linux-stable/net/bluetooth/l2cap_sock.c

1984 lines
43 KiB
C
Raw Normal View History

/*
BlueZ - Bluetooth protocol stack for Linux
Copyright (C) 2000-2001 Qualcomm Incorporated
Copyright (C) 2009-2010 Gustavo F. Padovan <gustavo@padovan.org>
Copyright (C) 2010 Google Inc.
Copyright (C) 2011 ProFUSION Embedded Systems
Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
SOFTWARE IS DISCLAIMED.
*/
/* Bluetooth L2CAP sockets. */
#include <linux/module.h>
#include <linux/export.h>
#include <linux/filter.h>
#include <linux/sched/signal.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include <net/bluetooth/l2cap.h>
#include "smp.h"
static struct bt_sock_list l2cap_sk_list = {
.lock = __RW_LOCK_UNLOCKED(l2cap_sk_list.lock)
};
static const struct proto_ops l2cap_sock_ops;
static void l2cap_sock_init(struct sock *sk, struct sock *parent);
static struct sock *l2cap_sock_alloc(struct net *net, struct socket *sock,
int proto, gfp_t prio, int kern);
Bluetooth: L2CAP: Fix use-after-free in l2cap_sock_ready_cb l2cap_sock_release(sk) frees sk. However, sk's children are still alive and point to the already free'd sk's address. To fix this, l2cap_sock_release(sk) also cleans sk's children. ================================================================== BUG: KASAN: use-after-free in l2cap_sock_ready_cb+0xb7/0x100 net/bluetooth/l2cap_sock.c:1650 Read of size 8 at addr ffff888104617aa8 by task kworker/u3:0/276 CPU: 0 PID: 276 Comm: kworker/u3:0 Not tainted 6.2.0-00001-gef397bd4d5fb-dirty #59 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: hci2 hci_rx_work Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x72/0x95 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:306 [inline] print_report+0x175/0x478 mm/kasan/report.c:417 kasan_report+0xb1/0x130 mm/kasan/report.c:517 l2cap_sock_ready_cb+0xb7/0x100 net/bluetooth/l2cap_sock.c:1650 l2cap_chan_ready+0x10e/0x1e0 net/bluetooth/l2cap_core.c:1386 l2cap_config_req+0x753/0x9f0 net/bluetooth/l2cap_core.c:4480 l2cap_bredr_sig_cmd net/bluetooth/l2cap_core.c:5739 [inline] l2cap_sig_channel net/bluetooth/l2cap_core.c:6509 [inline] l2cap_recv_frame+0xe2e/0x43c0 net/bluetooth/l2cap_core.c:7788 l2cap_recv_acldata+0x6ed/0x7e0 net/bluetooth/l2cap_core.c:8506 hci_acldata_packet net/bluetooth/hci_core.c:3813 [inline] hci_rx_work+0x66e/0xbc0 net/bluetooth/hci_core.c:4048 process_one_work+0x4ea/0x8e0 kernel/workqueue.c:2289 worker_thread+0x364/0x8e0 kernel/workqueue.c:2436 kthread+0x1b9/0x200 kernel/kthread.c:376 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> Allocated by task 288: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 ____kasan_kmalloc mm/kasan/common.c:374 [inline] __kasan_kmalloc+0x82/0x90 mm/kasan/common.c:383 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slab_common.c:968 [inline] __kmalloc+0x5a/0x140 mm/slab_common.c:981 kmalloc include/linux/slab.h:584 [inline] sk_prot_alloc+0x113/0x1f0 net/core/sock.c:2040 sk_alloc+0x36/0x3c0 net/core/sock.c:2093 l2cap_sock_alloc.constprop.0+0x39/0x1c0 net/bluetooth/l2cap_sock.c:1852 l2cap_sock_create+0x10d/0x220 net/bluetooth/l2cap_sock.c:1898 bt_sock_create+0x183/0x290 net/bluetooth/af_bluetooth.c:132 __sock_create+0x226/0x380 net/socket.c:1518 sock_create net/socket.c:1569 [inline] __sys_socket_create net/socket.c:1606 [inline] __sys_socket_create net/socket.c:1591 [inline] __sys_socket+0x112/0x200 net/socket.c:1639 __do_sys_socket net/socket.c:1652 [inline] __se_sys_socket net/socket.c:1650 [inline] __x64_sys_socket+0x40/0x50 net/socket.c:1650 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3f/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc Freed by task 288: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 kasan_save_free_info+0x2e/0x50 mm/kasan/generic.c:523 ____kasan_slab_free mm/kasan/common.c:236 [inline] ____kasan_slab_free mm/kasan/common.c:200 [inline] __kasan_slab_free+0x10a/0x190 mm/kasan/common.c:244 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1781 [inline] slab_free_freelist_hook mm/slub.c:1807 [inline] slab_free mm/slub.c:3787 [inline] __kmem_cache_free+0x88/0x1f0 mm/slub.c:3800 sk_prot_free net/core/sock.c:2076 [inline] __sk_destruct+0x347/0x430 net/core/sock.c:2168 sk_destruct+0x9c/0xb0 net/core/sock.c:2183 __sk_free+0x82/0x220 net/core/sock.c:2194 sk_free+0x7c/0xa0 net/core/sock.c:2205 sock_put include/net/sock.h:1991 [inline] l2cap_sock_kill+0x256/0x2b0 net/bluetooth/l2cap_sock.c:1257 l2cap_sock_release+0x1a7/0x220 net/bluetooth/l2cap_sock.c:1428 __sock_release+0x80/0x150 net/socket.c:650 sock_close+0x19/0x30 net/socket.c:1368 __fput+0x17a/0x5c0 fs/file_table.c:320 task_work_run+0x132/0x1c0 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0x113/0x120 kernel/entry/common.c:203 __syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline] syscall_exit_to_user_mode+0x21/0x50 kernel/entry/common.c:296 do_syscall_64+0x4c/0x90 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x72/0xdc The buggy address belongs to the object at ffff888104617800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 680 bytes inside of 1024-byte region [ffff888104617800, ffff888104617c00) The buggy address belongs to the physical page: page:00000000dbca6a80 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888104614000 pfn:0x104614 head:00000000dbca6a80 order:2 compound_mapcount:0 subpages_mapcount:0 compound_pincount:0 flags: 0x200000000010200(slab|head|node=0|zone=2) raw: 0200000000010200 ffff888100041dc0 ffffea0004212c10 ffffea0004234b10 raw: ffff888104614000 0000000000080002 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888104617980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888104617a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff888104617a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888104617b00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888104617b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Ack: This bug is found by FuzzBT with a modified Syzkaller. Other contributors are Ruoyu Wu and Hui Peng. Signed-off-by: Sungwoo Kim <iam@sung-woo.kim> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-05-31 05:39:56 +00:00
static void l2cap_sock_cleanup_listen(struct sock *parent);
bool l2cap_is_socket(struct socket *sock)
{
return sock && sock->ops == &l2cap_sock_ops;
}
EXPORT_SYMBOL(l2cap_is_socket);
static int l2cap_validate_bredr_psm(u16 psm)
{
/* PSM must be odd and lsb of upper byte must be 0 */
if ((psm & 0x0101) != 0x0001)
return -EINVAL;
/* Restrict usage of well-known PSMs */
if (psm < L2CAP_PSM_DYN_START && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
return 0;
}
static int l2cap_validate_le_psm(u16 psm)
{
/* Valid LE_PSM ranges are defined only until 0x00ff */
if (psm > L2CAP_PSM_LE_DYN_END)
return -EINVAL;
/* Restrict fixed, SIG assigned PSM values to CAP_NET_BIND_SERVICE */
if (psm < L2CAP_PSM_LE_DYN_START && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
return 0;
}
static int l2cap_sock_bind(struct socket *sock, struct sockaddr *addr, int alen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct sockaddr_l2 la;
int len, err = 0;
BT_DBG("sk %p", sk);
if (!addr || alen < offsetofend(struct sockaddr, sa_family) ||
addr->sa_family != AF_BLUETOOTH)
return -EINVAL;
memset(&la, 0, sizeof(la));
len = min_t(unsigned int, sizeof(la), alen);
memcpy(&la, addr, len);
if (la.l2_cid && la.l2_psm)
return -EINVAL;
if (!bdaddr_type_is_valid(la.l2_bdaddr_type))
return -EINVAL;
if (bdaddr_type_is_le(la.l2_bdaddr_type)) {
/* We only allow ATT user space socket */
if (la.l2_cid &&
la.l2_cid != cpu_to_le16(L2CAP_CID_ATT))
return -EINVAL;
}
lock_sock(sk);
if (sk->sk_state != BT_OPEN) {
err = -EBADFD;
goto done;
}
if (la.l2_psm) {
__u16 psm = __le16_to_cpu(la.l2_psm);
if (la.l2_bdaddr_type == BDADDR_BREDR)
err = l2cap_validate_bredr_psm(psm);
else
err = l2cap_validate_le_psm(psm);
if (err)
goto done;
}
bacpy(&chan->src, &la.l2_bdaddr);
chan->src_type = la.l2_bdaddr_type;
if (la.l2_cid)
err = l2cap_add_scid(chan, __le16_to_cpu(la.l2_cid));
else
err = l2cap_add_psm(chan, &la.l2_bdaddr, la.l2_psm);
if (err < 0)
goto done;
switch (chan->chan_type) {
case L2CAP_CHAN_CONN_LESS:
if (__le16_to_cpu(la.l2_psm) == L2CAP_PSM_3DSP)
chan->sec_level = BT_SECURITY_SDP;
break;
case L2CAP_CHAN_CONN_ORIENTED:
if (__le16_to_cpu(la.l2_psm) == L2CAP_PSM_SDP ||
__le16_to_cpu(la.l2_psm) == L2CAP_PSM_RFCOMM)
chan->sec_level = BT_SECURITY_SDP;
break;
case L2CAP_CHAN_RAW:
chan->sec_level = BT_SECURITY_SDP;
break;
case L2CAP_CHAN_FIXED:
/* Fixed channels default to the L2CAP core not holding a
* hci_conn reference for them. For fixed channels mapping to
* L2CAP sockets we do want to hold a reference so set the
* appropriate flag to request it.
*/
set_bit(FLAG_HOLD_HCI_CONN, &chan->flags);
break;
}
/* Use L2CAP_MODE_LE_FLOWCTL (CoC) in case of LE address and
* L2CAP_MODE_EXT_FLOWCTL (ECRED) has not been set.
*/
if (chan->psm && bdaddr_type_is_le(chan->src_type) &&
chan->mode != L2CAP_MODE_EXT_FLOWCTL)
chan->mode = L2CAP_MODE_LE_FLOWCTL;
chan->state = BT_BOUND;
sk->sk_state = BT_BOUND;
done:
release_sock(sk);
return err;
}
static int l2cap_sock_connect(struct socket *sock, struct sockaddr *addr,
int alen, int flags)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct sockaddr_l2 la;
int len, err = 0;
Bluetooth: check for zapped sk before connecting There is a possibility of receiving a zapped sock on l2cap_sock_connect(). This could lead to interesting crashes, one such case is tearing down an already tore l2cap_sock as is happened with this call trace: __dump_stack lib/dump_stack.c:15 [inline] dump_stack+0xc4/0x118 lib/dump_stack.c:56 register_lock_class kernel/locking/lockdep.c:792 [inline] register_lock_class+0x239/0x6f6 kernel/locking/lockdep.c:742 __lock_acquire+0x209/0x1e27 kernel/locking/lockdep.c:3105 lock_acquire+0x29c/0x2fb kernel/locking/lockdep.c:3599 __raw_spin_lock_bh include/linux/spinlock_api_smp.h:137 [inline] _raw_spin_lock_bh+0x38/0x47 kernel/locking/spinlock.c:175 spin_lock_bh include/linux/spinlock.h:307 [inline] lock_sock_nested+0x44/0xfa net/core/sock.c:2518 l2cap_sock_teardown_cb+0x88/0x2fb net/bluetooth/l2cap_sock.c:1345 l2cap_chan_del+0xa3/0x383 net/bluetooth/l2cap_core.c:598 l2cap_chan_close+0x537/0x5dd net/bluetooth/l2cap_core.c:756 l2cap_chan_timeout+0x104/0x17e net/bluetooth/l2cap_core.c:429 process_one_work+0x7e3/0xcb0 kernel/workqueue.c:2064 worker_thread+0x5a5/0x773 kernel/workqueue.c:2196 kthread+0x291/0x2a6 kernel/kthread.c:211 ret_from_fork+0x4e/0x80 arch/x86/entry/entry_64.S:604 Signed-off-by: Archie Pusaka <apusaka@chromium.org> Reported-by: syzbot+abfc0f5e668d4099af73@syzkaller.appspotmail.com Reviewed-by: Alain Michaud <alainm@chromium.org> Reviewed-by: Abhishek Pandit-Subedi <abhishekpandit@chromium.org> Reviewed-by: Guenter Roeck <groeck@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-03-23 08:32:20 +00:00
bool zapped;
BT_DBG("sk %p", sk);
Bluetooth: check for zapped sk before connecting There is a possibility of receiving a zapped sock on l2cap_sock_connect(). This could lead to interesting crashes, one such case is tearing down an already tore l2cap_sock as is happened with this call trace: __dump_stack lib/dump_stack.c:15 [inline] dump_stack+0xc4/0x118 lib/dump_stack.c:56 register_lock_class kernel/locking/lockdep.c:792 [inline] register_lock_class+0x239/0x6f6 kernel/locking/lockdep.c:742 __lock_acquire+0x209/0x1e27 kernel/locking/lockdep.c:3105 lock_acquire+0x29c/0x2fb kernel/locking/lockdep.c:3599 __raw_spin_lock_bh include/linux/spinlock_api_smp.h:137 [inline] _raw_spin_lock_bh+0x38/0x47 kernel/locking/spinlock.c:175 spin_lock_bh include/linux/spinlock.h:307 [inline] lock_sock_nested+0x44/0xfa net/core/sock.c:2518 l2cap_sock_teardown_cb+0x88/0x2fb net/bluetooth/l2cap_sock.c:1345 l2cap_chan_del+0xa3/0x383 net/bluetooth/l2cap_core.c:598 l2cap_chan_close+0x537/0x5dd net/bluetooth/l2cap_core.c:756 l2cap_chan_timeout+0x104/0x17e net/bluetooth/l2cap_core.c:429 process_one_work+0x7e3/0xcb0 kernel/workqueue.c:2064 worker_thread+0x5a5/0x773 kernel/workqueue.c:2196 kthread+0x291/0x2a6 kernel/kthread.c:211 ret_from_fork+0x4e/0x80 arch/x86/entry/entry_64.S:604 Signed-off-by: Archie Pusaka <apusaka@chromium.org> Reported-by: syzbot+abfc0f5e668d4099af73@syzkaller.appspotmail.com Reviewed-by: Alain Michaud <alainm@chromium.org> Reviewed-by: Abhishek Pandit-Subedi <abhishekpandit@chromium.org> Reviewed-by: Guenter Roeck <groeck@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-03-23 08:32:20 +00:00
lock_sock(sk);
zapped = sock_flag(sk, SOCK_ZAPPED);
release_sock(sk);
if (zapped)
return -EINVAL;
if (!addr || alen < offsetofend(struct sockaddr, sa_family) ||
addr->sa_family != AF_BLUETOOTH)
return -EINVAL;
memset(&la, 0, sizeof(la));
len = min_t(unsigned int, sizeof(la), alen);
memcpy(&la, addr, len);
if (la.l2_cid && la.l2_psm)
return -EINVAL;
if (!bdaddr_type_is_valid(la.l2_bdaddr_type))
return -EINVAL;
/* Check that the socket wasn't bound to something that
* conflicts with the address given to connect(). If chan->src
* is BDADDR_ANY it means bind() was never used, in which case
* chan->src_type and la.l2_bdaddr_type do not need to match.
*/
if (chan->src_type == BDADDR_BREDR && bacmp(&chan->src, BDADDR_ANY) &&
bdaddr_type_is_le(la.l2_bdaddr_type)) {
/* Old user space versions will try to incorrectly bind
* the ATT socket using BDADDR_BREDR. We need to accept
* this and fix up the source address type only when
* both the source CID and destination CID indicate
* ATT. Anything else is an invalid combination.
