linux-stable/drivers/staging/greybus/loopback.c

1038 lines
27 KiB
C
Raw Normal View History

/*
* Loopback bridge driver for the Greybus loopback module.
*
* Copyright 2014 Google Inc.
* Copyright 2014 Linaro Ltd.
*
* Released under the GPLv2 only.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/kthread.h>
#include <linux/delay.h>
#include <linux/random.h>
#include <linux/sizes.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/kfifo.h>
#include <linux/debugfs.h>
#include <linux/list_sort.h>
#include <asm/div64.h>
#include "greybus.h"
#include "connection.h"
#define NSEC_PER_DAY 86400000000000ULL
struct gb_loopback_stats {
u32 min;
u32 max;
2015-07-21 22:50:08 +00:00
u64 sum;
u32 count;
};
struct gb_loopback_device {
struct dentry *root;
struct dentry *file;
u32 count;
struct kfifo kfifo;
struct mutex mutex;
struct list_head list;
wait_queue_head_t wq;
int type;
u32 mask;
u32 size;
u32 iteration_max;
u32 iteration_count;
size_t size_max;
int ms_wait;
u32 error;
struct timeval start;
struct timeval end;
/* Overall stats */
struct gb_loopback_stats latency;
struct gb_loopback_stats throughput;
struct gb_loopback_stats requests_per_second;
};
static struct gb_loopback_device gb_dev;
struct gb_loopback {
struct gb_connection *connection;
struct dentry *file;
struct kfifo kfifo_lat;
struct kfifo kfifo_ts;
struct mutex mutex;
struct task_struct *task;
struct list_head entry;
/* Per connection stats */
struct gb_loopback_stats latency;
struct gb_loopback_stats throughput;
struct gb_loopback_stats requests_per_second;
u32 lbid;
u32 iteration_count;
u64 elapsed_nsecs;
u32 error;
u32 apbridge_latency_ts;
u32 gpbridge_latency_ts;
};
#define GB_LOOPBACK_FIFO_DEFAULT 8192
static unsigned kfifo_depth = GB_LOOPBACK_FIFO_DEFAULT;
module_param(kfifo_depth, uint, 0444);
/* Maximum size of any one send data buffer we support */
#define MAX_PACKET_SIZE (PAGE_SIZE * 2)
#define GB_LOOPBACK_MS_WAIT_MAX 1000
/* interface sysfs attributes */
#define gb_loopback_ro_attr(field, pfx, conn) \
static ssize_t field##_##pfx##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct gb_connection *connection; \
struct gb_loopback *gb; \
if (conn) { \
connection = to_gb_connection(dev); \
gb = connection->private; \
return sprintf(buf, "%u\n", gb->field); \
} else { \
return sprintf(buf, "%u\n", gb_dev.field); \
} \
} \
static DEVICE_ATTR_RO(field##_##pfx)
#define gb_loopback_ro_stats_attr(name, field, type, pfx, conn) \
static ssize_t name##_##field##_##pfx##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct gb_connection *connection; \
struct gb_loopback *gb; \
if (conn) { \
connection = to_gb_connection(dev); \
gb = connection->private; \
return sprintf(buf, "%"#type"\n", gb->name.field); \
} else { \
return sprintf(buf, "%"#type"\n", gb_dev.name.field); \
} \
} \
static DEVICE_ATTR_RO(name##_##field##_##pfx)
#define gb_loopback_ro_avg_attr(name, pfx, conn) \
static ssize_t name##_avg_##pfx##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct gb_loopback_stats *stats; \
struct gb_connection *connection; \
struct gb_loopback *gb; \
u64 avg; \
u32 count, rem; \
if (conn) { \
connection = to_gb_connection(dev); \
gb = connection->private; \
stats = &gb->name; \
} else { \
stats = &gb_dev.name; \
