linux-stable/arch/arm64/kernel/mte.c

512 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 ARM Ltd.
*/
#include <linux/bitops.h>
#include <linux/cpu.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/prctl.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/string.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/thread_info.h>
#include <linux/types.h>
#include <linux/uio.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/mte.h>
#include <asm/ptrace.h>
#include <asm/sysreg.h>
static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
#ifdef CONFIG_KASAN_HW_TAGS
/*
* The asynchronous and asymmetric MTE modes have the same behavior for
* store operations. This flag is set when either of these modes is enabled.
*/
DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
#endif
static void mte_sync_page_tags(struct page *page, pte_t old_pte,
bool check_swap, bool pte_is_tagged)
{
if (check_swap && is_swap_pte(old_pte)) {
swp_entry_t entry = pte_to_swp_entry(old_pte);
if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
return;
}
if (!pte_is_tagged)
return;
arm64: mte: reset the page tag in page->flags The hardware tag-based KASAN for compatibility with the other modes stores the tag associated to a page in page->flags. Due to this the kernel faults on access when it allocates a page with an initial tag and the user changes the tags. Reset the tag associated by the kernel to a page in all the meaningful places to prevent kernel faults on access. Note: An alternative to this approach could be to modify page_to_virt(). This though could end up being racy, in fact if a CPU checks the PG_mte_tagged bit and decides that the page is not tagged but another CPU maps the same with PROT_MTE and becomes tagged the subsequent kernel access would fail. Link: https://lkml.kernel.org/r/9073d4e973747a6f78d5bdd7ebe17f290d087096.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22 20:01:31 +00:00
page_kasan_tag_reset(page);
/*
* We need smp_wmb() in between setting the flags and clearing the
* tags because if another thread reads page->flags and builds a
* tagged address out of it, there is an actual dependency to the
* memory access, but on the current thread we do not guarantee that
* the new page->flags are visible before the tags were updated.
*/
smp_wmb();
mte_clear_page_tags(page_address(page));
}
void mte_sync_tags(pte_t old_pte, pte_t pte)
{
struct page *page = pte_page(pte);
long i, nr_pages = compound_nr(page);
bool check_swap = nr_pages == 1;
bool pte_is_tagged = pte_tagged(pte);
/* Early out if there's nothing to do */
if (!check_swap && !pte_is_tagged)
return;
/* if PG_mte_tagged is set, tags have already been initialised */
for (i = 0; i < nr_pages; i++, page++) {
if (!test_and_set_bit(PG_mte_tagged, &page->flags))
mte_sync_page_tags(page, old_pte, check_swap,
pte_is_tagged);
}
}
int memcmp_pages(struct page *page1, struct page *page2)
{
char *addr1, *addr2;
int ret;
addr1 = page_address(page1);
addr2 = page_address(page2);
ret = memcmp(addr1, addr2, PAGE_SIZE);
if (!system_supports_mte() || ret)
return ret;
/*
* If the page content is identical but at least one of the pages is
* tagged, return non-zero to avoid KSM merging. If only one of the
* pages is tagged, set_pte_at() may zero or change the tags of the
* other page via mte_sync_tags().
*/
if (test_bit(PG_mte_tagged, &page1->flags) ||
test_bit(PG_mte_tagged, &page2->flags))
return addr1 != addr2;
return ret;
}
static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
arm64: kasan: allow enabling in-kernel MTE Hardware tag-based KASAN relies on Memory Tagging Extension (MTE) feature and requires it to be enabled. MTE supports This patch adds a new mte_enable_kernel() helper, that enables MTE in Synchronous mode in EL1 and is intended to be called from KASAN runtime during initialization. The Tag Checking operation causes a synchronous data abort as a consequence of a tag check fault when MTE is configured in synchronous mode. As part of this change enable match-all tag for EL1 to allow the kernel to access user pages without faulting. This is required because the kernel does not have knowledge of the tags set by the user in a page. Note: For MTE, the TCF bit field in SCTLR_EL1 affects only EL1 in a similar way as TCF0 affects EL0. MTE that is built on top of the Top Byte Ignore (TBI) feature hence we enable it as part of this patch as well. Link: https://lkml.kernel.org/r/7352b0a0899af65c2785416c8ca6bf3845b66fa1.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22 20:01:38 +00:00
{
/* Enable MTE Sync Mode for EL1. */
sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf);
arm64: kasan: allow enabling in-kernel MTE Hardware tag-based KASAN relies on Memory Tagging Extension (MTE) feature and requires it to be enabled. MTE supports This patch adds a new mte_enable_kernel() helper, that enables MTE in Synchronous mode in EL1 and is intended to be called from KASAN runtime during initialization. The Tag Checking operation causes a synchronous data abort as a consequence of a tag check fault when MTE is configured in synchronous mode. As part of this change enable match-all tag for EL1 to allow the kernel to access user pages without faulting. This is required because the kernel does not have knowledge of the tags set by the user in a page. Note: For MTE, the TCF bit field in SCTLR_EL1 affects only EL1 in a similar way as TCF0 affects EL0. MTE that is built on top of the Top Byte Ignore (TBI) feature hence we enable it as part of this patch as well. Link: https://lkml.kernel.org/r/7352b0a0899af65c2785416c8ca6bf3845b66fa1.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22 20:01:38 +00:00
isb();
pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
}
#ifdef CONFIG_KASAN_HW_TAGS
void mte_enable_kernel_sync(void)
{
/*
* Make sure we enter this function when no PE has set
* async mode previously.
