linux-stable/drivers/net/ethernet/broadcom/bnxt/bnxt.c

14122 lines
365 KiB
C
Raw Normal View History

/* Broadcom NetXtreme-C/E network driver.
*
* Copyright (c) 2014-2016 Broadcom Corporation
* Copyright (c) 2016-2019 Broadcom Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/stringify.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <asm/byteorder.h>
#include <asm/page.h>
#include <linux/time.h>
#include <linux/mii.h>
#include <linux/mdio.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/if_bridge.h>
#include <linux/rtc.h>
#include <linux/bpf.h>
#include <net/gro.h>
#include <net/ip.h>
#include <net/tcp.h>
#include <net/udp.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <net/udp_tunnel.h>
#include <linux/workqueue.h>
#include <linux/prefetch.h>
#include <linux/cache.h>
#include <linux/log2.h>
#include <linux/aer.h>
#include <linux/bitmap.h>
#include <linux/cpu_rmap.h>
#include <linux/cpumask.h>
#include <net/pkt_cls.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <net/page_pool.h>
#include <linux/align.h>
#include "bnxt_hsi.h"
#include "bnxt.h"
#include "bnxt_hwrm.h"
#include "bnxt_ulp.h"
#include "bnxt_sriov.h"
#include "bnxt_ethtool.h"
#include "bnxt_dcb.h"
#include "bnxt_xdp.h"
#include "bnxt_ptp.h"
#include "bnxt_vfr.h"
#include "bnxt_tc.h"
#include "bnxt_devlink.h"
#include "bnxt_debugfs.h"
#define BNXT_TX_TIMEOUT (5 * HZ)
#define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \
NETIF_MSG_TX_ERR)
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
#define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
#define BNXT_RX_DMA_OFFSET NET_SKB_PAD
#define BNXT_RX_COPY_THRESH 256
#define BNXT_TX_PUSH_THRESH 164
/* indexed by enum board_idx */
static const struct {
char *name;
} board_info[] = {
[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
};
static const struct pci_device_id bnxt_pci_tbl[] = {
{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
#ifdef CONFIG_BNXT_SRIOV
{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
#endif
{ 0 }
};
MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
static const u16 bnxt_vf_req_snif[] = {
HWRM_FUNC_CFG,
HWRM_FUNC_VF_CFG,
HWRM_PORT_PHY_QCFG,
HWRM_CFA_L2_FILTER_ALLOC,
};
static const u16 bnxt_async_events_arr[] = {
ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
};
static struct workqueue_struct *bnxt_pf_wq;
static bool bnxt_vf_pciid(enum board_idx idx)
{
return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
idx == NETXTREME_E_P5_VF_HV);
}
#define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
#define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
#define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
#define BNXT_CP_DB_IRQ_DIS(db) \
writel(DB_CP_IRQ_DIS_FLAGS, db)
#define BNXT_DB_CQ(db, idx) \
writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
#define BNXT_DB_NQ_P5(db, idx) \
bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \
(db)->doorbell)
#define BNXT_DB_CQ_ARM(db, idx) \
writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
#define BNXT_DB_NQ_ARM_P5(db, idx) \
bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
(db)->doorbell)
static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
{
if (bp->flags & BNXT_FLAG_CHIP_P5)
BNXT_DB_NQ_P5(db, idx);
else
BNXT_DB_CQ(db, idx);
}
static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
{
if (bp->flags & BNXT_FLAG_CHIP_P5)
BNXT_DB_NQ_ARM_P5(db, idx);
else
BNXT_DB_CQ_ARM(db, idx);
}
static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
{
if (bp->flags & BNXT_FLAG_CHIP_P5)
bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
RING_CMP(idx), db->doorbell);
else
BNXT_DB_CQ(db, idx);
}
const u16 bnxt_lhint_arr[] = {
TX_BD_FLAGS_LHINT_512_AND_SMALLER,
TX_BD_FLAGS_LHINT_512_TO_1023,
TX_BD_FLAGS_LHINT_1024_TO_2047,
TX_BD_FLAGS_LHINT_1024_TO_2047,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
};
static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
{
struct metadata_dst *md_dst = skb_metadata_dst(skb);
if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
return 0;
return md_dst->u.port_info.port_id;
}
static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
u16 prod)
{
bnxt_db_write(bp, &txr->tx_db, prod);
txr->kick_pending = 0;
}
static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
struct bnxt_tx_ring_info *txr,
struct netdev_queue *txq)
{
netif_tx_stop_queue(txq);
/* netif_tx_stop_queue() must be done before checking
* tx index in bnxt_tx_avail() below, because in
* bnxt_tx_int(), we update tx index before checking for
* netif_tx_queue_stopped().