*/
if (chan->scid != L2CAP_CID_ATT ||
la.l2_cid != cpu_to_le16(L2CAP_CID_ATT))
return -EINVAL;
/* We don't have the hdev available here to make a
* better decision on random vs public, but since all
* user space versions that exhibit this issue anyway do
* not support random local addresses assuming public
* here is good enough.
*/
chan->src_type = BDADDR_LE_PUBLIC;
}
if (chan->src_type != BDADDR_BREDR && la.l2_bdaddr_type == BDADDR_BREDR)
return -EINVAL;
if (bdaddr_type_is_le(la.l2_bdaddr_type)) {
/* We only allow ATT user space socket */
if (la.l2_cid &&
la.l2_cid != cpu_to_le16(L2CAP_CID_ATT))
return -EINVAL;
}
/* Use L2CAP_MODE_LE_FLOWCTL (CoC) in case of LE address and
* L2CAP_MODE_EXT_FLOWCTL (ECRED) has not been set.
*/
if (chan->psm && bdaddr_type_is_le(chan->src_type) &&
chan->mode != L2CAP_MODE_EXT_FLOWCTL)
chan->mode = L2CAP_MODE_LE_FLOWCTL;
err = l2cap_chan_connect(chan, la.l2_psm, __le16_to_cpu(la.l2_cid),
&la.l2_bdaddr, la.l2_bdaddr_type,
sk->sk_sndtimeo);
if (err)
return err;
lock_sock(sk);
err = bt_sock_wait_state(sk, BT_CONNECTED,
sock_sndtimeo(sk, flags & O_NONBLOCK));
release_sock(sk);
return err;
}
static int l2cap_sock_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
int err = 0;
BT_DBG("sk %p backlog %d", sk, backlog);
lock_sock(sk);
if (sk->sk_state != BT_BOUND) {
err = -EBADFD;
goto done;
}
if (sk->sk_type != SOCK_SEQPACKET && sk->sk_type != SOCK_STREAM) {
err = -EINVAL;
goto done;
}
switch (chan->mode) {
case L2CAP_MODE_BASIC:
case L2CAP_MODE_LE_FLOWCTL:
break;
case L2CAP_MODE_EXT_FLOWCTL:
if (!enable_ecred) {
err = -EOPNOTSUPP;
goto done;
}
break;
case L2CAP_MODE_ERTM:
case L2CAP_MODE_STREAMING:
if (!disable_ertm)
break;
fallthrough;
default:
err = -EOPNOTSUPP;
goto done;
}
sk->sk_max_ack_backlog = backlog;
sk->sk_ack_backlog = 0;
/* Listening channels need to use nested locking in order not to
* cause lockdep warnings when the created child channels end up
* being locked in the same thread as the parent channel.
*/
atomic_set(&chan->nesting, L2CAP_NESTING_PARENT);
chan->state = BT_LISTEN;
sk->sk_state = BT_LISTEN;
done:
release_sock(sk);
return err;
}
static int l2cap_sock_accept(struct socket *sock, struct socket *newsock,
net: Work around lockdep limitation in sockets that use sockets Lockdep issues a circular dependency warning when AFS issues an operation through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem. The theory lockdep comes up with is as follows: (1) If the pagefault handler decides it needs to read pages from AFS, it calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but creating a call requires the socket lock: mmap_sem must be taken before sk_lock-AF_RXRPC (2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind() binds the underlying UDP socket whilst holding its socket lock. inet_bind() takes its own socket lock: sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET (3) Reading from a TCP socket into a userspace buffer might cause a fault and thus cause the kernel to take the mmap_sem, but the TCP socket is locked whilst doing this: sk_lock-AF_INET must be taken before mmap_sem However, lockdep's theory is wrong in this instance because it deals only with lock classes and not individual locks. The AF_INET lock in (2) isn't really equivalent to the AF_INET lock in (3) as the former deals with a socket entirely internal to the kernel that never sees userspace. This is a limitation in the design of lockdep. Fix the general case by: (1) Double up all the locking keys used in sockets so that one set are used if the socket is created by userspace and the other set is used if the socket is created by the kernel. (2) Store the kern parameter passed to sk_alloc() in a variable in the sock struct (sk_kern_sock). This informs sock_lock_init(), sock_init_data() and sk_clone_lock() as to the lock keys to be used. Note that the child created by sk_clone_lock() inherits the parent's kern setting. (3) Add a 'kern' parameter to ->accept() that is analogous to the one passed in to ->create() that distinguishes whether kernel_accept() or sys_accept4() was the caller and can be passed to sk_alloc(). Note that a lot of accept functions merely dequeue an already allocated socket. I haven't touched these as the new socket already exists before we get the parameter. Note also that there are a couple of places where I've made the accepted socket unconditionally kernel-based: irda_accept() rds_rcp_accept_one() tcp_accept_from_sock() because they follow a sock_create_kern() and accept off of that. Whilst creating this, I noticed that lustre and ocfs don't create sockets through sock_create_kern() and thus they aren't marked as for-kernel, though they appear to be internal. I wonder if these should do that so that they use the new set of lock keys. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-09 08:09:05 +00:00
int flags, bool kern)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
struct sock *sk = sock->sk, *nsk;
long timeo;
int err = 0;
lock_sock_nested(sk, L2CAP_NESTING_PARENT);
timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
BT_DBG("sk %p timeo %ld", sk, timeo);
/* Wait for an incoming connection. (wake-one). */
add_wait_queue_exclusive(sk_sleep(sk), &wait);
while (1) {
if (sk->sk_state != BT_LISTEN) {
err = -EBADFD;
break;
}
nsk = bt_accept_dequeue(sk, newsock);
if (nsk)
break;
if (!timeo) {
err = -EAGAIN;
break;
}
if (signal_pending(current)) {
err = sock_intr_errno(timeo);
break;
}
release_sock(sk);
timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
lock_sock_nested(sk, L2CAP_NESTING_PARENT);
}
remove_wait_queue(sk_sleep(sk), &wait);
if (err)
goto done;
newsock->state = SS_CONNECTED;
BT_DBG("new socket %p", nsk);
done:
release_sock(sk);
return err;
}
static int l2cap_sock_getname(struct socket *sock, struct sockaddr *addr,
net: make getname() functions return length rather than use int* parameter Changes since v1: Added changes in these files: drivers/infiniband/hw/usnic/usnic_transport.c drivers/staging/lustre/lnet/lnet/lib-socket.c drivers/target/iscsi/iscsi_target_login.c drivers/vhost/net.c fs/dlm/lowcomms.c fs/ocfs2/cluster/tcp.c security/tomoyo/network.c Before: All these functions either return a negative error indicator, or store length of sockaddr into "int *socklen" parameter and return zero on success. "int *socklen" parameter is awkward. For example, if caller does not care, it still needs to provide on-stack storage for the value it does not need. None of the many FOO_getname() functions of various protocols ever used old value of *socklen. They always just overwrite it. This change drops this parameter, and makes all these functions, on success, return length of sockaddr. It's always >= 0 and can be differentiated from an error. Tests in callers are changed from "if (err)" to "if (err < 0)", where needed. rpc_sockname() lost "int buflen" parameter, since its only use was to be passed to kernel_getsockname() as &buflen and subsequently not used in any way. Userspace API is not changed. text data bss dec hex filename 30108430 2633624 873672 33615726 200ef6e vmlinux.before.o 30108109 2633612 873672 33615393 200ee21 vmlinux.o Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: David S. Miller <davem@davemloft.net> CC: linux-kernel@vger.kernel.org CC: netdev@vger.kernel.org CC: linux-bluetooth@vger.kernel.org CC: linux-decnet-user@lists.sourceforge.net CC: linux-wireless@vger.kernel.org CC: linux-rdma@vger.kernel.org CC: linux-sctp@vger.kernel.org CC: linux-nfs@vger.kernel.org CC: linux-x25@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-12 19:00:20 +00:00
int peer)
{
struct sockaddr_l2 *la = (struct sockaddr_l2 *) addr;
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
BT_DBG("sock %p, sk %p", sock, sk);
if (peer && sk->sk_state != BT_CONNECTED &&
sk->sk_state != BT_CONNECT && sk->sk_state != BT_CONNECT2 &&
sk->sk_state != BT_CONFIG)
return -ENOTCONN;
memset(la, 0, sizeof(struct sockaddr_l2));
addr->sa_family = AF_BLUETOOTH;
la->l2_psm = chan->psm;
if (peer) {
bacpy(&la->l2_bdaddr, &chan->dst);
la->l2_cid = cpu_to_le16(chan->dcid);
la->l2_bdaddr_type = chan->dst_type;
} else {
bacpy(&la->l2_bdaddr, &chan->src);
la->l2_cid = cpu_to_le16(chan->scid);
la->l2_bdaddr_type = chan->src_type;
}
net: make getname() functions return length rather than use int* parameter Changes since v1: Added changes in these files: drivers/infiniband/hw/usnic/usnic_transport.c drivers/staging/lustre/lnet/lnet/lib-socket.c drivers/target/iscsi/iscsi_target_login.c drivers/vhost/net.c fs/dlm/lowcomms.c fs/ocfs2/cluster/tcp.c security/tomoyo/network.c Before: All these functions either return a negative error indicator, or store length of sockaddr into "int *socklen" parameter and return zero on success. "int *socklen" parameter is awkward. For example, if caller does not care, it still needs to provide on-stack storage for the value it does not need. None of the many FOO_getname() functions of various protocols ever used old value of *socklen. They always just overwrite it. This change drops this parameter, and makes all these functions, on success, return length of sockaddr. It's always >= 0 and can be differentiated from an error. Tests in callers are changed from "if (err)" to "if (err < 0)", where needed. rpc_sockname() lost "int buflen" parameter, since its only use was to be passed to kernel_getsockname() as &buflen and subsequently not used in any way. Userspace API is not changed. text data bss dec hex filename 30108430 2633624 873672 33615726 200ef6e vmlinux.before.o 30108109 2633612 873672 33615393 200ee21 vmlinux.o Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: David S. Miller <davem@davemloft.net> CC: linux-kernel@vger.kernel.org CC: netdev@vger.kernel.org CC: linux-bluetooth@vger.kernel.org CC: linux-decnet-user@lists.sourceforge.net CC: linux-wireless@vger.kernel.org CC: linux-rdma@vger.kernel.org CC: linux-sctp@vger.kernel.org CC: linux-nfs@vger.kernel.org CC: linux-x25@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-12 19:00:20 +00:00
return sizeof(struct sockaddr_l2);
}
static int l2cap_get_mode(struct l2cap_chan *chan)
{
switch (chan->mode) {
case L2CAP_MODE_BASIC:
return BT_MODE_BASIC;
case L2CAP_MODE_ERTM:
return BT_MODE_ERTM;
case L2CAP_MODE_STREAMING:
return BT_MODE_STREAMING;
case L2CAP_MODE_LE_FLOWCTL:
return BT_MODE_LE_FLOWCTL;
case L2CAP_MODE_EXT_FLOWCTL:
return BT_MODE_EXT_FLOWCTL;
}
return -EINVAL;
}
static int l2cap_sock_getsockopt_old(struct socket *sock, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct l2cap_options opts;
struct l2cap_conninfo cinfo;
Bluetooth: Fix type of len in {l2cap,sco}_sock_getsockopt_old() After an innocuous optimization change in LLVM main (19.0.0), x86_64 allmodconfig (which enables CONFIG_KCSAN / -fsanitize=thread) fails to build due to the checks in check_copy_size(): In file included from net/bluetooth/sco.c:27: In file included from include/linux/module.h:13: In file included from include/linux/stat.h:19: In file included from include/linux/time.h:60: In file included from include/linux/time32.h:13: In file included from include/linux/timex.h:67: In file included from arch/x86/include/asm/timex.h:6: In file included from arch/x86/include/asm/tsc.h:10: In file included from arch/x86/include/asm/msr.h:15: In file included from include/linux/percpu.h:7: In file included from include/linux/smp.h:118: include/linux/thread_info.h:244:4: error: call to '__bad_copy_from' declared with 'error' attribute: copy source size is too small 244 | __bad_copy_from(); | ^ The same exact error occurs in l2cap_sock.c. The copy_to_user() statements that are failing come from l2cap_sock_getsockopt_old() and sco_sock_getsockopt_old(). This does not occur with GCC with or without KCSAN or Clang without KCSAN enabled. len is defined as an 'int' because it is assigned from '__user int *optlen'. However, it is clamped against the result of sizeof(), which has a type of 'size_t' ('unsigned long' for 64-bit platforms). This is done with min_t() because min() requires compatible types, which results in both len and the result of sizeof() being casted to 'unsigned int', meaning len changes signs and the result of sizeof() is truncated. From there, len is passed to copy_to_user(), which has a third parameter type of 'unsigned long', so it is widened and changes signs again. This excessive casting in combination with the KCSAN instrumentation causes LLVM to fail to eliminate the __bad_copy_from() call, failing the build. The official recommendation from LLVM developers is to consistently use long types for all size variables to avoid the unnecessary casting in the first place. Change the type of len to size_t in both l2cap_sock_getsockopt_old() and sco_sock_getsockopt_old(). This clears up the error while allowing min_t() to be replaced with min(), resulting in simpler code with no casts and fewer implicit conversions. While len is a different type than optlen now, it should result in no functional change because the result of sizeof() will clamp all values of optlen in the same manner as before. Cc: stable@vger.kernel.org Closes: https://github.com/ClangBuiltLinux/linux/issues/2007 Link: https://github.com/llvm/llvm-project/issues/85647 Signed-off-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Justin Stitt <justinstitt@google.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2024-04-01 18:24:17 +00:00
int err = 0;
size_t len;
u32 opt;
BT_DBG("sk %p", sk);
if (get_user(len, optlen))
return -EFAULT;
lock_sock(sk);
switch (optname) {
case L2CAP_OPTIONS:
/* LE sockets should use BT_SNDMTU/BT_RCVMTU, but since
* legacy ATT code depends on getsockopt for
* L2CAP_OPTIONS we need to let this pass.