} \
count = stats->count ? stats->count : 1; \
avg = stats->sum + count / 2; /* round closest */ \
rem = do_div(avg, count); \
return sprintf(buf, "%llu.%06u\n", avg, 1000000 * rem / count); \
} \
static DEVICE_ATTR_RO(name##_avg_##pfx)
#define gb_loopback_stats_attrs(field, pfx, conn) \
gb_loopback_ro_stats_attr(field, min, u, pfx, conn); \
gb_loopback_ro_stats_attr(field, max, u, pfx, conn); \
gb_loopback_ro_avg_attr(field, pfx, conn)
#define gb_loopback_attr(field, type) \
static ssize_t field##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct gb_connection *connection = to_gb_connection(dev); \
struct gb_loopback *gb = connection->private; \
return sprintf(buf, "%"#type"\n", gb->field); \
} \
static ssize_t field##_store(struct device *dev, \
struct device_attribute *attr, \
const char *buf, \
size_t len) \
{ \
int ret; \
struct gb_connection *connection = to_gb_connection(dev); \
mutex_lock(&gb_dev.mutex); \
ret = sscanf(buf, "%"#type, &gb->field); \
if (ret != 1) \
len = -EINVAL; \
else \
gb_loopback_check_attr(connection); \
mutex_unlock(&gb_dev.mutex); \
return len; \
} \
static DEVICE_ATTR_RW(field)
#define gb_dev_loopback_ro_attr(field, conn) \
static ssize_t field##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return sprintf(buf, "%u\n", gb_dev.field); \
} \
static DEVICE_ATTR_RO(field)
#define gb_dev_loopback_rw_attr(field, type) \
static ssize_t field##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return sprintf(buf, "%"#type"\n", gb_dev.field); \
} \
static ssize_t field##_store(struct device *dev, \
struct device_attribute *attr, \
const char *buf, \
size_t len) \
{ \
int ret; \
struct gb_connection *connection = to_gb_connection(dev); \
mutex_lock(&gb_dev.mutex); \
ret = sscanf(buf, "%"#type, &gb_dev.field); \
if (ret != 1) \
len = -EINVAL; \
else \
gb_loopback_check_attr(&gb_dev, connection); \
mutex_unlock(&gb_dev.mutex); \
return len; \
} \
static DEVICE_ATTR_RW(field)
static void gb_loopback_reset_stats(struct gb_loopback_device *gb_dev);
static void gb_loopback_check_attr(struct gb_loopback_device *gb_dev,
struct gb_connection *connection)
{
struct gb_loopback *gb;
if (gb_dev->ms_wait > GB_LOOPBACK_MS_WAIT_MAX)
gb_dev->ms_wait = GB_LOOPBACK_MS_WAIT_MAX;
if (gb_dev->size > gb_dev->size_max)
gb_dev->size = gb_dev->size_max;
gb_dev->iteration_count = 0;
gb_dev->error = 0;
list_for_each_entry(gb, &gb_dev->list, entry) {
mutex_lock(&gb->mutex);
gb->iteration_count = 0;
gb->error = 0;
if (kfifo_depth < gb_dev->iteration_max) {
dev_warn(&connection->dev,
"cannot log bytes %u kfifo_depth %u\n",
gb_dev->iteration_max, kfifo_depth);
}
kfifo_reset_out(&gb->kfifo_lat);
kfifo_reset_out(&gb->kfifo_ts);
mutex_unlock(&gb->mutex);
}
switch (gb_dev->type) {
case GB_LOOPBACK_TYPE_PING:
case GB_LOOPBACK_TYPE_TRANSFER:
case GB_LOOPBACK_TYPE_SINK:
kfifo_reset_out(&gb_dev->kfifo);
gb_loopback_reset_stats(gb_dev);
wake_up(&gb_dev->wq);
break;
default:
gb_dev->type = 0;
break;
}
}
/* Time to send and receive one message */
gb_loopback_stats_attrs(latency, dev, false);
gb_loopback_stats_attrs(latency, con, true);
/* Number of requests sent per second on this cport */
gb_loopback_stats_attrs(requests_per_second, dev, false);