*/
smp_mb();
if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
netif_tx_wake_queue(txq);
return false;
}
return true;
}
static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
struct tx_bd *txbd;
struct tx_bd_ext *txbd1;
struct netdev_queue *txq;
int i;
dma_addr_t mapping;
unsigned int length, pad = 0;
u32 len, free_size, vlan_tag_flags, cfa_action, flags;
u16 prod, last_frag;
struct pci_dev *pdev = bp->pdev;
struct bnxt_tx_ring_info *txr;
struct bnxt_sw_tx_bd *tx_buf;
__le32 lflags = 0;
i = skb_get_queue_mapping(skb);
if (unlikely(i >= bp->tx_nr_rings)) {
dev_kfree_skb_any(skb);
dev_core_stats_tx_dropped_inc(dev);
return NETDEV_TX_OK;
}
txq = netdev_get_tx_queue(dev, i);
txr = &bp->tx_ring[bp->tx_ring_map[i]];
prod = txr->tx_prod;
free_size = bnxt_tx_avail(bp, txr);
if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
/* We must have raced with NAPI cleanup */
if (net_ratelimit() && txr->kick_pending)
netif_warn(bp, tx_err, dev,
"bnxt: ring busy w/ flush pending!\n");
if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
return NETDEV_TX_BUSY;
}
if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
goto tx_free;
length = skb->len;
len = skb_headlen(skb);
last_frag = skb_shinfo(skb)->nr_frags;
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
txbd->tx_bd_opaque = prod;
tx_buf = &txr->tx_buf_ring[prod];
tx_buf->skb = skb;
tx_buf->nr_frags = last_frag;
vlan_tag_flags = 0;
cfa_action = bnxt_xmit_get_cfa_action(skb);
if (skb_vlan_tag_present(skb)) {
vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
skb_vlan_tag_get(skb);
/* Currently supports 8021Q, 8021AD vlan offloads
* QINQ1, QINQ2, QINQ3 vlan headers are deprecated
*/
if (skb->vlan_proto == htons(ETH_P_8021Q))
vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
}
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
&ptp->tx_hdr_off)) {
if (vlan_tag_flags)
ptp->tx_hdr_off += VLAN_HLEN;
lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
} else {
atomic_inc(&bp->ptp_cfg->tx_avail);
}
}
}
if (unlikely(skb->no_fcs))
lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
!lflags) {
struct tx_push_buffer *tx_push_buf = txr->tx_push;
struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
void __iomem *db = txr->tx_db.doorbell;
void *pdata = tx_push_buf->data;
u64 *end;
int j, push_len;
/* Set COAL_NOW to be ready quickly for the next push */
tx_push->tx_bd_len_flags_type =
cpu_to_le32((length << TX_BD_LEN_SHIFT) |
TX_BD_TYPE_LONG_TX_BD |
TX_BD_FLAGS_LHINT_512_AND_SMALLER |
TX_BD_FLAGS_COAL_NOW |
TX_BD_FLAGS_PACKET_END |
(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
if (skb->ip_summed == CHECKSUM_PARTIAL)
tx_push1->tx_bd_hsize_lflags =
cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
else
tx_push1->tx_bd_hsize_lflags = 0;
tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
tx_push1->tx_bd_cfa_action =
cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
end = pdata + length;
end = PTR_ALIGN(end, 8) - 1;
*end = 0;
skb_copy_from_linear_data(skb, pdata, len);
pdata += len;
for (j = 0; j < last_frag; j++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
void *fptr;
fptr = skb_frag_address_safe(frag);
if (!fptr)
goto normal_tx;
memcpy(pdata, fptr, skb_frag_size(frag));
pdata += skb_frag_size(frag);
}
txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
txbd->tx_bd_haddr = txr->data_mapping;
prod = NEXT_TX(prod);
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
memcpy(txbd, tx_push1, sizeof(*txbd));
prod = NEXT_TX(prod);
tx_push->doorbell =
cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
txr->tx_prod = prod;
tx_buf->is_push = 1;
netdev_tx_sent_queue(txq, skb->len);
wmb(); /* Sync is_push and byte queue before pushing data */
push_len = (length + sizeof(*tx_push) + 7) / 8;
if (push_len > 16) {
__iowrite64_copy(db, tx_push_buf, 16);
__iowrite32_copy(db + 4, tx_push_buf + 1,
(push_len - 16) << 1);
} else {
__iowrite64_copy(db, tx_push_buf, push_len);
}
goto tx_done;
}
normal_tx:
if (length < BNXT_MIN_PKT_SIZE) {
pad = BNXT_MIN_PKT_SIZE - length;
if (skb_pad(skb, pad))
/* SKB already freed. */
goto tx_kick_pending;
length = BNXT_MIN_PKT_SIZE;
}
mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
goto tx_free;
dma_unmap_addr_set(tx_buf, mapping, mapping);
flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
txbd->tx_bd_haddr = cpu_to_le64(mapping);
prod = NEXT_TX(prod);
txbd1 = (struct tx_bd_ext *)
&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
txbd1->tx_bd_hsize_lflags = lflags;
if (skb_is_gso(skb)) {
u32 hdr_len;
if (skb->encapsulation)
hdr_len = skb_inner_tcp_all_headers(skb);
else
hdr_len = skb_tcp_all_headers(skb);
txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
TX_BD_FLAGS_T_IPID |
(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
length = skb_shinfo(skb)->gso_size;
txbd1->tx_bd_mss = cpu_to_le32(length);
length += hdr_len;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
txbd1->tx_bd_hsize_lflags |=
cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
txbd1->tx_bd_mss = 0;
}
length >>= 9;
if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
skb->len);
i = 0;
goto tx_dma_error;
}
flags |= bnxt_lhint_arr[length];
txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
txbd1->tx_bd_cfa_action =
cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
for (i = 0; i < last_frag; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
