linux-stable/drivers/staging/vt6656/main_usb.c

1796 lines
45 KiB
C
Raw Normal View History

/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: main_usb.c
*
* Purpose: driver entry for initial, open, close, tx and rx.
*
* Author: Lyndon Chen
*
* Date: Dec 8, 2005
*
* Functions:
*
* vt6656_probe - module initial (insmod) driver entry
* device_remove1 - module remove entry
* device_open - allocate dma/descripter resource & initial mac/bbp function
* device_xmit - asynchronous data tx function
* device_set_multi - set mac filter
* device_ioctl - ioctl entry
* device_close - shutdown mac/bbp & free dma/descriptor resource
* device_alloc_frag_buf - rx fragement pre-allocated function
* device_free_tx_bufs - free tx buffer function
* device_dma0_tx_80211- tx 802.11 frame via dma0
* device_dma0_xmit- tx PS buffered frame via dma0
* device_init_registers- initial MAC & BBP & RF internal registers.
* device_init_rings- initial tx/rx ring buffer
* device_init_defrag_cb- initial & allocate de-fragement buffer.
* device_tx_srv- tx interrupt service function
*
* Revision History:
*/
#undef __NO_VERSION__
#include <linux/file.h>
#include "device.h"
#include "card.h"
#include "baseband.h"
#include "mac.h"
#include "tether.h"
#include "wmgr.h"
#include "wctl.h"
#include "power.h"
#include "wcmd.h"
#include "iocmd.h"
#include "rxtx.h"
#include "bssdb.h"
#include "wpactl.h"
#include "iwctl.h"
#include "dpc.h"
#include "datarate.h"
#include "rf.h"
#include "firmware.h"
#include "usbpipe.h"
#include "channel.h"
#include "int.h"
#include "iowpa.h"
/* static int msglevel = MSG_LEVEL_DEBUG; */
static int msglevel =MSG_LEVEL_INFO;
/*
* define module options
*/
/* version information */
#define DRIVER_AUTHOR \
"VIA Networking Technologies, Inc., <lyndonchen@vntek.com.tw>"
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DEVICE_FULL_DRV_NAM);
#define DEVICE_PARAM(N,D) \
static int N[MAX_UINTS]=OPTION_DEFAULT;\
module_param_array(N, int, NULL, 0);\
MODULE_PARM_DESC(N, D);
#define RX_DESC_DEF0 64
DEVICE_PARAM(RxDescriptors0,"Number of receive usb desc buffer");
#define TX_DESC_DEF0 64
DEVICE_PARAM(TxDescriptors0,"Number of transmit usb desc buffer");
#define CHANNEL_DEF 6
DEVICE_PARAM(Channel, "Channel number");
/* PreambleType[] is the preamble length used for transmit.
0: indicate allows long preamble type
1: indicate allows short preamble type
*/
#define PREAMBLE_TYPE_DEF 1
DEVICE_PARAM(PreambleType, "Preamble Type");
#define RTS_THRESH_DEF 2347
DEVICE_PARAM(RTSThreshold, "RTS threshold");
#define FRAG_THRESH_DEF 2346
DEVICE_PARAM(FragThreshold, "Fragmentation threshold");
#define DATA_RATE_DEF 13
/* datarate[] index
0: indicate 1 Mbps 0x02
1: indicate 2 Mbps 0x04
2: indicate 5.5 Mbps 0x0B
3: indicate 11 Mbps 0x16
4: indicate 6 Mbps 0x0c
5: indicate 9 Mbps 0x12
6: indicate 12 Mbps 0x18
7: indicate 18 Mbps 0x24
8: indicate 24 Mbps 0x30
9: indicate 36 Mbps 0x48
10: indicate 48 Mbps 0x60
11: indicate 54 Mbps 0x6c
12: indicate 72 Mbps 0x90
13: indicate auto rate
*/
DEVICE_PARAM(ConnectionRate, "Connection data rate");
#define OP_MODE_DEF 0
DEVICE_PARAM(OPMode, "Infrastruct, adhoc, AP mode ");
/* OpMode[] is used for transmit.
0: indicate infrastruct mode used
1: indicate adhoc mode used
2: indicate AP mode used
*/
/* PSMode[]
0: indicate disable power saving mode
1: indicate enable power saving mode
*/
#define PS_MODE_DEF 0
DEVICE_PARAM(PSMode, "Power saving mode");
#define SHORT_RETRY_DEF 8
DEVICE_PARAM(ShortRetryLimit, "Short frame retry limits");
#define LONG_RETRY_DEF 4
DEVICE_PARAM(LongRetryLimit, "long frame retry limits");
/* BasebandType[] baseband type selected
0: indicate 802.11a type
1: indicate 802.11b type
2: indicate 802.11g type
*/
#define BBP_TYPE_DEF 2
DEVICE_PARAM(BasebandType, "baseband type");
/* 80211hEnable[]
0: indicate disable 802.11h
1: indicate enable 802.11h
*/
#define X80211h_MODE_DEF 0
DEVICE_PARAM(b80211hEnable, "802.11h mode");
/*
* Static vars definitions
*/
static struct usb_device_id vt6656_table[] = {
{USB_DEVICE(VNT_USB_VENDOR_ID, VNT_USB_PRODUCT_ID)},
{}
};
/* frequency list (map channels to frequencies) */
/*
static const long frequency_list[] = {
2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484,
4915, 4920, 4925, 4935, 4940, 4945, 4960, 4980,
5035, 5040, 5045, 5055, 5060, 5080, 5170, 5180, 5190, 5200, 5210, 5220, 5230, 5240,
5260, 5280, 5300, 5320, 5500, 5520, 5540, 5560, 5580, 5600, 5620, 5640, 5660, 5680,
5700, 5745, 5765, 5785, 5805, 5825
};
static const struct iw_handler_def iwctl_handler_def;
*/
static int vt6656_probe(struct usb_interface *intf,
const struct usb_device_id *id);
static void vt6656_disconnect(struct usb_interface *intf);
#ifdef CONFIG_PM /* Minimal support for suspend and resume */
static int vt6656_suspend(struct usb_interface *intf, pm_message_t message);
static int vt6656_resume(struct usb_interface *intf);
#endif /* CONFIG_PM */
static struct net_device_stats *device_get_stats(struct net_device *dev);
static int device_open(struct net_device *dev);
static int device_xmit(struct sk_buff *skb, struct net_device *dev);
static void device_set_multi(struct net_device *dev);
static int device_close(struct net_device *dev);
static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int device_init_registers(struct vnt_private *pDevice);