*/
WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
"MTE async mode enabled system wide!");
__mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC);
}
void mte_enable_kernel_async(void)
{
__mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC);
/*
* MTE async mode is set system wide by the first PE that
* executes this function.
*
* Note: If in future KASAN acquires a runtime switching
* mode in between sync and async, this strategy needs
* to be reviewed.
*/
if (!system_uses_mte_async_or_asymm_mode())
static_branch_enable(&mte_async_or_asymm_mode);
}
void mte_enable_kernel_asymm(void)
{
if (cpus_have_cap(ARM64_MTE_ASYMM)) {
__mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM);
/*
* MTE asymm mode behaves as async mode for store
* operations. The mode is set system wide by the
* first PE that executes this function.
*
* Note: If in future KASAN acquires a runtime switching
* mode in between sync and async, this strategy needs
* to be reviewed.
*/
if (!system_uses_mte_async_or_asymm_mode())
static_branch_enable(&mte_async_or_asymm_mode);
} else {
/*
* If the CPU does not support MTE asymmetric mode the
* kernel falls back on synchronous mode which is the
* default for kasan=on.
*/
mte_enable_kernel_sync();
}
arm64: kasan: allow enabling in-kernel MTE Hardware tag-based KASAN relies on Memory Tagging Extension (MTE) feature and requires it to be enabled. MTE supports This patch adds a new mte_enable_kernel() helper, that enables MTE in Synchronous mode in EL1 and is intended to be called from KASAN runtime during initialization. The Tag Checking operation causes a synchronous data abort as a consequence of a tag check fault when MTE is configured in synchronous mode. As part of this change enable match-all tag for EL1 to allow the kernel to access user pages without faulting. This is required because the kernel does not have knowledge of the tags set by the user in a page. Note: For MTE, the TCF bit field in SCTLR_EL1 affects only EL1 in a similar way as TCF0 affects EL0. MTE that is built on top of the Top Byte Ignore (TBI) feature hence we enable it as part of this patch as well. Link: https://lkml.kernel.org/r/7352b0a0899af65c2785416c8ca6bf3845b66fa1.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22 20:01:38 +00:00
}
#endif
arm64: kasan: allow enabling in-kernel MTE Hardware tag-based KASAN relies on Memory Tagging Extension (MTE) feature and requires it to be enabled. MTE supports This patch adds a new mte_enable_kernel() helper, that enables MTE in Synchronous mode in EL1 and is intended to be called from KASAN runtime during initialization. The Tag Checking operation causes a synchronous data abort as a consequence of a tag check fault when MTE is configured in synchronous mode. As part of this change enable match-all tag for EL1 to allow the kernel to access user pages without faulting. This is required because the kernel does not have knowledge of the tags set by the user in a page. Note: For MTE, the TCF bit field in SCTLR_EL1 affects only EL1 in a similar way as TCF0 affects EL0. MTE that is built on top of the Top Byte Ignore (TBI) feature hence we enable it as part of this patch as well. Link: https://lkml.kernel.org/r/7352b0a0899af65c2785416c8ca6bf3845b66fa1.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22 20:01:38 +00:00
#ifdef CONFIG_KASAN_HW_TAGS
void mte_check_tfsr_el1(void)
{
u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
/*
* Note: isb() is not required after this direct write
* because there is no indirect read subsequent to it
* (per ARM DDI 0487F.c table D13-1).
*/
write_sysreg_s(0, SYS_TFSR_EL1);
kasan_report_async();
}
}
#endif
static void mte_update_sctlr_user(struct task_struct *task)
{
/*
* This must be called with preemption disabled and can only be called
* on the current or next task since the CPU must match where the thread
* is going to run. The caller is responsible for calling
* update_sctlr_el1() later in the same preemption disabled block.
