linux-stable/net/dsa/tag_ocelot.c

241 lines
11 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright 2019 NXP Semiconductors
*/
#include <soc/mscc/ocelot.h>
#include <linux/packing.h>
#include "dsa_priv.h"
/* The CPU injection header and the CPU extraction header can have 3 types of
* prefixes: long, short and no prefix. The format of the header itself is the
* same in all 3 cases.
*
* Extraction with long prefix:
*
* +-------------------+-------------------+------+------+------------+-------+
* | ff:ff:ff:ff:ff:ff | ff:ff:ff:ff:ff:ff | 8880 | 000a | extraction | frame |
* | | | | | header | |
* +-------------------+-------------------+------+------+------------+-------+
* 48 bits 48 bits 16 bits 16 bits 128 bits
*
* Extraction with short prefix:
*
* +------+------+------------+-------+
* | 8880 | 000a | extraction | frame |
* | | | header | |
* +------+------+------------+-------+
* 16 bits 16 bits 128 bits
*
* Extraction with no prefix:
*
* +------------+-------+
* | extraction | frame |
* | header | |
* +------------+-------+
* 128 bits
*
*
* Injection with long prefix:
*
* +-------------------+-------------------+------+------+------------+-------+
* | any dmac | any smac | 8880 | 000a | injection | frame |
* | | | | | header | |
* +-------------------+-------------------+------+------+------------+-------+
* 48 bits 48 bits 16 bits 16 bits 128 bits
*
* Injection with short prefix:
*
* +------+------+------------+-------+
* | 8880 | 000a | injection | frame |
* | | | header | |
* +------+------+------------+-------+
* 16 bits 16 bits 128 bits
*
* Injection with no prefix:
*
* +------------+-------+
* | injection | frame |
* | header | |
* +------------+-------+
* 128 bits
*
* The injection header looks like this (network byte order, bit 127
* is part of lowest address byte in memory, bit 0 is part of highest
* address byte):
*
* +------+------+------+------+------+------+------+------+
* 127:120 |BYPASS| MASQ | MASQ_PORT |REW_OP|REW_OP|
* +------+------+------+------+------+------+------+------+
* 119:112 | REW_OP |
* +------+------+------+------+------+------+------+------+
* 111:104 | REW_VAL |
* +------+------+------+------+------+------+------+------+
* 103: 96 | REW_VAL |
* +------+------+------+------+------+------+------+------+
* 95: 88 | REW_VAL |
* +------+------+------+------+------+------+------+------+
* 87: 80 | REW_VAL |
* +------+------+------+------+------+------+------+------+
* 79: 72 | RSV |
* +------+------+------+------+------+------+------+------+
* 71: 64 | RSV | DEST |
* +------+------+------+------+------+------+------+------+
* 63: 56 | DEST |
* +------+------+------+------+------+------+------+------+
* 55: 48 | RSV |
* +------+------+------+------+------+------+------+------+
* 47: 40 | RSV | SRC_PORT | RSV |TFRM_TIMER|
* +------+------+------+------+------+------+------+------+
* 39: 32 | TFRM_TIMER | RSV |
* +------+------+------+------+------+------+------+------+
* 31: 24 | RSV | DP | POP_CNT | CPUQ |
* +------+------+------+------+------+------+------+------+
* 23: 16 | CPUQ | QOS_CLASS |TAG_TYPE|
* +------+------+------+------+------+------+------+------+
* 15: 8 | PCP | DEI | VID |
* +------+------+------+------+------+------+------+------+
* 7: 0 | VID |
* +------+------+------+------+------+------+------+------+
*
* And the extraction header looks like this:
*
* +------+------+------+------+------+------+------+------+
* 127:120 | RSV | REW_OP |
* +------+------+------+------+------+------+------+------+
* 119:112 | REW_OP | REW_VAL |
* +------+------+------+------+------+------+------+------+
* 111:104 | REW_VAL |
* +------+------+------+------+------+------+------+------+
* 103: 96 | REW_VAL |
* +------+------+------+------+------+------+------+------+
* 95: 88 | REW_VAL |
* +------+------+------+------+------+------+------+------+
* 87: 80 | REW_VAL | LLEN |
* +------+------+------+------+------+------+------+------+
* 79: 72 | LLEN | WLEN |
* +------+------+------+------+------+------+------+------+
* 71: 64 | WLEN | RSV |
* +------+------+------+------+------+------+------+------+
* 63: 56 | RSV |
* +------+------+------+------+------+------+------+------+
* 55: 48 | RSV |
* +------+------+------+------+------+------+------+------+
* 47: 40 | RSV | SRC_PORT | ACL_ID |
* +------+------+------+------+------+------+------+------+
* 39: 32 | ACL_ID | RSV | SFLOW_ID |
* +------+------+------+------+------+------+------+------+
* 31: 24 |ACL_HIT| DP | LRN_FLAGS | CPUQ |
* +------+------+------+------+------+------+------+------+
* 23: 16 | CPUQ | QOS_CLASS |TAG_TYPE|
* +------+------+------+------+------+------+------+------+
* 15: 8 | PCP | DEI | VID |
* +------+------+------+------+------+------+------+------+
* 7: 0 | VID |
* +------+------+------+------+------+------+------+------+
*/