static bool device_init_defrag_cb(struct vnt_private *pDevice);
static int ethtool_ioctl(struct net_device *dev, struct ifreq *);
static void device_free_tx_bufs(struct vnt_private *pDevice);
static void device_free_rx_bufs(struct vnt_private *pDevice);
static void device_free_int_bufs(struct vnt_private *pDevice);
static void device_free_frag_bufs(struct vnt_private *pDevice);
static bool device_alloc_bufs(struct vnt_private *pDevice);
static int Read_config_file(struct vnt_private *pDevice);
static unsigned char *Config_FileOperation(struct vnt_private *pDevice);
static int Config_FileGetParameter(unsigned char *string,
unsigned char *dest,
unsigned char *source);
static void usb_device_reset(struct vnt_private *pDevice);
static void
device_set_options(struct vnt_private *pDevice) {
u8 abyBroadcastAddr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
u8 abySNAP_Bridgetunnel[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
memcpy(pDevice->abyBroadcastAddr, abyBroadcastAddr, ETH_ALEN);
memcpy(pDevice->abySNAP_RFC1042, abySNAP_RFC1042, ETH_ALEN);
memcpy(pDevice->abySNAP_Bridgetunnel, abySNAP_Bridgetunnel, ETH_ALEN);
pDevice->cbTD = TX_DESC_DEF0;
pDevice->cbRD = RX_DESC_DEF0;
pDevice->uChannel = CHANNEL_DEF;
pDevice->wRTSThreshold = RTS_THRESH_DEF;
pDevice->wFragmentationThreshold = FRAG_THRESH_DEF;
pDevice->byShortRetryLimit = SHORT_RETRY_DEF;
pDevice->byLongRetryLimit = LONG_RETRY_DEF;
pDevice->wMaxTransmitMSDULifetime = DEFAULT_MSDU_LIFETIME;
pDevice->byShortPreamble = PREAMBLE_TYPE_DEF;
pDevice->ePSMode = PS_MODE_DEF;
pDevice->b11hEnable = X80211h_MODE_DEF;
pDevice->op_mode = NL80211_IFTYPE_UNSPECIFIED;
pDevice->uConnectionRate = DATA_RATE_DEF;
if (pDevice->uConnectionRate < RATE_AUTO) pDevice->bFixRate = true;
pDevice->byBBType = BBP_TYPE_DEF;
pDevice->byPacketType = pDevice->byBBType;
pDevice->byAutoFBCtrl = AUTO_FB_0;
pDevice->byPreambleType = 0;
pDevice->bExistSWNetAddr = false;
}
/*
* initialization of MAC & BBP registers
*/
static int device_init_registers(struct vnt_private *pDevice)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct vnt_cmd_card_init *init_cmd = &pDevice->init_command;
struct vnt_rsp_card_init *init_rsp = &pDevice->init_response;
u8 abyBroadcastAddr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u8 abySNAP_RFC1042[ETH_ALEN] = {0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00};
u8 abySNAP_Bridgetunnel[ETH_ALEN]
= {0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8};
u8 byAntenna;
int ii;
int ntStatus = STATUS_SUCCESS;
u8 byTmp;
u8 byCalibTXIQ = 0, byCalibTXDC = 0, byCalibRXIQ = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---->INIbInitAdapter. [%d][%d]\n",
DEVICE_INIT_COLD, pDevice->byPacketType);
memcpy(pDevice->abyBroadcastAddr, abyBroadcastAddr, ETH_ALEN);
memcpy(pDevice->abySNAP_RFC1042, abySNAP_RFC1042, ETH_ALEN);
memcpy(pDevice->abySNAP_Bridgetunnel, abySNAP_Bridgetunnel, ETH_ALEN);
if (!vnt_check_firmware_version(pDevice)) {
if (vnt_download_firmware(pDevice) == true) {
if (vnt_firmware_branch_to_sram(pDevice) == false) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
" vnt_firmware_branch_to_sram fail\n");
return false;
}
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
" FIRMWAREbDownload fail\n");
return false;
}
}
if (!BBbVT3184Init(pDevice)) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO" BBbVT3184Init fail\n");
return false;
}
init_cmd->init_class = DEVICE_INIT_COLD;
init_cmd->exist_sw_net_addr = (u8) pDevice->bExistSWNetAddr;
for (ii = 0; ii < 6; ii++)
init_cmd->sw_net_addr[ii] = pDevice->abyCurrentNetAddr[ii];
init_cmd->short_retry_limit = pDevice->byShortRetryLimit;
init_cmd->long_retry_limit = pDevice->byLongRetryLimit;
/* issue card_init command to device */
ntStatus = vnt_control_out(pDevice,
MESSAGE_TYPE_CARDINIT, 0, 0,
sizeof(struct vnt_cmd_card_init), (u8 *)init_cmd);
if (ntStatus != STATUS_SUCCESS) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO" Issue Card init fail\n");
return false;
}
ntStatus = vnt_control_in(pDevice, MESSAGE_TYPE_INIT_RSP, 0, 0,
sizeof(struct vnt_rsp_card_init), (u8 *)init_rsp);
if (ntStatus != STATUS_SUCCESS) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"Cardinit request in status fail!\n");
return false;
}
/* local ID for AES functions */
ntStatus = vnt_control_in(pDevice, MESSAGE_TYPE_READ,
MAC_REG_LOCALID, MESSAGE_REQUEST_MACREG, 1,
&pDevice->byLocalID);
if (ntStatus != STATUS_SUCCESS)
return false;
/* do MACbSoftwareReset in MACvInitialize */
pDevice->bProtectMode = false;
/* only used in 11g type, sync with ERP IE */
pDevice->bNonERPPresent = false;
pDevice->bBarkerPreambleMd = false;
if (pDevice->bFixRate) {
pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
} else {
if (pDevice->byBBType == BB_TYPE_11B)
pDevice->wCurrentRate = RATE_11M;
else
pDevice->wCurrentRate = RATE_54M;
}
CHvInitChannelTable(pDevice);
pDevice->byTopOFDMBasicRate = RATE_24M;
pDevice->byTopCCKBasicRate = RATE_1M;
/* target to IF pin while programming to RF chip */
pDevice->byCurPwr = 0xFF;
pDevice->byCCKPwr = pDevice->abyEEPROM[EEP_OFS_PWR_CCK];
pDevice->byOFDMPwrG = pDevice->abyEEPROM[EEP_OFS_PWR_OFDMG];
/* load power table */
for (ii = 0; ii < 14; ii++) {
pDevice->abyCCKPwrTbl[ii] =
pDevice->abyEEPROM[ii + EEP_OFS_CCK_PWR_TBL];
