linux-stable/arch/riscv/kernel/cpufeature.c

466 lines
13 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copied from arch/arm64/kernel/cpufeature.c
*
* Copyright (C) 2015 ARM Ltd.
* Copyright (C) 2017 SiFive
*/
#include <linux/acpi.h>
#include <linux/bitmap.h>
#include <linux/ctype.h>
#include <linux/log2.h>
RISC-V: take text_mutex during alternative patching Guenter reported a splat during boot, that Samuel pointed out was the lockdep assertion failing in patch_insn_write(): WARNING: CPU: 0 PID: 0 at arch/riscv/kernel/patch.c:63 patch_insn_write+0x222/0x2f6 epc : patch_insn_write+0x222/0x2f6 ra : patch_insn_write+0x21e/0x2f6 epc : ffffffff800068c6 ra : ffffffff800068c2 sp : ffffffff81803df0 gp : ffffffff81a1ab78 tp : ffffffff81814f80 t0 : ffffffffffffe000 t1 : 0000000000000001 t2 : 4c45203a76637369 s0 : ffffffff81803e40 s1 : 0000000000000004 a0 : 0000000000000000 a1 : ffffffffffffffff a2 : 0000000000000004 a3 : 0000000000000000 a4 : 0000000000000001 a5 : 0000000000000000 a6 : 0000000000000000 a7 : 0000000052464e43 s2 : ffffffff80b4889c s3 : 000000000000082c s4 : ffffffff80b48828 s5 : 0000000000000828 s6 : ffffffff8131a0a0 s7 : 0000000000000fff s8 : 0000000008000200 s9 : ffffffff8131a520 s10: 0000000000000018 s11: 000000000000000b t3 : 0000000000000001 t4 : 000000000000000d t5 : ffffffffd8180000 t6 : ffffffff81803bc8 status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003 [<ffffffff800068c6>] patch_insn_write+0x222/0x2f6 [<ffffffff80006a36>] patch_text_nosync+0xc/0x2a [<ffffffff80003b86>] riscv_cpufeature_patch_func+0x52/0x98 [<ffffffff80003348>] _apply_alternatives+0x46/0x86 [<ffffffff80c02d36>] apply_boot_alternatives+0x3c/0xfa [<ffffffff80c03ad8>] setup_arch+0x584/0x5b8 [<ffffffff80c0075a>] start_kernel+0xa2/0x8f8 This issue was exposed by 702e64550b12 ("riscv: fpu: switch has_fpu() to riscv_has_extension_likely()"), as it is the patching in has_fpu() that triggers the splats in Guenter's report. Take the text_mutex before doing any code patching to satisfy lockdep. Fixes: ff689fd21cb1 ("riscv: add RISC-V Svpbmt extension support") Fixes: a35707c3d850 ("riscv: add memory-type errata for T-Head") Fixes: 1a0e5dbd3723 ("riscv: sifive: Add SiFive alternative ports") Reported-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/all/20230212154333.GA3760469@roeck-us.net/ Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Samuel Holland <samuel@sholland.org> Tested-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20230212194735.491785-1-conor@kernel.org Cc: stable@vger.kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-02-12 19:47:36 +00:00
#include <linux/memory.h>
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
#include <linux/module.h>
#include <linux/of.h>
#include <asm/acpi.h>
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
#include <asm/alternative.h>
#include <asm/cacheflush.h>
#include <asm/cpufeature.h>
#include <asm/hwcap.h>
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
#include <asm/patch.h>
#include <asm/processor.h>
#include <asm/vector.h>
#define NUM_ALPHA_EXTS ('z' - 'a' + 1)
unsigned long elf_hwcap __read_mostly;
/* Host ISA bitmap */
static DECLARE_BITMAP(riscv_isa, RISCV_ISA_EXT_MAX) __read_mostly;
/* Per-cpu ISA extensions. */
struct riscv_isainfo hart_isa[NR_CPUS];
RISC-V: hwprobe: Support probing of misaligned access performance This allows userspace to select various routines to use based on the performance of misaligned access on the target hardware. Rather than adding DT bindings, this change taps into the alternatives mechanism used to probe CPU errata. Add a new function pointer alongside the vendor-specific errata_patch_func() that probes for desirable errata (otherwise known as "features"). Unlike the errata_patch_func(), this function is called on each CPU as it comes up, so it can save feature information per-CPU. The T-head C906 has fast unaligned access, both as defined by GCC [1], and in performing a basic benchmark, which determined