linux-stable/security/selinux/avc.c

941 lines
24 KiB
C
Raw Normal View History

/*
* Implementation of the kernel access vector cache (AVC).
*
* Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
* James Morris <jmorris@redhat.com>
*
* Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
* Replaced the avc_lock spinlock by RCU.
*
* Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2,
* as published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/dcache.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/percpu.h>
#include <net/sock.h>
#include <linux/un.h>
#include <net/af_unix.h>
#include <linux/ip.h>
#include <linux/audit.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include "avc.h"
#include "avc_ss.h"
static const struct av_perm_to_string av_perm_to_string[] = {
#define S_(c, v, s) { c, v, s },
#include "av_perm_to_string.h"
#undef S_
};
static const char *class_to_string[] = {
#define S_(s) s,
#include "class_to_string.h"
#undef S_
};
#define TB_(s) static const char *s[] = {
#define TE_(s) };
#define S_(s) s,
#include "common_perm_to_string.h"
#undef TB_
#undef TE_
#undef S_
static const struct av_inherit av_inherit[] = {
SELinux: shrink sizeof av_inhert selinux_class_perm and context I started playing with pahole today and decided to put it against the selinux structures. Found we could save a little bit of space on x86_64 (and no harm on i686) just reorganizing some structs. Object size changes: av_inherit: 24 -> 16 selinux_class_perm: 48 -> 40 context: 80 -> 72 Admittedly there aren't many of av_inherit or selinux_class_perm's in the kernel (33 and 1 respectively) But the change to the size of struct context reverberate out a bit. I can get some hard number if they are needed, but I don't see why they would be. We do change which cacheline context->len and context->str would be on, but I don't see that as a problem since we are clearly going to have to load both if the context is to be of any value. I've run with the patch and don't seem to be having any problems. An example of what's going on using struct av_inherit would be: form: to: struct av_inherit { struct av_inherit { u16 tclass; const char **common_pts; const char **common_pts; u32 common_base; u32 common_base; u16 tclass; }; (notice all I did was move u16 tclass to the end of the struct instead of the beginning) Memory layout before the change: struct av_inherit { u16 tclass; /* 2 */ /* 6 bytes hole */ const char** common_pts; /* 8 */ u32 common_base; /* 4 */ /* 4 byes padding */ /* size: 24, cachelines: 1 */ /* sum members: 14, holes: 1, sum holes: 6 */ /* padding: 4 */ }; Memory layout after the change: struct av_inherit { const char ** common_pts; /* 8 */ u32 common_base; /* 4 */ u16 tclass; /* 2 */ /* 2 bytes padding */ /* size: 16, cachelines: 1 */ /* sum members: 14, holes: 0, sum holes: 0 */ /* padding: 2 */ }; Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-01-02 22:40:06 +00:00
#define S_(c, i, b) { .tclass = c,\
.common_pts = common_##i##_perm_to_string,\
.common_base = b },
#include "av_inherit.h"
#undef S_
};
const struct selinux_class_perm selinux_class_perm = {
SELinux: shrink sizeof av_inhert selinux_class_perm and context I started playing with pahole today and decided to put it against the selinux structures. Found we could save a little bit of space on x86_64 (and no harm on i686) just reorganizing some structs. Object size changes: av_inherit: 24 -> 16 selinux_class_perm: 48 -> 40 context: 80 -> 72 Admittedly there aren't many of av_inherit or selinux_class_perm's in the kernel (33 and 1 respectively) But the change to the size of struct context reverberate out a bit. I can get some hard number if they are needed, but I don't see why they would be. We do change which cacheline context->len and context->str would be on, but I don't see that as a problem since we are clearly going to have to load both if the context is to be of any value. I've run with the patch and don't seem to be having any problems. An example of what's going on using struct av_inherit would be: form: to: struct av_inherit { struct av_inherit { u16 tclass; const char **common_pts; const char **common_pts; u32 common_base; u32 common_base; u16 tclass; }; (notice all I did was move u16 tclass to the end of the struct instead of the beginning) Memory layout before the change: struct av_inherit { u16 tclass; /* 2 */ /* 6 bytes hole */ const char** common_pts; /* 8 */ u32 common_base; /* 4 */ /* 4 byes padding */ /* size: 24, cachelines: 1 */ /* sum members: 14, holes: 1, sum holes: 6 */ /* padding: 4 */ }; Memory layout after the change: struct av_inherit { const char ** common_pts; /* 8 */ u32 common_base; /* 4 */ u16 tclass; /* 2 */ /* 2 bytes padding */ /* size: 16, cachelines: 1 */ /* sum members: 14, holes: 0, sum holes: 0 */ /* padding: 2 */ }; Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-01-02 22:40:06 +00:00
.av_perm_to_string = av_perm_to_string,
.av_pts_len = ARRAY_SIZE(av_perm_to_string),
.class_to_string = class_to_string,
.cts_len = ARRAY_SIZE(class_to_string),
.av_inherit = av_inherit,
.av_inherit_len = ARRAY_SIZE(av_inherit)
};
#define AVC_CACHE_SLOTS 512
#define AVC_DEF_CACHE_THRESHOLD 512
#define AVC_CACHE_RECLAIM 16
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
#define avc_cache_stats_incr(field) \
do { \
per_cpu(avc_cache_stats, get_cpu()).field++; \
put_cpu(); \
} while (0)
#else
#define avc_cache_stats_incr(field) do {} while (0)
#endif
struct avc_entry {
u32 ssid;
u32 tsid;
u16 tclass;
struct av_decision avd;
};
struct avc_node {
struct avc_entry ae;
struct list_head list;
struct rcu_head rhead;
};
struct avc_cache {
struct list_head slots[AVC_CACHE_SLOTS];
spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
atomic_t lru_hint; /* LRU hint for reclaim scan */
atomic_t active_nodes;
u32 latest_notif; /* latest revocation notification */
};
struct avc_callback_node {
int (*callback) (u32 event, u32 ssid, u32 tsid,
u16 tclass, u32 perms,
u32 *out_retained);
u32 events;
u32 ssid;
u32 tsid;
u16 tclass;
u32 perms;
struct avc_callback_node *next;
};
/* Exported via selinufs */
unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
#endif
static struct avc_cache avc_cache;
static struct avc_callback_node *avc_callbacks;
static struct kmem_cache *avc_node_cachep;
static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
{
return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
}
/**
* avc_dump_av - Display an access vector in human-readable form.
* @tclass: target security class
* @av: access vector
*/
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 07:35:57 +00:00
void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
{
const char **common_pts = NULL;
u32 common_base = 0;
int i, i2, perm;
if (av == 0) {
audit_log_format(ab, " null");
return;
}
for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
if (av_inherit[i].tclass == tclass) {
common_pts = av_inherit[i].common_pts;
common_base = av_inherit[i].common_base;
break;
}
}
audit_log_format(ab, " {");
i = 0;
perm = 1;
while (perm < common_base) {
if (perm & av) {
audit_log_format(ab, " %s", common_pts[i]);
av &= ~perm;
}
i++;
perm <<= 1;
}
while (i < sizeof(av) * 8) {
if (perm & av) {
for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
if ((av_perm_to_string[i2].tclass == tclass) &&
(av_perm_to_string[i2].value == perm))
break;
}
if (i2 < ARRAY_SIZE(av_perm_to_string)) {
audit_log_format(ab, " %s",
av_perm_to_string[i2].name);
av &= ~perm;
}
}
i++;
perm <<= 1;
}
if (av)
audit_log_format(ab, " 0x%x", av);
audit_log_format(ab, " }");
}
/**
* avc_dump_query - Display a SID pair and a class in human-readable form.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
*/
static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
{
int rc;
char *scontext;
u32 scontext_len;
rc = security_sid_to_context(ssid, &scontext, &scontext_len);
if (rc)
audit_log_format(ab, "ssid=%d", ssid);
else {
audit_log_format(ab, "scontext=%s", scontext);
kfree(scontext);
}
rc = security_sid_to_context(tsid, &scontext, &scontext_len);
if (rc)
audit_log_format(ab, " tsid=%d", tsid);
else {
audit_log_format(ab, " tcontext=%s", scontext);
kfree(scontext);
}
BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
}
/**
* avc_init - Initialize the AVC.
*
* Initialize the access vector cache.