if (pDevice->abyCCKPwrTbl[ii] == 0)
pDevice->abyCCKPwrTbl[ii] = pDevice->byCCKPwr;
pDevice->abyOFDMPwrTbl[ii] =
pDevice->abyEEPROM[ii + EEP_OFS_OFDM_PWR_TBL];
if (pDevice->abyOFDMPwrTbl[ii] == 0)
pDevice->abyOFDMPwrTbl[ii] = pDevice->byOFDMPwrG;
}
/*
* original zonetype is USA, but custom zonetype is Europe,
* then need to recover 12, 13, 14 channels with 11 channel
*/
if (((pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Japan) ||
(pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Europe)) &&
(pDevice->byOriginalZonetype == ZoneType_USA)) {
for (ii = 11; ii < 14; ii++) {
pDevice->abyCCKPwrTbl[ii] = pDevice->abyCCKPwrTbl[10];
pDevice->abyOFDMPwrTbl[ii] = pDevice->abyOFDMPwrTbl[10];
}
}
pDevice->byOFDMPwrA = 0x34; /* same as RFbMA2829SelectChannel */
/* load OFDM A power table */
for (ii = 0; ii < CB_MAX_CHANNEL_5G; ii++) {
pDevice->abyOFDMAPwrTbl[ii] =
pDevice->abyEEPROM[ii + EEP_OFS_OFDMA_PWR_TBL];
if (pDevice->abyOFDMAPwrTbl[ii] == 0)
pDevice->abyOFDMAPwrTbl[ii] = pDevice->byOFDMPwrA;
}
byAntenna = pDevice->abyEEPROM[EEP_OFS_ANTENNA];
if (byAntenna & EEP_ANTINV)
pDevice->bTxRxAntInv = true;
else
pDevice->bTxRxAntInv = false;
byAntenna &= (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN);
if (byAntenna == 0) /* if not set default is both */
byAntenna = (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN);
if (byAntenna == (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN)) {
pDevice->byAntennaCount = 2;
pDevice->byTxAntennaMode = ANT_B;
pDevice->dwTxAntennaSel = 1;
pDevice->dwRxAntennaSel = 1;
if (pDevice->bTxRxAntInv == true)
pDevice->byRxAntennaMode = ANT_A;
else
pDevice->byRxAntennaMode = ANT_B;
} else {
pDevice->byAntennaCount = 1;
pDevice->dwTxAntennaSel = 0;
pDevice->dwRxAntennaSel = 0;
if (byAntenna & EEP_ANTENNA_AUX) {
pDevice->byTxAntennaMode = ANT_A;
if (pDevice->bTxRxAntInv == true)
pDevice->byRxAntennaMode = ANT_B;
else
pDevice->byRxAntennaMode = ANT_A;
} else {
pDevice->byTxAntennaMode = ANT_B;
if (pDevice->bTxRxAntInv == true)
pDevice->byRxAntennaMode = ANT_A;
else
pDevice->byRxAntennaMode = ANT_B;
}
}
/* get Auto Fall Back type */
pDevice->byAutoFBCtrl = AUTO_FB_0;
/* default Auto Mode */
/* pDevice->NetworkType = Ndis802_11Automode; */
pDevice->eConfigPHYMode = PHY_TYPE_AUTO;
pDevice->byBBType = BB_TYPE_11G;
/* get channel range */
pDevice->byMinChannel = 1;
pDevice->byMaxChannel = CB_MAX_CHANNEL;
/* get RFType */
pDevice->byRFType = init_rsp->rf_type;
/* load vt3266 calibration parameters in EEPROM */
if (pDevice->byRFType == RF_VT3226D0) {
if ((pDevice->abyEEPROM[EEP_OFS_MAJOR_VER] == 0x1) &&
(pDevice->abyEEPROM[EEP_OFS_MINOR_VER] >= 0x4)) {
byCalibTXIQ = pDevice->abyEEPROM[EEP_OFS_CALIB_TX_IQ];
byCalibTXDC = pDevice->abyEEPROM[EEP_OFS_CALIB_TX_DC];
byCalibRXIQ = pDevice->abyEEPROM[EEP_OFS_CALIB_RX_IQ];
if (byCalibTXIQ || byCalibTXDC || byCalibRXIQ) {
/* CR255, enable TX/RX IQ and DC compensation mode */
vnt_control_out_u8(pDevice,
MESSAGE_REQUEST_BBREG,
0xff,
0x03);
/* CR251, TX I/Q Imbalance Calibration */
vnt_control_out_u8(pDevice,
MESSAGE_REQUEST_BBREG,
0xfb,
byCalibTXIQ);
/* CR252, TX DC-Offset Calibration */
vnt_control_out_u8(pDevice,
MESSAGE_REQUEST_BBREG,
0xfC,
byCalibTXDC);
/* CR253, RX I/Q Imbalance Calibration */
vnt_control_out_u8(pDevice,
MESSAGE_REQUEST_BBREG,
0xfd,
byCalibRXIQ);
} else {
/* CR255, turn off BB Calibration compensation */
vnt_control_out_u8(pDevice,
MESSAGE_REQUEST_BBREG,
0xff,
0x0);
}
}
}
pMgmt->eScanType = WMAC_SCAN_PASSIVE;
pMgmt->uCurrChannel = pDevice->uChannel;
pMgmt->uIBSSChannel = pDevice->uChannel;
vnt_set_channel(pDevice, pMgmt->uCurrChannel);
/* get permanent network address */
memcpy(pDevice->abyPermanentNetAddr, init_rsp->net_addr, 6);
memcpy(pDevice->abyCurrentNetAddr,
pDevice->abyPermanentNetAddr, ETH_ALEN);
/* if exist SW network address, use it */
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Network address = %pM\n",
pDevice->abyCurrentNetAddr);
/*
* set BB and packet type at the same time
* set Short Slot Time, xIFS, and RSPINF
*/
if (pDevice->byBBType == BB_TYPE_11A) {
vnt_add_basic_rate(pDevice, RATE_6M);
pDevice->bShortSlotTime = true;
} else {
vnt_add_basic_rate(pDevice, RATE_1M);
pDevice->bShortSlotTime = false;
}
BBvSetShortSlotTime(pDevice);
vnt_set_bss_mode(pDevice);
pDevice->byBBVGACurrent = pDevice->abyBBVGA[0];
pDevice->byBBVGANew = pDevice->byBBVGACurrent;
BBvSetVGAGainOffset(pDevice, pDevice->abyBBVGA[0]);
pDevice->byRadioCtl = pDevice->abyEEPROM[EEP_OFS_RADIOCTL];
pDevice->bHWRadioOff = false;
if ((pDevice->byRadioCtl & EEP_RADIOCTL_ENABLE) != 0) {
ntStatus = vnt_control_in(pDevice, MESSAGE_TYPE_READ,
MAC_REG_GPIOCTL1, MESSAGE_REQUEST_MACREG, 1, &byTmp);
if (ntStatus != STATUS_SUCCESS)
return false;
if ((byTmp & GPIO3_DATA) == 0) {
pDevice->bHWRadioOff = true;
vnt_mac_reg_bits_on(pDevice, MAC_REG_GPIOCTL1,
GPIO3_INTMD);
} else {
vnt_mac_reg_bits_off(pDevice, MAC_REG_GPIOCTL1,
GPIO3_INTMD);
pDevice->bHWRadioOff = false;
}
}
vnt_mac_set_led(pDevice, LEDSTS_TMLEN, 0x38);
vnt_mac_set_led(pDevice, LEDSTS_STS, LEDSTS_SLOW);
vnt_mac_reg_bits_on(pDevice, MAC_REG_GPIOCTL0, 0x01);
if ((pDevice->bHWRadioOff == true) ||
(pDevice->bRadioControlOff == true)) {
vnt_radio_power_off(pDevice);
} else {
vnt_radio_power_on(pDevice);
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"<----INIbInitAdapter Exit\n");
