some reason doesn't feel any need to say so. Move the changes to the correct function. Now the test_syscall_vdso_32 selftests passes. If anyone cares to observe the original problem, try applying the patch at: https://lore.kernel.org/lkml/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org/raw to the kernel at 316d097c4cd4e7f2ef50c40cff2db266593c4ec4: - "git am" and "git apply" accept the patch without any complaints at all - "patch -p1" at least prints out a message about the huge offset. Reported-by: zhijianx.li@intel.com Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org #v4.17+ Fixes: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") Link: http://lkml.kernel.org/r/6012b922485401bc42676e804171ded262fc2ef2.1530078306.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-27 05:45:52 +00:00
pushq $0 /* pt_regs->r10 = 0 */
xorl %r10d, %r10d /* nospec r10 */
x86/entry/64/compat: Fix "x86/entry/64/compat: Preserve r8-r11 in int $0x80" Commit: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") was busted: my original patch had a minor conflict with some of the nospec changes, but "git apply" is very clever and silently accepted the patch by making the same changes to a different function in the same file. There was obviously a huge offset, but "git apply" for some reason doesn't feel any need to say so. Move the changes to the correct function. Now the test_syscall_vdso_32 selftests passes. If anyone cares to observe the original problem, try applying the patch at: https://lore.kernel.org/lkml/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org/raw to the kernel at 316d097c4cd4e7f2ef50c40cff2db266593c4ec4: - "git am" and "git apply" accept the patch without any complaints at all - "patch -p1" at least prints out a message about the huge offset. Reported-by: zhijianx.li@intel.com Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org #v4.17+ Fixes: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") Link: http://lkml.kernel.org/r/6012b922485401bc42676e804171ded262fc2ef2.1530078306.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-27 05:45:52 +00:00
pushq $0 /* pt_regs->r11 = 0 */
xorl %r11d, %r11d /* nospec r11 */
pushq %rbx /* pt_regs->rbx */
xorl %ebx, %ebx /* nospec rbx */
pushq %rbp /* pt_regs->rbp (will be overwritten) */
xorl %ebp, %ebp /* nospec rbp */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r12 = 0 */
xorl %r12d, %r12d /* nospec r12 */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r13 = 0 */
xorl %r13d, %r13d /* nospec r13 */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r14 = 0 */
xorl %r14d, %r14d /* nospec r14 */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r15 = 0 */
xorl %r15d, %r15d /* nospec r15 */
UNWIND_HINT_REGS
cld
x86_64, entry: Filter RFLAGS.NT on entry from userspace The NT flag doesn't do anything in long mode other than causing IRET to #GP. Oddly, CPL3 code can still set NT using popf. Entry via hardware or software interrupt clears NT automatically, so the only relevant entries are fast syscalls. If user code causes kernel code to run with NT set, then there's at least some (small) chance that it could cause trouble. For example, user code could cause a call to EFI code with NT set, and who knows what would happen? Apparently some games on Wine sometimes do this (!), and, if an IRET return happens, they will segfault. That segfault cannot be handled, because signal delivery fails, too. This patch programs the CPU to clear NT on entry via SYSCALL (both 32-bit and 64-bit, by my reading of the AMD APM), and it clears NT in software on entry via SYSENTER. To save a few cycles, this borrows a trick from Jan Beulich in Xen: it checks whether NT is set before trying to clear it. As a result, it seems to have very little effect on SYSENTER performance on my machine. There's another minor bug fix in here: it looks like the CFI annotations were wrong if CONFIG_AUDITSYSCALL=n. Testers beware: on Xen, SYSENTER with NT set turns into a GPF. I haven't touched anything on 32-bit kernels. The syscall mask change comes from a variant of this patch by Anish Bhatt. Note to stable maintainers: there is no known security issue here. A misguided program can set NT and cause the kernel to try and fail to deliver SIGSEGV, crashing the program. This patch fixes Far Cry on Wine: https://bugs.winehq.org/show_bug.cgi?id=33275 Cc: <stable@vger.kernel.org> Reported-by: Anish Bhatt <anish@chelsio.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/395749a5d39a29bd3e4b35899cf3a3c1340e5595.1412189265.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2014-10-01 18:49:04 +00:00