*/
void __init avc_init(void)
{
int i;
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
INIT_LIST_HEAD(&avc_cache.slots[i]);
spin_lock_init(&avc_cache.slots_lock[i]);
}
atomic_set(&avc_cache.active_nodes, 0);
atomic_set(&avc_cache.lru_hint, 0);
avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
0, SLAB_PANIC, NULL);
audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
}
int avc_get_hash_stats(char *page)
{
int i, chain_len, max_chain_len, slots_used;
struct avc_node *node;
rcu_read_lock();
slots_used = 0;
max_chain_len = 0;
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
if (!list_empty(&avc_cache.slots[i])) {
slots_used++;
chain_len = 0;
list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
chain_len++;
if (chain_len > max_chain_len)
max_chain_len = chain_len;
}
}
rcu_read_unlock();
return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
"longest chain: %d\n",
atomic_read(&avc_cache.active_nodes),
slots_used, AVC_CACHE_SLOTS, max_chain_len);
}
static void avc_node_free(struct rcu_head *rhead)
{
struct avc_node *node = container_of(rhead, struct avc_node, rhead);
kmem_cache_free(avc_node_cachep, node);
avc_cache_stats_incr(frees);
}
static void avc_node_delete(struct avc_node *node)
{
list_del_rcu(&node->list);
call_rcu(&node->rhead, avc_node_free);
atomic_dec(&avc_cache.active_nodes);
}
static void avc_node_kill(struct avc_node *node)
{
kmem_cache_free(avc_node_cachep, node);
avc_cache_stats_incr(frees);
atomic_dec(&avc_cache.active_nodes);
}
static void avc_node_replace(struct avc_node *new, struct avc_node *old)
{
list_replace_rcu(&old->list, &new->list);
call_rcu(&old->rhead, avc_node_free);
atomic_dec(&avc_cache.active_nodes);
}
static inline int avc_reclaim_node(void)
{
struct avc_node *node;
int hvalue, try, ecx;
unsigned long flags;
for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
continue;
rcu_read_lock();
list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
avc_node_delete(node);
avc_cache_stats_incr(reclaims);
ecx++;
if (ecx >= AVC_CACHE_RECLAIM) {
rcu_read_unlock();
spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
goto out;
}
}
rcu_read_unlock();
spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
}
out:
return ecx;
}
static struct avc_node *avc_alloc_node(void)
{
struct avc_node *node;
node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
if (!node)
goto out;
INIT_RCU_HEAD(&node->rhead);
INIT_LIST_HEAD(&node->list);
avc_cache_stats_incr(allocations);
if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
avc_reclaim_node();
out:
return node;
}
static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
{
node->ae.ssid = ssid;
node->ae.tsid = tsid;
node->ae.tclass = tclass;
memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
}
static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
{
struct avc_node *node, *ret = NULL;
int hvalue;
hvalue = avc_hash(ssid, tsid, tclass);
list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
if (ssid == node->ae.ssid &&
tclass == node->ae.tclass &&
tsid == node->ae.tsid) {
ret = node;
break;
}
}
return ret;
}
/**
* avc_lookup - Look up an AVC entry.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
*
* Look up an AVC entry that is valid for the
* (@ssid, @tsid), interpreting the permissions
* based on @tclass. If a valid AVC entry exists,
* then this function return the avc_node.
* Otherwise, this function returns NULL.
*/
static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
{
struct avc_node *node;
avc_cache_stats_incr(lookups);
node = avc_search_node(ssid, tsid, tclass);
if (node)
avc_cache_stats_incr(hits);
else
avc_cache_stats_incr(misses);
return node;
}
static int avc_latest_notif_update(int seqno, int is_insert)
{
int ret = 0;
static DEFINE_SPINLOCK(notif_lock);
unsigned long flag;
spin_lock_irqsave(&notif_lock, flag);
if (is_insert) {
if (seqno < avc_cache.latest_notif) {
printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
seqno, avc_cache.latest_notif);
ret = -EAGAIN;
}
} else {
if (seqno > avc_cache.latest_notif)
avc_cache.latest_notif = seqno;
}
spin_unlock_irqrestore(&notif_lock, flag);
return ret;
}
/**
* avc_insert - Insert an AVC entry.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @avd: resulting av decision
*
* Insert an AVC entry for the SID pair
* (@ssid, @tsid) and class @tclass.