that byte copies are >50% slower than a misaligned word copy of the same data size (source for this test at [2]): bytecopy size f000 count 50000 offset 0 took 31664899 us wordcopy size f000 count 50000 offset 0 took 5180919 us wordcopy size f000 count 50000 offset 1 took 13416949 us [1] https://github.com/gcc-mirror/gcc/blob/master/gcc/config/riscv/riscv.cc#L353 [2] https://pastebin.com/EPXvDHSW Co-developed-by: Palmer Dabbelt <palmer@rivosinc.com> Signed-off-by: Evan Green <evan@rivosinc.com> Reviewed-by: Heiko Stuebner <heiko.stuebner@vrull.eu> Tested-by: Heiko Stuebner <heiko.stuebner@vrull.eu> Reviewed-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Paul Walmsley <paul.walmsley@sifive.com> Link: https://lore.kernel.org/r/20230407231103.2622178-5-evan@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-04-07 23:11:01 +00:00
/* Performance information */
DEFINE_PER_CPU(long, misaligned_access_speed);
/**
* riscv_isa_extension_base() - Get base extension word
*
* @isa_bitmap: ISA bitmap to use
* Return: base extension word as unsigned long value
*
* NOTE: If isa_bitmap is NULL then Host ISA bitmap will be used.
*/
unsigned long riscv_isa_extension_base(const unsigned long *isa_bitmap)
{
if (!isa_bitmap)
return riscv_isa[0];
return isa_bitmap[0];
}
EXPORT_SYMBOL_GPL(riscv_isa_extension_base);
/**
* __riscv_isa_extension_available() - Check whether given extension
* is available or not
*
* @isa_bitmap: ISA bitmap to use
* @bit: bit position of the desired extension
* Return: true or false
*
* NOTE: If isa_bitmap is NULL then Host ISA bitmap will be used.
*/
bool __riscv_isa_extension_available(const unsigned long *isa_bitmap, int bit)
{
const unsigned long *bmap = (isa_bitmap) ? isa_bitmap : riscv_isa;
if (bit >= RISCV_ISA_EXT_MAX)
return false;
return test_bit(bit, bmap) ? true : false;
}
EXPORT_SYMBOL_GPL(__riscv_isa_extension_available);
static bool riscv_isa_extension_check(int id)
{
switch (id) {
case RISCV_ISA_EXT_ZICBOM:
if (!riscv_cbom_block_size) {
pr_err("Zicbom detected in ISA string, disabling as no cbom-block-size found\n");
return false;
} else if (!is_power_of_2(riscv_cbom_block_size)) {
pr_err("Zicbom disabled as cbom-block-size present, but is not a power-of-2\n");
return false;
}
return true;
case RISCV_ISA_EXT_ZICBOZ:
if (!riscv_cboz_block_size) {
pr_err("Zicboz detected in ISA string, but no cboz-block-size found\n");
return false;
} else if (!is_power_of_2(riscv_cboz_block_size)) {
pr_err("cboz-block-size present, but is not a power-of-2\n");
return false;
}
return true;
}
return true;
}
void __init riscv_fill_hwcap(void)
{
struct device_node *node;
const char *isa;
char print_str[NUM_ALPHA_EXTS + 1];
int i, j, rc;
unsigned long isa2hwcap[26] = {0};
struct acpi_table_header *rhct;
acpi_status status;
unsigned int cpu;
isa2hwcap['i' - 'a'] = COMPAT_HWCAP_ISA_I;
isa2hwcap['m' - 'a'] = COMPAT_HWCAP_ISA_M;
isa2hwcap['a' - 'a'] = COMPAT_HWCAP_ISA_A;
isa2hwcap['f' - 'a'] = COMPAT_HWCAP_ISA_F;
isa2hwcap['d' - 'a'] = COMPAT_HWCAP_ISA_D;
isa2hwcap['c' - 'a'] = COMPAT_HWCAP_ISA_C;
isa2hwcap['v' - 'a'] = COMPAT_HWCAP_ISA_V;
elf_hwcap = 0;
bitmap_zero(riscv_isa, RISCV_ISA_EXT_MAX);
if (!acpi_disabled) {
status = acpi_get_table(ACPI_SIG_RHCT, 0, &rhct);
if (ACPI_FAILURE(status))
return;
}
for_each_possible_cpu(cpu) {
struct riscv_isainfo *isainfo = &hart_isa[cpu];
unsigned long this_hwcap = 0;
if (acpi_disabled) {
node = of_cpu_device_node_get(cpu);
if (!node) {
pr_warn("Unable to find cpu node\n");
continue;
}
rc = of_property_read_string(node, "riscv,isa", &isa);
of_node_put(node);
if (rc) {
pr_warn("Unable to find \"riscv,isa\" devicetree entry\n");
continue;
}
} else {
rc = acpi_get_riscv_isa(rhct, cpu, &isa);
if (rc < 0) {
pr_warn("Unable to get ISA for the hart - %d\n", cpu);
continue;
}
}
/*
* For all possible cpus, we have already validated in
* the boot process that they at least contain "rv" and
* whichever of "32"/"64" this kernel supports, and so this
* section can be skipped.