*/
if (bdaddr_type_is_le(chan->src_type) &&
chan->scid != L2CAP_CID_ATT) {
err = -EINVAL;
break;
}
/* Only BR/EDR modes are supported here */
switch (chan->mode) {
case L2CAP_MODE_BASIC:
case L2CAP_MODE_ERTM:
case L2CAP_MODE_STREAMING:
break;
default:
err = -EINVAL;
break;
}
if (err < 0)
break;
memset(&opts, 0, sizeof(opts));
opts.imtu = chan->imtu;
opts.omtu = chan->omtu;
opts.flush_to = chan->flush_to;
opts.mode = chan->mode;
opts.fcs = chan->fcs;
opts.max_tx = chan->max_tx;
opts.txwin_size = chan->tx_win;
BT_DBG("mode 0x%2.2x", chan->mode);
Bluetooth: Fix type of len in {l2cap,sco}_sock_getsockopt_old() After an innocuous optimization change in LLVM main (19.0.0), x86_64 allmodconfig (which enables CONFIG_KCSAN / -fsanitize=thread) fails to build due to the checks in check_copy_size(): In file included from net/bluetooth/sco.c:27: In file included from include/linux/module.h:13: In file included from include/linux/stat.h:19: In file included from include/linux/time.h:60: In file included from include/linux/time32.h:13: In file included from include/linux/timex.h:67: In file included from arch/x86/include/asm/timex.h:6: In file included from arch/x86/include/asm/tsc.h:10: In file included from arch/x86/include/asm/msr.h:15: In file included from include/linux/percpu.h:7: In file included from include/linux/smp.h:118: include/linux/thread_info.h:244:4: error: call to '__bad_copy_from' declared with 'error' attribute: copy source size is too small 244 | __bad_copy_from(); | ^ The same exact error occurs in l2cap_sock.c. The copy_to_user() statements that are failing come from l2cap_sock_getsockopt_old() and sco_sock_getsockopt_old(). This does not occur with GCC with or without KCSAN or Clang without KCSAN enabled. len is defined as an 'int' because it is assigned from '__user int *optlen'. However, it is clamped against the result of sizeof(), which has a type of 'size_t' ('unsigned long' for 64-bit platforms). This is done with min_t() because min() requires compatible types, which results in both len and the result of sizeof() being casted to 'unsigned int', meaning len changes signs and the result of sizeof() is truncated. From there, len is passed to copy_to_user(), which has a third parameter type of 'unsigned long', so it is widened and changes signs again. This excessive casting in combination with the KCSAN instrumentation causes LLVM to fail to eliminate the __bad_copy_from() call, failing the build. The official recommendation from LLVM developers is to consistently use long types for all size variables to avoid the unnecessary casting in the first place. Change the type of len to size_t in both l2cap_sock_getsockopt_old() and sco_sock_getsockopt_old(). This clears up the error while allowing min_t() to be replaced with min(), resulting in simpler code with no casts and fewer implicit conversions. While len is a different type than optlen now, it should result in no functional change because the result of sizeof() will clamp all values of optlen in the same manner as before. Cc: stable@vger.kernel.org Closes: https://github.com/ClangBuiltLinux/linux/issues/2007 Link: https://github.com/llvm/llvm-project/issues/85647 Signed-off-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Justin Stitt <justinstitt@google.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2024-04-01 18:24:17 +00:00
len = min(len, sizeof(opts));
if (copy_to_user(optval, (char *) &opts, len))
err = -EFAULT;
break;
case L2CAP_LM:
switch (chan->sec_level) {
case BT_SECURITY_LOW:
opt = L2CAP_LM_AUTH;
break;
case BT_SECURITY_MEDIUM:
opt = L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT;
break;
case BT_SECURITY_HIGH:
opt = L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT |
L2CAP_LM_SECURE;
break;
case BT_SECURITY_FIPS:
opt = L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT |
L2CAP_LM_SECURE | L2CAP_LM_FIPS;
break;
default:
opt = 0;
break;
}
if (test_bit(FLAG_ROLE_SWITCH, &chan->flags))
opt |= L2CAP_LM_MASTER;
if (test_bit(FLAG_FORCE_RELIABLE, &chan->flags))
opt |= L2CAP_LM_RELIABLE;
if (put_user(opt, (u32 __user *) optval))
err = -EFAULT;
break;
case L2CAP_CONNINFO:
if (sk->sk_state != BT_CONNECTED &&
!(sk->sk_state == BT_CONNECT2 &&
test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags))) {
err = -ENOTCONN;
break;
}
memset(&cinfo, 0, sizeof(cinfo));
cinfo.hci_handle = chan->conn->hcon->handle;
memcpy(cinfo.dev_class, chan->conn->hcon->dev_class, 3);
Bluetooth: Fix type of len in {l2cap,sco}_sock_getsockopt_old() After an innocuous optimization change in LLVM main (19.0.0), x86_64 allmodconfig (which enables CONFIG_KCSAN / -fsanitize=thread) fails to build due to the checks in check_copy_size(): In file included from net/bluetooth/sco.c:27: In file included from include/linux/module.h:13: In file included from include/linux/stat.h:19: In file included from include/linux/time.h:60: In file included from include/linux/time32.h:13: In file included from include/linux/timex.h:67: In file included from arch/x86/include/asm/timex.h:6: In file included from arch/x86/include/asm/tsc.h:10: In file included from arch/x86/include/asm/msr.h:15: In file included from include/linux/percpu.h:7: In file included from include/linux/smp.h:118: include/linux/thread_info.h:244:4: error: call to '__bad_copy_from' declared with 'error' attribute: copy source size is too small 244 | __bad_copy_from(); | ^ The same exact error occurs in l2cap_sock.c. The copy_to_user() statements that are failing come from l2cap_sock_getsockopt_old() and sco_sock_getsockopt_old(). This does not occur with GCC with or without KCSAN or Clang without KCSAN enabled. len is defined as an 'int' because it is assigned from '__user int *optlen'. However, it is clamped against the result of sizeof(), which has a type of 'size_t' ('unsigned long' for 64-bit platforms). This is done with min_t() because min() requires compatible types, which results in both len and the result of sizeof() being casted to 'unsigned int', meaning len changes signs and the result of sizeof() is truncated. From there, len is passed to copy_to_user(), which has a third parameter type of 'unsigned long', so it is widened and changes signs again. This excessive casting in combination with the KCSAN instrumentation causes LLVM to fail to eliminate the __bad_copy_from() call, failing the build. The official recommendation from LLVM developers is to consistently use long types for all size variables to avoid the unnecessary casting in the first place. Change the type of len to size_t in both l2cap_sock_getsockopt_old() and sco_sock_getsockopt_old(). This clears up the error while allowing min_t() to be replaced with min(), resulting in simpler code with no casts and fewer implicit conversions. While len is a different type than optlen now, it should result in no functional change because the result of sizeof() will clamp all values of optlen in the same manner as before. Cc: stable@vger.kernel.org Closes: https://github.com/ClangBuiltLinux/linux/issues/2007 Link: https://github.com/llvm/llvm-project/issues/85647 Signed-off-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Justin Stitt <justinstitt@google.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2024-04-01 18:24:17 +00:00
len = min(len, sizeof(cinfo));
if (copy_to_user(optval, (char *) &cinfo, len))
err = -EFAULT;
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
static int l2cap_sock_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct bt_security sec;
struct bt_power pwr;
u32 phys;
int len, mode, err = 0;
BT_DBG("sk %p", sk);
if (level == SOL_L2CAP)
return l2cap_sock_getsockopt_old(sock, optname, optval, optlen);
if (level != SOL_BLUETOOTH)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
lock_sock(sk);
switch (optname) {
case BT_SECURITY:
if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED &&
chan->chan_type != L2CAP_CHAN_FIXED &&
chan->chan_type != L2CAP_CHAN_RAW) {
err = -EINVAL;
break;
}
memset(&sec, 0, sizeof(sec));
if (chan->conn) {
sec.level = chan->conn->hcon->sec_level;
if (sk->sk_state == BT_CONNECTED)
sec.key_size = chan->conn->hcon->enc_key_size;
} else {
sec.level = chan->sec_level;
}
len = min_t(unsigned int, len, sizeof(sec));
if (copy_to_user(optval, (char *) &sec, len))
err = -EFAULT;
break;
case BT_DEFER_SETUP:
if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
err = -EINVAL;
break;
}
if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags),
(u32 __user *) optval))
err = -EFAULT;
break;
case BT_FLUSHABLE:
if (put_user(test_bit(FLAG_FLUSHABLE, &chan->flags),
(u32 __user *) optval))
err = -EFAULT;
break;
case BT_POWER:
if (sk->sk_type != SOCK_SEQPACKET && sk->sk_type != SOCK_STREAM
&& sk->sk_type != SOCK_RAW) {
err = -EINVAL;
break;
}
pwr.force_active = test_bit(FLAG_FORCE_ACTIVE, &chan->flags);
len = min_t(unsigned int, len, sizeof(pwr));
if (copy_to_user(optval, (char *) &pwr, len))
err = -EFAULT;
break;
case BT_CHANNEL_POLICY:
if (put_user(chan->chan_policy, (u32 __user *) optval))
err = -EFAULT;
break;
case BT_SNDMTU:
if (!bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
if (sk->sk_state != BT_CONNECTED) {
err = -ENOTCONN;
break;
}
if (put_user(chan->omtu, (u16 __user *) optval))
err = -EFAULT;
break;
case BT_RCVMTU:
if (!bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
if (put_user(chan->imtu, (u16 __user *) optval))
err = -EFAULT;
break;
case BT_PHY:
if (sk->sk_state != BT_CONNECTED) {
err = -ENOTCONN;
break;
}
phys = hci_conn_get_phy(chan->conn->hcon);
if (put_user(phys, (u32 __user *) optval))
err = -EFAULT;
break;
case BT_MODE:
if (!enable_ecred) {
err = -ENOPROTOOPT;
break;
}
if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED) {
err = -EINVAL;
break;
}
mode = l2cap_get_mode(chan);
if (mode < 0) {
err = mode;
break;
}
if (put_user(mode, (u8 __user *) optval))
err = -EFAULT;
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
static bool l2cap_valid_mtu(struct l2cap_chan *chan, u16 mtu)
{
switch (chan->scid) {
case L2CAP_CID_ATT:
if (mtu < L2CAP_LE_MIN_MTU)
return false;
break;
default:
if (mtu < L2CAP_DEFAULT_MIN_MTU)
return false;
}
return true;
}
static int l2cap_sock_setsockopt_old(struct socket *sock, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct l2cap_options opts;
int err = 0;
u32 opt;
BT_DBG("sk %p", sk);
lock_sock(sk);
switch (optname) {
case L2CAP_OPTIONS:
if (bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
if (sk->sk_state == BT_CONNECTED) {
err = -EINVAL;
break;
}
opts.imtu = chan->imtu;
opts.omtu = chan->omtu;
opts.flush_to = chan->flush_to;
opts.mode = chan->mode;
opts.fcs = chan->fcs;
opts.max_tx = chan->max_tx;
opts.txwin_size = chan->tx_win;
err = bt_copy_from_sockptr(&opts, sizeof(opts), optval, optlen);
if (err)
break;
if (opts.txwin_size > L2CAP_DEFAULT_EXT_WINDOW) {
err = -EINVAL;
break;
}
if (!l2cap_valid_mtu(chan, opts.imtu)) {
err = -EINVAL;
break;
}
/* Only BR/EDR modes are supported here */
switch (opts.mode) {
case L2CAP_MODE_BASIC:
clear_bit(CONF_STATE2_DEVICE, &chan->conf_state);
break;
case L2CAP_MODE_ERTM:
case L2CAP_MODE_STREAMING:
if (!disable_ertm)
break;
fallthrough;
default:
err = -EINVAL;
break;
}
if (err < 0)
break;
chan->mode = opts.mode;
BT_DBG("mode 0x%2.2x", chan->mode);
chan->imtu = opts.imtu;
chan->omtu = opts.omtu;
chan->fcs = opts.fcs;
chan->max_tx = opts.max_tx;
chan->tx_win = opts.txwin_size;
chan->flush_to = opts.flush_to;
break;
case L2CAP_LM:
err = bt_copy_from_sockptr(&opt, sizeof(opt), optval, optlen);
if (err)
break;
if (opt & L2CAP_LM_FIPS) {
err = -EINVAL;
break;
}
if (opt & L2CAP_LM_AUTH)
chan->sec_level = BT_SECURITY_LOW;
if (opt & L2CAP_LM_ENCRYPT)
chan->sec_level = BT_SECURITY_MEDIUM;
if (opt & L2CAP_LM_SECURE)
chan->sec_level = BT_SECURITY_HIGH;
if (opt & L2CAP_LM_MASTER)
set_bit(FLAG_ROLE_SWITCH, &chan->flags);
else
clear_bit(FLAG_ROLE_SWITCH, &chan->flags);
if (opt & L2CAP_LM_RELIABLE)
set_bit(FLAG_FORCE_RELIABLE, &chan->flags);
else
clear_bit(FLAG_FORCE_RELIABLE, &chan->flags);
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
static int l2cap_set_mode(struct l2cap_chan *chan, u8 mode)
{
switch (mode) {
case BT_MODE_BASIC:
if (bdaddr_type_is_le(chan->src_type))
return -EINVAL;
mode = L2CAP_MODE_BASIC;
clear_bit(CONF_STATE2_DEVICE, &chan->conf_state);
break;
case BT_MODE_ERTM:
if (!disable_ertm || bdaddr_type_is_le(chan->src_type))
return -EINVAL;
mode = L2CAP_MODE_ERTM;
break;
case BT_MODE_STREAMING:
if (!disable_ertm || bdaddr_type_is_le(chan->src_type))
return -EINVAL;
mode = L2CAP_MODE_STREAMING;
break;
case BT_MODE_LE_FLOWCTL:
if (!bdaddr_type_is_le(chan->src_type))
return -EINVAL;
mode = L2CAP_MODE_LE_FLOWCTL;
break;
case BT_MODE_EXT_FLOWCTL:
/* TODO: Add support for ECRED PDUs to BR/EDR */
if (!bdaddr_type_is_le(chan->src_type))
return -EINVAL;
mode = L2CAP_MODE_EXT_FLOWCTL;
break;
default:
return -EINVAL;
}
chan->mode = mode;
return 0;
}
static int l2cap_sock_setsockopt(struct socket *sock, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct bt_security sec;
struct bt_power pwr;
struct l2cap_conn *conn;
int err = 0;
u32 opt;
u16 mtu;
u8 mode;
BT_DBG("sk %p", sk);
if (level == SOL_L2CAP)
return l2cap_sock_setsockopt_old(sock, optname, optval, optlen);
if (level != SOL_BLUETOOTH)
return -ENOPROTOOPT;
lock_sock(sk);
switch (optname) {
case BT_SECURITY:
if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED &&
chan->chan_type != L2CAP_CHAN_FIXED &&
chan->chan_type != L2CAP_CHAN_RAW) {
err = -EINVAL;
break;
}
sec.level = BT_SECURITY_LOW;
err = bt_copy_from_sockptr(&sec, sizeof(sec), optval, optlen);
if (err)
break;
if (sec.level < BT_SECURITY_LOW ||
sec.level > BT_SECURITY_FIPS) {
err = -EINVAL;
break;
}
chan->sec_level = sec.level;
if (!chan->conn)
break;
conn = chan->conn;
/* change security for LE channels */
if (chan->scid == L2CAP_CID_ATT) {
if (smp_conn_security(conn->hcon, sec.level)) {
err = -EINVAL;
break;
}
set_bit(FLAG_PENDING_SECURITY, &chan->flags);
sk->sk_state = BT_CONFIG;
chan->state = BT_CONFIG;
/* or for ACL link */
} else if ((sk->sk_state == BT_CONNECT2 &&
test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags)) ||
sk->sk_state == BT_CONNECTED) {
if (!l2cap_chan_check_security(chan, true))
set_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags);
else
sk->sk_state_change(sk);
} else {
err = -EINVAL;
}
break;
case BT_DEFER_SETUP:
if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
err = -EINVAL;
break;
}
err = bt_copy_from_sockptr(&opt, sizeof(opt), optval, optlen);
if (err)
break;
if (opt) {
set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
set_bit(FLAG_DEFER_SETUP, &chan->flags);
} else {
clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
clear_bit(FLAG_DEFER_SETUP, &chan->flags);
}
break;
case BT_FLUSHABLE:
err = bt_copy_from_sockptr(&opt, sizeof(opt), optval, optlen);
if (err)
break;
if (opt > BT_FLUSHABLE_ON) {
err = -EINVAL;
break;
}
if (opt == BT_FLUSHABLE_OFF) {
conn = chan->conn;
/* proceed further only when we have l2cap_conn and
No Flush support in the LM */
if (!conn || !lmp_no_flush_capable(conn->hcon->hdev)) {
err = -EINVAL;
break;
}
}
if (opt)
set_bit(FLAG_FLUSHABLE, &chan->flags);
else
clear_bit(FLAG_FLUSHABLE, &chan->flags);
break;
case BT_POWER:
if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED &&
chan->chan_type != L2CAP_CHAN_RAW) {
err = -EINVAL;
break;
}
pwr.force_active = BT_POWER_FORCE_ACTIVE_ON;
err = bt_copy_from_sockptr(&pwr, sizeof(pwr), optval, optlen);
if (err)
break;
if (pwr.force_active)
set_bit(FLAG_FORCE_ACTIVE, &chan->flags);
else
clear_bit(FLAG_FORCE_ACTIVE, &chan->flags);
break;
case BT_CHANNEL_POLICY:
err = bt_copy_from_sockptr(&opt, sizeof(opt), optval, optlen);
if (err)
break;
err = -EOPNOTSUPP;
break;
case BT_SNDMTU:
if (!bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
/* Setting is not supported as it's the remote side that
* decides this.