* The access vectors and the sequence number are
* normally provided by the security server in
* response to a security_compute_av() call. If the
* sequence number @avd->seqno is not less than the latest
* revocation notification, then the function copies
* the access vectors into a cache entry, returns
* avc_node inserted. Otherwise, this function returns NULL.
*/
static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
{
struct avc_node *pos, *node = NULL;
int hvalue;
unsigned long flag;
if (avc_latest_notif_update(avd->seqno, 1))
goto out;
node = avc_alloc_node();
if (node) {
hvalue = avc_hash(ssid, tsid, tclass);
avc_node_populate(node, ssid, tsid, tclass, avd);
spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
if (pos->ae.ssid == ssid &&
pos->ae.tsid == tsid &&
pos->ae.tclass == tclass) {
avc_node_replace(node, pos);
goto found;
}
}
list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
found:
spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
}
out:
return node;
}
static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
struct in6_addr *addr, __be16 port,
char *name1, char *name2)
{
if (!ipv6_addr_any(addr))
audit_log_format(ab, " %s=%pI6", name1, addr);
if (port)
audit_log_format(ab, " %s=%d", name2, ntohs(port));
}
static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
__be16 port, char *name1, char *name2)
{
if (addr)
audit_log_format(ab, " %s=%pI4", name1, &addr);
if (port)
audit_log_format(ab, " %s=%d", name2, ntohs(port));
}
/**
* avc_audit - Audit the granting or denial of permissions.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @requested: requested permissions
* @avd: access vector decisions
* @result: result from avc_has_perm_noaudit
* @a: auxiliary audit data
*
* Audit the granting or denial of permissions in accordance
* with the policy. This function is typically called by
* avc_has_perm() after a permission check, but can also be
* called directly by callers who use avc_has_perm_noaudit()
* in order to separate the permission check from the auditing.
* For example, this separation is useful when the permission check must
* be performed under a lock, to allow the lock to be released
* before calling the auditing code.
*/
void avc_audit(u32 ssid, u32 tsid,
u16 tclass, u32 requested,
struct av_decision *avd, int result, struct avc_audit_data *a)
{
struct task_struct *tsk = current;
struct inode *inode = NULL;
u32 denied, audited;
struct audit_buffer *ab;
denied = requested & ~avd->allowed;
if (denied) {
audited = denied;
if (!(audited & avd->auditdeny))
return;
} else if (result) {
audited = denied = requested;
} else {
audited = requested;
if (!(audited & avd->auditallow))
return;
}
ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
if (!ab)
return; /* audit_panic has been called */
audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
avc_dump_av(ab, tclass, audited);
audit_log_format(ab, " for ");
if (a && a->tsk)
tsk = a->tsk;
if (tsk && tsk->pid) {
audit_log_format(ab, " pid=%d comm=", tsk->pid);
audit_log_untrustedstring(ab, tsk->comm);
}
if (a) {
switch (a->type) {
case AVC_AUDIT_DATA_IPC:
audit_log_format(ab, " key=%d", a->u.ipc_id);
break;
case AVC_AUDIT_DATA_CAP:
audit_log_format(ab, " capability=%d", a->u.cap);
break;
case AVC_AUDIT_DATA_FS:
if (a->u.fs.path.dentry) {
struct dentry *dentry = a->u.fs.path.dentry;
if (a->u.fs.path.mnt) {
audit_log_d_path(ab, "path=",
&a->u.fs.path);
} else {
audit_log_format(ab, " name=");
audit_log_untrustedstring(ab, dentry->d_name.name);
}
inode = dentry->d_inode;
} else if (a->u.fs.inode) {
struct dentry *dentry;
inode = a->u.fs.inode;
dentry = d_find_alias(inode);
if (dentry) {
audit_log_format(ab, " name=");
audit_log_untrustedstring(ab, dentry->d_name.name);
dput(dentry);
}
}
if (inode)
audit_log_format(ab, " dev=%s ino=%lu",
inode->i_sb->s_id,
inode->i_ino);
break;