/*
* SYSENTER doesn't filter flags, so we need to clear NT and AC
x86_64, entry: Filter RFLAGS.NT on entry from userspace The NT flag doesn't do anything in long mode other than causing IRET to #GP. Oddly, CPL3 code can still set NT using popf. Entry via hardware or software interrupt clears NT automatically, so the only relevant entries are fast syscalls. If user code causes kernel code to run with NT set, then there's at least some (small) chance that it could cause trouble. For example, user code could cause a call to EFI code with NT set, and who knows what would happen? Apparently some games on Wine sometimes do this (!), and, if an IRET return happens, they will segfault. That segfault cannot be handled, because signal delivery fails, too. This patch programs the CPU to clear NT on entry via SYSCALL (both 32-bit and 64-bit, by my reading of the AMD APM), and it clears NT in software on entry via SYSENTER. To save a few cycles, this borrows a trick from Jan Beulich in Xen: it checks whether NT is set before trying to clear it. As a result, it seems to have very little effect on SYSENTER performance on my machine. There's another minor bug fix in here: it looks like the CFI annotations were wrong if CONFIG_AUDITSYSCALL=n. Testers beware: on Xen, SYSENTER with NT set turns into a GPF. I haven't touched anything on 32-bit kernels. The syscall mask change comes from a variant of this patch by Anish Bhatt. Note to stable maintainers: there is no known security issue here. A misguided program can set NT and cause the kernel to try and fail to deliver SIGSEGV, crashing the program. This patch fixes Far Cry on Wine: https://bugs.winehq.org/show_bug.cgi?id=33275 Cc: <stable@vger.kernel.org> Reported-by: Anish Bhatt <anish@chelsio.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/395749a5d39a29bd3e4b35899cf3a3c1340e5595.1412189265.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2014-10-01 18:49:04 +00:00
* ourselves. To save a few cycles, we can check whether
* either was set instead of doing an unconditional popfq.
* This needs to happen before enabling interrupts so that
* we don't get preempted with NT set.
*
x86/entry: Vastly simplify SYSENTER TF (single-step) handling Due to a blatant design error, SYSENTER doesn't clear TF (single-step). As a result, if a user does SYSENTER with TF set, we will single-step through the kernel until something clears TF. There is absolutely nothing we can do to prevent this short of turning off SYSENTER [1]. Simplify the handling considerably with two changes: 1. We already sanitize EFLAGS in SYSENTER to clear NT and AC. We can add TF to that list of flags to sanitize with no overhead whatsoever. 2. Teach do_debug() to ignore single-step traps in the SYSENTER prologue. That's all we need to do. Don't get too excited -- our handling is still buggy on 32-bit kernels. There's nothing wrong with the SYSENTER code itself, but the #DB prologue has a clever fixup for traps on the very first instruction of entry_SYSENTER_32, and the fixup doesn't work quite correctly. The next two patches will fix that. [1] We could probably prevent it by forcing BTF on at all times and making sure we clear TF before any branches in the SYSENTER code. Needless to say, this is a bad idea. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/a30d2ea06fe4b621fe6a9ef911b02c0f38feb6f2.1457578375.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-10 03:00:30 +00:00
* If TF is set, we will single-step all the way to here -- do_debug
* will ignore all the traps. (Yes, this is slow, but so is
* single-stepping in general. This allows us to avoid having
* a more complicated code to handle the case where a user program
* forces us to single-step through the SYSENTER entry code.)
*
* NB.: .Lsysenter_fix_flags is a label with the code under it moved
* out-of-line as an optimization: NT is unlikely to be set in the
* majority of the cases and instead of polluting the I$ unnecessarily,
* we're keeping that code behind a branch which will predict as
* not-taken and therefore its instructions won't be fetched.