*/
err = -EPERM;
break;
case BT_RCVMTU:
if (!bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
if (chan->mode == L2CAP_MODE_LE_FLOWCTL &&
sk->sk_state == BT_CONNECTED) {
err = -EISCONN;
break;
}
err = bt_copy_from_sockptr(&mtu, sizeof(mtu), optval, optlen);
if (err)
break;
if (chan->mode == L2CAP_MODE_EXT_FLOWCTL &&
sk->sk_state == BT_CONNECTED)
err = l2cap_chan_reconfigure(chan, mtu);
else
chan->imtu = mtu;
break;
case BT_MODE:
if (!enable_ecred) {
err = -ENOPROTOOPT;
break;
}
BT_DBG("sk->sk_state %u", sk->sk_state);
if (sk->sk_state != BT_BOUND) {
err = -EINVAL;
break;
}
if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED) {
err = -EINVAL;
break;
}
err = bt_copy_from_sockptr(&mode, sizeof(mode), optval, optlen);
if (err)
break;
BT_DBG("mode %u", mode);
err = l2cap_set_mode(chan, mode);
if (err)
break;
BT_DBG("mode 0x%2.2x", chan->mode);
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
static int l2cap_sock_sendmsg(struct socket *sock, struct msghdr *msg,
size_t len)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
int err;
BT_DBG("sock %p, sk %p", sock, sk);
err = sock_error(sk);
if (err)
return err;
if (msg->msg_flags & MSG_OOB)
return -EOPNOTSUPP;
if (sk->sk_state != BT_CONNECTED)
return -ENOTCONN;
lock_sock(sk);
err = bt_sock_wait_ready(sk, msg->msg_flags);
release_sock(sk);
if (err)
return err;
l2cap_chan_lock(chan);
err = l2cap_chan_send(chan, msg, len);
l2cap_chan_unlock(chan);
return err;
}
2024-05-01 10:08:58 +00:00
static void l2cap_publish_rx_avail(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
ssize_t avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc);
int expected_skbs, skb_overhead;
if (avail <= 0) {
l2cap_chan_rx_avail(chan, 0);
return;
}
if (!chan->mps) {
l2cap_chan_rx_avail(chan, -1);
return;
}
/* Correct available memory by estimated sk_buff overhead.
* This is significant due to small transfer sizes. However, accept
* at least one full packet if receive space is non-zero.
*/
expected_skbs = DIV_ROUND_UP(avail, chan->mps);
skb_overhead = expected_skbs * sizeof(struct sk_buff);
if (skb_overhead < avail)
l2cap_chan_rx_avail(chan, avail - skb_overhead);
else
l2cap_chan_rx_avail(chan, -1);
}
static int l2cap_sock_recvmsg(struct socket *sock, struct msghdr *msg,
size_t len, int flags)
{
struct sock *sk = sock->sk;
struct l2cap_pinfo *pi = l2cap_pi(sk);
int err;
lock_sock(sk);
if (sk->sk_state == BT_CONNECT2 && test_bit(BT_SK_DEFER_SETUP,
&bt_sk(sk)->flags)) {
if (pi->chan->mode == L2CAP_MODE_EXT_FLOWCTL) {
sk->sk_state = BT_CONNECTED;
pi->chan->state = BT_CONNECTED;
__l2cap_ecred_conn_rsp_defer(pi->chan);
} else if (bdaddr_type_is_le(pi->chan->src_type)) {
sk->sk_state = BT_CONNECTED;
pi->chan->state = BT_CONNECTED;
__l2cap_le_connect_rsp_defer(pi->chan);
} else {
sk->sk_state = BT_CONFIG;
pi->chan->state = BT_CONFIG;
__l2cap_connect_rsp_defer(pi->chan);
}
err = 0;
goto done;
}
release_sock(sk);
if (sock->type == SOCK_STREAM)
err = bt_sock_stream_recvmsg(sock, msg, len, flags);
else
err = bt_sock_recvmsg(sock, msg, len, flags);
2024-05-01 10:08:58 +00:00
if (pi->chan->mode != L2CAP_MODE_ERTM &&
pi->chan->mode != L2CAP_MODE_LE_FLOWCTL &&
pi->chan->mode != L2CAP_MODE_EXT_FLOWCTL)
return err;
lock_sock(sk);
2024-05-01 10:08:58 +00:00
l2cap_publish_rx_avail(pi->chan);
2024-05-01 10:08:58 +00:00
/* Attempt to put pending rx data in the socket buffer */
while (!list_empty(&pi->rx_busy)) {
struct l2cap_rx_busy *rx_busy =
list_first_entry(&pi->rx_busy,
struct l2cap_rx_busy,
list);
if (__sock_queue_rcv_skb(sk, rx_busy->skb) < 0)
goto done;
2024-05-01 10:08:58 +00:00
list_del(&rx_busy->list);
kfree(rx_busy);
}
/* Restore data flow when half of the receive buffer is
* available. This avoids resending large numbers of
* frames.
*/
2024-05-01 10:08:58 +00:00
if (test_bit(CONN_LOCAL_BUSY, &pi->chan->conn_state) &&
atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf >> 1)
l2cap_chan_busy(pi->chan, 0);
done:
release_sock(sk);
return err;
}
/* Kill socket (only if zapped and orphan)
Bluetooth: Fix refcount use-after-free issue There is no lock preventing both l2cap_sock_release() and chan->ops->close() from running at the same time. If we consider Thread A running l2cap_chan_timeout() and Thread B running l2cap_sock_release(), expected behavior is: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() where, sock_orphan() clears "sk->sk_socket" and l2cap_sock_teardown_cb() marks socket as SOCK_ZAPPED. In l2cap_sock_kill(), there is an "if-statement" that checks if both sock_orphan() and sock_teardown() has been run i.e. sk->sk_socket is NULL and socket is marked as SOCK_ZAPPED. Socket is killed if the condition is satisfied. In the race condition, following occurs: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() In this scenario, "if-statement" is true in both B::l2cap_sock_kill() and A::l2cap_sock_kill() and we hit "refcount: underflow; use-after-free" bug. Similar condition occurs at other places where teardown/sock_kill is happening: l2cap_disconnect_rsp()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_rsp()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_conn_del()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_conn_del()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_disconnect_req()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_req()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_sock_cleanup_listen()->l2cap_chan_close()->l2cap_sock_teardown_cb() l2cap_sock_cleanup_listen()->l2cap_sock_kill() Protect teardown/sock_kill and orphan/sock_kill by adding hold_lock on l2cap channel to ensure that the socket is killed only after marked as zapped and orphan. Signed-off-by: Manish Mandlik <mmandlik@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-01-28 18:54:14 +00:00
* Must be called on unlocked socket, with l2cap channel lock.
*/
static void l2cap_sock_kill(struct sock *sk)
{
if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
return;
BT_DBG("sk %p state %s", sk, state_to_string(sk->sk_state));
/* Kill poor orphan */
l2cap_chan_put(l2cap_pi(sk)->chan);
sock_set_flag(sk, SOCK_DEAD);
sock_put(sk);
}
static int __l2cap_wait_ack(struct sock *sk, struct l2cap_chan *chan)
{
DECLARE_WAITQUEUE(wait, current);
int err = 0;
int timeo = L2CAP_WAIT_ACK_POLL_PERIOD;
/* Timeout to prevent infinite loop */
unsigned long timeout = jiffies + L2CAP_WAIT_ACK_TIMEOUT;
add_wait_queue(sk_sleep(sk), &wait);
set_current_state(TASK_INTERRUPTIBLE);
do {
BT_DBG("Waiting for %d ACKs, timeout %04d ms",
chan->unacked_frames, time_after(jiffies, timeout) ? 0 :
jiffies_to_msecs(timeout - jiffies));
if (!timeo)
timeo = L2CAP_WAIT_ACK_POLL_PERIOD;
if (signal_pending(current)) {
err = sock_intr_errno(timeo);
break;
}
release_sock(sk);
timeo = schedule_timeout(timeo);
lock_sock(sk);
set_current_state(TASK_INTERRUPTIBLE);
err = sock_error(sk);
if (err)
break;
if (time_after(jiffies, timeout)) {
err = -ENOLINK;
break;
}
} while (chan->unacked_frames > 0 &&
chan->state == BT_CONNECTED);
set_current_state(TASK_RUNNING);
remove_wait_queue(sk_sleep(sk), &wait);
return err;
}
static int l2cap_sock_shutdown(struct socket *sock, int how)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan;
struct l2cap_conn *conn;
int err = 0;
BT_DBG("sock %p, sk %p, how %d", sock, sk, how);
/* 'how' parameter is mapped to sk_shutdown as follows:
* SHUT_RD (0) --> RCV_SHUTDOWN (1)
* SHUT_WR (1) --> SEND_SHUTDOWN (2)
* SHUT_RDWR (2) --> SHUTDOWN_MASK (3)
*/
how++;
if (!sk)
return 0;
lock_sock(sk);
if ((sk->sk_shutdown & how) == how)
goto shutdown_already;
BT_DBG("Handling sock shutdown");
/* prevent sk structure from being freed whilst unlocked */
sock_hold(sk);
chan = l2cap_pi(sk)->chan;
/* prevent chan structure from being freed whilst unlocked */
l2cap_chan_hold(chan);
BT_DBG("chan %p state %s", chan, state_to_string(chan->state));
if (chan->mode == L2CAP_MODE_ERTM &&
chan->unacked_frames > 0 &&
chan->state == BT_CONNECTED) {
err = __l2cap_wait_ack(sk, chan);
/* After waiting for ACKs, check whether shutdown
* has already been actioned to close the L2CAP
* link such as by l2cap_disconnection_req().
*/
if ((sk->sk_shutdown & how) == how)
goto shutdown_matched;
}
/* Try setting the RCV_SHUTDOWN bit, return early if SEND_SHUTDOWN
* is already set
*/
if ((how & RCV_SHUTDOWN) && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
sk->sk_shutdown |= RCV_SHUTDOWN;
if ((sk->sk_shutdown & how) == how)
goto shutdown_matched;
}
sk->sk_shutdown |= SEND_SHUTDOWN;
release_sock(sk);
l2cap_chan_lock(chan);
conn = chan->conn;
if (conn)
/* prevent conn structure from being freed */
l2cap_conn_get(conn);
l2cap_chan_unlock(chan);
if (conn)
/* mutex lock must be taken before l2cap_chan_lock() */
mutex_lock(&conn->chan_lock);
l2cap_chan_lock(chan);
l2cap_chan_close(chan, 0);
l2cap_chan_unlock(chan);
if (conn) {
mutex_unlock(&conn->chan_lock);
l2cap_conn_put(conn);
}
lock_sock(sk);
if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime &&
!(current->flags & PF_EXITING))
err = bt_sock_wait_state(sk, BT_CLOSED,
sk->sk_lingertime);
shutdown_matched:
l2cap_chan_put(chan);
sock_put(sk);
shutdown_already:
if (!err && sk->sk_err)
err = -sk->sk_err;
release_sock(sk);
BT_DBG("Sock shutdown complete err: %d", err);
return err;
}
static int l2cap_sock_release(struct socket *sock)
{
struct sock *sk = sock->sk;
int err;
struct l2cap_chan *chan;
BT_DBG("sock %p, sk %p", sock, sk);
if (!sk)
return 0;
Bluetooth: L2CAP: Fix use-after-free in l2cap_sock_ready_cb l2cap_sock_release(sk) frees sk. However, sk's children are still alive and point to the already free'd sk's address. To fix this, l2cap_sock_release(sk) also cleans sk's children. ================================================================== BUG: KASAN: use-after-free in l2cap_sock_ready_cb+0xb7/0x100 net/bluetooth/l2cap_sock.c:1650 Read of size 8 at addr ffff888104617aa8 by task kworker/u3:0/276 CPU: 0 PID: 276 Comm: kworker/u3:0 Not tainted 6.2.0-00001-gef397bd4d5fb-dirty #59 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: hci2 hci_rx_work Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x72/0x95 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:306 [inline] print_report+0x175/0x478 mm/kasan/report.c:417 kasan_report+0xb1/0x130 mm/kasan/report.c:517 l2cap_sock_ready_cb+0xb7/0x100 net/bluetooth/l2cap_sock.c:1650 l2cap_chan_ready+0x10e/0x1e0 net/bluetooth/l2cap_core.c:1386 l2cap_config_req+0x753/0x9f0 net/bluetooth/l2cap_core.c:4480 l2cap_bredr_sig_cmd net/bluetooth/l2cap_core.c:5739 [inline] l2cap_sig_channel net/bluetooth/l2cap_core.c:6509 [inline] l2cap_recv_frame+0xe2e/0x43c0 net/bluetooth/l2cap_core.c:7788 l2cap_recv_acldata+0x6ed/0x7e0 net/bluetooth/l2cap_core.c:8506 hci_acldata_packet net/bluetooth/hci_core.c:3813 [inline] hci_rx_work+0x66e/0xbc0 net/bluetooth/hci_core.c:4048 process_one_work+0x4ea/0x8e0 kernel/workqueue.c:2289 worker_thread+0x364/0x8e0 kernel/workqueue.c:2436 kthread+0x1b9/0x200 kernel/kthread.c:376 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> Allocated by task 288: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 ____kasan_kmalloc mm/kasan/common.c:374 [inline] __kasan_kmalloc+0x82/0x90 mm/kasan/common.c:383 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slab_common.c:968 [inline] __kmalloc+0x5a/0x140 mm/slab_common.c:981 kmalloc include/linux/slab.h:584 [inline] sk_prot_alloc+0x113/0x1f0 net/core/sock.c:2040 sk_alloc+0x36/0x3c0 net/core/sock.c:2093 l2cap_sock_alloc.constprop.0+0x39/0x1c0 net/bluetooth/l2cap_sock.c:1852 l2cap_sock_create+0x10d/0x220 net/bluetooth/l2cap_sock.c:1898 bt_sock_create+0x183/0x290 net/bluetooth/af_bluetooth.c:132 __sock_create+0x226/0x380 net/socket.c:1518 sock_create net/socket.c:1569 [inline] __sys_socket_create net/socket.c:1606 [inline] __sys_socket_create net/socket.c:1591 [inline] __sys_socket+0x112/0x200 net/socket.c:1639 __do_sys_socket net/socket.c:1652 [inline] __se_sys_socket net/socket.c:1650 [inline] __x64_sys_socket+0x40/0x50 net/socket.c:1650 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3f/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc Freed by task 288: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 kasan_save_free_info+0x2e/0x50 mm/kasan/generic.c:523 ____kasan_slab_free mm/kasan/common.c:236 [inline] ____kasan_slab_free mm/kasan/common.c:200 [inline] __kasan_slab_free+0x10a/0x190 mm/kasan/common.c:244 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1781 [inline] slab_free_freelist_hook mm/slub.c:1807 [inline] slab_free mm/slub.c:3787 [inline] __kmem_cache_free+0x88/0x1f0 mm/slub.c:3800 sk_prot_free net/core/sock.c:2076 [inline] __sk_destruct+0x347/0x430 net/core/sock.c:2168 sk_destruct+0x9c/0xb0 net/core/sock.c:2183 __sk_free+0x82/0x220 net/core/sock.c:2194 sk_free+0x7c/0xa0 net/core/sock.c:2205 sock_put include/net/sock.h:1991 [inline] l2cap_sock_kill+0x256/0x2b0 net/bluetooth/l2cap_sock.c:1257 l2cap_sock_release+0x1a7/0x220 net/bluetooth/l2cap_sock.c:1428 __sock_release+0x80/0x150 net/socket.c:650 sock_close+0x19/0x30 net/socket.c:1368 __fput+0x17a/0x5c0 fs/file_table.c:320 task_work_run+0x132/0x1c0 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0x113/0x120 kernel/entry/common.c:203 __syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline] syscall_exit_to_user_mode+0x21/0x50 kernel/entry/common.c:296 do_syscall_64+0x4c/0x90 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x72/0xdc The buggy address belongs to the object at ffff888104617800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 680 bytes inside of 1024-byte region [ffff888104617800, ffff888104617c00) The buggy address belongs to the physical page: page:00000000dbca6a80 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888104614000 pfn:0x104614 head:00000000dbca6a80 order:2 compound_mapcount:0 subpages_mapcount:0 compound_pincount:0 flags: 0x200000000010200(slab|head|node=0|zone=2) raw: 0200000000010200 ffff888100041dc0 ffffea0004212c10 ffffea0004234b10 raw: ffff888104614000 0000000000080002 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888104617980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888104617a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff888104617a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888104617b00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888104617b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Ack: This bug is found by FuzzBT with a modified Syzkaller. Other contributors are Ruoyu Wu and Hui Peng. Signed-off-by: Sungwoo Kim <iam@sung-woo.kim> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-05-31 05:39:56 +00:00
l2cap_sock_cleanup_listen(sk);
bt_sock_unlink(&l2cap_sk_list, sk);
err = l2cap_sock_shutdown(sock, SHUT_RDWR);
chan = l2cap_pi(sk)->chan;
l2cap_chan_hold(chan);
l2cap_chan_lock(chan);
Bluetooth: Fix refcount use-after-free issue There is no lock preventing both l2cap_sock_release() and chan->ops->close() from running at the same time. If we consider Thread A running l2cap_chan_timeout() and Thread B running l2cap_sock_release(), expected behavior is: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() where, sock_orphan() clears "sk->sk_socket" and l2cap_sock_teardown_cb() marks socket as SOCK_ZAPPED. In l2cap_sock_kill(), there is an "if-statement" that checks if both sock_orphan() and sock_teardown() has been run i.e. sk->sk_socket is NULL and socket is marked as SOCK_ZAPPED. Socket is killed if the condition is satisfied. In the race condition, following occurs: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() In this scenario, "if-statement" is true in both B::l2cap_sock_kill() and A::l2cap_sock_kill() and we hit "refcount: underflow; use-after-free" bug. Similar condition occurs at other places where teardown/sock_kill is happening: l2cap_disconnect_rsp()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_rsp()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_conn_del()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_conn_del()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_disconnect_req()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_req()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_sock_cleanup_listen()->l2cap_chan_close()->l2cap_sock_teardown_cb() l2cap_sock_cleanup_listen()->l2cap_sock_kill() Protect teardown/sock_kill and orphan/sock_kill by adding hold_lock on l2cap channel to ensure that the socket is killed only after marked as zapped and orphan. Signed-off-by: Manish Mandlik <mmandlik@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-01-28 18:54:14 +00:00
sock_orphan(sk);
l2cap_sock_kill(sk);