gb_loopback_stats_attrs(requests_per_second, con, true);
/* Quantity of data sent and received on this cport */
gb_loopback_stats_attrs(throughput, dev, false);
gb_loopback_stats_attrs(throughput, con, true);
/* Number of errors encountered during loop */
gb_loopback_ro_attr(error, dev, false);
gb_loopback_ro_attr(error, con, true);
/*
* Type of loopback message to send based on protocol type definitions
* 0 => Don't send message
* 2 => Send ping message continuously (message without payload)
* 3 => Send transfer message continuously (message with payload,
* payload returned in response)
* 4 => Send a sink message (message with payload, no payload in response)
*/
gb_dev_loopback_rw_attr(type, d);
/* Size of transfer message payload: 0-4096 bytes */
gb_dev_loopback_rw_attr(size, u);
/* Time to wait between two messages: 0-1000 ms */
gb_dev_loopback_rw_attr(ms_wait, d);
2015-07-21 22:50:08 +00:00
/* Maximum iterations for a given operation: 1-(2^32-1), 0 implies infinite */
gb_dev_loopback_rw_attr(iteration_max, u);
/* The current index of the for (i = 0; i < iteration_max; i++) loop */
gb_dev_loopback_ro_attr(iteration_count, false);
/* A bit-mask of destination connecitons to include in the test run */
gb_dev_loopback_rw_attr(mask, u);
static struct attribute *loopback_dev_attrs[] = {
&dev_attr_latency_min_dev.attr,
&dev_attr_latency_max_dev.attr,
&dev_attr_latency_avg_dev.attr,
&dev_attr_requests_per_second_min_dev.attr,
&dev_attr_requests_per_second_max_dev.attr,
&dev_attr_requests_per_second_avg_dev.attr,
&dev_attr_throughput_min_dev.attr,
&dev_attr_throughput_max_dev.attr,
&dev_attr_throughput_avg_dev.attr,
&dev_attr_type.attr,
&dev_attr_size.attr,
&dev_attr_ms_wait.attr,
2015-07-21 22:50:08 +00:00
&dev_attr_iteration_count.attr,
&dev_attr_iteration_max.attr,
&dev_attr_mask.attr,
&dev_attr_error_dev.attr,
NULL,
};
ATTRIBUTE_GROUPS(loopback_dev);
static struct attribute *loopback_con_attrs[] = {
&dev_attr_latency_min_con.attr,
&dev_attr_latency_max_con.attr,
&dev_attr_latency_avg_con.attr,
&dev_attr_requests_per_second_min_con.attr,
&dev_attr_requests_per_second_max_con.attr,
&dev_attr_requests_per_second_avg_con.attr,
&dev_attr_throughput_min_con.attr,
&dev_attr_throughput_max_con.attr,
&dev_attr_throughput_avg_con.attr,
&dev_attr_error_con.attr,
NULL,
};
ATTRIBUTE_GROUPS(loopback_con);
static u32 gb_loopback_nsec_to_usec_latency(u64 elapsed_nsecs)
{
u32 lat;
do_div(elapsed_nsecs, NSEC_PER_USEC);
lat = elapsed_nsecs;
return lat;
}
static u64 __gb_loopback_calc_latency(u64 t1, u64 t2)
{
if (t2 > t1)
return t2 - t1;
else
return NSEC_PER_DAY - t2 + t1;
}
static u64 gb_loopback_calc_latency(struct timeval *ts, struct timeval *te)
{
u64 t1, t2;
t1 = timeval_to_ns(ts);
t2 = timeval_to_ns(te);
return __gb_loopback_calc_latency(t1, t2);
}
static void gb_loopback_push_latency_ts(struct gb_loopback *gb,
struct timeval *ts, struct timeval *te)
{
kfifo_in(&gb->kfifo_ts, (unsigned char *)ts, sizeof(*ts));
kfifo_in(&gb->kfifo_ts, (unsigned char *)te, sizeof(*te));
}
static int gb_loopback_active(struct gb_loopback *gb)
{
return (gb_dev.mask == 0 || (gb_dev.mask & gb->lbid));
}
static int gb_loopback_operation_sync(struct gb_loopback *gb, int type,
void *request, int request_size,
void *response, int response_size)