prod = NEXT_TX(prod);
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
len = skb_frag_size(frag);
mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
goto tx_dma_error;
tx_buf = &txr->tx_buf_ring[prod];
dma_unmap_addr_set(tx_buf, mapping, mapping);
txbd->tx_bd_haddr = cpu_to_le64(mapping);
flags = len << TX_BD_LEN_SHIFT;
txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
}
flags &= ~TX_BD_LEN;
txbd->tx_bd_len_flags_type =
cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
TX_BD_FLAGS_PACKET_END);
netdev_tx_sent_queue(txq, skb->len);
skb_tx_timestamp(skb);
/* Sync BD data before updating doorbell */
wmb();
prod = NEXT_TX(prod);
txr->tx_prod = prod;
if (!netdev_xmit_more() || netif_xmit_stopped(txq))
bnxt_txr_db_kick(bp, txr, prod);
else
txr->kick_pending = 1;
tx_done:
if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
if (netdev_xmit_more() && !tx_buf->is_push)
bnxt_txr_db_kick(bp, txr, prod);
bnxt_txr_netif_try_stop_queue(bp, txr, txq);
}
return NETDEV_TX_OK;
tx_dma_error:
if (BNXT_TX_PTP_IS_SET(lflags))
atomic_inc(&bp->ptp_cfg->tx_avail);
last_frag = i;
/* start back at beginning and unmap skb */
prod = txr->tx_prod;
tx_buf = &txr->tx_buf_ring[prod];
dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
net: broadcom: switch from 'pci_' to 'dma_' API The wrappers in include/linux/pci-dma-compat.h should go away. The patch has been generated with the coccinelle script below. It has been compile tested. @@ @@ - PCI_DMA_BIDIRECTIONAL + DMA_BIDIRECTIONAL @@ @@ - PCI_DMA_TODEVICE + DMA_TO_DEVICE @@ @@ - PCI_DMA_FROMDEVICE + DMA_FROM_DEVICE @@ @@ - PCI_DMA_NONE + DMA_NONE @@ expression e1, e2, e3; @@ - pci_alloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3; @@ - pci_zalloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3, e4; @@ - pci_free_consistent(e1, e2, e3, e4) + dma_free_coherent(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_single(e1, e2, e3, e4) + dma_map_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_single(e1, e2, e3, e4) + dma_unmap_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4, e5; @@ - pci_map_page(e1, e2, e3, e4, e5) + dma_map_page(&e1->dev, e2, e3, e4, e5) @@ expression e1, e2, e3, e4; @@ - pci_unmap_page(e1, e2, e3, e4) + dma_unmap_page(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_sg(e1, e2, e3, e4) + dma_map_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_sg(e1, e2, e3, e4) + dma_unmap_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_cpu(e1, e2, e3, e4) + dma_sync_single_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_device(e1, e2, e3, e4) + dma_sync_single_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_cpu(e1, e2, e3, e4) + dma_sync_sg_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_device(e1, e2, e3, e4) + dma_sync_sg_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2; @@ - pci_dma_mapping_error(e1, e2) + dma_mapping_error(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_dma_mask(e1, e2) + dma_set_mask(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_consistent_dma_mask(e1, e2) + dma_set_coherent_mask(&e1->dev, e2) Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-22 05:59:44 +00:00
skb_headlen(skb), DMA_TO_DEVICE);
prod = NEXT_TX(prod);
/* unmap remaining mapped pages */
for (i = 0; i < last_frag; i++) {
prod = NEXT_TX(prod);
tx_buf = &txr->tx_buf_ring[prod];
dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
skb_frag_size(&skb_shinfo(skb)->frags[i]),
net: broadcom: switch from 'pci_' to 'dma_' API The wrappers in include/linux/pci-dma-compat.h should go away. The patch has been generated with the coccinelle script below. It has been compile tested. @@ @@ - PCI_DMA_BIDIRECTIONAL + DMA_BIDIRECTIONAL @@ @@ - PCI_DMA_TODEVICE + DMA_TO_DEVICE @@ @@ - PCI_DMA_FROMDEVICE + DMA_FROM_DEVICE @@ @@ - PCI_DMA_NONE + DMA_NONE @@ expression e1, e2, e3; @@ - pci_alloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3; @@ - pci_zalloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3, e4; @@ - pci_free_consistent(e1, e2, e3, e4) + dma_free_coherent(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_single(e1, e2, e3, e4) + dma_map_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_single(e1, e2, e3, e4) + dma_unmap_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4, e5; @@ - pci_map_page(e1, e2, e3, e4, e5) + dma_map_page(&e1->dev, e2, e3, e4, e5) @@ expression e1, e2, e3, e4; @@ - pci_unmap_page(e1, e2, e3, e4) + dma_unmap_page(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_sg(e1, e2, e3, e4) + dma_map_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_sg(e1, e2, e3, e4) + dma_unmap_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_cpu(e1, e2, e3, e4) + dma_sync_single_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_device(e1, e2, e3, e4) + dma_sync_single_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_cpu(e1, e2, e3, e4) + dma_sync_sg_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_device(e1, e2, e3, e4) + dma_sync_sg_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2; @@ - pci_dma_mapping_error(e1, e2) + dma_mapping_error(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_dma_mask(e1, e2) + dma_set_mask(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_consistent_dma_mask(e1, e2) + dma_set_coherent_mask(&e1->dev, e2) Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-22 05:59:44 +00:00
DMA_TO_DEVICE);
}