x86_64, entry: Filter RFLAGS.NT on entry from userspace The NT flag doesn't do anything in long mode other than causing IRET to #GP. Oddly, CPL3 code can still set NT using popf. Entry via hardware or software interrupt clears NT automatically, so the only relevant entries are fast syscalls. If user code causes kernel code to run with NT set, then there's at least some (small) chance that it could cause trouble. For example, user code could cause a call to EFI code with NT set, and who knows what would happen? Apparently some games on Wine sometimes do this (!), and, if an IRET return happens, they will segfault. That segfault cannot be handled, because signal delivery fails, too. This patch programs the CPU to clear NT on entry via SYSCALL (both 32-bit and 64-bit, by my reading of the AMD APM), and it clears NT in software on entry via SYSENTER. To save a few cycles, this borrows a trick from Jan Beulich in Xen: it checks whether NT is set before trying to clear it. As a result, it seems to have very little effect on SYSENTER performance on my machine. There's another minor bug fix in here: it looks like the CFI annotations were wrong if CONFIG_AUDITSYSCALL=n. Testers beware: on Xen, SYSENTER with NT set turns into a GPF. I haven't touched anything on 32-bit kernels. The syscall mask change comes from a variant of this patch by Anish Bhatt. Note to stable maintainers: there is no known security issue here. A misguided program can set NT and cause the kernel to try and fail to deliver SIGSEGV, crashing the program. This patch fixes Far Cry on Wine: https://bugs.winehq.org/show_bug.cgi?id=33275 Cc: <stable@vger.kernel.org> Reported-by: Anish Bhatt <anish@chelsio.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/395749a5d39a29bd3e4b35899cf3a3c1340e5595.1412189265.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2014-10-01 18:49:04 +00:00
*/
x86/entry: Vastly simplify SYSENTER TF (single-step) handling Due to a blatant design error, SYSENTER doesn't clear TF (single-step). As a result, if a user does SYSENTER with TF set, we will single-step through the kernel until something clears TF. There is absolutely nothing we can do to prevent this short of turning off SYSENTER [1]. Simplify the handling considerably with two changes: 1. We already sanitize EFLAGS in SYSENTER to clear NT and AC. We can add TF to that list of flags to sanitize with no overhead whatsoever. 2. Teach do_debug() to ignore single-step traps in the SYSENTER prologue. That's all we need to do. Don't get too excited -- our handling is still buggy on 32-bit kernels. There's nothing wrong with the SYSENTER code itself, but the #DB prologue has a clever fixup for traps on the very first instruction of entry_SYSENTER_32, and the fixup doesn't work quite correctly. The next two patches will fix that. [1] We could probably prevent it by forcing BTF on at all times and making sure we clear TF before any branches in the SYSENTER code. Needless to say, this is a bad idea. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/a30d2ea06fe4b621fe6a9ef911b02c0f38feb6f2.1457578375.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-10 03:00:30 +00:00
testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, EFLAGS(%rsp)
jnz .Lsysenter_fix_flags
.Lsysenter_flags_fixed:
x86_64, entry: Filter RFLAGS.NT on entry from userspace The NT flag doesn't do anything in long mode other than causing IRET to #GP. Oddly, CPL3 code can still set NT using popf. Entry via hardware or software interrupt clears NT automatically, so the only relevant entries are fast syscalls. If user code causes kernel code to run with NT set, then there's at least some (small) chance that it could cause trouble. For example, user code could cause a call to EFI code with NT set, and who knows what would happen? Apparently some games on Wine sometimes do this (!), and, if an IRET return happens, they will segfault. That segfault cannot be handled, because signal delivery fails, too. This patch programs the CPU to clear NT on entry via SYSCALL (both 32-bit and 64-bit, by my reading of the AMD APM), and it clears NT in software on entry via SYSENTER. To save a few cycles, this borrows a trick from Jan Beulich in Xen: it checks whether NT is set before trying to clear it. As a result, it seems to have very little effect on SYSENTER performance on my machine. There's another minor bug fix in here: it looks like the CFI annotations were wrong if CONFIG_AUDITSYSCALL=n. Testers beware: on Xen, SYSENTER with NT set turns into a GPF. I haven't touched anything on 32-bit kernels. The syscall mask change comes from a variant of this patch by Anish Bhatt. Note to stable maintainers: there is no known security issue here. A misguided program can set NT and cause the kernel to try and fail to deliver SIGSEGV, crashing the program. This patch fixes Far Cry on Wine: https://bugs.winehq.org/show_bug.cgi?id=33275 Cc: <stable@vger.kernel.org> Reported-by: Anish Bhatt <anish@chelsio.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/395749a5d39a29bd3e4b35899cf3a3c1340e5595.1412189265.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2014-10-01 18:49:04 +00:00
movq %rsp, %rdi
call do_SYSENTER_32
/* XEN PV guests always use IRET path */
ALTERNATIVE "testl %eax, %eax; jz swapgs_restore_regs_and_return_to_usermode", \
"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
jmp sysret32_from_system_call
.Lsysenter_fix_flags:
pushq $X86_EFLAGS_FIXED
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
popfq
jmp .Lsysenter_flags_fixed
SYM_INNER_LABEL(__end_entry_SYSENTER_compat, SYM_L_GLOBAL)
SYM_CODE_END(entry_SYSENTER_compat)
/*
* 32-bit SYSCALL entry.
*
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
* on 64-bit kernels running on AMD CPUs.
*
* The SYSCALL instruction, in principle, should *only* occur in the
* vDSO. In practice, it appears that this really is the case.
* As evidence:
*
* - The calling convention for SYSCALL has changed several times without
* anyone noticing.