Bluetooth: Fix refcount use-after-free issue There is no lock preventing both l2cap_sock_release() and chan->ops->close() from running at the same time. If we consider Thread A running l2cap_chan_timeout() and Thread B running l2cap_sock_release(), expected behavior is: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() where, sock_orphan() clears "sk->sk_socket" and l2cap_sock_teardown_cb() marks socket as SOCK_ZAPPED. In l2cap_sock_kill(), there is an "if-statement" that checks if both sock_orphan() and sock_teardown() has been run i.e. sk->sk_socket is NULL and socket is marked as SOCK_ZAPPED. Socket is killed if the condition is satisfied. In the race condition, following occurs: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() In this scenario, "if-statement" is true in both B::l2cap_sock_kill() and A::l2cap_sock_kill() and we hit "refcount: underflow; use-after-free" bug. Similar condition occurs at other places where teardown/sock_kill is happening: l2cap_disconnect_rsp()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_rsp()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_conn_del()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_conn_del()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_disconnect_req()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_req()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_sock_cleanup_listen()->l2cap_chan_close()->l2cap_sock_teardown_cb() l2cap_sock_cleanup_listen()->l2cap_sock_kill() Protect teardown/sock_kill and orphan/sock_kill by adding hold_lock on l2cap channel to ensure that the socket is killed only after marked as zapped and orphan. Signed-off-by: Manish Mandlik <mmandlik@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-01-28 18:54:14 +00:00
l2cap_chan_unlock(chan);
l2cap_chan_put(chan);
Bluetooth: Fix refcount use-after-free issue There is no lock preventing both l2cap_sock_release() and chan->ops->close() from running at the same time. If we consider Thread A running l2cap_chan_timeout() and Thread B running l2cap_sock_release(), expected behavior is: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() where, sock_orphan() clears "sk->sk_socket" and l2cap_sock_teardown_cb() marks socket as SOCK_ZAPPED. In l2cap_sock_kill(), there is an "if-statement" that checks if both sock_orphan() and sock_teardown() has been run i.e. sk->sk_socket is NULL and socket is marked as SOCK_ZAPPED. Socket is killed if the condition is satisfied. In the race condition, following occurs: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() In this scenario, "if-statement" is true in both B::l2cap_sock_kill() and A::l2cap_sock_kill() and we hit "refcount: underflow; use-after-free" bug. Similar condition occurs at other places where teardown/sock_kill is happening: l2cap_disconnect_rsp()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_rsp()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_conn_del()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_conn_del()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_disconnect_req()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_req()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_sock_cleanup_listen()->l2cap_chan_close()->l2cap_sock_teardown_cb() l2cap_sock_cleanup_listen()->l2cap_sock_kill() Protect teardown/sock_kill and orphan/sock_kill by adding hold_lock on l2cap channel to ensure that the socket is killed only after marked as zapped and orphan. Signed-off-by: Manish Mandlik <mmandlik@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-01-28 18:54:14 +00:00
return err;
}
static void l2cap_sock_cleanup_listen(struct sock *parent)
{
struct sock *sk;
BT_DBG("parent %p state %s", parent,
state_to_string(parent->sk_state));
/* Close not yet accepted channels */
while ((sk = bt_accept_dequeue(parent, NULL))) {
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
BT_DBG("child chan %p state %s", chan,
state_to_string(chan->state));
Bluetooth: Fix refcount use-after-free issue There is no lock preventing both l2cap_sock_release() and chan->ops->close() from running at the same time. If we consider Thread A running l2cap_chan_timeout() and Thread B running l2cap_sock_release(), expected behavior is: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() where, sock_orphan() clears "sk->sk_socket" and l2cap_sock_teardown_cb() marks socket as SOCK_ZAPPED. In l2cap_sock_kill(), there is an "if-statement" that checks if both sock_orphan() and sock_teardown() has been run i.e. sk->sk_socket is NULL and socket is marked as SOCK_ZAPPED. Socket is killed if the condition is satisfied. In the race condition, following occurs: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() In this scenario, "if-statement" is true in both B::l2cap_sock_kill() and A::l2cap_sock_kill() and we hit "refcount: underflow; use-after-free" bug. Similar condition occurs at other places where teardown/sock_kill is happening: l2cap_disconnect_rsp()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_rsp()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_conn_del()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_conn_del()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_disconnect_req()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_req()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_sock_cleanup_listen()->l2cap_chan_close()->l2cap_sock_teardown_cb() l2cap_sock_cleanup_listen()->l2cap_sock_kill() Protect teardown/sock_kill and orphan/sock_kill by adding hold_lock on l2cap channel to ensure that the socket is killed only after marked as zapped and orphan. Signed-off-by: Manish Mandlik <mmandlik@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-01-28 18:54:14 +00:00
l2cap_chan_hold(chan);
l2cap_chan_lock(chan);
Bluetooth: Fix refcount use-after-free issue There is no lock preventing both l2cap_sock_release() and chan->ops->close() from running at the same time. If we consider Thread A running l2cap_chan_timeout() and Thread B running l2cap_sock_release(), expected behavior is: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() where, sock_orphan() clears "sk->sk_socket" and l2cap_sock_teardown_cb() marks socket as SOCK_ZAPPED. In l2cap_sock_kill(), there is an "if-statement" that checks if both sock_orphan() and sock_teardown() has been run i.e. sk->sk_socket is NULL and socket is marked as SOCK_ZAPPED. Socket is killed if the condition is satisfied. In the race condition, following occurs: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() In this scenario, "if-statement" is true in both B::l2cap_sock_kill() and A::l2cap_sock_kill() and we hit "refcount: underflow; use-after-free" bug. Similar condition occurs at other places where teardown/sock_kill is happening: l2cap_disconnect_rsp()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_rsp()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_conn_del()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_conn_del()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_disconnect_req()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_req()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_sock_cleanup_listen()->l2cap_chan_close()->l2cap_sock_teardown_cb() l2cap_sock_cleanup_listen()->l2cap_sock_kill() Protect teardown/sock_kill and orphan/sock_kill by adding hold_lock on l2cap channel to ensure that the socket is killed only after marked as zapped and orphan. Signed-off-by: Manish Mandlik <mmandlik@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-01-28 18:54:14 +00:00
__clear_chan_timer(chan);
l2cap_chan_close(chan, ECONNRESET);
l2cap_sock_kill(sk);
Bluetooth: Fix refcount use-after-free issue There is no lock preventing both l2cap_sock_release() and chan->ops->close() from running at the same time. If we consider Thread A running l2cap_chan_timeout() and Thread B running l2cap_sock_release(), expected behavior is: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() where, sock_orphan() clears "sk->sk_socket" and l2cap_sock_teardown_cb() marks socket as SOCK_ZAPPED. In l2cap_sock_kill(), there is an "if-statement" that checks if both sock_orphan() and sock_teardown() has been run i.e. sk->sk_socket is NULL and socket is marked as SOCK_ZAPPED. Socket is killed if the condition is satisfied. In the race condition, following occurs: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() In this scenario, "if-statement" is true in both B::l2cap_sock_kill() and A::l2cap_sock_kill() and we hit "refcount: underflow; use-after-free" bug. Similar condition occurs at other places where teardown/sock_kill is happening: l2cap_disconnect_rsp()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_rsp()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_conn_del()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_conn_del()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_disconnect_req()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_req()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_sock_cleanup_listen()->l2cap_chan_close()->l2cap_sock_teardown_cb() l2cap_sock_cleanup_listen()->l2cap_sock_kill() Protect teardown/sock_kill and orphan/sock_kill by adding hold_lock on l2cap channel to ensure that the socket is killed only after marked as zapped and orphan. Signed-off-by: Manish Mandlik <mmandlik@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-01-28 18:54:14 +00:00
l2cap_chan_unlock(chan);
l2cap_chan_put(chan);
}
}
static struct l2cap_chan *l2cap_sock_new_connection_cb(struct l2cap_chan *chan)
{
struct sock *sk, *parent = chan->data;
lock_sock(parent);
/* Check for backlog size */
if (sk_acceptq_is_full(parent)) {
BT_DBG("backlog full %d", parent->sk_ack_backlog);
Bluetooth: Fix L2CAP deadlock -[0x01 Introduction We have found a programming error causing a deadlock in Bluetooth subsystem of Linux kernel. The problem is caused by missing release_sock() call when L2CAP connection creation fails due full accept queue. The issue can be reproduced with 3.15-rc5 kernel and is also present in earlier kernels. -[0x02 Details The problem occurs when multiple L2CAP connections are created to a PSM which contains listening socket (like SDP) and left pending, for example, configuration (the underlying ACL link is not disconnected between connections). When L2CAP connection request is received and listening socket is found the l2cap_sock_new_connection_cb() function (net/bluetooth/l2cap_sock.c) is called. This function locks the 'parent' socket and then checks if the accept queue is full. 1178 lock_sock(parent); 1179 1180 /* Check for backlog size */ 1181 if (sk_acceptq_is_full(parent)) { 1182 BT_DBG("backlog full %d", parent->sk_ack_backlog); 1183 return NULL; 1184 } If case the accept queue is full NULL is returned, but the 'parent' socket is not released. Thus when next L2CAP connection request is received the code blocks on lock_sock() since the parent is still locked. Also note that for connections already established and waiting for configuration to complete a timeout will occur and l2cap_chan_timeout() (net/bluetooth/l2cap_core.c) will be called. All threads calling this function will also be blocked waiting for the channel mutex since the thread which is waiting on lock_sock() alread holds the channel mutex. We were able to reproduce this by sending continuously L2CAP connection request followed by disconnection request containing invalid CID. This left the created connections pending configuration. After the deadlock occurs it is impossible to kill bluetoothd, btmon will not get any more data etc. requiring reboot to recover. -[0x03 Fix Releasing the 'parent' socket when l2cap_sock_new_connection_cb() returns NULL seems to fix the issue. Signed-off-by: Jukka Taimisto <jtt@codenomicon.com> Reported-by: Tommi Mäkilä <tmakila@codenomicon.com> Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Cc: stable@vger.kernel.org
2014-05-22 10:02:39 +00:00
release_sock(parent);
return NULL;
}
sk = l2cap_sock_alloc(sock_net(parent), NULL, BTPROTO_L2CAP,
GFP_ATOMIC, 0);
Bluetooth: Fix L2CAP deadlock -[0x01 Introduction We have found a programming error causing a deadlock in Bluetooth subsystem of Linux kernel. The problem is caused by missing release_sock() call when L2CAP connection creation fails due full accept queue. The issue can be reproduced with 3.15-rc5 kernel and is also present in earlier kernels. -[0x02 Details The problem occurs when multiple L2CAP connections are created to a PSM which contains listening socket (like SDP) and left pending, for example, configuration (the underlying ACL link is not disconnected between connections). When L2CAP connection request is received and listening socket is found the l2cap_sock_new_connection_cb() function (net/bluetooth/l2cap_sock.c) is called. This function locks the 'parent' socket and then checks if the accept queue is full. 1178 lock_sock(parent); 1179 1180 /* Check for backlog size */ 1181 if (sk_acceptq_is_full(parent)) { 1182 BT_DBG("backlog full %d", parent->sk_ack_backlog); 1183 return NULL; 1184 } If case the accept queue is full NULL is returned, but the 'parent' socket is not released. Thus when next L2CAP connection request is received the code blocks on lock_sock() since the parent is still locked. Also note that for connections already established and waiting for configuration to complete a timeout will occur and l2cap_chan_timeout() (net/bluetooth/l2cap_core.c) will be called. All threads calling this function will also be blocked waiting for the channel mutex since the thread which is waiting on lock_sock() alread holds the channel mutex. We were able to reproduce this by sending continuously L2CAP connection request followed by disconnection request containing invalid CID. This left the created connections pending configuration. After the deadlock occurs it is impossible to kill bluetoothd, btmon will not get any more data etc. requiring reboot to recover. -[0x03 Fix Releasing the 'parent' socket when l2cap_sock_new_connection_cb() returns NULL seems to fix the issue. Signed-off-by: Jukka Taimisto <jtt@codenomicon.com> Reported-by: Tommi Mäkilä <tmakila@codenomicon.com> Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Cc: stable@vger.kernel.org
2014-05-22 10:02:39 +00:00
if (!sk) {
release_sock(parent);
return NULL;
Bluetooth: Fix L2CAP deadlock -[0x01 Introduction We have found a programming error causing a deadlock in Bluetooth subsystem of Linux kernel. The problem is caused by missing release_sock() call when L2CAP connection creation fails due full accept queue. The issue can be reproduced with 3.15-rc5 kernel and is also present in earlier kernels. -[0x02 Details The problem occurs when multiple L2CAP connections are created to a PSM which contains listening socket (like SDP) and left pending, for example, configuration (the underlying ACL link is not disconnected between connections). When L2CAP connection request is received and listening socket is found the l2cap_sock_new_connection_cb() function (net/bluetooth/l2cap_sock.c) is called. This function locks the 'parent' socket and then checks if the accept queue is full. 1178 lock_sock(parent); 1179 1180 /* Check for backlog size */ 1181 if (sk_acceptq_is_full(parent)) { 1182 BT_DBG("backlog full %d", parent->sk_ack_backlog); 1183 return NULL; 1184 } If case the accept queue is full NULL is returned, but the 'parent' socket is not released. Thus when next L2CAP connection request is received the code blocks on lock_sock() since the parent is still locked. Also note that for connections already established and waiting for configuration to complete a timeout will occur and l2cap_chan_timeout() (net/bluetooth/l2cap_core.c) will be called. All threads calling this function will also be blocked waiting for the channel mutex since the thread which is waiting on lock_sock() alread holds the channel mutex. We were able to reproduce this by sending continuously L2CAP connection request followed by disconnection request containing invalid CID. This left the created connections pending configuration. After the deadlock occurs it is impossible to kill bluetoothd, btmon will not get any more data etc. requiring reboot to recover. -[0x03 Fix Releasing the 'parent' socket when l2cap_sock_new_connection_cb() returns NULL seems to fix the issue. Signed-off-by: Jukka Taimisto <jtt@codenomicon.com> Reported-by: Tommi Mäkilä <tmakila@codenomicon.com> Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Cc: stable@vger.kernel.org
2014-05-22 10:02:39 +00:00
}