tx_free:
dev_kfree_skb_any(skb);
tx_kick_pending:
if (txr->kick_pending)
bnxt_txr_db_kick(bp, txr, txr->tx_prod);
txr->tx_buf_ring[txr->tx_prod].skb = NULL;
dev_core_stats_tx_dropped_inc(dev);
return NETDEV_TX_OK;
}
static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
{
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
u16 cons = txr->tx_cons;
struct pci_dev *pdev = bp->pdev;
int i;
unsigned int tx_bytes = 0;
for (i = 0; i < nr_pkts; i++) {
struct bnxt_sw_tx_bd *tx_buf;
struct sk_buff *skb;
int j, last;
tx_buf = &txr->tx_buf_ring[cons];
cons = NEXT_TX(cons);
skb = tx_buf->skb;
tx_buf->skb = NULL;
tx_bytes += skb->len;
if (tx_buf->is_push) {
tx_buf->is_push = 0;
goto next_tx_int;
}
dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
net: broadcom: switch from 'pci_' to 'dma_' API The wrappers in include/linux/pci-dma-compat.h should go away. The patch has been generated with the coccinelle script below. It has been compile tested. @@ @@ - PCI_DMA_BIDIRECTIONAL + DMA_BIDIRECTIONAL @@ @@ - PCI_DMA_TODEVICE + DMA_TO_DEVICE @@ @@ - PCI_DMA_FROMDEVICE + DMA_FROM_DEVICE @@ @@ - PCI_DMA_NONE + DMA_NONE @@ expression e1, e2, e3; @@ - pci_alloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3; @@ - pci_zalloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3, e4; @@ - pci_free_consistent(e1, e2, e3, e4) + dma_free_coherent(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_single(e1, e2, e3, e4) + dma_map_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_single(e1, e2, e3, e4) + dma_unmap_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4, e5; @@ - pci_map_page(e1, e2, e3, e4, e5) + dma_map_page(&e1->dev, e2, e3, e4, e5) @@ expression e1, e2, e3, e4; @@ - pci_unmap_page(e1, e2, e3, e4) + dma_unmap_page(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_sg(e1, e2, e3, e4) + dma_map_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_sg(e1, e2, e3, e4) + dma_unmap_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_cpu(e1, e2, e3, e4) + dma_sync_single_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_device(e1, e2, e3, e4) + dma_sync_single_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_cpu(e1, e2, e3, e4) + dma_sync_sg_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_device(e1, e2, e3, e4) + dma_sync_sg_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2; @@ - pci_dma_mapping_error(e1, e2) + dma_mapping_error(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_dma_mask(e1, e2) + dma_set_mask(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_consistent_dma_mask(e1, e2) + dma_set_coherent_mask(&e1->dev, e2) Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-22 05:59:44 +00:00
skb_headlen(skb), DMA_TO_DEVICE);
last = tx_buf->nr_frags;
for (j = 0; j < last; j++) {
cons = NEXT_TX(cons);
tx_buf = &txr->tx_buf_ring[cons];
dma_unmap_page(
&pdev->dev,
dma_unmap_addr(tx_buf, mapping),
skb_frag_size(&skb_shinfo(skb)->frags[j]),
net: broadcom: switch from 'pci_' to 'dma_' API The wrappers in include/linux/pci-dma-compat.h should go away. The patch has been generated with the coccinelle script below. It has been compile tested. @@ @@ - PCI_DMA_BIDIRECTIONAL + DMA_BIDIRECTIONAL @@ @@ - PCI_DMA_TODEVICE + DMA_TO_DEVICE @@ @@ - PCI_DMA_FROMDEVICE + DMA_FROM_DEVICE @@ @@ - PCI_DMA_NONE + DMA_NONE @@ expression e1, e2, e3; @@ - pci_alloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3; @@ - pci_zalloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3, e4; @@ - pci_free_consistent(e1, e2, e3, e4) + dma_free_coherent(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_single(e1, e2, e3, e4) + dma_map_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_single(e1, e2, e3, e4) + dma_unmap_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4, e5; @@ - pci_map_page(e1, e2, e3, e4, e5) + dma_map_page(&e1->dev, e2, e3, e4, e5) @@ expression e1, e2, e3, e4; @@ - pci_unmap_page(e1, e2, e3, e4) + dma_unmap_page(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_sg(e1, e2, e3, e4) + dma_map_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_sg(e1, e2, e3, e4) + dma_unmap_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_cpu(e1, e2, e3, e4) + dma_sync_single_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_device(e1, e2, e3, e4) + dma_sync_single_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_cpu(e1, e2, e3, e4) + dma_sync_sg_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_device(e1, e2, e3, e4) + dma_sync_sg_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2; @@ - pci_dma_mapping_error(e1, e2) + dma_mapping_error(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_dma_mask(e1, e2) + dma_set_mask(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_consistent_dma_mask(e1, e2) + dma_set_coherent_mask(&e1->dev, e2) Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-22 05:59:44 +00:00
DMA_TO_DEVICE);
}
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
if (bp->flags & BNXT_FLAG_CHIP_P5) {
/* PTP worker takes ownership of the skb */
if (!bnxt_get_tx_ts_p5(bp, skb))
skb = NULL;
else
atomic_inc(&bp->ptp_cfg->tx_avail);
}
}
next_tx_int:
cons = NEXT_TX(cons);
dev_kfree_skb_any(skb);
}
netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
txr->tx_cons = cons;
/* Need to make the tx_cons update visible to bnxt_start_xmit()
* before checking for netif_tx_queue_stopped(). Without the