*
* - Prior to the in-kernel X86_BUG_SYSRET_SS_ATTRS fixup, anything
* user task that did SYSCALL without immediately reloading SS
* would randomly crash.
*
* - Most programmers do not directly target AMD CPUs, and the 32-bit
* SYSCALL instruction does not exist on Intel CPUs. Even on AMD
* CPUs, Linux disables the SYSCALL instruction on 32-bit kernels
* because the SYSCALL instruction in legacy/native 32-bit mode (as
* opposed to compat mode) is sufficiently poorly designed as to be
* essentially unusable.
*
* 32-bit SYSCALL saves RIP to RCX, clears RFLAGS.RF, then saves
* RFLAGS to R11, then loads new SS, CS, and RIP from previously
* programmed MSRs. RFLAGS gets masked by a value from another MSR
* (so CLD and CLAC are not needed). SYSCALL does not save anything on
* the stack and does not change RSP.
*
* Note: RFLAGS saving+masking-with-MSR happens only in Long mode
* (in legacy 32-bit mode, IF, RF and VM bits are cleared and that's it).
* Don't get confused: RFLAGS saving+masking depends on Long Mode Active bit
* (EFER.LMA=1), NOT on bitness of userspace where SYSCALL executes
* or target CS descriptor's L bit (SYSCALL does not read segment descriptors).
*
* Arguments:
* eax system call number
* ecx return address
* ebx arg1
* ebp arg2 (note: not saved in the stack frame, should not be touched)
* edx arg3
* esi arg4
* edi arg5
* esp user stack
* 0(%esp) arg6
*/
SYM_CODE_START(entry_SYSCALL_compat)
UNWIND_HINT_EMPTY
/* Interrupts are off on entry. */
swapgs
/* Stash user ESP */
movl %esp, %r8d
/* Use %rsp as scratch reg. User ESP is stashed in r8 */
SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
/* Switch to the kernel stack */
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
SYM_INNER_LABEL(entry_SYSCALL_compat_safe_stack, SYM_L_GLOBAL)
/* Construct struct pt_regs on stack */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq $__USER32_DS /* pt_regs->ss */
pushq %r8 /* pt_regs->sp */
pushq %r11 /* pt_regs->flags */
pushq $__USER32_CS /* pt_regs->cs */
pushq %rcx /* pt_regs->ip */
SYM_INNER_LABEL(entry_SYSCALL_compat_after_hwframe, SYM_L_GLOBAL)
movl %eax, %eax /* discard orig_ax high bits */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq %rax /* pt_regs->orig_ax */
pushq %rdi /* pt_regs->di */
pushq %rsi /* pt_regs->si */
xorl %esi, %esi /* nospec si */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq %rdx /* pt_regs->dx */
xorl %edx, %edx /* nospec dx */
pushq %rbp /* pt_regs->cx (stashed in bp) */
xorl %ecx, %ecx /* nospec cx */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq $-ENOSYS /* pt_regs->ax */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r8 = 0 */
xorl %r8d, %r8d /* nospec r8 */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r9 = 0 */
xorl %r9d, %r9d /* nospec r9 */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r10 = 0 */
xorl %r10d, %r10d /* nospec r10 */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r11 = 0 */
xorl %r11d, %r11d /* nospec r11 */
pushq %rbx /* pt_regs->rbx */
xorl %ebx, %ebx /* nospec rbx */
pushq %rbp /* pt_regs->rbp (will be overwritten) */
xorl %ebp, %ebp /* nospec rbp */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r12 = 0 */
xorl %r12d, %r12d /* nospec r12 */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r13 = 0 */
xorl %r13d, %r13d /* nospec r13 */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r14 = 0 */
xorl %r14d, %r14d /* nospec r14 */
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs Use of a temporary R8 register here seems to be unnecessary. "push %r8" is a two-byte insn (it needs REX prefix to specify R8), "push $0" is two-byte too. It seems just using the latter would be no worse. Thus, code had an unnecessary "xorq %r8,%r8" insn. It probably costs nothing in execution time here since we are probably limited by store bandwidth at this point, but still. Run-tested under QEMU: 32-bit calls still work: / # ./test_syscall_vdso32 [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data [RUN] Running tests under ptrace [RUN] Executing 6-argument 32-bit syscall via VDSO [OK] Arguments are preserved across syscall [NOTE] R11 has changed:0000000000200ed7 - assuming clobbered by SYSRET insn [OK] R8..R15 did not leak kernel data [RUN] Executing 6-argument 32-bit syscall via INT 80 [OK] Arguments are preserved across syscall [OK] R8..R15 did not leak kernel data Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1462201010-16846-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-02 14:56:50 +00:00
pushq $0 /* pt_regs->r15 = 0 */
xorl %r15d, %r15d /* nospec r15 */
UNWIND_HINT_REGS
movq %rsp, %rdi
call do_fast_syscall_32
/* XEN PV guests always use IRET path */