*/
isa += 4;
RISC-V: remove decrement/increment dance in ISA string parser While expanding on the comments in the ISA string parsing code, I noticed that the conditional decrement of `isa` at the end of the loop was a bit odd. The parsing code expects that at the start of the for loop, `isa` will point to the first character of the next unparsed extension. However, depending on what the next extension is, this may not be true. Unless the next extension is a multi-letter extension preceded by an underscore, `isa` will either point to the string's null-terminator or to the first character of the next extension, once the switch statement has been evaluated. Obviously incrementing `isa` at the end of the loop could cause it to increment past the null terminator or miss a single letter extension, so `isa` is conditionally decremented, just so that the loop can increment it again. It's easier to understand the code if, instead of this decrement + increment dance, we instead use a while loop & rely on the handling of individual extension types to leave `isa` pointing to the first character of the next extension. As already mentioned, this won't be the case where the following extension is multi-letter & preceded by an underscore. To handle that, invert the check and increment rather than decrement. Hopefully this eliminates a "huh?!?" moment the next time somebody tries to understand this code. Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Sunil V L <sunilvl@ventanamicro.com> Link: https://lore.kernel.org/r/20230607-estate-left-f20faabefb89@spud Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-06-07 20:28:29 +00:00
while (*isa) {
const char *ext = isa++;
const char *ext_end = isa;
bool ext_long = false, ext_err = false;
switch (*ext) {
case 's':
/*
* Workaround for invalid single-letter 's' & 'u'(QEMU).
* No need to set the bit in riscv_isa as 's' & 'u' are
* not valid ISA extensions. It works until multi-letter
* extension starting with "Su" appears.
*/
if (ext[-1] != '_' && ext[1] == 'u') {
++isa;
ext_err = true;
break;
}
fallthrough;
case 'S':
case 'x':
case 'X':
case 'z':
case 'Z':
/*
* Before attempting to parse the extension itself, we find its end.
* As multi-letter extensions must be split from other multi-letter
* extensions with an "_", the end of a multi-letter extension will
* either be the null character or the "_" at the start of the next
* multi-letter extension.
*
* Next, as the extensions version is currently ignored, we
* eliminate that portion. This is done by parsing backwards from
* the end of the extension, removing any numbers. This may be a
* major or minor number however, so the process is repeated if a
* minor number was found.
*
* ext_end is intended to represent the first character *after* the
* name portion of an extension, but will be decremented to the last
* character itself while eliminating the extensions version number.
* A simple re-increment solves this problem.
*/
ext_long = true;
for (; *isa && *isa != '_'; ++isa)
if (unlikely(!isalnum(*isa)))
ext_err = true;
ext_end = isa;
if (unlikely(ext_err))
break;
if (!isdigit(ext_end[-1]))
break;
while (isdigit(*--ext_end))
;
if (tolower(ext_end[0]) != 'p' || !isdigit(ext_end[-1])) {
++ext_end;
break;
}
while (isdigit(*--ext_end))
;
++ext_end;
break;
default:
/*
* Things are a little easier for single-letter extensions, as they
* are parsed forwards.
*
* After checking that our starting position is valid, we need to
* ensure that, when isa was incremented at the start of the loop,
* that it arrived at the start of the next extension.
*
* If we are already on a non-digit, there is nothing to do. Either
* we have a multi-letter extension's _, or the start of an
* extension.
*
* Otherwise we have found the current extension's major version
* number. Parse past it, and a subsequent p/minor version number
* if present. The `p` extension must not appear immediately after
* a number, so there is no fear of missing it.