* memory barrier, there is a small possibility that bnxt_start_xmit()
* will miss it and cause the queue to be stopped forever.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(txq)) &&
bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
netif_tx_wake_queue(txq);
}
static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
struct bnxt_rx_ring_info *rxr,
gfp_t gfp)
{
struct device *dev = &bp->pdev->dev;
struct page *page;
page = page_pool_dev_alloc_pages(rxr->page_pool);
if (!page)
return NULL;
*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
if (dma_mapping_error(dev, *mapping)) {
page_pool_recycle_direct(rxr->page_pool, page);
return NULL;
}
return page;
}
static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
gfp_t gfp)
{
u8 *data;
struct pci_dev *pdev = bp->pdev;
if (gfp == GFP_ATOMIC)
data = napi_alloc_frag(bp->rx_buf_size);
else
data = netdev_alloc_frag(bp->rx_buf_size);
if (!data)
return NULL;
*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
bp->rx_buf_use_size, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
if (dma_mapping_error(&pdev->dev, *mapping)) {
skb_free_frag(data);
data = NULL;
}
return data;
}
int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
u16 prod, gfp_t gfp)
{
struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
dma_addr_t mapping;
if (BNXT_RX_PAGE_MODE(bp)) {
struct page *page =
__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
if (!page)
return -ENOMEM;
mapping += bp->rx_dma_offset;
rx_buf->data = page;
rx_buf->data_ptr = page_address(page) + bp->rx_offset;
} else {
u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
if (!data)
return -ENOMEM;
rx_buf->data = data;
rx_buf->data_ptr = data + bp->rx_offset;
}
rx_buf->mapping = mapping;
rxbd->rx_bd_haddr = cpu_to_le64(mapping);
return 0;
}
void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
{
u16 prod = rxr->rx_prod;
struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
struct rx_bd *cons_bd, *prod_bd;
prod_rx_buf = &rxr->rx_buf_ring[prod];
cons_rx_buf = &rxr->rx_buf_ring[cons];
prod_rx_buf->data = data;
prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
prod_rx_buf->mapping = cons_rx_buf->mapping;
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
}
static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
{
u16 next, max = rxr->rx_agg_bmap_size;
next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
if (next >= max)
next = find_first_zero_bit(rxr->rx_agg_bmap, max);
return next;
}
static inline int bnxt_alloc_rx_page(struct bnxt *bp,
struct bnxt_rx_ring_info *rxr,
u16 prod, gfp_t gfp)
{
struct rx_bd *rxbd =
&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
struct bnxt_sw_rx_agg_bd *rx_agg_buf;
struct pci_dev *pdev = bp->pdev;
struct page *page;
dma_addr_t mapping;
u16 sw_prod = rxr->rx_sw_agg_prod;
unsigned int offset = 0;
if (BNXT_RX_PAGE_MODE(bp)) {
page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
if (!page)
return -ENOMEM;
} else {
if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
page = rxr->rx_page;
if (!page) {
page = alloc_page(gfp);
if (!page)
return -ENOMEM;
rxr->rx_page = page;
rxr->rx_page_offset = 0;
}
offset = rxr->rx_page_offset;
rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
if (rxr->rx_page_offset == PAGE_SIZE)
rxr->rx_page = NULL;
else
get_page(page);
} else {
page = alloc_page(gfp);
if (!page)
return -ENOMEM;
}
mapping = dma_map_page_attrs(&pdev->dev, page, offset,
BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
DMA_ATTR_WEAK_ORDERING);
if (dma_mapping_error(&pdev->dev, mapping)) {
__free_page(page);
return -EIO;
}
}
if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
__set_bit(sw_prod, rxr->rx_agg_bmap);
rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
rx_agg_buf->page = page;
rx_agg_buf->offset = offset;
rx_agg_buf->mapping = mapping;
rxbd->rx_bd_haddr = cpu_to_le64(mapping);
rxbd->rx_bd_opaque = sw_prod;
return 0;
}
static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
struct bnxt_cp_ring_info *cpr,
u16 cp_cons, u16 curr)
{
struct rx_agg_cmp *agg;
cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
agg = (struct rx_agg_cmp *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
return agg;
}
static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
struct bnxt_rx_ring_info *rxr,
u16 agg_id, u16 curr)
{
struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
return &tpa_info->agg_arr[curr];
}
static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
u16 start, u32 agg_bufs, bool tpa)
{
struct bnxt_napi *bnapi = cpr->bnapi;
struct bnxt *bp = bnapi->bp;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
u16 prod = rxr->rx_agg_prod;
u16 sw_prod = rxr->rx_sw_agg_prod;
bool p5_tpa = false;
u32 i;
if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
p5_tpa = true;
for (i = 0; i < agg_bufs; i++) {
u16 cons;
struct rx_agg_cmp *agg;
struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
struct rx_bd *prod_bd;
struct page *page;
if (p5_tpa)
agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
else
agg = bnxt_get_agg(bp, cpr, idx, start + i);
cons = agg->rx_agg_cmp_opaque;
__clear_bit(cons, rxr->rx_agg_bmap);
if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
__set_bit(sw_prod, rxr->rx_agg_bmap);
prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
cons_rx_buf = &rxr->rx_agg_ring[cons];
/* It is possible for sw_prod to be equal to cons, so
* set cons_rx_buf->page to NULL first.