return true;
}
static const struct net_device_ops device_netdev_ops = {
.ndo_open = device_open,
.ndo_stop = device_close,
.ndo_do_ioctl = device_ioctl,
.ndo_get_stats = device_get_stats,
.ndo_start_xmit = device_xmit,
.ndo_set_rx_mode = device_set_multi,
};
static void device_free_tx_bufs(struct vnt_private *priv)
{
struct vnt_usb_send_context *tx_context;
int ii;
for (ii = 0; ii < priv->cbTD; ii++) {
tx_context = priv->apTD[ii];
/* deallocate URBs */
if (tx_context->urb) {
usb_kill_urb(tx_context->urb);
usb_free_urb(tx_context->urb);
}
kfree(tx_context);
}
return;
}
static void device_free_rx_bufs(struct vnt_private *priv)
{
struct vnt_rcb *rcb;
int ii;
for (ii = 0; ii < priv->cbRD; ii++) {
rcb = priv->apRCB[ii];
/* deallocate URBs */
if (rcb->pUrb) {
usb_kill_urb(rcb->pUrb);
usb_free_urb(rcb->pUrb);
}
/* deallocate skb */
if (rcb->skb)
dev_kfree_skb(rcb->skb);
}
kfree(priv->pRCBMem);
return;
}
static void usb_device_reset(struct vnt_private *pDevice)
{
int status;
status = usb_reset_device(pDevice->usb);
if (status)
printk("usb_device_reset fail status=%d\n",status);
return ;
}
static void device_free_int_bufs(struct vnt_private *priv)
{
kfree(priv->int_buf.data_buf);
return;
}
static bool device_alloc_bufs(struct vnt_private *priv)
{
struct vnt_usb_send_context *tx_context;
struct vnt_rcb *rcb;
int ii;
for (ii = 0; ii < priv->cbTD; ii++) {
tx_context = kmalloc(sizeof(struct vnt_usb_send_context),
GFP_KERNEL);
if (tx_context == NULL) {
DBG_PRT(MSG_LEVEL_ERR, KERN_ERR
"%s : allocate tx usb context failed\n",
priv->dev->name);
goto free_tx;
}
priv->apTD[ii] = tx_context;
tx_context->priv = priv;
/* allocate URBs */
tx_context->urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!tx_context->urb) {
DBG_PRT(MSG_LEVEL_ERR,
KERN_ERR "alloc tx urb failed\n");
goto free_tx;
}
tx_context->in_use = false;
}
/* allocate RCB mem */
priv->pRCBMem = kzalloc((sizeof(struct vnt_rcb) * priv->cbRD),
GFP_KERNEL);
if (priv->pRCBMem == NULL) {
DBG_PRT(MSG_LEVEL_ERR, KERN_ERR
"%s : alloc rx usb context failed\n",
priv->dev->name);
goto free_tx;
}
priv->FirstRecvFreeList = NULL;
priv->LastRecvFreeList = NULL;
priv->FirstRecvMngList = NULL;
priv->LastRecvMngList = NULL;
priv->NumRecvFreeList = 0;
rcb = (struct vnt_rcb *)priv->pRCBMem;
for (ii = 0; ii < priv->cbRD; ii++) {
priv->apRCB[ii] = rcb;
rcb->pDevice = priv;
/* allocate URBs */
rcb->pUrb = usb_alloc_urb(0, GFP_ATOMIC);
if (rcb->pUrb == NULL) {
DBG_PRT(MSG_LEVEL_ERR, KERN_ERR
" Failed to alloc rx urb\n");
goto free_rx_tx;
}
rcb->skb = dev_alloc_skb(priv->rx_buf_sz);
if (rcb->skb == NULL) {
DBG_PRT(MSG_LEVEL_ERR, KERN_ERR
" Failed to alloc rx skb\n");
goto free_rx_tx;
}
rcb->bBoolInUse = false;
EnqueueRCB(priv->FirstRecvFreeList,
priv->LastRecvFreeList, rcb);
priv->NumRecvFreeList++;
rcb++;
}
priv->pInterruptURB = usb_alloc_urb(0, GFP_ATOMIC);
if (priv->pInterruptURB == NULL) {
DBG_PRT(MSG_LEVEL_ERR, KERN_ERR"Failed to alloc int urb\n");
goto free_rx_tx;
}
priv->int_buf.data_buf = kmalloc(MAX_INTERRUPT_SIZE, GFP_KERNEL);
if (priv->int_buf.data_buf == NULL) {
DBG_PRT(MSG_LEVEL_ERR, KERN_ERR"Failed to alloc int buf\n");
usb_free_urb(priv->pInterruptURB);
goto free_rx_tx;
}
return true;
free_rx_tx:
device_free_rx_bufs(priv);
free_tx:
device_free_tx_bufs(priv);
return false;
}
static bool device_init_defrag_cb(struct vnt_private *pDevice)
{
int i;
PSDeFragControlBlock pDeF;
/* Init the fragment ctl entries */
for (i = 0; i < CB_MAX_RX_FRAG; i++) {
pDeF = &(pDevice->sRxDFCB[i]);
if (!device_alloc_frag_buf(pDevice, pDeF)) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc frag bufs\n",
pDevice->dev->name);
goto free_frag;
}
}
pDevice->cbDFCB = CB_MAX_RX_FRAG;
pDevice->cbFreeDFCB = pDevice->cbDFCB;
return true;
free_frag:
device_free_frag_bufs(pDevice);
return false;
}
static void device_free_frag_bufs(struct vnt_private *pDevice)
{
PSDeFragControlBlock pDeF;
int i;
for (i = 0; i < CB_MAX_RX_FRAG; i++) {
pDeF = &(pDevice->sRxDFCB[i]);
if (pDeF->skb)
dev_kfree_skb(pDeF->skb);
}
}
int device_alloc_frag_buf(struct vnt_private *pDevice,
PSDeFragControlBlock pDeF)
{
pDeF->skb = netdev_alloc_skb(pDevice->dev, pDevice->rx_buf_sz);
if (!pDeF->skb)
return false;
return true;
}
static int device_open(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
pDevice->fWPA_Authened = false;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " device_open...\n");
pDevice->rx_buf_sz = MAX_TOTAL_SIZE_WITH_ALL_HEADERS;
if (device_alloc_bufs(pDevice) == false) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " device_alloc_bufs fail... \n");
return -ENOMEM;
}
if (device_init_defrag_cb(pDevice)== false) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " Initial defragment cb fail \n");
goto free_rx_tx;
}
MP_CLEAR_FLAG(pDevice, fMP_DISCONNECTED);
MP_SET_FLAG(pDevice, fMP_POST_READS);
MP_SET_FLAG(pDevice, fMP_POST_WRITES);
/* read config file */
Read_config_file(pDevice);
if (device_init_registers(pDevice) == false) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " init register fail\n");
goto free_all;
}
/* init for key management */
KeyvInitTable(pDevice,&pDevice->sKey);
memcpy(pDevice->vnt_mgmt.abyMACAddr,
pDevice->abyCurrentNetAddr, ETH_ALEN);
memcpy(pDevice->dev->dev_addr, pDevice->abyCurrentNetAddr, ETH_ALEN);