*
*/
if (unlikely(!isalpha(*ext))) {
ext_err = true;
break;
}
if (!isdigit(*isa))
break;
while (isdigit(*++isa))
;
if (tolower(*isa) != 'p')
break;
if (!isdigit(*++isa)) {
--isa;
break;
}
while (isdigit(*++isa))
;
break;
}
/*
* The parser expects that at the start of an iteration isa points to the
RISC-V: remove decrement/increment dance in ISA string parser While expanding on the comments in the ISA string parsing code, I noticed that the conditional decrement of `isa` at the end of the loop was a bit odd. The parsing code expects that at the start of the for loop, `isa` will point to the first character of the next unparsed extension. However, depending on what the next extension is, this may not be true. Unless the next extension is a multi-letter extension preceded by an underscore, `isa` will either point to the string's null-terminator or to the first character of the next extension, once the switch statement has been evaluated. Obviously incrementing `isa` at the end of the loop could cause it to increment past the null terminator or miss a single letter extension, so `isa` is conditionally decremented, just so that the loop can increment it again. It's easier to understand the code if, instead of this decrement + increment dance, we instead use a while loop & rely on the handling of individual extension types to leave `isa` pointing to the first character of the next extension. As already mentioned, this won't be the case where the following extension is multi-letter & preceded by an underscore. To handle that, invert the check and increment rather than decrement. Hopefully this eliminates a "huh?!?" moment the next time somebody tries to understand this code. Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Sunil V L <sunilvl@ventanamicro.com> Link: https://lore.kernel.org/r/20230607-estate-left-f20faabefb89@spud Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-06-07 20:28:29 +00:00
* first character of the next extension. As we stop parsing an extension
* on meeting a non-alphanumeric character, an extra increment is needed
* where the succeeding extension is a multi-letter prefixed with an "_".
*/
RISC-V: remove decrement/increment dance in ISA string parser While expanding on the comments in the ISA string parsing code, I noticed that the conditional decrement of `isa` at the end of the loop was a bit odd. The parsing code expects that at the start of the for loop, `isa` will point to the first character of the next unparsed extension. However, depending on what the next extension is, this may not be true. Unless the next extension is a multi-letter extension preceded by an underscore, `isa` will either point to the string's null-terminator or to the first character of the next extension, once the switch statement has been evaluated. Obviously incrementing `isa` at the end of the loop could cause it to increment past the null terminator or miss a single letter extension, so `isa` is conditionally decremented, just so that the loop can increment it again. It's easier to understand the code if, instead of this decrement + increment dance, we instead use a while loop & rely on the handling of individual extension types to leave `isa` pointing to the first character of the next extension. As already mentioned, this won't be the case where the following extension is multi-letter & preceded by an underscore. To handle that, invert the check and increment rather than decrement. Hopefully this eliminates a "huh?!?" moment the next time somebody tries to understand this code. Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Sunil V L <sunilvl@ventanamicro.com> Link: https://lore.kernel.org/r/20230607-estate-left-f20faabefb89@spud Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-06-07 20:28:29 +00:00
if (*isa == '_')
++isa;
#define SET_ISA_EXT_MAP(name, bit) \
do { \
if ((ext_end - ext == sizeof(name) - 1) && \
!strncasecmp(ext, name, sizeof(name) - 1) && \
riscv_isa_extension_check(bit)) \
set_bit(bit, isainfo->isa); \
} while (false) \
if (unlikely(ext_err))
continue;
if (!ext_long) {
int nr = tolower(*ext) - 'a';
if (riscv_isa_extension_check(nr)) {
this_hwcap |= isa2hwcap[nr];
set_bit(nr, isainfo->isa);
}
} else {
/* sorted alphabetically */
SET_ISA_EXT_MAP("smaia", RISCV_ISA_EXT_SMAIA);
SET_ISA_EXT_MAP("ssaia", RISCV_ISA_EXT_SSAIA);
SET_ISA_EXT_MAP("sscofpmf", RISCV_ISA_EXT_SSCOFPMF);
SET_ISA_EXT_MAP("sstc", RISCV_ISA_EXT_SSTC);
SET_ISA_EXT_MAP("svinval", RISCV_ISA_EXT_SVINVAL);
SET_ISA_EXT_MAP("svnapot", RISCV_ISA_EXT_SVNAPOT);
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
SET_ISA_EXT_MAP("svpbmt", RISCV_ISA_EXT_SVPBMT);
SET_ISA_EXT_MAP("zba", RISCV_ISA_EXT_ZBA);
SET_ISA_EXT_MAP("zbb", RISCV_ISA_EXT_ZBB);
SET_ISA_EXT_MAP("zbs", RISCV_ISA_EXT_ZBS);
SET_ISA_EXT_MAP("zicbom", RISCV_ISA_EXT_ZICBOM);
SET_ISA_EXT_MAP("zicboz", RISCV_ISA_EXT_ZICBOZ);
SET_ISA_EXT_MAP("zihintpause", RISCV_ISA_EXT_ZIHINTPAUSE);
}
#undef SET_ISA_EXT_MAP
}
/*
* These ones were as they were part of the base ISA when the
* port & dt-bindings were upstreamed, and so can be set
* unconditionally where `i` is in riscv,isa on DT systems.