*/
page = cons_rx_buf->page;
cons_rx_buf->page = NULL;
prod_rx_buf->page = page;
prod_rx_buf->offset = cons_rx_buf->offset;
prod_rx_buf->mapping = cons_rx_buf->mapping;
prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
prod_bd->rx_bd_opaque = sw_prod;
prod = NEXT_RX_AGG(prod);
sw_prod = NEXT_RX_AGG(sw_prod);
}
rxr->rx_agg_prod = prod;
rxr->rx_sw_agg_prod = sw_prod;
}
static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
struct bnxt_rx_ring_info *rxr,
u16 cons, void *data, u8 *data_ptr,
dma_addr_t dma_addr,
unsigned int offset_and_len)
{
unsigned int len = offset_and_len & 0xffff;
struct page *page = data;
u16 prod = rxr->rx_prod;
struct sk_buff *skb;
int err;
err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
if (unlikely(err)) {
bnxt_reuse_rx_data(rxr, cons, data);
return NULL;
}
dma_addr -= bp->rx_dma_offset;
dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
skb = build_skb(page_address(page), PAGE_SIZE);
if (!skb) {
page_pool_recycle_direct(rxr->page_pool, page);
return NULL;
}
skb_mark_for_recycle(skb);
skb_reserve(skb, bp->rx_dma_offset);
__skb_put(skb, len);
return skb;
}
static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
struct bnxt_rx_ring_info *rxr,
u16 cons, void *data, u8 *data_ptr,
dma_addr_t dma_addr,
unsigned int offset_and_len)
{
unsigned int payload = offset_and_len >> 16;
unsigned int len = offset_and_len & 0xffff;
skb_frag_t *frag;
struct page *page = data;
u16 prod = rxr->rx_prod;
struct sk_buff *skb;
int off, err;
err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
if (unlikely(err)) {
bnxt_reuse_rx_data(rxr, cons, data);
return NULL;
}
dma_addr -= bp->rx_dma_offset;
dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
if (unlikely(!payload))
payload = eth_get_headlen(bp->dev, data_ptr, len);
skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
if (!skb) {
page_pool_recycle_direct(rxr->page_pool, page);
return NULL;
}
skb_mark_for_recycle(skb);
off = (void *)data_ptr - page_address(page);
skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
payload + NET_IP_ALIGN);
frag = &skb_shinfo(skb)->frags[0];
skb_frag_size_sub(frag, payload);
skb_frag_off_add(frag, payload);
skb->data_len -= payload;
skb->tail += payload;
return skb;
}
static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
struct bnxt_rx_ring_info *rxr, u16 cons,
void *data, u8 *data_ptr,
dma_addr_t dma_addr,
unsigned int offset_and_len)
{
u16 prod = rxr->rx_prod;
struct sk_buff *skb;
int err;
err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
if (unlikely(err)) {
bnxt_reuse_rx_data(rxr, cons, data);
return NULL;
}
skb = build_skb(data, bp->rx_buf_size);
dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
if (!skb) {
skb_free_frag(data);
return NULL;
}
skb_reserve(skb, bp->rx_offset);
skb_put(skb, offset_and_len & 0xffff);
return skb;
}
static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
struct bnxt_cp_ring_info *cpr,
struct skb_shared_info *shinfo,
u16 idx, u32 agg_bufs, bool tpa,
struct xdp_buff *xdp)
{
struct bnxt_napi *bnapi = cpr->bnapi;
struct pci_dev *pdev = bp->pdev;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
u16 prod = rxr->rx_agg_prod;
u32 i, total_frag_len = 0;
bool p5_tpa = false;
if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
p5_tpa = true;
for (i = 0; i < agg_bufs; i++) {
skb_frag_t *frag = &shinfo->frags[i];
u16 cons, frag_len;
struct rx_agg_cmp *agg;
struct bnxt_sw_rx_agg_bd *cons_rx_buf;
struct page *page;
dma_addr_t mapping;
if (p5_tpa)
agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
else
agg = bnxt_get_agg(bp, cpr, idx, i);
cons = agg->rx_agg_cmp_opaque;
frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
cons_rx_buf = &rxr->rx_agg_ring[cons];
skb_frag_off_set(frag, cons_rx_buf->offset);
skb_frag_size_set(frag, frag_len);
__skb_frag_set_page(frag, cons_rx_buf->page);
shinfo->nr_frags = i + 1;
__clear_bit(cons, rxr->rx_agg_bmap);
/* It is possible for bnxt_alloc_rx_page() to allocate
* a sw_prod index that equals the cons index, so we
* need to clear the cons entry now.
*/
mapping = cons_rx_buf->mapping;
page = cons_rx_buf->page;
cons_rx_buf->page = NULL;
if (xdp && page_is_pfmemalloc(page))
xdp_buff_set_frag_pfmemalloc(xdp);
if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
unsigned int nr_frags;
nr_frags = --shinfo->nr_frags;
__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
cons_rx_buf->page = page;
/* Update prod since possibly some pages have been
* allocated already.