Bluetooth: silence lockdep warning Since bluetooth uses multiple protocols types, to avoid lockdep warnings, we need to use different lockdep classes (one for each protocol type). This is already done in bt_sock_create but it misses a couple of cases when new connections are created. This patch corrects that to fix the following warning: <4>[ 1864.732366] ======================================================= <4>[ 1864.733030] [ INFO: possible circular locking dependency detected ] <4>[ 1864.733544] 3.0.16-mid3-00007-gc9a0f62 #3 <4>[ 1864.733883] ------------------------------------------------------- <4>[ 1864.734408] t.android.btclc/4204 is trying to acquire lock: <4>[ 1864.734869] (rfcomm_mutex){+.+.+.}, at: [<c14970ea>] rfcomm_dlc_close+0x15/0x30 <4>[ 1864.735541] <4>[ 1864.735549] but task is already holding lock: <4>[ 1864.736045] (sk_lock-AF_BLUETOOTH){+.+.+.}, at: [<c1498bf7>] lock_sock+0xa/0xc <4>[ 1864.736732] <4>[ 1864.736740] which lock already depends on the new lock. <4>[ 1864.736750] <4>[ 1864.737428] <4>[ 1864.737437] the existing dependency chain (in reverse order) is: <4>[ 1864.738016] <4>[ 1864.738023] -> #1 (sk_lock-AF_BLUETOOTH){+.+.+.}: <4>[ 1864.738549] [<c1062273>] lock_acquire+0x104/0x140 <4>[ 1864.738977] [<c13d35c1>] lock_sock_nested+0x58/0x68 <4>[ 1864.739411] [<c1493c33>] l2cap_sock_sendmsg+0x3e/0x76 <4>[ 1864.739858] [<c13d06c3>] __sock_sendmsg+0x50/0x59 <4>[ 1864.740279] [<c13d0ea2>] sock_sendmsg+0x94/0xa8 <4>[ 1864.740687] [<c13d0ede>] kernel_sendmsg+0x28/0x37 <4>[ 1864.741106] [<c14969ca>] rfcomm_send_frame+0x30/0x38 <4>[ 1864.741542] [<c1496a2a>] rfcomm_send_ua+0x58/0x5a <4>[ 1864.741959] [<c1498447>] rfcomm_run+0x441/0xb52 <4>[ 1864.742365] [<c104f095>] kthread+0x63/0x68 <4>[ 1864.742742] [<c14d5182>] kernel_thread_helper+0x6/0xd <4>[ 1864.743187] <4>[ 1864.743193] -> #0 (rfcomm_mutex){+.+.+.}: <4>[ 1864.743667] [<c1061ada>] __lock_acquire+0x988/0xc00 <4>[ 1864.744100] [<c1062273>] lock_acquire+0x104/0x140 <4>[ 1864.744519] [<c14d2c70>] __mutex_lock_common+0x3b/0x33f <4>[ 1864.744975] [<c14d303e>] mutex_lock_nested+0x2d/0x36 <4>[ 1864.745412] [<c14970ea>] rfcomm_dlc_close+0x15/0x30 <4>[ 1864.745842] [<c14990d9>] __rfcomm_sock_close+0x5f/0x6b <4>[ 1864.746288] [<c1499114>] rfcomm_sock_shutdown+0x2f/0x62 <4>[ 1864.746737] [<c13d275d>] sys_socketcall+0x1db/0x422 <4>[ 1864.747165] [<c14d42f0>] syscall_call+0x7/0xb Signed-off-by: Octavian Purdila <octavian.purdila@intel.com> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2012-01-21 22:28:34 +00:00
bt_sock_reclassify_lock(sk, BTPROTO_L2CAP);
l2cap_sock_init(sk, parent);
Bluetooth: Fix locking in bt_accept_enqueue() for BH context With commit e16337622016 ("Bluetooth: Handle bt_accept_enqueue() socket atomically") lock_sock[_nested]() is used to acquire the socket lock before manipulating the socket. lock_sock[_nested]() may block, which is problematic since bt_accept_enqueue() can be called in bottom half context (e.g. from rfcomm_connect_ind()): [<ffffff80080d81ec>] __might_sleep+0x4c/0x80 [<ffffff800876c7b0>] lock_sock_nested+0x24/0x58 [<ffffff8000d7c27c>] bt_accept_enqueue+0x48/0xd4 [bluetooth] [<ffffff8000e67d8c>] rfcomm_connect_ind+0x190/0x218 [rfcomm] Add a parameter to bt_accept_enqueue() to indicate whether the function is called from BH context, and acquire the socket lock with bh_lock_sock_nested() if that's the case. Also adapt all callers of bt_accept_enqueue() to pass the new parameter: - l2cap_sock_new_connection_cb() - uses lock_sock() to lock the parent socket => process context - rfcomm_connect_ind() - acquires the parent socket lock with bh_lock_sock() => BH context - __sco_chan_add() - called from sco_chan_add(), which is called from sco_connect(). parent is NULL, hence bt_accept_enqueue() isn't called in this code path and we can ignore it - also called from sco_conn_ready(). uses bh_lock_sock() to acquire the parent lock => BH context Fixes: e16337622016 ("Bluetooth: Handle bt_accept_enqueue() socket atomically") Signed-off-by: Matthias Kaehlcke <mka@chromium.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Cc: stable@vger.kernel.org
2019-01-03 00:11:20 +00:00
bt_accept_enqueue(parent, sk, false);
release_sock(parent);
return l2cap_pi(sk)->chan;
}
static int l2cap_sock_recv_cb(struct l2cap_chan *chan, struct sk_buff *skb)
{
struct sock *sk = chan->data;
2024-05-01 10:08:58 +00:00
struct l2cap_pinfo *pi = l2cap_pi(sk);
int err;
lock_sock(sk);
2024-05-01 10:08:58 +00:00
if (chan->mode == L2CAP_MODE_ERTM && !list_empty(&pi->rx_busy)) {
err = -ENOMEM;
goto done;
}
Bluetooth: split sk_filter in l2cap_sock_recv_cb During an audit for sk_filter(), we found that rx_busy_skb handling in l2cap_sock_recv_cb() and l2cap_sock_recvmsg() looks not quite as intended. The assumption from commit e328140fdacb ("Bluetooth: Use event-driven approach for handling ERTM receive buffer") is that errors returned from sock_queue_rcv_skb() are due to receive buffer shortage. However, nothing should prevent doing a setsockopt() with SO_ATTACH_FILTER on the socket, that could drop some of the incoming skbs when handled in sock_queue_rcv_skb(). In that case sock_queue_rcv_skb() will return with -EPERM, propagated from sk_filter() and if in L2CAP_MODE_ERTM mode, wrong assumption was that we failed due to receive buffer being full. From that point onwards, due to the to-be-dropped skb being held in rx_busy_skb, we cannot make any forward progress as rx_busy_skb is never cleared from l2cap_sock_recvmsg(), due to the filter drop verdict over and over coming from sk_filter(). Meanwhile, in l2cap_sock_recv_cb() all new incoming skbs are being dropped due to rx_busy_skb being occupied. Instead, just use __sock_queue_rcv_skb() where an error really tells that there's a receive buffer issue. Split the sk_filter() and enable it for non-segmented modes at queuing time since at this point in time the skb has already been through the ERTM state machine and it has been acked, so dropping is not allowed. Instead, for ERTM and streaming mode, call sk_filter() in l2cap_data_rcv() so the packet can be dropped before the state machine sees it. Fixes: e328140fdacb ("Bluetooth: Use event-driven approach for handling ERTM receive buffer") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2016-07-27 18:40:14 +00:00
if (chan->mode != L2CAP_MODE_ERTM &&
2024-05-01 10:08:58 +00:00
chan->mode != L2CAP_MODE_STREAMING &&
chan->mode != L2CAP_MODE_LE_FLOWCTL &&
chan->mode != L2CAP_MODE_EXT_FLOWCTL) {
Bluetooth: split sk_filter in l2cap_sock_recv_cb During an audit for sk_filter(), we found that rx_busy_skb handling in l2cap_sock_recv_cb() and l2cap_sock_recvmsg() looks not quite as intended. The assumption from commit e328140fdacb ("Bluetooth: Use event-driven approach for handling ERTM receive buffer") is that errors returned from sock_queue_rcv_skb() are due to receive buffer shortage. However, nothing should prevent doing a setsockopt() with SO_ATTACH_FILTER on the socket, that could drop some of the incoming skbs when handled in sock_queue_rcv_skb(). In that case sock_queue_rcv_skb() will return with -EPERM, propagated from sk_filter() and if in L2CAP_MODE_ERTM mode, wrong assumption was that we failed due to receive buffer being full. From that point onwards, due to the to-be-dropped skb being held in rx_busy_skb, we cannot make any forward progress as rx_busy_skb is never cleared from l2cap_sock_recvmsg(), due to the filter drop verdict over and over coming from sk_filter(). Meanwhile, in l2cap_sock_recv_cb() all new incoming skbs are being dropped due to rx_busy_skb being occupied. Instead, just use __sock_queue_rcv_skb() where an error really tells that there's a receive buffer issue. Split the sk_filter() and enable it for non-segmented modes at queuing time since at this point in time the skb has already been through the ERTM state machine and it has been acked, so dropping is not allowed. Instead, for ERTM and streaming mode, call sk_filter() in l2cap_data_rcv() so the packet can be dropped before the state machine sees it. Fixes: e328140fdacb ("Bluetooth: Use event-driven approach for handling ERTM receive buffer") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2016-07-27 18:40:14 +00:00
/* Even if no filter is attached, we could potentially
* get errors from security modules, etc.
*/
err = sk_filter(sk, skb);
if (err)
goto done;
}
err = __sock_queue_rcv_skb(sk, skb);
2024-05-01 10:08:58 +00:00
l2cap_publish_rx_avail(chan);
/* For ERTM and LE, handle a skb that doesn't fit into the recv
* buffer. This is important to do because the data frames
* have already been acked, so the skb cannot be discarded.
*
* Notify the l2cap core that the buffer is full, so the
* LOCAL_BUSY state is entered and no more frames are
* acked and reassembled until there is buffer space
* available.
*/
2024-05-01 10:08:58 +00:00
if (err < 0 &&
(chan->mode == L2CAP_MODE_ERTM ||
chan->mode == L2CAP_MODE_LE_FLOWCTL ||
chan->mode == L2CAP_MODE_EXT_FLOWCTL)) {
struct l2cap_rx_busy *rx_busy =
kmalloc(sizeof(*rx_busy), GFP_KERNEL);
if (!rx_busy) {
err = -ENOMEM;
goto done;
}
rx_busy->skb = skb;
list_add_tail(&rx_busy->list, &pi->rx_busy);
l2cap_chan_busy(chan, 1);
err = 0;
}
done:
release_sock(sk);
return err;
}
static void l2cap_sock_close_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
Bluetooth: fix use-after-free error in lock_sock_nested() use-after-free error in lock_sock_nested is reported: [ 179.140137][ T3731] ===================================================== [ 179.142675][ T3731] BUG: KMSAN: use-after-free in lock_sock_nested+0x280/0x2c0 [ 179.145494][ T3731] CPU: 4 PID: 3731 Comm: kworker/4:2 Not tainted 5.12.0-rc6+ #54 [ 179.148432][ T3731] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 179.151806][ T3731] Workqueue: events l2cap_chan_timeout [ 179.152730][ T3731] Call Trace: [ 179.153301][ T3731] dump_stack+0x24c/0x2e0 [ 179.154063][ T3731] kmsan_report+0xfb/0x1e0 [ 179.154855][ T3731] __msan_warning+0x5c/0xa0 [ 179.155579][ T3731] lock_sock_nested+0x280/0x2c0 [ 179.156436][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.157257][ T3731] l2cap_sock_teardown_cb+0xb8/0x890 [ 179.158154][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.159141][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.159994][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.160959][ T3731] ? l2cap_sock_recv_cb+0x420/0x420 [ 179.161834][ T3731] l2cap_chan_del+0x3e1/0x1d50 [ 179.162608][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.163435][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.164406][ T3731] l2cap_chan_close+0xeea/0x1050 [ 179.165189][ T3731] ? kmsan_internal_unpoison_shadow+0x42/0x70 [ 179.166180][ T3731] l2cap_chan_timeout+0x1da/0x590 [ 179.167066][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.168023][ T3731] ? l2cap_chan_create+0x560/0x560 [ 179.168818][ T3731] process_one_work+0x121d/0x1ff0 [ 179.169598][ T3731] worker_thread+0x121b/0x2370 [ 179.170346][ T3731] kthread+0x4ef/0x610 [ 179.171010][ T3731] ? process_one_work+0x1ff0/0x1ff0 [ 179.171828][ T3731] ? kthread_blkcg+0x110/0x110 [ 179.172587][ T3731] ret_from_fork+0x1f/0x30 [ 179.173348][ T3731] [ 179.173752][ T3731] Uninit was created at: [ 179.174409][ T3731] kmsan_internal_poison_shadow+0x5c/0xf0 [ 179.175373][ T3731] kmsan_slab_free+0x76/0xc0 [ 179.176060][ T3731] kfree+0x3a5/0x1180 [ 179.176664][ T3731] __sk_destruct+0x8af/0xb80 [ 179.177375][ T3731] __sk_free+0x812/0x8c0 [ 179.178032][ T3731] sk_free+0x97/0x130 [ 179.178686][ T3731] l2cap_sock_release+0x3d5/0x4d0 [ 179.179457][ T3731] sock_close+0x150/0x450 [ 179.180117][ T3731] __fput+0x6bd/0xf00 [ 179.180787][ T3731] ____fput+0x37/0x40 [ 179.181481][ T3731] task_work_run+0x140/0x280 [ 179.182219][ T3731] do_exit+0xe51/0x3e60 [ 179.182930][ T3731] do_group_exit+0x20e/0x450 [ 179.183656][ T3731] get_signal+0x2dfb/0x38f0 [ 179.184344][ T3731] arch_do_signal_or_restart+0xaa/0xe10 [ 179.185266][ T3731] exit_to_user_mode_prepare+0x2d2/0x560 [ 179.186136][ T3731] syscall_exit_to_user_mode+0x35/0x60 [ 179.186984][ T3731] do_syscall_64+0xc5/0x140 [ 179.187681][ T3731] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 179.188604][ T3731] ===================================================== In our case, there are two Thread A and B: Context: Thread A: Context: Thread B: l2cap_chan_timeout() __se_sys_shutdown() l2cap_chan_close() l2cap_sock_shutdown() l2cap_chan_del() l2cap_chan_close() l2cap_sock_teardown_cb() l2cap_sock_teardown_cb() Once l2cap_sock_teardown_cb() excuted, this sock will be marked as SOCK_ZAPPED, and can be treated as killable in l2cap_sock_kill() if sock_orphan() has excuted, at this time we close sock through sock_close() which end to call l2cap_sock_kill() like Thread C: Context: Thread C: sock_close() l2cap_sock_release() sock_orphan() l2cap_sock_kill() #free sock if refcnt is 1 If C completed, Once A or B reaches l2cap_sock_teardown_cb() again, use-after-free happened. We should set chan->data to NULL if sock is destructed, for telling teardown operation is not allowed in l2cap_sock_teardown_cb(), and also we should avoid killing an already killed socket in l2cap_sock_close_cb(). Signed-off-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-09-01 00:35:37 +00:00
if (!sk)
return;
l2cap_sock_kill(sk);
}
static void l2cap_sock_teardown_cb(struct l2cap_chan *chan, int err)
{
struct sock *sk = chan->data;
struct sock *parent;
Bluetooth: fix use-after-free error in lock_sock_nested() use-after-free error in lock_sock_nested is reported: [ 179.140137][ T3731] ===================================================== [ 179.142675][ T3731] BUG: KMSAN: use-after-free in lock_sock_nested+0x280/0x2c0 [ 179.145494][ T3731] CPU: 4 PID: 3731 Comm: kworker/4:2 Not tainted 5.12.0-rc6+ #54 [ 179.148432][ T3731] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 179.151806][ T3731] Workqueue: events l2cap_chan_timeout [ 179.152730][ T3731] Call Trace: [ 179.153301][ T3731] dump_stack+0x24c/0x2e0 [ 179.154063][ T3731] kmsan_report+0xfb/0x1e0 [ 179.154855][ T3731] __msan_warning+0x5c/0xa0 [ 179.155579][ T3731] lock_sock_nested+0x280/0x2c0 [ 179.156436][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.157257][ T3731] l2cap_sock_teardown_cb+0xb8/0x890 [ 179.158154][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.159141][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.159994][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.160959][ T3731] ? l2cap_sock_recv_cb+0x420/0x420 [ 179.161834][ T3731] l2cap_chan_del+0x3e1/0x1d50 [ 179.162608][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.163435][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.164406][ T3731] l2cap_chan_close+0xeea/0x1050 [ 179.165189][ T3731] ? kmsan_internal_unpoison_shadow+0x42/0x70 [ 179.166180][ T3731] l2cap_chan_timeout+0x1da/0x590 [ 179.167066][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.168023][ T3731] ? l2cap_chan_create+0x560/0x560 [ 179.168818][ T3731] process_one_work+0x121d/0x1ff0 [ 179.169598][ T3731] worker_thread+0x121b/0x2370 [ 179.170346][ T3731] kthread+0x4ef/0x610 [ 179.171010][ T3731] ? process_one_work+0x1ff0/0x1ff0 [ 179.171828][ T3731] ? kthread_blkcg+0x110/0x110 [ 179.172587][ T3731] ret_from_fork+0x1f/0x30 [ 179.173348][ T3731] [ 179.173752][ T3731] Uninit was created at: [ 179.174409][ T3731] kmsan_internal_poison_shadow+0x5c/0xf0 [ 179.175373][ T3731] kmsan_slab_free+0x76/0xc0 [ 179.176060][ T3731] kfree+0x3a5/0x1180 [ 179.176664][ T3731] __sk_destruct+0x8af/0xb80 [ 179.177375][ T3731] __sk_free+0x812/0x8c0 [ 179.178032][ T3731] sk_free+0x97/0x130 [ 179.178686][ T3731] l2cap_sock_release+0x3d5/0x4d0 [ 179.179457][ T3731] sock_close+0x150/0x450 [ 179.180117][ T3731] __fput+0x6bd/0xf00 [ 179.180787][ T3731] ____fput+0x37/0x40 [ 179.181481][ T3731] task_work_run+0x140/0x280 [ 179.182219][ T3731] do_exit+0xe51/0x3e60 [ 179.182930][ T3731] do_group_exit+0x20e/0x450 [ 179.183656][ T3731] get_signal+0x2dfb/0x38f0 [ 179.184344][ T3731] arch_do_signal_or_restart+0xaa/0xe10 [ 179.185266][ T3731] exit_to_user_mode_prepare+0x2d2/0x560 [ 179.186136][ T3731] syscall_exit_to_user_mode+0x35/0x60 [ 179.186984][ T3731] do_syscall_64+0xc5/0x140 [ 179.187681][ T3731] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 179.188604][ T3731] ===================================================== In our case, there are two Thread A and B: Context: Thread A: Context: Thread B: l2cap_chan_timeout() __se_sys_shutdown() l2cap_chan_close() l2cap_sock_shutdown() l2cap_chan_del() l2cap_chan_close() l2cap_sock_teardown_cb() l2cap_sock_teardown_cb() Once l2cap_sock_teardown_cb() excuted, this sock will be marked as SOCK_ZAPPED, and can be treated as killable in l2cap_sock_kill() if sock_orphan() has excuted, at this time we close sock through sock_close() which end to call l2cap_sock_kill() like Thread C: Context: Thread C: sock_close() l2cap_sock_release() sock_orphan() l2cap_sock_kill() #free sock if refcnt is 1 If C completed, Once A or B reaches l2cap_sock_teardown_cb() again, use-after-free happened. We should set chan->data to NULL if sock is destructed, for telling teardown operation is not allowed in l2cap_sock_teardown_cb(), and also we should avoid killing an already killed socket in l2cap_sock_close_cb(). Signed-off-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-09-01 00:35:37 +00:00
if (!sk)
return;
BT_DBG("chan %p state %s", chan, state_to_string(chan->state));
/* This callback can be called both for server (BT_LISTEN)
* sockets as well as "normal" ones. To avoid lockdep warnings
* with child socket locking (through l2cap_sock_cleanup_listen)
* we need separation into separate nesting levels. The simplest
* way to accomplish this is to inherit the nesting level used
* for the channel.