{
struct gb_operation *operation;
struct timeval ts, te;
int ret;
do_gettimeofday(&ts);
operation = gb_operation_create(gb->connection, type, request_size,
response_size, GFP_KERNEL);
if (!operation) {
ret = -ENOMEM;
goto error;
}
if (request_size)
memcpy(operation->request->payload, request, request_size);
ret = gb_operation_request_send_sync(operation);
if (ret) {
dev_err(&gb->connection->dev,
"synchronous operation failed: %d\n", ret);
} else {
if (response_size == operation->response->payload_size) {
memcpy(response, operation->response->payload,
response_size);
} else {
dev_err(&gb->connection->dev,
"response size %zu expected %d\n",
operation->response->payload_size,
response_size);
}
}
gb_operation_put(operation);
error:
do_gettimeofday(&te);
/* Calculate the total time the message took */
gb_loopback_push_latency_ts(gb, &ts, &te);
gb->elapsed_nsecs = gb_loopback_calc_latency(&ts, &te);
return ret;
}
static int gb_loopback_sink(struct gb_loopback *gb, u32 len)
{
struct gb_loopback_transfer_request *request;
int retval;
request = kmalloc(len + sizeof(*request), GFP_KERNEL);
if (!request)
return -ENOMEM;
request->len = cpu_to_le32(len);
retval = gb_loopback_operation_sync(gb, GB_LOOPBACK_TYPE_SINK,
request, len + sizeof(*request),
NULL, 0);
kfree(request);
return retval;
}
static int gb_loopback_transfer(struct gb_loopback *gb, u32 len)
{
struct gb_loopback_transfer_request *request;
struct gb_loopback_transfer_response *response;
int retval;
request = kmalloc(len + sizeof(*request), GFP_KERNEL);
if (!request)
return -ENOMEM;
response = kmalloc(len + sizeof(*response), GFP_KERNEL);
if (!response) {
kfree(request);
return -ENOMEM;
}
memset(request->data, 0x5A, len);
request->len = cpu_to_le32(len);
retval = gb_loopback_operation_sync(gb, GB_LOOPBACK_TYPE_TRANSFER,
request, len + sizeof(*request),
response, len + sizeof(*response));
if (retval)
goto gb_error;
if (memcmp(request->data, response->data, len)) {
dev_err(&gb->connection->dev, "Loopback Data doesn't match\n");
retval = -EREMOTEIO;
}
gb_error:
kfree(request);
kfree(response);
return retval;
}
static int gb_loopback_ping(struct gb_loopback *gb)
{
return gb_loopback_operation_sync(gb, GB_LOOPBACK_TYPE_PING,
NULL, 0, NULL, 0);
}
static int gb_loopback_request_recv(u8 type, struct gb_operation *operation)
{
struct gb_connection *connection = operation->connection;
struct gb_loopback_transfer_request *request;
struct gb_loopback_transfer_response *response;
size_t len;
/* By convention, the AP initiates the version operation */
switch (type) {
case GB_REQUEST_TYPE_PROTOCOL_VERSION:
dev_err(&connection->dev,
"module-initiated version operation\n");
return -EINVAL;
case GB_LOOPBACK_TYPE_PING:
case GB_LOOPBACK_TYPE_SINK:
return 0;
case GB_LOOPBACK_TYPE_TRANSFER:
if (operation->request->payload_size < sizeof(*request)) {
dev_err(&connection->dev,
"transfer request too small (%zu < %zu)\n",
operation->request->payload_size,
sizeof(*request));
return -EINVAL; /* -EMSGSIZE */
}
request = operation->request->payload;
len = le32_to_cpu(request->len);
if (len > gb_dev.size_max) {
dev_err(&connection->dev,
"transfer request too large (%zu > %zu)\n",
len, gb_dev.size_max);
return -EINVAL;
}
if (len) {