*/
rxr->rx_agg_prod = prod;
bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
return 0;
}
dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
total_frag_len += frag_len;
prod = NEXT_RX_AGG(prod);
}
rxr->rx_agg_prod = prod;
return total_frag_len;
}
static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
struct bnxt_cp_ring_info *cpr,
struct sk_buff *skb, u16 idx,
u32 agg_bufs, bool tpa)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
u32 total_frag_len = 0;
total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
agg_bufs, tpa, NULL);
if (!total_frag_len) {
dev_kfree_skb(skb);
return NULL;
}
skb->data_len += total_frag_len;
skb->len += total_frag_len;
skb->truesize += PAGE_SIZE * agg_bufs;
return skb;
}
static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
struct bnxt_cp_ring_info *cpr,
struct xdp_buff *xdp, u16 idx,
u32 agg_bufs, bool tpa)
{
struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
u32 total_frag_len = 0;
if (!xdp_buff_has_frags(xdp))
shinfo->nr_frags = 0;
total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
idx, agg_bufs, tpa, xdp);
if (total_frag_len) {
xdp_buff_set_frags_flag(xdp);
shinfo->nr_frags = agg_bufs;
shinfo->xdp_frags_size = total_frag_len;
}
return total_frag_len;
}
static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
u8 agg_bufs, u32 *raw_cons)
{
u16 last;
struct rx_agg_cmp *agg;
*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
last = RING_CMP(*raw_cons);
agg = (struct rx_agg_cmp *)
&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
return RX_AGG_CMP_VALID(agg, *raw_cons);
}
static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
unsigned int len,
dma_addr_t mapping)
{
struct bnxt *bp = bnapi->bp;
struct pci_dev *pdev = bp->pdev;
struct sk_buff *skb;
skb = napi_alloc_skb(&bnapi->napi, len);
if (!skb)
return NULL;
dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
bp->rx_dir);
memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
len + NET_IP_ALIGN);
dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
bp->rx_dir);
skb_put(skb, len);
return skb;
}
static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
u32 *raw_cons, void *cmp)
{
struct rx_cmp *rxcmp = cmp;
u32 tmp_raw_cons = *raw_cons;
u8 cmp_type, agg_bufs = 0;
cmp_type = RX_CMP_TYPE(rxcmp);
if (cmp_type == CMP_TYPE_RX_L2_CMP) {
agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
RX_CMP_AGG_BUFS) >>
RX_CMP_AGG_BUFS_SHIFT;
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
struct rx_tpa_end_cmp *tpa_end = cmp;
if (bp->flags & BNXT_FLAG_CHIP_P5)
return 0;
agg_bufs = TPA_END_AGG_BUFS(tpa_end);
}
if (agg_bufs) {
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
return -EBUSY;
}
*raw_cons = tmp_raw_cons;
return 0;
}
static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
{
if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
return;
if (BNXT_PF(bp))
queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
else
schedule_delayed_work(&bp->fw_reset_task, delay);
}
static void bnxt_queue_sp_work(struct bnxt *bp)
{
if (BNXT_PF(bp))
queue_work(bnxt_pf_wq, &bp->sp_task);
else
schedule_work(&bp->sp_task);
}
static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
{
if (!rxr->bnapi->in_reset) {
rxr->bnapi->in_reset = true;
if (bp->flags & BNXT_FLAG_CHIP_P5)
set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
else
set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
rxr->rx_next_cons = 0xffff;
}
static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
{
struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
u16 idx = agg_id & MAX_TPA_P5_MASK;
if (test_bit(idx, map->agg_idx_bmap))
idx = find_first_zero_bit(map->agg_idx_bmap,
BNXT_AGG_IDX_BMAP_SIZE);
__set_bit(idx, map->agg_idx_bmap);
map->agg_id_tbl[agg_id] = idx;
return idx;
}
static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
{
struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
__clear_bit(idx, map->agg_idx_bmap);
}
static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
{
struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
return map->agg_id_tbl[agg_id];
}
static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
struct rx_tpa_start_cmp *tpa_start,
struct rx_tpa_start_cmp_ext *tpa_start1)
{
struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
struct bnxt_tpa_info *tpa_info;
u16 cons, prod, agg_id;
struct rx_bd *prod_bd;
dma_addr_t mapping;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
agg_id = TPA_START_AGG_ID_P5(tpa_start);
agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
} else {
agg_id = TPA_START_AGG_ID(tpa_start);
}
cons = tpa_start->rx_tpa_start_cmp_opaque;
prod = rxr->rx_prod;
cons_rx_buf = &rxr->rx_buf_ring[cons];
prod_rx_buf = &rxr->rx_buf_ring[prod];
tpa_info = &rxr->rx_tpa[agg_id];
if (unlikely(cons != rxr->rx_next_cons ||
TPA_START_ERROR(tpa_start))) {
netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
cons, rxr->rx_next_cons,
TPA_START_ERROR_CODE(tpa_start1));
bnxt_sched_reset(bp, rxr);
return;
}
/* Store cfa_code in tpa_info to use in tpa_end
* completion processing.