*/
if (acpi_disabled) {
set_bit(RISCV_ISA_EXT_ZICSR, isainfo->isa);
set_bit(RISCV_ISA_EXT_ZIFENCEI, isainfo->isa);
Merge patch series "ISA string parser cleanups" Conor Dooley <conor@kernel.org> says: From: Conor Dooley <conor.dooley@microchip.com> Here are some bits that were discussed with Drew on the "should we allow caps" threads that I have now created patches for: - splitting of riscv_of_processor_hartid() into two distinct functions, one for use purely during early boot, prior to the establishment of the possible-cpus mask & another to fit the other current use-cases - that then allows us to then completely skip some validation of the hartid in the parser - the biggest diff in the series is a rework of the comments in the parser, as I have mostly found the existing (sparse) ones to not be all that helpful whenever I have to go back and look at it - from writing the comments, I found a conditional doing a bit of a dance that I found counter-intuitive, so I've had a go at making that match what I would expect a little better - `i` implies 4 other extensions, so add them as extensions and set them for the craic. Sure why not like... * b4-shazam-merge: RISC-V: always report presence of extensions formerly part of the base ISA dt-bindings: riscv: explicitly mention assumption of Zicntr & Zihpm support RISC-V: remove decrement/increment dance in ISA string parser RISC-V: rework comments in ISA string parser RISC-V: validate riscv,isa at boot, not during ISA string parsing RISC-V: split early & late of_node to hartid mapping RISC-V: simplify register width check in ISA string parsing Link: https://lore.kernel.org/r/20230607-audacity-overhaul-82bb867a825f@spud Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-06-21 14:49:09 +00:00
set_bit(RISCV_ISA_EXT_ZICNTR, isainfo->isa);
set_bit(RISCV_ISA_EXT_ZIHPM, isainfo->isa);
}
/*
* All "okay" hart should have same isa. Set HWCAP based on
* common capabilities of every "okay" hart, in case they don't
* have.
*/
if (elf_hwcap)
elf_hwcap &= this_hwcap;
else
elf_hwcap = this_hwcap;
if (bitmap_empty(riscv_isa, RISCV_ISA_EXT_MAX))
bitmap_copy(riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
else
bitmap_and(riscv_isa, riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
}
if (!acpi_disabled && rhct)
acpi_put_table((struct acpi_table_header *)rhct);
/* We don't support systems with F but without D, so mask those out
* here. */
if ((elf_hwcap & COMPAT_HWCAP_ISA_F) && !(elf_hwcap & COMPAT_HWCAP_ISA_D)) {
pr_info("This kernel does not support systems with F but not D\n");
elf_hwcap &= ~COMPAT_HWCAP_ISA_F;
}
if (elf_hwcap & COMPAT_HWCAP_ISA_V) {
riscv_v_setup_vsize();
/*
* ISA string in device tree might have 'v' flag, but
* CONFIG_RISCV_ISA_V is disabled in kernel.
* Clear V flag in elf_hwcap if CONFIG_RISCV_ISA_V is disabled.