static struct sk_buff *ocelot_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct dsa_port *dp = dsa_slave_to_port(netdev);
struct dsa_switch *ds = dp->ds;
struct ocelot *ocelot = ds->priv;
net: dsa: felix: create a template for the DSA tags on xmit With this patch we try to kill 2 birds with 1 stone. First of all, some switches that use tag_ocelot.c don't have the exact same bitfield layout for the DSA tags. The destination ports field is different for Seville VSC9953 for example. So the choices are to either duplicate tag_ocelot.c into a new tag_seville.c (sub-optimal) or somehow take into account a supposed ocelot->dest_ports_offset when packing this field into the DSA injection header (again not ideal). Secondly, tag_ocelot.c already needs to memset a 128-bit area to zero and call some packing() functions of dubious performance in the fastpath. And most of the values it needs to pack are pretty much constant (BYPASS=1, SRC_PORT=CPU, DEST=port index). So it would be good if we could improve that. The proposed solution is to allocate a memory area per port at probe time, initialize that with the statically defined bits as per chip hardware revision, and just perform a simpler memcpy in the fastpath. Other alternatives have been analyzed, such as: - Create a separate tag_seville.c: too much code duplication for just 1 bit field difference. - Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like tag_brcm.c, which would have a separate .xmit function. Again, too much code duplication for just 1 bit field difference. - Allocate the template from the init function of the tag_ocelot.c module, instead of from the driver: couldn't figure out a method of accessing the correct port template corresponding to the correct tagger in the .xmit function. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 16:57:04 +00:00
struct ocelot_port *ocelot_port;
u64 qos_class, rew_op;
u8 *injection;
if (unlikely(skb_cow_head(skb, OCELOT_TAG_LEN) < 0)) {
netdev_err(netdev, "Cannot make room for tag.\n");
return NULL;
}
net: dsa: felix: create a template for the DSA tags on xmit With this patch we try to kill 2 birds with 1 stone. First of all, some switches that use tag_ocelot.c don't have the exact same bitfield layout for the DSA tags. The destination ports field is different for Seville VSC9953 for example. So the choices are to either duplicate tag_ocelot.c into a new tag_seville.c (sub-optimal) or somehow take into account a supposed ocelot->dest_ports_offset when packing this field into the DSA injection header (again not ideal). Secondly, tag_ocelot.c already needs to memset a 128-bit area to zero and call some packing() functions of dubious performance in the fastpath. And most of the values it needs to pack are pretty much constant (BYPASS=1, SRC_PORT=CPU, DEST=port index). So it would be good if we could improve that. The proposed solution is to allocate a memory area per port at probe time, initialize that with the statically defined bits as per chip hardware revision, and just perform a simpler memcpy in the fastpath. Other alternatives have been analyzed, such as: - Create a separate tag_seville.c: too much code duplication for just 1 bit field difference. - Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like tag_brcm.c, which would have a separate .xmit function. Again, too much code duplication for just 1 bit field difference. - Allocate the template from the init function of the tag_ocelot.c module, instead of from the driver: couldn't figure out a method of accessing the correct port template corresponding to the correct tagger in the .xmit function. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 16:57:04 +00:00
ocelot_port = ocelot->ports[dp->index];
net: dsa: felix: create a template for the DSA tags on xmit With this patch we try to kill 2 birds with 1 stone. First of all, some switches that use tag_ocelot.c don't have the exact same bitfield layout for the DSA tags. The destination ports field is different for Seville VSC9953 for example. So the choices are to either duplicate tag_ocelot.c into a new tag_seville.c (sub-optimal) or somehow take into account a supposed ocelot->dest_ports_offset when packing this field into the DSA injection header (again not ideal). Secondly, tag_ocelot.c already needs to memset a 128-bit area to zero and call some packing() functions of dubious performance in the fastpath. And most of the values it needs to pack are pretty much constant (BYPASS=1, SRC_PORT=CPU, DEST=port index). So it would be good if we could improve that. The proposed solution is to allocate a memory area per port at probe time, initialize that with the statically defined bits as per chip hardware revision, and just perform a simpler memcpy in the fastpath. Other alternatives have been analyzed, such as: - Create a separate tag_seville.c: too much code duplication for just 1 bit field difference. - Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like tag_brcm.c, which would have a separate .xmit function. Again, too much code duplication for just 1 bit field difference. - Allocate the template from the init function of the tag_ocelot.c module, instead of from the driver: couldn't figure out a method of accessing the correct port template corresponding to the correct tagger in the .xmit function. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 16:57:04 +00:00