*/
lock_sock_nested(sk, atomic_read(&chan->nesting));
parent = bt_sk(sk)->parent;
switch (chan->state) {
case BT_OPEN:
case BT_BOUND:
case BT_CLOSED:
break;
case BT_LISTEN:
l2cap_sock_cleanup_listen(sk);
sk->sk_state = BT_CLOSED;
chan->state = BT_CLOSED;
break;
default:
sk->sk_state = BT_CLOSED;
chan->state = BT_CLOSED;
sk->sk_err = err;
if (parent) {
bt_accept_unlink(sk);
parent->sk_data_ready(parent);
} else {
sk->sk_state_change(sk);
}
break;
}
release_sock(sk);
Bluetooth: Only mark socket zapped after unlocking Since l2cap_sock_teardown_cb doesn't acquire the channel lock before setting the socket as zapped, it could potentially race with l2cap_sock_release which frees the socket. Thus, wait until the cleanup is complete before marking the socket as zapped. This race was reproduced on a JBL GO speaker after the remote device rejected L2CAP connection due to resource unavailability. Here is a dmesg log with debug logs from a repro of this bug: [ 3465.424086] Bluetooth: hci_core.c:hci_acldata_packet() hci0 len 16 handle 0x0003 flags 0x0002 [ 3465.424090] Bluetooth: hci_conn.c:hci_conn_enter_active_mode() hcon 00000000cfedd07d mode 0 [ 3465.424094] Bluetooth: l2cap_core.c:l2cap_recv_acldata() conn 000000007eae8952 len 16 flags 0x2 [ 3465.424098] Bluetooth: l2cap_core.c:l2cap_recv_frame() len 12, cid 0x0001 [ 3465.424102] Bluetooth: l2cap_core.c:l2cap_raw_recv() conn 000000007eae8952 [ 3465.424175] Bluetooth: l2cap_core.c:l2cap_sig_channel() code 0x03 len 8 id 0x0c [ 3465.424180] Bluetooth: l2cap_core.c:l2cap_connect_create_rsp() dcid 0x0045 scid 0x0000 result 0x02 status 0x00 [ 3465.424189] Bluetooth: l2cap_core.c:l2cap_chan_put() chan 000000006acf9bff orig refcnt 4 [ 3465.424196] Bluetooth: l2cap_core.c:l2cap_chan_del() chan 000000006acf9bff, conn 000000007eae8952, err 111, state BT_CONNECT [ 3465.424203] Bluetooth: l2cap_sock.c:l2cap_sock_teardown_cb() chan 000000006acf9bff state BT_CONNECT [ 3465.424221] Bluetooth: l2cap_core.c:l2cap_chan_put() chan 000000006acf9bff orig refcnt 3 [ 3465.424226] Bluetooth: hci_core.h:hci_conn_drop() hcon 00000000cfedd07d orig refcnt 6 [ 3465.424234] BUG: spinlock bad magic on CPU#2, kworker/u17:0/159 [ 3465.425626] Bluetooth: hci_sock.c:hci_sock_sendmsg() sock 000000002bb0cb64 sk 00000000a7964053 [ 3465.430330] lock: 0xffffff804410aac0, .magic: 00000000, .owner: <none>/-1, .owner_cpu: 0 [ 3465.430332] Causing a watchdog bite! Signed-off-by: Abhishek Pandit-Subedi <abhishekpandit@chromium.org> Reported-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Reviewed-by: Manish Mandlik <mmandlik@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-09-11 22:33:18 +00:00
/* Only zap after cleanup to avoid use after free race */
sock_set_flag(sk, SOCK_ZAPPED);
}
static void l2cap_sock_state_change_cb(struct l2cap_chan *chan, int state,
int err)
{
struct sock *sk = chan->data;
sk->sk_state = state;
if (err)
sk->sk_err = err;
}
static struct sk_buff *l2cap_sock_alloc_skb_cb(struct l2cap_chan *chan,
unsigned long hdr_len,
unsigned long len, int nb)
{
struct sock *sk = chan->data;
struct sk_buff *skb;
int err;
l2cap_chan_unlock(chan);
skb = bt_skb_send_alloc(sk, hdr_len + len, nb, &err);
l2cap_chan_lock(chan);
if (!skb)
return ERR_PTR(err);
/* Channel lock is released before requesting new skb and then
* reacquired thus we need to recheck channel state.
*/
if (chan->state != BT_CONNECTED) {
kfree_skb(skb);
return ERR_PTR(-ENOTCONN);
}
skb->priority = READ_ONCE(sk->sk_priority);
bt_cb(skb)->l2cap.chan = chan;
return skb;
}
static void l2cap_sock_ready_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
struct sock *parent;
lock_sock(sk);
parent = bt_sk(sk)->parent;
BT_DBG("sk %p, parent %p", sk, parent);
sk->sk_state = BT_CONNECTED;
sk->sk_state_change(sk);
if (parent)
parent->sk_data_ready(parent);
release_sock(sk);
}
static void l2cap_sock_defer_cb(struct l2cap_chan *chan)
{
struct sock *parent, *sk = chan->data;
lock_sock(sk);
parent = bt_sk(sk)->parent;
if (parent)
parent->sk_data_ready(parent);
release_sock(sk);
}
static void l2cap_sock_resume_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
if (test_and_clear_bit(FLAG_PENDING_SECURITY, &chan->flags)) {
sk->sk_state = BT_CONNECTED;
chan->state = BT_CONNECTED;
}
clear_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags);
sk->sk_state_change(sk);
}
static void l2cap_sock_set_shutdown_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
lock_sock(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
release_sock(sk);
}
static long l2cap_sock_get_sndtimeo_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
return sk->sk_sndtimeo;
}
static struct pid *l2cap_sock_get_peer_pid_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
return sk->sk_peer_pid;
}
static void l2cap_sock_suspend_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
set_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags);
sk->sk_state_change(sk);
}
static int l2cap_sock_filter(struct l2cap_chan *chan, struct sk_buff *skb)
{
struct sock *sk = chan->data;
switch (chan->mode) {
case L2CAP_MODE_ERTM:
case L2CAP_MODE_STREAMING:
return sk_filter(sk, skb);
}
return 0;
}
static const struct l2cap_ops l2cap_chan_ops = {
.name = "L2CAP Socket Interface",
.new_connection = l2cap_sock_new_connection_cb,
.recv = l2cap_sock_recv_cb,
.close = l2cap_sock_close_cb,
.teardown = l2cap_sock_teardown_cb,
.state_change = l2cap_sock_state_change_cb,
.ready = l2cap_sock_ready_cb,
.defer = l2cap_sock_defer_cb,
.resume = l2cap_sock_resume_cb,
.suspend = l2cap_sock_suspend_cb,
.set_shutdown = l2cap_sock_set_shutdown_cb,
.get_sndtimeo = l2cap_sock_get_sndtimeo_cb,
.get_peer_pid = l2cap_sock_get_peer_pid_cb,
.alloc_skb = l2cap_sock_alloc_skb_cb,
.filter = l2cap_sock_filter,
};
static void l2cap_sock_destruct(struct sock *sk)
{
2024-05-01 10:08:58 +00:00
struct l2cap_rx_busy *rx_busy, *next;
BT_DBG("sk %p", sk);
Bluetooth: fix use-after-free error in lock_sock_nested() use-after-free error in lock_sock_nested is reported: [ 179.140137][ T3731] ===================================================== [ 179.142675][ T3731] BUG: KMSAN: use-after-free in lock_sock_nested+0x280/0x2c0 [ 179.145494][ T3731] CPU: 4 PID: 3731 Comm: kworker/4:2 Not tainted 5.12.0-rc6+ #54 [ 179.148432][ T3731] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 179.151806][ T3731] Workqueue: events l2cap_chan_timeout [ 179.152730][ T3731] Call Trace: [ 179.153301][ T3731] dump_stack+0x24c/0x2e0 [ 179.154063][ T3731] kmsan_report+0xfb/0x1e0 [ 179.154855][ T3731] __msan_warning+0x5c/0xa0 [ 179.155579][ T3731] lock_sock_nested+0x280/0x2c0 [ 179.156436][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.157257][ T3731] l2cap_sock_teardown_cb+0xb8/0x890 [ 179.158154][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.159141][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.159994][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.160959][ T3731] ? l2cap_sock_recv_cb+0x420/0x420 [ 179.161834][ T3731] l2cap_chan_del+0x3e1/0x1d50 [ 179.162608][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.163435][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.164406][ T3731] l2cap_chan_close+0xeea/0x1050 [ 179.165189][ T3731] ? kmsan_internal_unpoison_shadow+0x42/0x70 [ 179.166180][ T3731] l2cap_chan_timeout+0x1da/0x590 [ 179.167066][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.168023][ T3731] ? l2cap_chan_create+0x560/0x560 [ 179.168818][ T3731] process_one_work+0x121d/0x1ff0 [ 179.169598][ T3731] worker_thread+0x121b/0x2370 [ 179.170346][ T3731] kthread+0x4ef/0x610 [ 179.171010][ T3731] ? process_one_work+0x1ff0/0x1ff0 [ 179.171828][ T3731] ? kthread_blkcg+0x110/0x110 [ 179.172587][ T3731] ret_from_fork+0x1f/0x30 [ 179.173348][ T3731] [ 179.173752][ T3731] Uninit was created at: [ 179.174409][ T3731] kmsan_internal_poison_shadow+0x5c/0xf0 [ 179.175373][ T3731] kmsan_slab_free+0x76/0xc0 [ 179.176060][ T3731] kfree+0x3a5/0x1180 [ 179.176664][ T3731] __sk_destruct+0x8af/0xb80 [ 179.177375][ T3731] __sk_free+0x812/0x8c0 [ 179.178032][ T3731] sk_free+0x97/0x130 [ 179.178686][ T3731] l2cap_sock_release+0x3d5/0x4d0 [ 179.179457][ T3731] sock_close+0x150/0x450 [ 179.180117][ T3731] __fput+0x6bd/0xf00 [ 179.180787][ T3731] ____fput+0x37/0x40 [ 179.181481][ T3731] task_work_run+0x140/0x280 [ 179.182219][ T3731] do_exit+0xe51/0x3e60 [ 179.182930][ T3731] do_group_exit+0x20e/0x450 [ 179.183656][ T3731] get_signal+0x2dfb/0x38f0 [ 179.184344][ T3731] arch_do_signal_or_restart+0xaa/0xe10 [ 179.185266][ T3731] exit_to_user_mode_prepare+0x2d2/0x560 [ 179.186136][ T3731] syscall_exit_to_user_mode+0x35/0x60 [ 179.186984][ T3731] do_syscall_64+0xc5/0x140 [ 179.187681][ T3731] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 179.188604][ T3731] ===================================================== In our case, there are two Thread A and B: Context: Thread A: Context: Thread B: l2cap_chan_timeout() __se_sys_shutdown() l2cap_chan_close() l2cap_sock_shutdown() l2cap_chan_del() l2cap_chan_close() l2cap_sock_teardown_cb() l2cap_sock_teardown_cb() Once l2cap_sock_teardown_cb() excuted, this sock will be marked as SOCK_ZAPPED, and can be treated as killable in l2cap_sock_kill() if sock_orphan() has excuted, at this time we close sock through sock_close() which end to call l2cap_sock_kill() like Thread C: Context: Thread C: sock_close() l2cap_sock_release() sock_orphan() l2cap_sock_kill() #free sock if refcnt is 1 If C completed, Once A or B reaches l2cap_sock_teardown_cb() again, use-after-free happened. We should set chan->data to NULL if sock is destructed, for telling teardown operation is not allowed in l2cap_sock_teardown_cb(), and also we should avoid killing an already killed socket in l2cap_sock_close_cb(). Signed-off-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-09-01 00:35:37 +00:00
if (l2cap_pi(sk)->chan) {
l2cap_pi(sk)->chan->data = NULL;