ALTERNATIVE "testl %eax, %eax; jz swapgs_restore_regs_and_return_to_usermode", \
"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
/* Opportunistic SYSRET */
sysret32_from_system_call:
x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls The STACKLEAK feature (initially developed by PaX Team) has the following benefits: 1. Reduces the information that can be revealed through kernel stack leak bugs. The idea of erasing the thread stack at the end of syscalls is similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel crypto, which all comply with FDP_RIP.2 (Full Residual Information Protection) of the Common Criteria standard. 2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712, CVE-2010-2963). That kind of bugs should be killed by improving C compilers in future, which might take a long time. This commit introduces the code filling the used part of the kernel stack with a poison value before returning to userspace. Full STACKLEAK feature also contains the gcc plugin which comes in a separate commit. The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Performance impact: Hardware: Intel Core i7-4770, 16 GB RAM Test #1: building the Linux kernel on a single core 0.91% slowdown Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P 4.2% slowdown So the STACKLEAK description in Kconfig includes: "The tradeoff is the performance impact: on a single CPU system kernel compilation sees a 1% slowdown, other systems and workloads may vary and you are advised to test this feature on your expected workload before deploying it". Signed-off-by: Alexander Popov <alex.popov@linux.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-08-16 22:16:58 +00:00
/*
* We are not going to return to userspace from the trampoline
* stack. So let's erase the thread stack right now.
*/
STACKLEAK_ERASE
movq RBX(%rsp), %rbx /* pt_regs->rbx */
movq RBP(%rsp), %rbp /* pt_regs->rbp */
movq EFLAGS(%rsp), %r11 /* pt_regs->flags (in r11) */
movq RIP(%rsp), %rcx /* pt_regs->ip (in rcx) */
addq $RAX, %rsp /* Skip r8-r15 */
popq %rax /* pt_regs->rax */
popq %rdx /* Skip pt_regs->cx */
popq %rdx /* pt_regs->dx */
popq %rsi /* pt_regs->si */
popq %rdi /* pt_regs->di */
/*
* USERGS_SYSRET32 does:
* GSBASE = user's GS base
* EIP = ECX
* RFLAGS = R11
* CS = __USER32_CS
* SS = __USER_DS
*
* ECX will not match pt_regs->cx, but we're returning to a vDSO
* trampoline that will fix up RCX, so this is okay.
*
* R12-R15 are callee-saved, so they contain whatever was in them
* when the system call started, which is already known to user
* code. We zero R8-R10 to avoid info leaks.
*/
x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switching PAGE_TABLE_ISOLATION needs to switch to a different CR3 value when it enters the kernel and switch back when it exits. This essentially needs to be done before leaving assembly code. This is extra challenging because the switching context is tricky: the registers that can be clobbered can vary. It is also hard to store things on the stack because there is an established ABI (ptregs) or the stack is entirely unsafe to use. Establish a set of macros that allow changing to the user and kernel CR3 values. Interactions with SWAPGS: Previous versions of the PAGE_TABLE_ISOLATION code relied on having per-CPU scratch space to save/restore a register that can be used for the CR3 MOV. The %GS register is used to index into our per-CPU space, so SWAPGS *had* to be done before the CR3 switch. That scratch space is gone now, but the semantic that SWAPGS must be done before the CR3 MOV is retained. This is good to keep because it is not that hard to do and it allows to do things like add per-CPU debugging information. What this does in the NMI code is worth pointing out. NMIs can interrupt *any* context and they can also be nested with NMIs interrupting other NMIs. The comments below ".Lnmi_from_kernel" explain the format of the stack during this situation. Changing the format of this stack is hard. Instead of storing the old CR3 value on the stack, this depends on the *regular* register save/restore mechanism and then uses %r14 to keep CR3 during the NMI. It is callee-saved and will not be clobbered by the C NMI handlers that get called. [ PeterZ: ESPFIX optimization ] Based-on-code-from: Andy Lutomirski <luto@kernel.org> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 14:07:35 +00:00
movq RSP-ORIG_RAX(%rsp), %rsp
/*
* The original userspace %rsp (RSP-ORIG_RAX(%rsp)) is stored
* on the process stack which is not mapped to userspace and
* not readable after we SWITCH_TO_USER_CR3. Delay the CR3
* switch until after after the last reference to the process
* stack.