case AVC_AUDIT_DATA_NET:
if (a->u.net.sk) {
struct sock *sk = a->u.net.sk;
struct unix_sock *u;
int len = 0;
char *p = NULL;
switch (sk->sk_family) {
case AF_INET: {
struct inet_sock *inet = inet_sk(sk);
avc_print_ipv4_addr(ab, inet->rcv_saddr,
inet->sport,
"laddr", "lport");
avc_print_ipv4_addr(ab, inet->daddr,
inet->dport,
"faddr", "fport");
break;
}
case AF_INET6: {
struct inet_sock *inet = inet_sk(sk);
struct ipv6_pinfo *inet6 = inet6_sk(sk);
avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
inet->sport,
"laddr", "lport");
avc_print_ipv6_addr(ab, &inet6->daddr,
inet->dport,
"faddr", "fport");
break;
}
case AF_UNIX:
u = unix_sk(sk);
if (u->dentry) {
struct path path = {
.dentry = u->dentry,
.mnt = u->mnt
};
audit_log_d_path(ab, "path=",
&path);
break;
}
if (!u->addr)
break;
len = u->addr->len-sizeof(short);
p = &u->addr->name->sun_path[0];
audit_log_format(ab, " path=");
if (*p)
audit_log_untrustedstring(ab, p);
else
audit_log_n_hex(ab, p, len);
break;
}
}
switch (a->u.net.family) {
case AF_INET:
avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
a->u.net.sport,
"saddr", "src");
avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
a->u.net.dport,
"daddr", "dest");
break;
case AF_INET6:
avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
a->u.net.sport,
"saddr", "src");
avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
a->u.net.dport,
"daddr", "dest");
break;
}
if (a->u.net.netif > 0) {
struct net_device *dev;
/* NOTE: we always use init's namespace */
dev = dev_get_by_index(&init_net,
a->u.net.netif);
if (dev) {
audit_log_format(ab, " netif=%s",
dev->name);
dev_put(dev);
}
}
break;
}
}
audit_log_format(ab, " ");
avc_dump_query(ab, ssid, tsid, tclass);
audit_log_end(ab);
}
/**
* avc_add_callback - Register a callback for security events.
* @callback: callback function
* @events: security events
* @ssid: source security identifier or %SECSID_WILD
* @tsid: target security identifier or %SECSID_WILD
* @tclass: target security class
* @perms: permissions
*
* Register a callback function for events in the set @events
* related to the SID pair (@ssid, @tsid) and
* and the permissions @perms, interpreting
* @perms based on @tclass. Returns %0 on success or
* -%ENOMEM if insufficient memory exists to add the callback.
*/
int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
u16 tclass, u32 perms,
u32 *out_retained),
u32 events, u32 ssid, u32 tsid,
u16 tclass, u32 perms)
{
struct avc_callback_node *c;
int rc = 0;
c = kmalloc(sizeof(*c), GFP_ATOMIC);
if (!c) {
rc = -ENOMEM;
goto out;
}
c->callback = callback;
c->events = events;
c->ssid = ssid;
c->tsid = tsid;
c->perms = perms;
c->next = avc_callbacks;
avc_callbacks = c;
out:
return rc;
}
static inline int avc_sidcmp(u32 x, u32 y)
{
return (x == y || x == SECSID_WILD || y == SECSID_WILD);
}
/**
* avc_update_node Update an AVC entry
* @event : Updating event
* @perms : Permission mask bits
* @ssid,@tsid,@tclass : identifier of an AVC entry
* @seqno : sequence number when decision was made
*
* if a valid AVC entry doesn't exist,this function returns -ENOENT.
* if kmalloc() called internal returns NULL, this function returns -ENOMEM.
* otherwise, this function update the AVC entry. The original AVC-entry object
* will release later by RCU.
*/
static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
u32 seqno)
{
int hvalue, rc = 0;
unsigned long flag;
struct avc_node *pos, *node, *orig = NULL;
node = avc_alloc_node();
if (!node) {
rc = -ENOMEM;
goto out;
}
/* Lock the target slot */
hvalue = avc_hash(ssid, tsid, tclass);
spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
if (ssid == pos->ae.ssid &&
tsid == pos->ae.tsid &&
tclass == pos->ae.tclass &&
seqno == pos->ae.avd.seqno){
orig = pos;
break;
}
}
if (!orig) {
rc = -ENOENT;
avc_node_kill(node);
goto out_unlock;
}
/*
* Copy and replace original node.