pDevice->bStopTx0Pkt = false;
pDevice->bStopDataPkt = false;
pDevice->bRoaming = false;
pDevice->bIsRoaming = false;
pDevice->bEnableRoaming = false;
vMgrObjectInit(pDevice);
schedule_delayed_work(&pDevice->second_callback_work, HZ);
pDevice->int_interval = 1; /* bInterval is set to 1 */
pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
pDevice->bIsRxWorkItemQueued = true;
pDevice->bWPADEVUp = false;
pDevice->bwextstep0 = false;
pDevice->bwextstep1 = false;
pDevice->bwextstep2 = false;
pDevice->bwextstep3 = false;
pDevice->bWPASuppWextEnabled = false;
pDevice->byReAssocCount = 0;
schedule_work(&pDevice->read_work_item);
INTvWorkItem(pDevice);
/* if WEP key already set by iwconfig but device not yet open */
if ((pDevice->bEncryptionEnable == true) && (pDevice->bTransmitKey == true)) {
KeybSetDefaultKey( pDevice,
&(pDevice->sKey),
pDevice->byKeyIndex | (1 << 31),
pDevice->uKeyLength,
NULL,
pDevice->abyKey,
KEY_CTL_WEP
);
pDevice->eEncryptionStatus = Ndis802_11Encryption1Enabled;
}
if (pDevice->vnt_mgmt.eConfigMode == WMAC_CONFIG_AP)
bScheduleCommand((void *) pDevice, WLAN_CMD_RUN_AP, NULL);
else
bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL);
netif_stop_queue(pDevice->dev);
pDevice->flags |= DEVICE_FLAGS_OPENED;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_open success..\n");
return 0;
free_all:
device_free_frag_bufs(pDevice);
free_rx_tx:
device_free_rx_bufs(pDevice);
device_free_tx_bufs(pDevice);
device_free_int_bufs(pDevice);
usb_kill_urb(pDevice->pInterruptURB);
usb_free_urb(pDevice->pInterruptURB);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_open fail.. \n");
return -ENOMEM;
}
static int device_close(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
u8 uu;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_close1\n");
if (pDevice == NULL)
return -ENODEV;
if (pDevice->bLinkPass) {
bScheduleCommand((void *) pDevice, WLAN_CMD_DISASSOCIATE, NULL);
mdelay(30);
}
memset(pMgmt->abyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
pMgmt->bShareKeyAlgorithm = false;
pDevice->bEncryptionEnable = false;
pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
for (uu = 0; uu < MAX_KEY_TABLE; uu++)
vnt_mac_disable_keyentry(pDevice, uu);
if ((pDevice->flags & DEVICE_FLAGS_UNPLUG) == false)
vnt_mac_shutdown(pDevice);
netif_stop_queue(pDevice->dev);
MP_SET_FLAG(pDevice, fMP_DISCONNECTED);
MP_CLEAR_FLAG(pDevice, fMP_POST_WRITES);
MP_CLEAR_FLAG(pDevice, fMP_POST_READS);
cancel_delayed_work_sync(&pDevice->run_command_work);
cancel_delayed_work_sync(&pDevice->second_callback_work);
cancel_work_sync(&pDevice->rx_mng_work_item);
cancel_work_sync(&pDevice->read_work_item);
pDevice->bRoaming = false;
pDevice->bIsRoaming = false;
pDevice->bEnableRoaming = false;
pDevice->bCmdRunning = false;
pDevice->bLinkPass = false;
memset(pMgmt->abyCurrBSSID, 0, 6);
pMgmt->eCurrState = WMAC_STATE_IDLE;
pDevice->flags &= ~DEVICE_FLAGS_OPENED;
device_free_tx_bufs(pDevice);
device_free_rx_bufs(pDevice);
device_free_int_bufs(pDevice);
device_free_frag_bufs(pDevice);
usb_kill_urb(pDevice->pInterruptURB);
usb_free_urb(pDevice->pInterruptURB);
BSSvClearNodeDBTable(pDevice, 0);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_close2 \n");
return 0;
}
static void vnt_tx_80211(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control, struct sk_buff *skb)
{
struct vnt_private *priv = hw->priv;
ieee80211_stop_queues(hw);
if (vnt_tx_packet(priv, skb)) {
ieee80211_free_txskb(hw, skb);
ieee80211_wake_queues(hw);
}
}
static int vnt_start(struct ieee80211_hw *hw)
{
struct vnt_private *priv = hw->priv;
priv->rx_buf_sz = MAX_TOTAL_SIZE_WITH_ALL_HEADERS;
if (device_alloc_bufs(priv) == false) {
dev_dbg(&priv->usb->dev, "device_alloc_bufs fail...\n");
return -ENOMEM;
}
MP_CLEAR_FLAG(priv, fMP_DISCONNECTED);
MP_SET_FLAG(priv, fMP_POST_READS);
MP_SET_FLAG(priv, fMP_POST_WRITES);
if (device_init_registers(priv) == false) {
dev_dbg(&priv->usb->dev, " init register fail\n");
goto free_all;
}
priv->int_interval = 1; /* bInterval is set to 1 */
schedule_work(&priv->read_work_item);
INTvWorkItem(priv);
priv->flags |= DEVICE_FLAGS_OPENED;
ieee80211_wake_queues(hw);
return 0;
free_all:
device_free_rx_bufs(priv);
device_free_tx_bufs(priv);
device_free_int_bufs(priv);
usb_kill_urb(priv->pInterruptURB);
usb_free_urb(priv->pInterruptURB);
return -ENOMEM;
}
static void vnt_stop(struct ieee80211_hw *hw)
{
struct vnt_private *priv = hw->priv;
int i;
if (!priv)
return;
for (i = 0; i < MAX_KEY_TABLE; i++)
vnt_mac_disable_keyentry(priv, i);
/* clear all keys */
priv->key_entry_inuse = 0;
if ((priv->flags & DEVICE_FLAGS_UNPLUG) == false)
vnt_mac_shutdown(priv);
ieee80211_stop_queues(hw);
MP_SET_FLAG(priv, fMP_DISCONNECTED);
MP_CLEAR_FLAG(priv, fMP_POST_WRITES);
MP_CLEAR_FLAG(priv, fMP_POST_READS);
cancel_delayed_work_sync(&priv->run_command_work);
cancel_work_sync(&priv->read_work_item);
priv->bCmdRunning = false;
priv->flags &= ~DEVICE_FLAGS_OPENED;
device_free_tx_bufs(priv);
device_free_rx_bufs(priv);
device_free_int_bufs(priv);
usb_kill_urb(priv->pInterruptURB);
usb_free_urb(priv->pInterruptURB);
return;
}
static int vnt_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct vnt_private *priv = hw->priv;
priv->vif = vif;
switch (vif->type) {
case NL80211_IFTYPE_STATION:
break;
case NL80211_IFTYPE_ADHOC:
vnt_mac_reg_bits_off(priv, MAC_REG_RCR, RCR_UNICAST);
vnt_mac_reg_bits_on(priv, MAC_REG_HOSTCR, HOSTCR_ADHOC);
break;
case NL80211_IFTYPE_AP:
vnt_mac_reg_bits_off(priv, MAC_REG_RCR, RCR_UNICAST);
vnt_mac_reg_bits_on(priv, MAC_REG_HOSTCR, HOSTCR_AP);
break;
default:
return -EOPNOTSUPP;
}
priv->op_mode = vif->type;
/* LED blink on TX */
vnt_mac_set_led(priv, LEDSTS_STS, LEDSTS_INTER);
return 0;
}
static void vnt_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct vnt_private *priv = hw->priv;
switch (vif->type) {
case NL80211_IFTYPE_STATION:
break;
case NL80211_IFTYPE_ADHOC:
vnt_mac_reg_bits_off(priv, MAC_REG_TCR, TCR_AUTOBCNTX);
vnt_mac_reg_bits_off(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTREN);
vnt_mac_reg_bits_off(priv, MAC_REG_HOSTCR, HOSTCR_ADHOC);
break;
case NL80211_IFTYPE_AP:
vnt_mac_reg_bits_off(priv, MAC_REG_TCR, TCR_AUTOBCNTX);
vnt_mac_reg_bits_off(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTREN);
vnt_mac_reg_bits_off(priv, MAC_REG_HOSTCR, HOSTCR_AP);
break;
default:
break;
}
vnt_radio_power_off(priv);
priv->op_mode = NL80211_IFTYPE_UNSPECIFIED;
/* LED slow blink */
vnt_mac_set_led(priv, LEDSTS_STS, LEDSTS_SLOW);
return;
}
static int vnt_config(struct ieee80211_hw *hw, u32 changed)
{
struct vnt_private *priv = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
u8 bb_type;
if (changed & IEEE80211_CONF_CHANGE_PS) {
if (conf->flags & IEEE80211_CONF_PS)
vnt_enable_power_saving(priv, conf->listen_interval);
else
vnt_disable_power_saving(priv);
}
if ((changed & IEEE80211_CONF_CHANGE_CHANNEL) ||
(conf->flags & IEEE80211_CONF_OFFCHANNEL)) {
vnt_set_channel(priv, conf->chandef.chan->hw_value);
if (conf->chandef.chan->band == IEEE80211_BAND_5GHZ)
bb_type = BB_TYPE_11A;
else
bb_type = BB_TYPE_11G;
if (priv->byBBType != bb_type) {
priv->byBBType = bb_type;
vnt_set_bss_mode(priv);
}
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
if (priv->byBBType == BB_TYPE_11B)
priv->wCurrentRate = RATE_1M;
else
priv->wCurrentRate = RATE_54M;
vnt_rf_setpower(priv, priv->wCurrentRate,
conf->chandef.chan->hw_value);
}
return 0;
}
static void vnt_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, struct ieee80211_bss_conf *conf,
u32 changed)
{
struct vnt_private *priv = hw->priv;
priv->current_aid = conf->aid;
if (changed & BSS_CHANGED_BSSID)
vnt_mac_set_bssid_addr(priv, (u8 *)conf->bssid);
if (changed & BSS_CHANGED_BASIC_RATES) {
priv->wBasicRate = conf->basic_rates;
vnt_update_top_rates(priv);
dev_dbg(&priv->usb->dev, "basic rates %x\n", conf->basic_rates);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
if (conf->use_short_preamble) {
vnt_mac_enable_barker_preamble_mode(priv);
priv->byPreambleType = true;
} else {
vnt_mac_disable_barker_preamble_mode(priv);
priv->byPreambleType = false;
}
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
if (conf->use_cts_prot)
vnt_mac_enable_protect_mode(priv);
else
vnt_mac_disable_protect_mode(priv);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
if (conf->use_short_slot)
priv->bShortSlotTime = true;
else
priv->bShortSlotTime = false;
BBvSetShortSlotTime(priv);
BBvSetVGAGainOffset(priv, priv->abyBBVGA[0]);
BBvUpdatePreEDThreshold(priv, false);
}
if (changed & BSS_CHANGED_TXPOWER)
vnt_rf_setpower(priv, priv->wCurrentRate,
conf->chandef.chan->hw_value);
if (changed & BSS_CHANGED_BEACON_ENABLED) {
dev_dbg(&priv->usb->dev,
"Beacon enable %d\n", conf->enable_beacon);
if (conf->enable_beacon) {
vnt_beacon_enable(priv, vif, conf);
vnt_mac_reg_bits_on(priv, MAC_REG_TCR, TCR_AUTOBCNTX);
} else {
vnt_mac_reg_bits_off(priv, MAC_REG_TCR, TCR_AUTOBCNTX);
}
}
}
static u64 vnt_prepare_multicast(struct ieee80211_hw *hw,
struct netdev_hw_addr_list *mc_list)
{
struct vnt_private *priv = hw->priv;
struct netdev_hw_addr *ha;
u64 mc_filter = 0;
u32 bit_nr = 0;
netdev_hw_addr_list_for_each(ha, mc_list) {
bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter |= 1ULL << (bit_nr & 0x3f);
}
priv->mc_list_count = mc_list->count;
return mc_filter;
}
static void vnt_configure(struct ieee80211_hw *hw,
unsigned int changed_flags, unsigned int *total_flags, u64 multicast)
{
struct vnt_private *priv = hw->priv;
u8 rx_mode = 0;
int rc;
*total_flags &= FIF_ALLMULTI | FIF_OTHER_BSS | FIF_PROMISC_IN_BSS |
FIF_BCN_PRBRESP_PROMISC;
rc = vnt_control_in(priv, MESSAGE_TYPE_READ, MAC_REG_RCR,
MESSAGE_REQUEST_MACREG, sizeof(u8), &rx_mode);
if (!rc)
rx_mode = RCR_MULTICAST | RCR_BROADCAST;
dev_dbg(&priv->usb->dev, "rx mode in = %x\n", rx_mode);
if (changed_flags & FIF_PROMISC_IN_BSS) {
/* unconditionally log net taps */
if (*total_flags & FIF_PROMISC_IN_BSS)
rx_mode |= RCR_UNICAST;
else
rx_mode &= ~RCR_UNICAST;
}
if (changed_flags & FIF_ALLMULTI) {
if (*total_flags & FIF_ALLMULTI) {
if (priv->mc_list_count > 2)
vnt_mac_set_filter(priv, ~0);
else
vnt_mac_set_filter(priv, multicast);
rx_mode |= RCR_MULTICAST | RCR_BROADCAST;
} else {
rx_mode &= ~(RCR_MULTICAST | RCR_BROADCAST);
}
}
if (changed_flags & (FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)) {
if (*total_flags & (FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC))
rx_mode &= ~RCR_BSSID;
else
rx_mode |= RCR_BSSID;
}
vnt_control_out_u8(priv, MESSAGE_REQUEST_MACREG, MAC_REG_RCR, rx_mode);
dev_dbg(&priv->usb->dev, "rx mode out= %x\n", rx_mode);
return;
}