*
x86/mm: Use/Fix PCID to optimize user/kernel switches We can use PCID to retain the TLBs across CR3 switches; including those now part of the user/kernel switch. This increases performance of kernel entry/exit at the cost of more expensive/complicated TLB flushing. Now that we have two address spaces, one for kernel and one for user space, we need two PCIDs per mm. We use the top PCID bit to indicate a user PCID (just like we use the PFN LSB for the PGD). Since we do TLB invalidation from kernel space, the existing code will only invalidate the kernel PCID, we augment that by marking the corresponding user PCID invalid, and upon switching back to userspace, use a flushing CR3 write for the switch. In order to access the user_pcid_flush_mask we use PER_CPU storage, which means the previously established SWAPGS vs CR3 ordering is now mandatory and required. Having to do this memory access does require additional registers, most sites have a functioning stack and we can spill one (RAX), sites without functional stack need to otherwise provide the second scratch register. Note: PCID is generally available on Intel Sandybridge and later CPUs. Note: Up until this point TLB flushing was broken in this series. Based-on-code-from: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 14:07:59 +00:00
* %r8/%r9 are zeroed before the sysret, thus safe to clobber.
x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switching PAGE_TABLE_ISOLATION needs to switch to a different CR3 value when it enters the kernel and switch back when it exits. This essentially needs to be done before leaving assembly code. This is extra challenging because the switching context is tricky: the registers that can be clobbered can vary. It is also hard to store things on the stack because there is an established ABI (ptregs) or the stack is entirely unsafe to use. Establish a set of macros that allow changing to the user and kernel CR3 values. Interactions with SWAPGS: Previous versions of the PAGE_TABLE_ISOLATION code relied on having per-CPU scratch space to save/restore a register that can be used for the CR3 MOV. The %GS register is used to index into our per-CPU space, so SWAPGS *had* to be done before the CR3 switch. That scratch space is gone now, but the semantic that SWAPGS must be done before the CR3 MOV is retained. This is good to keep because it is not that hard to do and it allows to do things like add per-CPU debugging information. What this does in the NMI code is worth pointing out. NMIs can interrupt *any* context and they can also be nested with NMIs interrupting other NMIs. The comments below ".Lnmi_from_kernel" explain the format of the stack during this situation. Changing the format of this stack is hard. Instead of storing the old CR3 value on the stack, this depends on the *regular* register save/restore mechanism and then uses %r14 to keep CR3 during the NMI. It is callee-saved and will not be clobbered by the C NMI handlers that get called. [ PeterZ: ESPFIX optimization ] Based-on-code-from: Andy Lutomirski <luto@kernel.org> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 14:07:35 +00:00
*/
x86/mm: Use/Fix PCID to optimize user/kernel switches We can use PCID to retain the TLBs across CR3 switches; including those now part of the user/kernel switch. This increases performance of kernel entry/exit at the cost of more expensive/complicated TLB flushing. Now that we have two address spaces, one for kernel and one for user space, we need two PCIDs per mm. We use the top PCID bit to indicate a user PCID (just like we use the PFN LSB for the PGD). Since we do TLB invalidation from kernel space, the existing code will only invalidate the kernel PCID, we augment that by marking the corresponding user PCID invalid, and upon switching back to userspace, use a flushing CR3 write for the switch. In order to access the user_pcid_flush_mask we use PER_CPU storage, which means the previously established SWAPGS vs CR3 ordering is now mandatory and required. Having to do this memory access does require additional registers, most sites have a functioning stack and we can spill one (RAX), sites without functional stack need to otherwise provide the second scratch register. Note: PCID is generally available on Intel Sandybridge and later CPUs. Note: Up until this point TLB flushing was broken in this series. Based-on-code-from: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 14:07:59 +00:00
SWITCH_TO_USER_CR3_NOSTACK scratch_reg=%r8 scratch_reg2=%r9
x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switching PAGE_TABLE_ISOLATION needs to switch to a different CR3 value when it enters the kernel and switch back when it exits. This essentially needs to be done before leaving assembly code. This is extra challenging because the switching context is tricky: the registers that can be clobbered can vary. It is also hard to store things on the stack because there is an established ABI (ptregs) or the stack is entirely unsafe to use. Establish a set of macros that allow changing to the user and kernel CR3 values. Interactions with SWAPGS: Previous versions of the PAGE_TABLE_ISOLATION code relied on having per-CPU scratch space to save/restore a register that can be used for the CR3 MOV. The %GS register is used to index into our per-CPU space, so SWAPGS *had* to be done before the CR3 switch. That scratch space is gone now, but the semantic that SWAPGS must be done before the CR3 MOV is retained. This is good to keep because it is not that hard to do and it allows to do things like add per-CPU debugging information. What this does in the NMI code is worth pointing out. NMIs can interrupt *any* context and they can also be nested with NMIs interrupting other NMIs. The comments below ".Lnmi_from_kernel" explain the format of the stack during this situation. Changing the format of this stack is hard. Instead of storing the old CR3 value on the stack, this depends on the *regular* register save/restore mechanism and then uses %r14 to keep CR3 during the NMI. It is callee-saved and will not be clobbered by the C NMI handlers that get called. [ PeterZ: ESPFIX optimization ] Based-on-code-from: Andy Lutomirski <luto@kernel.org> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 14:07:35 +00:00
xorl %r8d, %r8d
xorl %r9d, %r9d
xorl %r10d, %r10d
swapgs
sysretl
SYM_CODE_END(entry_SYSCALL_compat)
/*
* 32-bit legacy system call entry.