*/
if (!IS_ENABLED(CONFIG_RISCV_ISA_V))
elf_hwcap &= ~COMPAT_HWCAP_ISA_V;
}
memset(print_str, 0, sizeof(print_str));
for (i = 0, j = 0; i < NUM_ALPHA_EXTS; i++)
if (riscv_isa[0] & BIT_MASK(i))
print_str[j++] = (char)('a' + i);
pr_info("riscv: base ISA extensions %s\n", print_str);
memset(print_str, 0, sizeof(print_str));
for (i = 0, j = 0; i < NUM_ALPHA_EXTS; i++)
if (elf_hwcap & BIT_MASK(i))
print_str[j++] = (char)('a' + i);
pr_info("riscv: ELF capabilities %s\n", print_str);
}
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
unsigned long riscv_get_elf_hwcap(void)
{
unsigned long hwcap;
hwcap = (elf_hwcap & ((1UL << RISCV_ISA_EXT_BASE) - 1));
if (!riscv_v_vstate_ctrl_user_allowed())
hwcap &= ~COMPAT_HWCAP_ISA_V;
return hwcap;
}
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
#ifdef CONFIG_RISCV_ALTERNATIVE
/*
* Alternative patch sites consider 48 bits when determining when to patch
* the old instruction sequence with the new. These bits are broken into a
* 16-bit vendor ID and a 32-bit patch ID. A non-zero vendor ID means the
* patch site is for an erratum, identified by the 32-bit patch ID. When
* the vendor ID is zero, the patch site is for a cpufeature. cpufeatures
* further break down patch ID into two 16-bit numbers. The lower 16 bits
* are the cpufeature ID and the upper 16 bits are used for a value specific
* to the cpufeature and patch site. If the upper 16 bits are zero, then it
* implies no specific value is specified. cpufeatures that want to control
* patching on a per-site basis will provide non-zero values and implement
* checks here. The checks return true when patching should be done, and
* false otherwise.
*/
static bool riscv_cpufeature_patch_check(u16 id, u16 value)
{
if (!value)
return true;
switch (id) {
case RISCV_ISA_EXT_ZICBOZ:
/*
* Zicboz alternative applications provide the maximum
* supported block size order, or zero when it doesn't
* matter. If the current block size exceeds the maximum,
* then the alternative cannot be applied.
*/
return riscv_cboz_block_size <= (1U << value);
}
return false;
}
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
void __init_or_module riscv_cpufeature_patch_func(struct alt_entry *begin,
struct alt_entry *end,
unsigned int stage)
{
struct alt_entry *alt;
void *oldptr, *altptr;
u16 id, value;
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
if (stage == RISCV_ALTERNATIVES_EARLY_BOOT)
return;
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
for (alt = begin; alt < end; alt++) {
if (alt->vendor_id != 0)
continue;
id = PATCH_ID_CPUFEATURE_ID(alt->patch_id);
if (id >= RISCV_ISA_EXT_MAX) {
WARN(1, "This extension id:%d is not in ISA extension list", id);
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
continue;
}
if (!__riscv_isa_extension_available(NULL, id))
continue;
value = PATCH_ID_CPUFEATURE_VALUE(alt->patch_id);
if (!riscv_cpufeature_patch_check(id, value))
continue;
oldptr = ALT_OLD_PTR(alt);
altptr = ALT_ALT_PTR(alt);
RISC-V: take text_mutex during alternative patching Guenter reported a splat during boot, that Samuel pointed out was the lockdep assertion failing in patch_insn_write(): WARNING: CPU: 0 PID: 0 at arch/riscv/kernel/patch.c:63 patch_insn_write+0x222/0x2f6 epc : patch_insn_write+0x222/0x2f6 ra : patch_insn_write+0x21e/0x2f6 epc : ffffffff800068c6 ra : ffffffff800068c2 sp : ffffffff81803df0 gp : ffffffff81a1ab78 tp : ffffffff81814f80 t0 : ffffffffffffe000 t1 : 0000000000000001 t2 : 4c45203a76637369 s0 : ffffffff81803e40 s1 : 0000000000000004 a0 : 0000000000000000 a1 : ffffffffffffffff a2 : 0000000000000004 a3 : 0000000000000000 a4 : 0000000000000001 a5 : 0000000000000000 a6 : 0000000000000000 a7 : 0000000052464e43 s2 : ffffffff80b4889c s3 : 000000000000082c s4 : ffffffff80b48828 s5 : 0000000000000828 s6 : ffffffff8131a0a0 s7 : 0000000000000fff s8 : 0000000008000200 s9 : ffffffff8131a520 s10: 0000000000000018 s11: 000000000000000b