static int vnt_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct vnt_private *priv = hw->priv;
switch (cmd) {
case SET_KEY:
if (vnt_set_keys(hw, sta, vif, key))
return -EOPNOTSUPP;
break;
case DISABLE_KEY:
if (test_bit(key->hw_key_idx, &priv->key_entry_inuse))
clear_bit(key->hw_key_idx, &priv->key_entry_inuse);
default:
break;
}
return 0;
}
static void vnt_sw_scan_start(struct ieee80211_hw *hw)
{
struct vnt_private *priv = hw->priv;
/* Set max sensitivity*/
BBvUpdatePreEDThreshold(priv, true);
}
static void vnt_sw_scan_complete(struct ieee80211_hw *hw)
{
struct vnt_private *priv = hw->priv;
/* Return sensitivity to channel level*/
BBvUpdatePreEDThreshold(priv, false);
}
static u64 vnt_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct vnt_private *priv = hw->priv;
return priv->qwCurrTSF;
}
static void vnt_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u64 tsf)
{
struct vnt_private *priv = hw->priv;
vnt_update_next_tbtt(priv, tsf, vif->bss_conf.beacon_int);
}
static void vnt_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct vnt_private *priv = hw->priv;
vnt_mac_reg_bits_off(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTREN);
vnt_clear_current_tsf(priv);
}
static const struct ieee80211_ops vnt_mac_ops = {
.tx = vnt_tx_80211,
.start = vnt_start,
.stop = vnt_stop,
.add_interface = vnt_add_interface,
.remove_interface = vnt_remove_interface,
.config = vnt_config,
.bss_info_changed = vnt_bss_info_changed,
.prepare_multicast = vnt_prepare_multicast,
.configure_filter = vnt_configure,
.set_key = vnt_set_key,
.sw_scan_start = vnt_sw_scan_start,
.sw_scan_complete = vnt_sw_scan_complete,
.get_tsf = vnt_get_tsf,
.set_tsf = vnt_set_tsf,
.reset_tsf = vnt_reset_tsf,
};
int vnt_init(struct vnt_private *priv)
{
if (!(device_init_registers(priv)))
return -EAGAIN;
SET_IEEE80211_PERM_ADDR(priv->hw, priv->abyPermanentNetAddr);
if (ieee80211_register_hw(priv->hw))
return -ENODEV;
return 0;
}
static int
vt6656_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *udev;
struct vnt_private *priv;
struct ieee80211_hw *hw;
struct wiphy *wiphy;
int rc = 0;
udev = usb_get_dev(interface_to_usbdev(intf));
dev_notice(&udev->dev, "%s Ver. %s\n",
DEVICE_FULL_DRV_NAM, DEVICE_VERSION);
dev_notice(&udev->dev,
"Copyright (c) 2004 VIA Networking Technologies, Inc.\n");
hw = ieee80211_alloc_hw(sizeof(struct vnt_private), &vnt_mac_ops);
if (!hw) {
dev_err(&udev->dev, "could not register ieee80211_hw\n");
goto err_nomem;
}
priv = hw->priv;
priv->hw = hw;
priv->usb = udev;
device_set_options(priv);
spin_lock_init(&priv->lock);
mutex_init(&priv->usb_lock);
INIT_DELAYED_WORK(&priv->run_command_work, vRunCommand);
INIT_WORK(&priv->read_work_item, RXvWorkItem);
priv->vnt_mgmt.pAdapter = priv;
usb_set_intfdata(intf, priv);
wiphy = priv->hw->wiphy;
wiphy->frag_threshold = FRAG_THRESH_DEF;
wiphy->rts_threshold = RTS_THRESH_DEF;
wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP);
priv->hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_REPORTS_TX_ACK_STATUS |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_TIMING_BEACON_ONLY;
priv->hw->rate_control_algorithm = "pid";
priv->hw->max_signal = 100;
SET_IEEE80211_DEV(priv->hw, &intf->dev);
usb_device_reset(priv);
return 0;
err_nomem:
usb_put_dev(udev);
return rc;
}
static void vt6656_disconnect(struct usb_interface *intf)
{
struct vnt_private *priv = usb_get_intfdata(intf);
if (!priv)
return;
ieee80211_unregister_hw(priv->hw);
usb_set_intfdata(intf, NULL);
usb_put_dev(interface_to_usbdev(intf));
priv->flags |= DEVICE_FLAGS_UNPLUG;
ieee80211_free_hw(priv->hw);
}
#ifdef CONFIG_PM
static int vt6656_suspend(struct usb_interface *intf, pm_message_t message)
{
return 0;
}
static int vt6656_resume(struct usb_interface *intf)
{
return 0;
}
#endif /* CONFIG_PM */
static int device_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct net_device_stats *stats = &pDevice->stats;
unsigned long flags;
spin_lock_irqsave(&pDevice->lock, flags);
netif_stop_queue(dev);
if (!pDevice->bLinkPass) {
dev_kfree_skb_irq(skb);
goto out;
}
if (pDevice->bStopDataPkt) {
dev_kfree_skb_irq(skb);
stats->tx_dropped++;
goto out;
}
if (nsDMA_tx_packet(pDevice, skb)) {
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
}
out:
spin_unlock_irqrestore(&pDevice->lock, flags);
return NETDEV_TX_OK;
}
/* find out the start position of str2 from str1 */
static unsigned char *kstrstr(const unsigned char *str1,
const unsigned char *str2) {
int str1_len = strlen(str1);
int str2_len = strlen(str2);
while (str1_len >= str2_len) {
str1_len--;
if(memcmp(str1,str2,str2_len)==0)
return (unsigned char *) str1;
str1++;
}
return NULL;
}
static int Config_FileGetParameter(unsigned char *string,
unsigned char *dest,
unsigned char *source)
{
unsigned char buf1[100];
unsigned char buf2[100];
unsigned char *start_p = NULL, *end_p = NULL, *tmp_p = NULL;
int ii;
memset(buf1,0,100);
strcat(buf1, string);
strcat(buf1, "=");
source+=strlen(buf1);
/* find target string start point */
start_p = kstrstr(source,buf1);
if (start_p == NULL)
return false;
/* check if current config line is marked by "#" */
for (ii = 1; ; ii++) {
if (memcmp(start_p - ii, "\n", 1) == 0)
break;
if (memcmp(start_p - ii, "#", 1) == 0)
return false;
}
/* find target string end point */
end_p = kstrstr(start_p,"\n");