*/
unsigned long sctlr = task->thread.sctlr_user;
unsigned long mte_ctrl = task->thread.mte_ctrl;
unsigned long pref, resolved_mte_tcf;
pref = __this_cpu_read(mte_tcf_preferred);
resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
sctlr &= ~SCTLR_EL1_TCF0_MASK;
if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
sctlr |= SCTLR_EL1_TCF0_ASYNC;
else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
sctlr |= SCTLR_EL1_TCF0_SYNC;
task->thread.sctlr_user = sctlr;
}
static void mte_update_gcr_excl(struct task_struct *task)
{
/*
* SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
* mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
*/
if (kasan_hw_tags_enabled())
return;
write_sysreg_s(
((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
SYS_GCR_EL1);
}
void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
__le32 *updptr, int nr_inst)
{
BUG_ON(nr_inst != 1); /* Branch -> NOP */
if (kasan_hw_tags_enabled())
*updptr = cpu_to_le32(aarch64_insn_gen_nop());
}
arm64: Introduce prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) This change introduces a prctl that allows the user program to control which PAC keys are enabled in a particular task. The main reason why this is useful is to enable a userspace ABI that uses PAC to sign and authenticate function pointers and other pointers exposed outside of the function, while still allowing binaries conforming to the ABI to interoperate with legacy binaries that do not sign or authenticate pointers. The idea is that a dynamic loader or early startup code would issue this prctl very early after establishing that a process may load legacy binaries, but before executing any PAC instructions. This change adds a small amount of overhead to kernel entry and exit due to additional required instruction sequences. On a DragonBoard 845c (Cortex-A75) with the powersave governor, the overhead of similar instruction sequences was measured as 4.9ns when simulating the common case where IA is left enabled, or 43.7ns when simulating the uncommon case where IA is disabled. These numbers can be seen as the worst case scenario, since in more realistic scenarios a better performing governor would be used and a newer chip would be used that would support PAC unlike Cortex-A75 and would be expected to be faster than Cortex-A75. On an Apple M1 under a hypervisor, the overhead of the entry/exit instruction sequences introduced by this patch was measured as 0.3ns in the case where IA is left enabled, and 33.0ns in the case where IA is disabled. Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Link: https://linux-review.googlesource.com/id/Ibc41a5e6a76b275efbaa126b31119dc197b927a5 Link: https://lore.kernel.org/r/d6609065f8f40397a4124654eb68c9f490b4d477.1616123271.git.pcc@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-03-19 03:10:53 +00:00
void mte_thread_init_user(void)
{
if (!system_supports_mte())
return;
/* clear any pending asynchronous tag fault */
dsb(ish);
write_sysreg_s(0, SYS_TFSRE0_EL1);
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
/* disable tag checking and reset tag generation mask */
set_mte_ctrl(current, 0);
}
void mte_thread_switch(struct task_struct *next)
{
if (!system_supports_mte())
return;
mte_update_sctlr_user(next);
mte_update_gcr_excl(next);
/*
* Check if an async tag exception occurred at EL1.
*
* Note: On the context switch path we rely on the dsb() present
* in __switch_to() to guarantee that the indirect writes to TFSR_EL1
* are synchronized before this point.
*/
isb();
mte_check_tfsr_el1();
}
void mte_suspend_enter(void)
{
if (!system_supports_mte())
return;
/*
* The barriers are required to guarantee that the indirect writes
* to TFSR_EL1 are synchronized before we report the state.
*/
dsb(nsh);
isb();
/* Report SYS_TFSR_EL1 before suspend entry */
mte_check_tfsr_el1();
}
long set_mte_ctrl(struct task_struct *task, unsigned long arg)
{
u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
if (!system_supports_mte())
return 0;
if (arg & PR_MTE_TCF_ASYNC)
mte_ctrl |= MTE_CTRL_TCF_ASYNC;
if (arg & PR_MTE_TCF_SYNC)
mte_ctrl |= MTE_CTRL_TCF_SYNC;
task->thread.mte_ctrl = mte_ctrl;
if (task == current) {
preempt_disable();
mte_update_sctlr_user(task);
mte_update_gcr_excl(task);
update_sctlr_el1(task->thread.sctlr_user);
preempt_enable();
}
return 0;
}
long get_mte_ctrl(struct task_struct *task)
{
unsigned long ret;
u64 mte_ctrl = task->thread.mte_ctrl;
u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
SYS_GCR_EL1_EXCL_MASK;
if (!system_supports_mte())
return 0;
ret = incl << PR_MTE_TAG_SHIFT;
if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
ret |= PR_MTE_TCF_ASYNC;
if (mte_ctrl & MTE_CTRL_TCF_SYNC)
ret |= PR_MTE_TCF_SYNC;
return ret;
}
/*
* Access MTE tags in another process' address space as given in mm. Update
* the number of tags copied. Return 0 if any tags copied, error otherwise.