if (!gb_operation_response_alloc(operation, len,
GFP_KERNEL)) {
dev_err(&connection->dev,
"error allocating response\n");
return -ENOMEM;
}
response = operation->response->payload;
response->len = cpu_to_le32(len);
memcpy(response->data, request->data, len);
}
return 0;
default:
dev_err(&connection->dev,
"unsupported request: %hhu\n", type);
return -EINVAL;
}
}
static void gb_loopback_reset_stats(struct gb_loopback_device *gb_dev)
{
struct gb_loopback_stats reset = {
.min = U32_MAX,
};
struct gb_loopback *gb;
/* Reset per-connection stats */
list_for_each_entry(gb, &gb_dev->list, entry) {
mutex_lock(&gb->mutex);
memcpy(&gb->latency, &reset,
sizeof(struct gb_loopback_stats));
memcpy(&gb->throughput, &reset,
sizeof(struct gb_loopback_stats));
memcpy(&gb->requests_per_second, &reset,
sizeof(struct gb_loopback_stats));
mutex_unlock(&gb->mutex);
}
/* Reset aggregate stats */
memset(&gb_dev->start, 0, sizeof(struct timeval));
memset(&gb_dev->end, 0, sizeof(struct timeval));
memcpy(&gb_dev->latency, &reset, sizeof(struct gb_loopback_stats));
memcpy(&gb_dev->throughput, &reset, sizeof(struct gb_loopback_stats));
memcpy(&gb_dev->requests_per_second, &reset,
sizeof(struct gb_loopback_stats));
}
static void gb_loopback_update_stats(struct gb_loopback_stats *stats, u32 val)
{
2015-07-21 22:50:08 +00:00
if (stats->min > val)
stats->min = val;
if (stats->max < val)
stats->max = val;
stats->sum += val;
stats->count++;
}
static void gb_loopback_requests_update(struct gb_loopback *gb, u32 latency)
{
u32 req = USEC_PER_SEC;
2015-07-21 22:50:08 +00:00
do_div(req, latency);
gb_loopback_update_stats(&gb_dev.requests_per_second, req);
gb_loopback_update_stats(&gb->requests_per_second, req);
}
2015-07-21 22:50:08 +00:00
static void gb_loopback_throughput_update(struct gb_loopback *gb, u32 latency)
{
2015-07-21 22:50:08 +00:00
u32 throughput;
u32 aggregate_size = sizeof(struct gb_operation_msg_hdr) * 2;
switch (gb_dev.type) {
case GB_LOOPBACK_TYPE_PING:
break;
case GB_LOOPBACK_TYPE_SINK:
aggregate_size += sizeof(struct gb_loopback_transfer_request) +
gb_dev.size;
break;
case GB_LOOPBACK_TYPE_TRANSFER:
aggregate_size += sizeof(struct gb_loopback_transfer_request) +
sizeof(struct gb_loopback_transfer_response) +
gb_dev.size * 2;
break;
default:
return;
}
2015-07-21 22:50:08 +00:00
/* Calculate bytes per second */
throughput = USEC_PER_SEC;
do_div(throughput, latency);
throughput *= aggregate_size;
gb_loopback_update_stats(&gb_dev.throughput, throughput);
2015-07-21 22:50:08 +00:00
gb_loopback_update_stats(&gb->throughput, throughput);
}
static int gb_loopback_calculate_aggregate_stats(void)
{
struct gb_loopback *gb;
struct timeval ts;
struct timeval te;
u64 t1, t2;
u64 ts_min;
u64 te_max;
u64 elapsed_nsecs;
u32 lat;
int i, latched;
int rollover = 0;
for (i = 0; i < gb_dev.iteration_max; i++) {
latched = 0;
ts_min = 0;
te_max = 0;
list_for_each_entry(gb, &gb_dev.list, entry) {
if (!gb_loopback_active(gb))
continue;
if (kfifo_out(&gb->kfifo_ts, &ts, sizeof(ts)) < sizeof(ts))
goto error;
if (kfifo_out(&gb->kfifo_ts, &te, sizeof(te)) < sizeof(te))
goto error;
t1 = timeval_to_ns(&ts);
t2 = timeval_to_ns(&te);
/* minimum timestamp is always what we want */
if (latched == 0 || t1 < ts_min)
ts_min = t1;