if (end_p == NULL) { /* can't find "\n", but don't care */
end_p = start_p + strlen(start_p); /* no include "\n" */
}
memset(buf2,0,100);
memcpy(buf2, start_p, end_p-start_p); /* get the target line */
buf2[end_p-start_p]='\0';
/* find value */
start_p = kstrstr(buf2,"=");
if (start_p == NULL)
return false;
memset(buf1,0,100);
strcpy(buf1,start_p+1);
/* except space */
tmp_p = buf1;
while(*tmp_p != 0x00) {
if(*tmp_p==' ')
tmp_p++;
else
break;
}
memcpy(dest,tmp_p,strlen(tmp_p));
return true;
}
/* if read fails, return NULL, or return data pointer */
static unsigned char *Config_FileOperation(struct vnt_private *pDevice)
{
unsigned char *buffer = kmalloc(1024, GFP_KERNEL);
struct file *file;
if (!buffer) {
printk("allocate mem for file fail?\n");
return NULL;
}
file = filp_open(CONFIG_PATH, O_RDONLY, 0);
if (IS_ERR(file)) {
kfree(buffer);
printk("Config_FileOperation file Not exist\n");
return NULL;
}
if (kernel_read(file, 0, buffer, 1024) < 0) {
printk("read file error?\n");
kfree(buffer);
buffer = NULL;
}
fput(file);
return buffer;
}
/* return --->-1:fail; >=0:successful */
static int Read_config_file(struct vnt_private *pDevice)
{
int result = 0;
unsigned char tmpbuffer[100];
unsigned char *buffer = NULL;
/* init config setting */
pDevice->config_file.ZoneType = -1;
pDevice->config_file.eAuthenMode = -1;
pDevice->config_file.eEncryptionStatus = -1;
buffer = Config_FileOperation(pDevice);
if (buffer == NULL) {
result =-1;
return result;
}
/* get zonetype */
{
memset(tmpbuffer,0,sizeof(tmpbuffer));
if(Config_FileGetParameter("ZONETYPE",tmpbuffer,buffer) ==true) {
if(memcmp(tmpbuffer,"USA",3)==0) {
pDevice->config_file.ZoneType=ZoneType_USA;
}
else if(memcmp(tmpbuffer,"JAPAN",5)==0) {
pDevice->config_file.ZoneType=ZoneType_Japan;
}
else if(memcmp(tmpbuffer,"EUROPE",6)==0) {
pDevice->config_file.ZoneType=ZoneType_Europe;
}
else {
printk("Unknown Zonetype[%s]?\n",tmpbuffer);
}
}
}
/* get other parameter */
{
memset(tmpbuffer,0,sizeof(tmpbuffer));
if(Config_FileGetParameter("AUTHENMODE",tmpbuffer,buffer)==true) {
pDevice->config_file.eAuthenMode = (int) simple_strtol(tmpbuffer, NULL, 10);
}
memset(tmpbuffer,0,sizeof(tmpbuffer));
if(Config_FileGetParameter("ENCRYPTIONMODE",tmpbuffer,buffer)==true) {
pDevice->config_file.eEncryptionStatus= (int) simple_strtol(tmpbuffer, NULL, 10);
}
}
kfree(buffer);
return result;
}
static void device_set_multi(struct net_device *dev)
{
struct vnt_private *priv = netdev_priv(dev);
unsigned long flags;
if (priv->flags & DEVICE_FLAGS_OPENED) {
spin_lock_irqsave(&priv->lock, flags);
bScheduleCommand(priv, WLAN_CMD_CONFIGURE_FILTER, NULL);
spin_unlock_irqrestore(&priv->lock, flags);
}
}
void vnt_configure_filter(struct vnt_private *priv)
{
struct net_device *dev = priv->dev;
struct vnt_manager *mgmt = &priv->vnt_mgmt;
struct netdev_hw_addr *ha;
u64 mc_filter = 0;
u8 tmp = 0;
int rc;
rc = vnt_control_in(priv, MESSAGE_TYPE_READ,
MAC_REG_RCR, MESSAGE_REQUEST_MACREG, 1, &tmp);
if (rc == 0)
priv->byRxMode = tmp;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "priv->byRxMode in= %x\n",
priv->byRxMode);
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
DBG_PRT(MSG_LEVEL_ERR, KERN_NOTICE
"%s: Promiscuous mode enabled.\n", dev->name);
/* unconditionally log net taps */
priv->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST|RCR_UNICAST);
} else if ((netdev_mc_count(dev) > priv->multicast_limit) ||
(dev->flags & IFF_ALLMULTI)) {
mc_filter = ~0x0;
vnt_mac_set_filter(priv, mc_filter);
priv->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST);
} else {
netdev_for_each_mc_addr(ha, dev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter |= 1ULL << (bit_nr & 0x3f);
}
vnt_mac_set_filter(priv, mc_filter);
priv->byRxMode &= ~(RCR_UNICAST);
priv->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST);
}
if (mgmt->eConfigMode == WMAC_CONFIG_AP) {
/*
* If AP mode, don't enable RCR_UNICAST since HW only compares
* addr1 with local MAC
*/
priv->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST);
priv->byRxMode &= ~(RCR_UNICAST);
}
vnt_control_out_u8(priv, MESSAGE_REQUEST_MACREG,
MAC_REG_RCR, priv->byRxMode);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"priv->byRxMode out= %x\n", priv->byRxMode);
}
static struct net_device_stats *device_get_stats(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
return &pDevice->stats;
}
static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
int rc = 0;
switch (cmd) {
case SIOCETHTOOL:
return ethtool_ioctl(dev, rq);
}
return rc;
}
static int ethtool_ioctl(struct net_device *dev, struct ifreq *rq)
{
u32 ethcmd;
if (copy_from_user(&ethcmd, rq->ifr_data, sizeof(ethcmd)))
return -EFAULT;
switch (ethcmd) {
case ETHTOOL_GDRVINFO: {
struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO};
strncpy(info.driver, DEVICE_NAME, sizeof(info.driver)-1);
strncpy(info.version, DEVICE_VERSION, sizeof(info.version)-1);
if (copy_to_user(rq->ifr_data, &info, sizeof(info)))
return -EFAULT;
return 0;
}
}
return -EOPNOTSUPP;
}
MODULE_DEVICE_TABLE(usb, vt6656_table);
static struct usb_driver vt6656_driver = {
.name = DEVICE_NAME,
.probe = vt6656_probe,
.disconnect = vt6656_disconnect,
.id_table = vt6656_table,
#ifdef CONFIG_PM
.suspend = vt6656_suspend,
.resume = vt6656_resume,
#endif /* CONFIG_PM */
};
module_usb_driver(vt6656_driver);