*
* 32-bit x86 Linux system calls traditionally used the INT $0x80
* instruction. INT $0x80 lands here.
*
* This entry point can be used by 32-bit and 64-bit programs to perform
* 32-bit system calls. Instances of INT $0x80 can be found inline in
* various programs and libraries. It is also used by the vDSO's
* __kernel_vsyscall fallback for hardware that doesn't support a faster
* entry method. Restarted 32-bit system calls also fall back to INT
* $0x80 regardless of what instruction was originally used to do the
* system call.
*
* This is considered a slow path. It is not used by most libc
* implementations on modern hardware except during process startup.
*
* Arguments:
* eax system call number
* ebx arg1
* ecx arg2
* edx arg3
* esi arg4
* edi arg5
* ebp arg6
*/
SYM_CODE_START(entry_INT80_compat)
UNWIND_HINT_EMPTY
/*
* Interrupts are off on entry.
*/
ASM_CLAC /* Do this early to minimize exposure */
SWAPGS
/*
* User tracing code (ptrace or signal handlers) might assume that
* the saved RAX contains a 32-bit number when we're invoking a 32-bit
* syscall. Just in case the high bits are nonzero, zero-extend
* the syscall number. (This could almost certainly be deleted
* with no ill effects.)
*/
movl %eax, %eax
/* switch to thread stack expects orig_ax and rdi to be pushed */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq %rax /* pt_regs->orig_ax */
pushq %rdi /* pt_regs->di */
/* Need to switch before accessing the thread stack. */
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
/* In the Xen PV case we already run on the thread stack. */
ALTERNATIVE "", "jmp .Lint80_keep_stack", X86_FEATURE_XENPV
movq %rsp, %rdi
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
pushq 6*8(%rdi) /* regs->ss */
pushq 5*8(%rdi) /* regs->rsp */
pushq 4*8(%rdi) /* regs->eflags */
pushq 3*8(%rdi) /* regs->cs */
pushq 2*8(%rdi) /* regs->ip */
pushq 1*8(%rdi) /* regs->orig_ax */
pushq (%rdi) /* pt_regs->di */
.Lint80_keep_stack:
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq %rsi /* pt_regs->si */
xorl %esi, %esi /* nospec si */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq %rdx /* pt_regs->dx */
xorl %edx, %edx /* nospec dx */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq %rcx /* pt_regs->cx */
xorl %ecx, %ecx /* nospec cx */
x86/debug: Remove perpetually broken, unmaintainable dwarf annotations So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-28 10:21:47 +00:00
pushq $-ENOSYS /* pt_regs->ax */
x86/entry/64/compat: Fix "x86/entry/64/compat: Preserve r8-r11 in int $0x80" Commit: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") was busted: my original patch had a minor conflict with some of the nospec changes, but "git apply" is very clever and silently accepted the patch by making the same changes to a different function in the same file. There was obviously a huge offset, but "git apply" for some reason doesn't feel any need to say so. Move the changes to the correct function. Now the test_syscall_vdso_32 selftests passes. If anyone cares to observe the original problem, try applying the patch at: https://lore.kernel.org/lkml/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org/raw to the kernel at 316d097c4cd4e7f2ef50c40cff2db266593c4ec4: - "git am" and "git apply" accept the patch without any complaints at all - "patch -p1" at least prints out a message about the huge offset. Reported-by: zhijianx.li@intel.com Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org #v4.17+ Fixes: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") Link: http://lkml.kernel.org/r/6012b922485401bc42676e804171ded262fc2ef2.1530078306.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-27 05:45:52 +00:00
pushq %r8 /* pt_regs->r8 */
xorl %r8d, %r8d /* nospec r8 */