/* maximum timestamp needs to handle rollover */
if (t2 > t1) {
if (latched == 0 || t2 > te_max)
te_max = t2;
} else {
if (latched == 0 || rollover == 0)
te_max = t2;
if (rollover == 1 && t2 > te_max)
te_max = t2;
rollover = 1;
}
latched = 1;
}
/* Calculate the aggregate timestamp */
elapsed_nsecs = __gb_loopback_calc_latency(ts_min, te_max);
lat = gb_loopback_nsec_to_usec_latency(elapsed_nsecs);
kfifo_in(&gb_dev.kfifo, (unsigned char *)&lat, sizeof(lat));
}
return 0;
error:
kfifo_reset_out(&gb_dev.kfifo);
return -ENOMEM;
}
static void gb_loopback_calculate_stats(struct gb_loopback *gb)
{
u32 lat;
2015-07-21 22:50:08 +00:00
/* Express latency in terms of microseconds */
lat = gb_loopback_nsec_to_usec_latency(gb->elapsed_nsecs);
/* Log latency stastic */
gb_loopback_update_stats(&gb_dev.latency, lat);
2015-07-21 22:50:08 +00:00
gb_loopback_update_stats(&gb->latency, lat);
/* Raw latency log on a per thread basis */
kfifo_in(&gb->kfifo_lat, (unsigned char *)&lat, sizeof(lat));
2015-07-21 22:50:08 +00:00
/* Log throughput and requests using latency as benchmark */
2015-07-21 22:50:08 +00:00
gb_loopback_throughput_update(gb, lat);
gb_loopback_requests_update(gb, lat);
}
static int gb_loopback_fn(void *data)
{
int error = 0;
int ms_wait = 0;
int type;
u32 size;
u32 low_count;
struct gb_loopback *gb = data;
struct gb_loopback *gb_list;
while (1) {
if (!gb_dev.type)
wait_event_interruptible(gb_dev.wq, gb_dev.type ||
kthread_should_stop());
if (kthread_should_stop())
break;
mutex_lock(&gb_dev.mutex);
if (!gb_loopback_active(gb)) {
ms_wait = 100;
goto unlock_continue;
}
if (gb_dev.iteration_max) {
/* Determine overall lowest count */
low_count = gb->iteration_count;
list_for_each_entry(gb_list, &gb_dev.list, entry) {
if (!gb_loopback_active(gb_list))
continue;
if (gb_list->iteration_count < low_count)
low_count = gb_list->iteration_count;
}
/* All threads achieved at least low_count iterations */
if (gb_dev.iteration_count < low_count) {
gb_dev.iteration_count = low_count;
sysfs_notify(&gb->connection->dev.kobj, NULL,
"iteration_count");
}
/* Optionally terminate */
if (gb_dev.iteration_count == gb_dev.iteration_max) {
gb_loopback_calculate_aggregate_stats();
gb_dev.type = 0;
goto unlock_continue;
2015-07-21 22:50:08 +00:00
}
}
size = gb_dev.size;
ms_wait = gb_dev.ms_wait;
type = gb_dev.type;
mutex_unlock(&gb_dev.mutex);
mutex_lock(&gb->mutex);
if (gb->iteration_count >= gb_dev.iteration_max) {
/* If this thread finished before siblings then sleep */
ms_wait = 1;
mutex_unlock(&gb->mutex);
goto sleep;
}
/* Else operations to perform */
if (type == GB_LOOPBACK_TYPE_PING)
error = gb_loopback_ping(gb);
else if (type == GB_LOOPBACK_TYPE_TRANSFER)
error = gb_loopback_transfer(gb, size);
else if (type == GB_LOOPBACK_TYPE_SINK)
error = gb_loopback_sink(gb, size);
mutex_unlock(&gb->mutex);
mutex_lock(&gb_dev.mutex);
mutex_lock(&gb->mutex);
if (error) {
gb_dev.error++;
gb->error++;
}
gb_loopback_calculate_stats(gb);
gb->iteration_count++;
mutex_unlock(&gb->mutex);
unlock_continue:
mutex_unlock(&gb_dev.mutex);
sleep:
if (ms_wait)
msleep(ms_wait);
}
return 0;
}
static int gb_loopback_dbgfs_latency_show_common(struct seq_file *s,
struct kfifo *kfifo,
struct mutex *mutex)
{
u32 latency;
int retval;