injection = skb_push(skb, OCELOT_TAG_LEN);
net: dsa: felix: create a template for the DSA tags on xmit With this patch we try to kill 2 birds with 1 stone. First of all, some switches that use tag_ocelot.c don't have the exact same bitfield layout for the DSA tags. The destination ports field is different for Seville VSC9953 for example. So the choices are to either duplicate tag_ocelot.c into a new tag_seville.c (sub-optimal) or somehow take into account a supposed ocelot->dest_ports_offset when packing this field into the DSA injection header (again not ideal). Secondly, tag_ocelot.c already needs to memset a 128-bit area to zero and call some packing() functions of dubious performance in the fastpath. And most of the values it needs to pack are pretty much constant (BYPASS=1, SRC_PORT=CPU, DEST=port index). So it would be good if we could improve that. The proposed solution is to allocate a memory area per port at probe time, initialize that with the statically defined bits as per chip hardware revision, and just perform a simpler memcpy in the fastpath. Other alternatives have been analyzed, such as: - Create a separate tag_seville.c: too much code duplication for just 1 bit field difference. - Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like tag_brcm.c, which would have a separate .xmit function. Again, too much code duplication for just 1 bit field difference. - Allocate the template from the init function of the tag_ocelot.c module, instead of from the driver: couldn't figure out a method of accessing the correct port template corresponding to the correct tagger in the .xmit function. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 16:57:04 +00:00
memcpy(injection, ocelot_port->xmit_template, OCELOT_TAG_LEN);
/* Fix up the fields which are not statically determined
* in the template
*/
qos_class = skb->priority;
packing(injection, &qos_class, 19, 17, OCELOT_TAG_LEN, PACK, 0);
if (ocelot->ptp && (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2020-09-18 01:07:24 +00:00
struct sk_buff *clone = DSA_SKB_CB(skb)->clone;
rew_op = ocelot_port->ptp_cmd;
2020-09-18 01:07:24 +00:00
/* Retrieve timestamp ID populated inside skb->cb[0] of the
* clone by ocelot_port_add_txtstamp_skb
*/
if (ocelot_port->ptp_cmd == IFH_REW_OP_TWO_STEP_PTP)
rew_op |= clone->cb[0] << 3;
packing(injection, &rew_op, 125, 117, OCELOT_TAG_LEN, PACK, 0);
}
return skb;
}
static struct sk_buff *ocelot_rcv(struct sk_buff *skb,
struct net_device *netdev,
struct packet_type *pt)
{
u64 src_port, qos_class;
u8 *start = skb->data;
u8 *extraction;
/* Revert skb->data by the amount consumed by the DSA master,
* so it points to the beginning of the frame.
*/
skb_push(skb, ETH_HLEN);
/* We don't care about the long prefix, it is just for easy entrance
* into the DSA master's RX filter. Discard it now by moving it into
* the headroom.
*/
skb_pull(skb, OCELOT_LONG_PREFIX_LEN);
/* And skb->data now points to the extraction frame header.
* Keep a pointer to it.
*/
extraction = skb->data;
/* Now the EFH is part of the headroom as well */
skb_pull(skb, OCELOT_TAG_LEN);
/* Reset the pointer to the real MAC header */
skb_reset_mac_header(skb);
skb_reset_mac_len(skb);
/* And move skb->data to the correct location again */
skb_pull(skb, ETH_HLEN);
/* Remove from inet csum the extraction header */
skb_postpull_rcsum(skb, start, OCELOT_LONG_PREFIX_LEN + OCELOT_TAG_LEN);
packing(extraction, &src_port, 46, 43, OCELOT_TAG_LEN, UNPACK, 0);
packing(extraction, &qos_class, 19, 17, OCELOT_TAG_LEN, UNPACK, 0);
skb->dev = dsa_master_find_slave(netdev, 0, src_port);
if (!skb->dev)
/* The switch will reflect back some frames sent through
* sockets opened on the bare DSA master. These will come back
* with src_port equal to the index of the CPU port, for which
* there is no slave registered. So don't print any error
* message here (ignore and drop those frames).
*/
return NULL;
skb->offload_fwd_mark = 1;
skb->priority = qos_class;
return skb;
}
static const struct dsa_device_ops ocelot_netdev_ops = {
.name = "ocelot",
.proto = DSA_TAG_PROTO_OCELOT,
.xmit = ocelot_xmit,
.rcv = ocelot_rcv,
.overhead = OCELOT_TAG_LEN + OCELOT_LONG_PREFIX_LEN,
};
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_DSA_TAG_DRIVER(DSA_TAG_PROTO_OCELOT);
module_dsa_tag_driver(ocelot_netdev_ops);