x86/entry/64/compat: Fix "x86/entry/64/compat: Preserve r8-r11 in int $0x80" Commit: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") was busted: my original patch had a minor conflict with some of the nospec changes, but "git apply" is very clever and silently accepted the patch by making the same changes to a different function in the same file. There was obviously a huge offset, but "git apply" for some reason doesn't feel any need to say so. Move the changes to the correct function. Now the test_syscall_vdso_32 selftests passes. If anyone cares to observe the original problem, try applying the patch at: https://lore.kernel.org/lkml/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org/raw to the kernel at 316d097c4cd4e7f2ef50c40cff2db266593c4ec4: - "git am" and "git apply" accept the patch without any complaints at all - "patch -p1" at least prints out a message about the huge offset. Reported-by: zhijianx.li@intel.com Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org #v4.17+ Fixes: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") Link: http://lkml.kernel.org/r/6012b922485401bc42676e804171ded262fc2ef2.1530078306.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-27 05:45:52 +00:00
pushq %r9 /* pt_regs->r9 */
xorl %r9d, %r9d /* nospec r9 */
x86/entry/64/compat: Fix "x86/entry/64/compat: Preserve r8-r11 in int $0x80" Commit: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") was busted: my original patch had a minor conflict with some of the nospec changes, but "git apply" is very clever and silently accepted the patch by making the same changes to a different function in the same file. There was obviously a huge offset, but "git apply" for some reason doesn't feel any need to say so. Move the changes to the correct function. Now the test_syscall_vdso_32 selftests passes. If anyone cares to observe the original problem, try applying the patch at: https://lore.kernel.org/lkml/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org/raw to the kernel at 316d097c4cd4e7f2ef50c40cff2db266593c4ec4: - "git am" and "git apply" accept the patch without any complaints at all - "patch -p1" at least prints out a message about the huge offset. Reported-by: zhijianx.li@intel.com Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org #v4.17+ Fixes: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") Link: http://lkml.kernel.org/r/6012b922485401bc42676e804171ded262fc2ef2.1530078306.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-27 05:45:52 +00:00
pushq %r10 /* pt_regs->r10*/
xorl %r10d, %r10d /* nospec r10 */
x86/entry/64/compat: Fix "x86/entry/64/compat: Preserve r8-r11 in int $0x80" Commit: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") was busted: my original patch had a minor conflict with some of the nospec changes, but "git apply" is very clever and silently accepted the patch by making the same changes to a different function in the same file. There was obviously a huge offset, but "git apply" for some reason doesn't feel any need to say so. Move the changes to the correct function. Now the test_syscall_vdso_32 selftests passes. If anyone cares to observe the original problem, try applying the patch at: https://lore.kernel.org/lkml/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org/raw to the kernel at 316d097c4cd4e7f2ef50c40cff2db266593c4ec4: - "git am" and "git apply" accept the patch without any complaints at all - "patch -p1" at least prints out a message about the huge offset. Reported-by: zhijianx.li@intel.com Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org #v4.17+ Fixes: 8bb2610bc496 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80") Link: http://lkml.kernel.org/r/6012b922485401bc42676e804171ded262fc2ef2.1530078306.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-27 05:45:52 +00:00
pushq %r11 /* pt_regs->r11 */
xorl %r11d, %r11d /* nospec r11 */
pushq %rbx /* pt_regs->rbx */
xorl %ebx, %ebx /* nospec rbx */
pushq %rbp /* pt_regs->rbp */
xorl %ebp, %ebp /* nospec rbp */
pushq %r12 /* pt_regs->r12 */
xorl %r12d, %r12d /* nospec r12 */
pushq %r13 /* pt_regs->r13 */
xorl %r13d, %r13d /* nospec r13 */
pushq %r14 /* pt_regs->r14 */
xorl %r14d, %r14d /* nospec r14 */
pushq %r15 /* pt_regs->r15 */
xorl %r15d, %r15d /* nospec r15 */
UNWIND_HINT_REGS
cld
movq %rsp, %rdi
call do_int80_syscall_32
jmp swapgs_restore_regs_and_return_to_usermode
SYM_CODE_END(entry_INT80_compat)