if (kfifo_len(kfifo) == 0) {
retval = -EAGAIN;
goto done;
}
mutex_lock(mutex);
retval = kfifo_out(kfifo, &latency, sizeof(latency));
if (retval > 0) {
seq_printf(s, "%u", latency);
retval = 0;
}
mutex_unlock(mutex);
done:
return retval;
}
static int gb_loopback_dbgfs_latency_show(struct seq_file *s, void *unused)
{
struct gb_loopback *gb = s->private;
return gb_loopback_dbgfs_latency_show_common(s, &gb->kfifo_lat,
&gb->mutex);
}
static int gb_loopback_latency_open(struct inode *inode, struct file *file)
{
return single_open(file, gb_loopback_dbgfs_latency_show,
inode->i_private);
}
static const struct file_operations gb_loopback_debugfs_latency_ops = {
.open = gb_loopback_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int gb_loopback_dbgfs_dev_latency_show(struct seq_file *s, void *unused)
{
struct gb_loopback_device *gb_dev = s->private;
return gb_loopback_dbgfs_latency_show_common(s, &gb_dev->kfifo,
&gb_dev->mutex);
}
static int gb_loopback_dev_latency_open(struct inode *inode, struct file *file)
{
return single_open(file, gb_loopback_dbgfs_dev_latency_show,
inode->i_private);
}
static const struct file_operations gb_loopback_debugfs_dev_latency_ops = {
.open = gb_loopback_dev_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int gb_loopback_bus_id_compare(void *priv, struct list_head *lha,
struct list_head *lhb)
{
struct gb_loopback *a = list_entry(lha, struct gb_loopback, entry);
struct gb_loopback *b = list_entry(lhb, struct gb_loopback, entry);
struct gb_connection *ca = a->connection;
struct gb_connection *cb = b->connection;
if (ca->bundle->intf->module->module_id <
cb->bundle->intf->module->module_id)
return -1;
if (cb->bundle->intf->module->module_id <
ca->bundle->intf->module->module_id)
return 1;
if (ca->bundle->intf->interface_id < cb->bundle->intf->interface_id)
return -1;
if (cb->bundle->intf->interface_id < ca->bundle->intf->interface_id)
return 1;
if (ca->bundle->id < cb->bundle->id)
return -1;
if (cb->bundle->id < ca->bundle->id)
return 1;
if (ca->intf_cport_id < cb->intf_cport_id)
return -1;
else if (cb->intf_cport_id < ca->intf_cport_id)
return 1;
return 0;
}
static void gb_loopback_insert_id(struct gb_loopback *gb)
{
struct gb_loopback *gb_list;
u32 new_lbid = 0;
/* perform an insertion sort */
list_add_tail(&gb->entry, &gb_dev.list);
list_sort(NULL, &gb_dev.list, gb_loopback_bus_id_compare);
list_for_each_entry(gb_list, &gb_dev.list, entry) {
gb_list->lbid = 1 << new_lbid;
new_lbid++;
}
}
#define DEBUGFS_NAMELEN 32
static int gb_loopback_connection_init(struct gb_connection *connection)
{
struct gb_loopback *gb;
int retval;
char name[DEBUGFS_NAMELEN];
struct kobject *kobj = &connection->hd->endo->dev.kobj;
gb = kzalloc(sizeof(*gb), GFP_KERNEL);
if (!gb)
return -ENOMEM;
gb_loopback_reset_stats(&gb_dev);
/* If this is the first connection - create a module endo0 entry */
mutex_lock(&gb_dev.mutex);
if (!gb_dev.count) {
snprintf(name, sizeof(name), "raw_latency_endo0");
gb_dev.file = debugfs_create_file(name, S_IFREG | S_IRUGO,
gb_dev.root, &gb_dev,
&gb_loopback_debugfs_dev_latency_ops);
retval = sysfs_create_groups(kobj, loopback_dev_groups);
if (retval)
goto out_sysfs;
/* Calculate maximum payload */
gb_dev.size_max = gb_operation_get_payload_size_max(connection);