t3 : 0000000000000001 t4 : 000000000000000d t5 : ffffffffd8180000 t6 : ffffffff81803bc8 status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003 [<ffffffff800068c6>] patch_insn_write+0x222/0x2f6 [<ffffffff80006a36>] patch_text_nosync+0xc/0x2a [<ffffffff80003b86>] riscv_cpufeature_patch_func+0x52/0x98 [<ffffffff80003348>] _apply_alternatives+0x46/0x86 [<ffffffff80c02d36>] apply_boot_alternatives+0x3c/0xfa [<ffffffff80c03ad8>] setup_arch+0x584/0x5b8 [<ffffffff80c0075a>] start_kernel+0xa2/0x8f8 This issue was exposed by 702e64550b12 ("riscv: fpu: switch has_fpu() to riscv_has_extension_likely()"), as it is the patching in has_fpu() that triggers the splats in Guenter's report. Take the text_mutex before doing any code patching to satisfy lockdep. Fixes: ff689fd21cb1 ("riscv: add RISC-V Svpbmt extension support") Fixes: a35707c3d850 ("riscv: add memory-type errata for T-Head") Fixes: 1a0e5dbd3723 ("riscv: sifive: Add SiFive alternative ports") Reported-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/all/20230212154333.GA3760469@roeck-us.net/ Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Samuel Holland <samuel@sholland.org> Tested-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20230212194735.491785-1-conor@kernel.org Cc: stable@vger.kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-02-12 19:47:36 +00:00
mutex_lock(&text_mutex);
patch_text_nosync(oldptr, altptr, alt->alt_len);
riscv_alternative_fix_offsets(oldptr, alt->alt_len, oldptr - altptr);
RISC-V: take text_mutex during alternative patching Guenter reported a splat during boot, that Samuel pointed out was the lockdep assertion failing in patch_insn_write(): WARNING: CPU: 0 PID: 0 at arch/riscv/kernel/patch.c:63 patch_insn_write+0x222/0x2f6 epc : patch_insn_write+0x222/0x2f6 ra : patch_insn_write+0x21e/0x2f6 epc : ffffffff800068c6 ra : ffffffff800068c2 sp : ffffffff81803df0 gp : ffffffff81a1ab78 tp : ffffffff81814f80 t0 : ffffffffffffe000 t1 : 0000000000000001 t2 : 4c45203a76637369 s0 : ffffffff81803e40 s1 : 0000000000000004 a0 : 0000000000000000 a1 : ffffffffffffffff a2 : 0000000000000004 a3 : 0000000000000000 a4 : 0000000000000001 a5 : 0000000000000000 a6 : 0000000000000000 a7 : 0000000052464e43 s2 : ffffffff80b4889c s3 : 000000000000082c s4 : ffffffff80b48828 s5 : 0000000000000828 s6 : ffffffff8131a0a0 s7 : 0000000000000fff s8 : 0000000008000200 s9 : ffffffff8131a520 s10: 0000000000000018 s11: 000000000000000b t3 : 0000000000000001 t4 : 000000000000000d t5 : ffffffffd8180000 t6 : ffffffff81803bc8 status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003 [<ffffffff800068c6>] patch_insn_write+0x222/0x2f6 [<ffffffff80006a36>] patch_text_nosync+0xc/0x2a [<ffffffff80003b86>] riscv_cpufeature_patch_func+0x52/0x98 [<ffffffff80003348>] _apply_alternatives+0x46/0x86 [<ffffffff80c02d36>] apply_boot_alternatives+0x3c/0xfa [<ffffffff80c03ad8>] setup_arch+0x584/0x5b8 [<ffffffff80c0075a>] start_kernel+0xa2/0x8f8 This issue was exposed by 702e64550b12 ("riscv: fpu: switch has_fpu() to riscv_has_extension_likely()"), as it is the patching in has_fpu() that triggers the splats in Guenter's report. Take the text_mutex before doing any code patching to satisfy lockdep. Fixes: ff689fd21cb1 ("riscv: add RISC-V Svpbmt extension support") Fixes: a35707c3d850 ("riscv: add memory-type errata for T-Head") Fixes: 1a0e5dbd3723 ("riscv: sifive: Add SiFive alternative ports") Reported-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/all/20230212154333.GA3760469@roeck-us.net/ Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Samuel Holland <samuel@sholland.org> Tested-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20230212194735.491785-1-conor@kernel.org Cc: stable@vger.kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-02-12 19:47:36 +00:00
mutex_unlock(&text_mutex);
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-11 19:29:18 +00:00
}
}
#endif