Bluetooth: don't attempt to free a channel that wasn't created We may currently attempt to free a channel which wasn't created due to an error in the initialization path, this would cause a NULL ptr deref. This would cause the following oops: [ 12.919073] BUG: unable to handle kernel NULL pointer dereference at 0000000000000010 [ 12.919131] IP: [<ffffffff836645c4>] l2cap_chan_put+0x34/0x50 [ 12.919135] PGD 0 [ 12.919138] Oops: 0002 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ 12.919193] Dumping ftrace buffer: [ 12.919242] (ftrace buffer empty) [ 12.919314] Modules linked in: [ 12.919318] CPU 1 [ 12.919319] Pid: 6210, comm: krfcommd Tainted: G W 3.6.0-next-20121004-sasha-00005-gb010653-dirty #30 [ 12.919374] RIP: 0010:[<ffffffff836645c4>] [<ffffffff836645c4>] l2cap_chan_put+0x34/0x50 [ 12.919377] RSP: 0000:ffff880066933c38 EFLAGS: 00010246 [ 12.919378] RAX: ffffffff8366c780 RBX: 0000000000000000 RCX: 6666666666666667 [ 12.919379] RDX: 0000000000000fa0 RSI: ffffffff84d3f79e RDI: 0000000000000010 [ 12.919381] RBP: ffff880066933c48 R08: ffffffff859989f8 R09: 0000000000000001 [ 12.919382] R10: 0000000000000000 R11: 7fffffffffffffff R12: 0000000000000000 [ 12.919383] R13: ffff88009b00a200 R14: ffff88009b00a200 R15: 0000000000000001 [ 12.919385] FS: 0000000000000000(0000) GS:ffff880033600000(0000) knlGS:0000000000000000 [ 12.919437] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 12.919440] CR2: 0000000000000010 CR3: 0000000005026000 CR4: 00000000000406e0 [ 12.919446] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 12.919451] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 12.919504] Process krfcommd (pid: 6210, threadinfo ffff880066932000, task ffff880065c4b000) [ 12.919506] Stack: [ 12.919510] ffff88009b00a200 ffff880032084000 ffff880066933c68 ffffffff8366c7bc [ 12.919513] 7fffffffffffffff ffff880032084000 ffff880066933c98 ffffffff833ae0ae [ 12.919516] ffff880066933ca8 0000000000000000 0000000000000000 ffff88009b00a200 [ 12.919517] Call Trace: [ 12.919522] [<ffffffff8366c7bc>] l2cap_sock_destruct+0x3c/0x80 [ 12.919527] [<ffffffff833ae0ae>] __sk_free+0x1e/0x1f0 [ 12.919530] [<ffffffff833ae2f7>] sk_free+0x17/0x20 [ 12.919585] [<ffffffff8366ca4e>] l2cap_sock_alloc.constprop.5+0x9e/0xd0 [ 12.919591] [<ffffffff8366cb9e>] l2cap_sock_create+0x7e/0x100 [ 12.919652] [<ffffffff83a4f32a>] ? _raw_read_lock+0x6a/0x80 [ 12.919658] [<ffffffff836402c4>] ? bt_sock_create+0x74/0x110 [ 12.919660] [<ffffffff83640308>] bt_sock_create+0xb8/0x110 [ 12.919664] [<ffffffff833aa232>] __sock_create+0x282/0x3b0 [ 12.919720] [<ffffffff833aa0b0>] ? __sock_create+0x100/0x3b0 [ 12.919725] [<ffffffff836785b0>] ? rfcomm_process_sessions+0x17e0/0x17e0 [ 12.919779] [<ffffffff833aa37f>] sock_create_kern+0x1f/0x30 [ 12.919784] [<ffffffff83675714>] rfcomm_l2sock_create+0x44/0x70 [ 12.919787] [<ffffffff836785b0>] ? rfcomm_process_sessions+0x17e0/0x17e0 [ 12.919790] [<ffffffff836785fe>] rfcomm_run+0x4e/0x1f0 [ 12.919846] [<ffffffff836785b0>] ? rfcomm_process_sessions+0x17e0/0x17e0 [ 12.919852] [<ffffffff81138ee3>] kthread+0xe3/0xf0 [ 12.919908] [<ffffffff8117b12e>] ? put_lock_stats.isra.14+0xe/0x40 [ 12.919914] [<ffffffff81138e00>] ? flush_kthread_work+0x1f0/0x1f0 [ 12.919968] [<ffffffff83a5077c>] ret_from_fork+0x7c/0x90 [ 12.919973] [<ffffffff81138e00>] ? flush_kthread_work+0x1f0/0x1f0 [ 12.920161] Code: 83 ec 08 f6 05 ff 58 44 02 04 74 1b 8b 4f 10 48 89 fa 48 c7 c6 d9 d7 d4 84 48 c7 c7 80 9e aa 85 31 c0 e8 80 ac 3a fe 48 8d 7b 10 <f0> 83 6b 10 01 0f 94 c0 84 c0 74 05 e8 8b e0 ff ff 48 83 c4 08 [ 12.920165] RIP [<ffffffff836645c4>] l2cap_chan_put+0x34/0x50 [ 12.920166] RSP <ffff880066933c38> [ 12.920167] CR2: 0000000000000010 [ 12.920417] ---[ end trace 5a9114e8a158ab84 ]--- Introduced in commit 61d6ef3e ("Bluetooth: Make better use of l2cap_chan reference counting"). Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2012-10-08 20:48:32 +00:00
l2cap_chan_put(l2cap_pi(sk)->chan);
Bluetooth: fix use-after-free error in lock_sock_nested() use-after-free error in lock_sock_nested is reported: [ 179.140137][ T3731] ===================================================== [ 179.142675][ T3731] BUG: KMSAN: use-after-free in lock_sock_nested+0x280/0x2c0 [ 179.145494][ T3731] CPU: 4 PID: 3731 Comm: kworker/4:2 Not tainted 5.12.0-rc6+ #54 [ 179.148432][ T3731] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 179.151806][ T3731] Workqueue: events l2cap_chan_timeout [ 179.152730][ T3731] Call Trace: [ 179.153301][ T3731] dump_stack+0x24c/0x2e0 [ 179.154063][ T3731] kmsan_report+0xfb/0x1e0 [ 179.154855][ T3731] __msan_warning+0x5c/0xa0 [ 179.155579][ T3731] lock_sock_nested+0x280/0x2c0 [ 179.156436][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.157257][ T3731] l2cap_sock_teardown_cb+0xb8/0x890 [ 179.158154][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.159141][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.159994][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.160959][ T3731] ? l2cap_sock_recv_cb+0x420/0x420 [ 179.161834][ T3731] l2cap_chan_del+0x3e1/0x1d50 [ 179.162608][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.163435][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.164406][ T3731] l2cap_chan_close+0xeea/0x1050 [ 179.165189][ T3731] ? kmsan_internal_unpoison_shadow+0x42/0x70 [ 179.166180][ T3731] l2cap_chan_timeout+0x1da/0x590 [ 179.167066][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.168023][ T3731] ? l2cap_chan_create+0x560/0x560 [ 179.168818][ T3731] process_one_work+0x121d/0x1ff0 [ 179.169598][ T3731] worker_thread+0x121b/0x2370 [ 179.170346][ T3731] kthread+0x4ef/0x610 [ 179.171010][ T3731] ? process_one_work+0x1ff0/0x1ff0 [ 179.171828][ T3731] ? kthread_blkcg+0x110/0x110 [ 179.172587][ T3731] ret_from_fork+0x1f/0x30 [ 179.173348][ T3731] [ 179.173752][ T3731] Uninit was created at: [ 179.174409][ T3731] kmsan_internal_poison_shadow+0x5c/0xf0 [ 179.175373][ T3731] kmsan_slab_free+0x76/0xc0 [ 179.176060][ T3731] kfree+0x3a5/0x1180 [ 179.176664][ T3731] __sk_destruct+0x8af/0xb80 [ 179.177375][ T3731] __sk_free+0x812/0x8c0 [ 179.178032][ T3731] sk_free+0x97/0x130 [ 179.178686][ T3731] l2cap_sock_release+0x3d5/0x4d0 [ 179.179457][ T3731] sock_close+0x150/0x450 [ 179.180117][ T3731] __fput+0x6bd/0xf00 [ 179.180787][ T3731] ____fput+0x37/0x40 [ 179.181481][ T3731] task_work_run+0x140/0x280 [ 179.182219][ T3731] do_exit+0xe51/0x3e60 [ 179.182930][ T3731] do_group_exit+0x20e/0x450 [ 179.183656][ T3731] get_signal+0x2dfb/0x38f0 [ 179.184344][ T3731] arch_do_signal_or_restart+0xaa/0xe10 [ 179.185266][ T3731] exit_to_user_mode_prepare+0x2d2/0x560 [ 179.186136][ T3731] syscall_exit_to_user_mode+0x35/0x60 [ 179.186984][ T3731] do_syscall_64+0xc5/0x140 [ 179.187681][ T3731] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 179.188604][ T3731] ===================================================== In our case, there are two Thread A and B: Context: Thread A: Context: Thread B: l2cap_chan_timeout() __se_sys_shutdown() l2cap_chan_close() l2cap_sock_shutdown() l2cap_chan_del() l2cap_chan_close() l2cap_sock_teardown_cb() l2cap_sock_teardown_cb() Once l2cap_sock_teardown_cb() excuted, this sock will be marked as SOCK_ZAPPED, and can be treated as killable in l2cap_sock_kill() if sock_orphan() has excuted, at this time we close sock through sock_close() which end to call l2cap_sock_kill() like Thread C: Context: Thread C: sock_close() l2cap_sock_release() sock_orphan() l2cap_sock_kill() #free sock if refcnt is 1 If C completed, Once A or B reaches l2cap_sock_teardown_cb() again, use-after-free happened. We should set chan->data to NULL if sock is destructed, for telling teardown operation is not allowed in l2cap_sock_teardown_cb(), and also we should avoid killing an already killed socket in l2cap_sock_close_cb(). Signed-off-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-09-01 00:35:37 +00:00
}
2024-05-01 10:08:58 +00:00
list_for_each_entry_safe(rx_busy, next, &l2cap_pi(sk)->rx_busy, list) {
kfree_skb(rx_busy->skb);
list_del(&rx_busy->list);
kfree(rx_busy);
}
skb_queue_purge(&sk->sk_receive_queue);
skb_queue_purge(&sk->sk_write_queue);
}
static void l2cap_skb_msg_name(struct sk_buff *skb, void *msg_name,
int *msg_namelen)
{
DECLARE_SOCKADDR(struct sockaddr_l2 *, la, msg_name);
memset(la, 0, sizeof(struct sockaddr_l2));
la->l2_family = AF_BLUETOOTH;
la->l2_psm = bt_cb(skb)->l2cap.psm;
bacpy(&la->l2_bdaddr, &bt_cb(skb)->l2cap.bdaddr);
*msg_namelen = sizeof(struct sockaddr_l2);
}
static void l2cap_sock_init(struct sock *sk, struct sock *parent)
{
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
BT_DBG("sk %p", sk);
if (parent) {
struct l2cap_chan *pchan = l2cap_pi(parent)->chan;
sk->sk_type = parent->sk_type;
bt_sk(sk)->flags = bt_sk(parent)->flags;
chan->chan_type = pchan->chan_type;
chan->imtu = pchan->imtu;
chan->omtu = pchan->omtu;
chan->conf_state = pchan->conf_state;
chan->mode = pchan->mode;
chan->fcs = pchan->fcs;
chan->max_tx = pchan->max_tx;
chan->tx_win = pchan->tx_win;
chan->tx_win_max = pchan->tx_win_max;
chan->sec_level = pchan->sec_level;
chan->flags = pchan->flags;
chan->tx_credits = pchan->tx_credits;
chan->rx_credits = pchan->rx_credits;
if (chan->chan_type == L2CAP_CHAN_FIXED) {
chan->scid = pchan->scid;
chan->dcid = pchan->scid;
}
security_sk_clone(parent, sk);
} else {
switch (sk->sk_type) {
case SOCK_RAW:
chan->chan_type = L2CAP_CHAN_RAW;
break;
case SOCK_DGRAM:
chan->chan_type = L2CAP_CHAN_CONN_LESS;
bt_sk(sk)->skb_msg_name = l2cap_skb_msg_name;
break;
case SOCK_SEQPACKET:
case SOCK_STREAM:
chan->chan_type = L2CAP_CHAN_CONN_ORIENTED;
break;
}
chan->imtu = L2CAP_DEFAULT_MTU;
chan->omtu = 0;
if (!disable_ertm && sk->sk_type == SOCK_STREAM) {
chan->mode = L2CAP_MODE_ERTM;
set_bit(CONF_STATE2_DEVICE, &chan->conf_state);
} else {
chan->mode = L2CAP_MODE_BASIC;
}
l2cap_chan_set_defaults(chan);
}
/* Default config options */
chan->flush_to = L2CAP_DEFAULT_FLUSH_TO;
chan->data = sk;
chan->ops = &l2cap_chan_ops;
2024-05-01 10:08:58 +00:00
l2cap_publish_rx_avail(chan);
}
static struct proto l2cap_proto = {
.name = "L2CAP",
.owner = THIS_MODULE,
.obj_size = sizeof(struct l2cap_pinfo)
};
static struct sock *l2cap_sock_alloc(struct net *net, struct socket *sock,
int proto, gfp_t prio, int kern)
{
struct sock *sk;
struct l2cap_chan *chan;
sk = bt_sock_alloc(net, sock, &l2cap_proto, proto, prio, kern);
if (!sk)
return NULL;
sk->sk_destruct = l2cap_sock_destruct;
sk->sk_sndtimeo = L2CAP_CONN_TIMEOUT;
2024-05-01 10:08:58 +00:00
INIT_LIST_HEAD(&l2cap_pi(sk)->rx_busy);
chan = l2cap_chan_create();
if (!chan) {
sk_free(sk);
return NULL;
}
l2cap_chan_hold(chan);
l2cap_pi(sk)->chan = chan;
return sk;
}
static int l2cap_sock_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
BT_DBG("sock %p", sock);
sock->state = SS_UNCONNECTED;
if (sock->type != SOCK_SEQPACKET && sock->type != SOCK_STREAM &&
sock->type != SOCK_DGRAM && sock->type != SOCK_RAW)
return -ESOCKTNOSUPPORT;
if (sock->type == SOCK_RAW && !kern && !capable(CAP_NET_RAW))
return -EPERM;
sock->ops = &l2cap_sock_ops;
sk = l2cap_sock_alloc(net, sock, protocol, GFP_ATOMIC, kern);
if (!sk)
return -ENOMEM;
l2cap_sock_init(sk, NULL);
bt_sock_link(&l2cap_sk_list, sk);
return 0;
}
static const struct proto_ops l2cap_sock_ops = {
.family = PF_BLUETOOTH,
.owner = THIS_MODULE,
.release = l2cap_sock_release,
.bind = l2cap_sock_bind,
.connect = l2cap_sock_connect,
.listen = l2cap_sock_listen,
.accept = l2cap_sock_accept,
.getname = l2cap_sock_getname,
.sendmsg = l2cap_sock_sendmsg,
.recvmsg = l2cap_sock_recvmsg,
.poll = bt_sock_poll,
.ioctl = bt_sock_ioctl,
.gettstamp = sock_gettstamp,
.mmap = sock_no_mmap,
.socketpair = sock_no_socketpair,
.shutdown = l2cap_sock_shutdown,
.setsockopt = l2cap_sock_setsockopt,
.getsockopt = l2cap_sock_getsockopt
};
static const struct net_proto_family l2cap_sock_family_ops = {
.family = PF_BLUETOOTH,
.owner = THIS_MODULE,
.create = l2cap_sock_create,
};
int __init l2cap_init_sockets(void)
{
int err;
BUILD_BUG_ON(sizeof(struct sockaddr_l2) > sizeof(struct sockaddr));
err = proto_register(&l2cap_proto, 0);
if (err < 0)
return err;
err = bt_sock_register(BTPROTO_L2CAP, &l2cap_sock_family_ops);
if (err < 0) {
BT_ERR("L2CAP socket registration failed");
goto error;
}
err = bt_procfs_init(&init_net, "l2cap", &l2cap_sk_list,
NULL);
if (err < 0) {
BT_ERR("Failed to create L2CAP proc file");
bt_sock_unregister(BTPROTO_L2CAP);
goto error;
}
BT_INFO("L2CAP socket layer initialized");
return 0;
error:
proto_unregister(&l2cap_proto);
return err;
}
void l2cap_cleanup_sockets(void)
{
bt_procfs_cleanup(&init_net, "l2cap");
bt_sock_unregister(BTPROTO_L2CAP);
proto_unregister(&l2cap_proto);
}