if (gb_dev.size_max <=
sizeof(struct gb_loopback_transfer_request)) {
retval = -EINVAL;
goto out_sysfs_dev;
}
gb_dev.size_max -= sizeof(struct gb_loopback_transfer_request);
}
/* Create per-connection sysfs and debugfs data-points */
snprintf(name, sizeof(name), "raw_latency_%s",
dev_name(&connection->dev));
gb->file = debugfs_create_file(name, S_IFREG | S_IRUGO, gb_dev.root, gb,
&gb_loopback_debugfs_latency_ops);
gb->connection = connection;
connection->private = gb;
retval = sysfs_create_groups(&connection->dev.kobj,
loopback_con_groups);
if (retval)
goto out_sysfs_dev;
/* Allocate kfifo */
if (kfifo_alloc(&gb->kfifo_lat, kfifo_depth * sizeof(u32),
GFP_KERNEL)) {
retval = -ENOMEM;
goto out_sysfs_conn;
}
if (kfifo_alloc(&gb->kfifo_ts, kfifo_depth * sizeof(struct timeval) * 2,
GFP_KERNEL)) {
retval = -ENOMEM;
goto out_kfifo0;
}
/* Fork worker thread */
mutex_init(&gb->mutex);
gb->task = kthread_run(gb_loopback_fn, gb, "gb_loopback");
if (IS_ERR(gb->task)) {
retval = PTR_ERR(gb->task);
goto out_kfifo1;
}
gb_loopback_insert_id(gb);
gb_connection_latency_tag_enable(connection);
gb_dev.count++;
mutex_unlock(&gb_dev.mutex);
return 0;
out_kfifo1:
kfifo_free(&gb->kfifo_ts);
out_kfifo0:
kfifo_free(&gb->kfifo_lat);
out_sysfs_conn:
sysfs_remove_groups(&connection->dev.kobj, loopback_con_groups);
out_sysfs_dev:
if (!gb_dev.count) {
sysfs_remove_groups(kobj, loopback_dev_groups);
debugfs_remove(gb_dev.file);
}
debugfs_remove(gb->file);
connection->private = NULL;
out_sysfs:
mutex_unlock(&gb_dev.mutex);
kfree(gb);
return retval;
}
static void gb_loopback_connection_exit(struct gb_connection *connection)
{
struct gb_loopback *gb = connection->private;
struct kobject *kobj = &connection->hd->endo->dev.kobj;
if (!IS_ERR_OR_NULL(gb->task))
kthread_stop(gb->task);
mutex_lock(&gb_dev.mutex);
connection->private = NULL;
kfifo_free(&gb->kfifo_lat);
kfifo_free(&gb->kfifo_ts);
gb_connection_latency_tag_disable(connection);
gb_dev.count--;
if (!gb_dev.count) {
sysfs_remove_groups(kobj, loopback_dev_groups);
debugfs_remove(gb_dev.file);
}
sysfs_remove_groups(&connection->dev.kobj, loopback_con_groups);
debugfs_remove(gb->file);
list_del(&gb->entry);
mutex_unlock(&gb_dev.mutex);
kfree(gb);
}
static struct gb_protocol loopback_protocol = {
.name = "loopback",
.id = GREYBUS_PROTOCOL_LOOPBACK,
.major = GB_LOOPBACK_VERSION_MAJOR,
.minor = GB_LOOPBACK_VERSION_MINOR,
.connection_init = gb_loopback_connection_init,
.connection_exit = gb_loopback_connection_exit,
.request_recv = gb_loopback_request_recv,
};
static int loopback_init(void)
{
int retval;
init_waitqueue_head(&gb_dev.wq);
INIT_LIST_HEAD(&gb_dev.list);
mutex_init(&gb_dev.mutex);
gb_dev.root = debugfs_create_dir("gb_loopback", NULL);
if (kfifo_alloc(&gb_dev.kfifo, kfifo_depth * sizeof(u32), GFP_KERNEL)) {
retval = -ENOMEM;
goto error_debugfs;
}
retval = gb_protocol_register(&loopback_protocol);
if (!retval)
return retval;
error_debugfs:
debugfs_remove_recursive(gb_dev.root);
return retval;
}
module_init(loopback_init);
static void __exit loopback_exit(void)
{
debugfs_remove_recursive(gb_dev.root);
kfifo_free(&gb_dev.kfifo);
gb_protocol_deregister(&loopback_protocol);
}
module_exit(loopback_exit);
MODULE_LICENSE("GPL v2");