* Inspired by __access_remote_vm().
*/
static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
struct iovec *kiov, unsigned int gup_flags)
{
struct vm_area_struct *vma;
void __user *buf = kiov->iov_base;
size_t len = kiov->iov_len;
int ret;
int write = gup_flags & FOLL_WRITE;
if (!access_ok(buf, len))
return -EFAULT;
if (mmap_read_lock_killable(mm))
return -EIO;
while (len) {
unsigned long tags, offset;
void *maddr;
struct page *page = NULL;
ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
&vma, NULL);
if (ret <= 0)
break;
/*
* Only copy tags if the page has been mapped as PROT_MTE
* (PG_mte_tagged set). Otherwise the tags are not valid and
* not accessible to user. Moreover, an mprotect(PROT_MTE)
* would cause the existing tags to be cleared if the page
* was never mapped with PROT_MTE.
*/
if (!(vma->vm_flags & VM_MTE)) {
ret = -EOPNOTSUPP;
put_page(page);
break;
}
WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
/* limit access to the end of the page */
offset = offset_in_page(addr);
tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
maddr = page_address(page);
if (write) {
tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
set_page_dirty_lock(page);
} else {
tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
}
put_page(page);
/* error accessing the tracer's buffer */
if (!tags)
break;
len -= tags;
buf += tags;
addr += tags * MTE_GRANULE_SIZE;
}
mmap_read_unlock(mm);
/* return an error if no tags copied */
kiov->iov_len = buf - kiov->iov_base;
if (!kiov->iov_len) {
/* check for error accessing the tracee's address space */
if (ret <= 0)
return -EIO;
else
return -EFAULT;
}
return 0;
}
/*
* Copy MTE tags in another process' address space at 'addr' to/from tracer's
* iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
*/
static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
struct iovec *kiov, unsigned int gup_flags)
{
struct mm_struct *mm;
int ret;
mm = get_task_mm(tsk);
if (!mm)
return -EPERM;
if (!tsk->ptrace || (current != tsk->parent) ||
((get_dumpable(mm) != SUID_DUMP_USER) &&
!ptracer_capable(tsk, mm->user_ns))) {
mmput(mm);
return -EPERM;
}
ret = __access_remote_tags(mm, addr, kiov, gup_flags);
mmput(mm);
return ret;
}
int mte_ptrace_copy_tags(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
int ret;
struct iovec kiov;
struct iovec __user *uiov = (void __user *)data;
unsigned int gup_flags = FOLL_FORCE;
if (!system_supports_mte())
return -EIO;
if (get_user(kiov.iov_base, &uiov->iov_base) ||
get_user(kiov.iov_len, &uiov->iov_len))
return -EFAULT;
if (request == PTRACE_POKEMTETAGS)
gup_flags |= FOLL_WRITE;
/* align addr to the MTE tag granule */
addr &= MTE_GRANULE_MASK;
ret = access_remote_tags(child, addr, &kiov, gup_flags);
if (!ret)
ret = put_user(kiov.iov_len, &uiov->iov_len);
return ret;
}
static ssize_t mte_tcf_preferred_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
switch (per_cpu(mte_tcf_preferred, dev->id)) {
case MTE_CTRL_TCF_ASYNC:
return sysfs_emit(buf, "async\n");
case MTE_CTRL_TCF_SYNC:
return sysfs_emit(buf, "sync\n");
default:
return sysfs_emit(buf, "???\n");
}
}
static ssize_t mte_tcf_preferred_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u64 tcf;
if (sysfs_streq(buf, "async"))
tcf = MTE_CTRL_TCF_ASYNC;
else if (sysfs_streq(buf, "sync"))
tcf = MTE_CTRL_TCF_SYNC;
else
return -EINVAL;
device_lock(dev);
per_cpu(mte_tcf_preferred, dev->id) = tcf;
device_unlock(dev);
return count;
}
static DEVICE_ATTR_RW(mte_tcf_preferred);
static int register_mte_tcf_preferred_sysctl(void)
{
unsigned int cpu;
if (!system_supports_mte())
return 0;
for_each_possible_cpu(cpu) {
per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
device_create_file(get_cpu_device(cpu),
&dev_attr_mte_tcf_preferred);
}
return 0;
}
subsys_initcall(register_mte_tcf_preferred_sysctl);