*/
avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
switch (event) {
case AVC_CALLBACK_GRANT:
node->ae.avd.allowed |= perms;
break;
case AVC_CALLBACK_TRY_REVOKE:
case AVC_CALLBACK_REVOKE:
node->ae.avd.allowed &= ~perms;
break;
case AVC_CALLBACK_AUDITALLOW_ENABLE:
node->ae.avd.auditallow |= perms;
break;
case AVC_CALLBACK_AUDITALLOW_DISABLE:
node->ae.avd.auditallow &= ~perms;
break;
case AVC_CALLBACK_AUDITDENY_ENABLE:
node->ae.avd.auditdeny |= perms;
break;
case AVC_CALLBACK_AUDITDENY_DISABLE:
node->ae.avd.auditdeny &= ~perms;
break;
}
avc_node_replace(node, orig);
out_unlock:
spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
out:
return rc;
}
/**
* avc_ss_reset - Flush the cache and revalidate migrated permissions.
* @seqno: policy sequence number
*/
int avc_ss_reset(u32 seqno)
{
struct avc_callback_node *c;
int i, rc = 0, tmprc;
unsigned long flag;
struct avc_node *node;
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
/*
* With preemptable RCU, the outer spinlock does not
* prevent RCU grace periods from ending.
*/
rcu_read_lock();
list_for_each_entry(node, &avc_cache.slots[i], list)
avc_node_delete(node);
rcu_read_unlock();
spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
}
for (c = avc_callbacks; c; c = c->next) {
if (c->events & AVC_CALLBACK_RESET) {
tmprc = c->callback(AVC_CALLBACK_RESET,
0, 0, 0, 0, NULL);
/* save the first error encountered for the return
value and continue processing the callbacks */
if (!rc)
rc = tmprc;
}
}
avc_latest_notif_update(seqno, 0);
return rc;
}
/**
* avc_has_perm_noaudit - Check permissions but perform no auditing.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @requested: requested permissions, interpreted based on @tclass
* @flags: AVC_STRICT or 0
* @avd: access vector decisions
*
* Check the AVC to determine whether the @requested permissions are granted
* for the SID pair (@ssid, @tsid), interpreting the permissions
* based on @tclass, and call the security server on a cache miss to obtain
* a new decision and add it to the cache. Return a copy of the decisions
* in @avd. Return %0 if all @requested permissions are granted,
* -%EACCES if any permissions are denied, or another -errno upon
* other errors. This function is typically called by avc_has_perm(),
* but may also be called directly to separate permission checking from
* auditing, e.g. in cases where a lock must be held for the check but
* should be released for the auditing.
*/
int avc_has_perm_noaudit(u32 ssid, u32 tsid,
u16 tclass, u32 requested,
unsigned flags,
struct av_decision *in_avd)
{
struct avc_node *node;
struct av_decision avd_entry, *avd;
int rc = 0;
u32 denied;
BUG_ON(!requested);
rcu_read_lock();
node = avc_lookup(ssid, tsid, tclass);
if (!node) {
rcu_read_unlock();
if (in_avd)
avd = in_avd;
else
avd = &avd_entry;
rc = security_compute_av(ssid, tsid, tclass, requested, avd);
if (rc)
goto out;
rcu_read_lock();
node = avc_insert(ssid, tsid, tclass, avd);
} else {
if (in_avd)
memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
avd = &node->ae.avd;
}
denied = requested & ~(avd->allowed);
if (denied) {
if (flags & AVC_STRICT)
rc = -EACCES;
else if (!selinux_enforcing || security_permissive_sid(ssid))
avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
tsid, tclass, avd->seqno);
else
rc = -EACCES;
}
rcu_read_unlock();
out:
return rc;
}
/**
* avc_has_perm - Check permissions and perform any appropriate auditing.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @requested: requested permissions, interpreted based on @tclass
* @auditdata: auxiliary audit data
*
* Check the AVC to determine whether the @requested permissions are granted
* for the SID pair (@ssid, @tsid), interpreting the permissions
* based on @tclass, and call the security server on a cache miss to obtain
* a new decision and add it to the cache. Audit the granting or denial of
* permissions in accordance with the policy. Return %0 if all @requested
* permissions are granted, -%EACCES if any permissions are denied, or
* another -errno upon other errors.
*/
int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
u32 requested, struct avc_audit_data *auditdata)
{
struct av_decision avd;
int rc;
rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
return rc;
}
u32 avc_policy_seqno(void)
{
return avc_cache.latest_notif;
}