*/
tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
prod_rx_buf->data = tpa_info->data;
prod_rx_buf->data_ptr = tpa_info->data_ptr;
mapping = tpa_info->mapping;
prod_rx_buf->mapping = mapping;
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
tpa_info->data = cons_rx_buf->data;
tpa_info->data_ptr = cons_rx_buf->data_ptr;
cons_rx_buf->data = NULL;
tpa_info->mapping = cons_rx_buf->mapping;
tpa_info->len =
le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
RX_TPA_START_CMP_LEN_SHIFT;
if (likely(TPA_START_HASH_VALID(tpa_start))) {
u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
tpa_info->hash_type = PKT_HASH_TYPE_L4;
tpa_info->gso_type = SKB_GSO_TCPV4;
/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
tpa_info->gso_type = SKB_GSO_TCPV6;
tpa_info->rss_hash =
le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
} else {
tpa_info->hash_type = PKT_HASH_TYPE_NONE;
tpa_info->gso_type = 0;
netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
}
tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
tpa_info->agg_count = 0;
rxr->rx_prod = NEXT_RX(prod);
cons = NEXT_RX(cons);
rxr->rx_next_cons = NEXT_RX(cons);
cons_rx_buf = &rxr->rx_buf_ring[cons];
bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
rxr->rx_prod = NEXT_RX(rxr->rx_prod);
cons_rx_buf->data = NULL;
}
static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
{
if (agg_bufs)
bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
}
#ifdef CONFIG_INET
static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
{
struct udphdr *uh = NULL;
if (ip_proto == htons(ETH_P_IP)) {
struct iphdr *iph = (struct iphdr *)skb->data;
if (iph->protocol == IPPROTO_UDP)
uh = (struct udphdr *)(iph + 1);
} else {
struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
if (iph->nexthdr == IPPROTO_UDP)
uh = (struct udphdr *)(iph + 1);
}
if (uh) {
if (uh->check)
skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
else
skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
}
}
#endif
static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
int payload_off, int tcp_ts,
struct sk_buff *skb)
{
#ifdef CONFIG_INET
struct tcphdr *th;
int len, nw_off;
u16 outer_ip_off, inner_ip_off, inner_mac_off;
u32 hdr_info = tpa_info->hdr_info;
bool loopback = false;
inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
/* If the packet is an internal loopback packet, the offsets will
* have an extra 4 bytes.
*/
if (inner_mac_off == 4) {
loopback = true;
} else if (inner_mac_off > 4) {
__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
ETH_HLEN - 2));
/* We only support inner iPv4/ipv6. If we don't see the
* correct protocol ID, it must be a loopback packet where
* the offsets are off by 4.
*/
if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
loopback = true;
}
if (loopback) {
/* internal loopback packet, subtract all offsets by 4 */
inner_ip_off -= 4;
inner_mac_off -= 4;
outer_ip_off -= 4;
}
nw_off = inner_ip_off - ETH_HLEN;
skb_set_network_header(skb, nw_off);
if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
struct ipv6hdr *iph = ipv6_hdr(skb);
skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
len = skb->len - skb_transport_offset(skb);
th = tcp_hdr(skb);
th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
} else {
struct iphdr *iph = ip_hdr(skb);
skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
len = skb->len - skb_transport_offset(skb);
th = tcp_hdr(skb);
th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
}
if (inner_mac_off) { /* tunnel */
__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
ETH_HLEN - 2));
bnxt_gro_tunnel(skb, proto);
}
#endif
return skb;
}
static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
int payload_off, int tcp_ts,
struct sk_buff *skb)
{
#ifdef CONFIG_INET
u16 outer_ip_off, inner_ip_off, inner_mac_off;
u32 hdr_info = tpa_info->hdr_info;
int iphdr_len, nw_off;
inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
nw_off = inner_ip_off - ETH_HLEN;
skb_set_network_header(skb, nw_off);
iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
sizeof(struct ipv6hdr) : sizeof(struct iphdr);
skb_set_transport_header(skb, nw_off + iphdr_len);
if (inner_mac_off) { /* tunnel */
__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
ETH_HLEN - 2));
bnxt_gro_tunnel(skb, proto);
}
#endif
return skb;
}
#define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
#define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
int payload_off, int tcp_ts,
struct sk_buff *skb)
{
#ifdef CONFIG_INET
struct tcphdr *th;
int len, nw_off, tcp_opt_len = 0;
if (tcp_ts)
tcp_opt_len = 12;
if (tpa_info->gso_type == SKB_GSO_TCPV4) {
struct iphdr *iph;
nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
ETH_HLEN;
skb_set_network_header(skb, nw_off);
iph = ip_hdr(skb);
skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
len = skb->len - skb_transport_offset(skb);
th = tcp_hdr(skb);
th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
struct ipv6hdr *iph;
nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
ETH_HLEN;
skb_set_network_header(skb, nw_off);
iph = ipv6_hdr(skb);
skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
len = skb->len - skb_transport_offset(skb);
th = tcp_hdr(skb);
th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
} else {
dev_kfree_skb_any(skb);
return NULL;
}
if (nw_off) /* tunnel */
bnxt_gro_tunnel(skb, skb->protocol);
#endif
return skb;
}
static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
struct bnxt_tpa_info *tpa_info,
struct rx_tpa_end_cmp *tpa_end,
struct rx_tpa_end_cmp_ext *tpa_end1,
struct sk_buff *skb)
{
#ifdef CONFIG_INET
int payload_off;
u16 segs;
segs = TPA_END_TPA_SEGS(tpa_end);
if (segs == 1)
return skb;
NAPI_GRO_CB(skb)->count = segs;
skb_shinfo(skb)->gso_size =
le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
skb_shinfo(skb)->gso_type = tpa_info->gso_type;
if (bp->flags & BNXT_FLAG_CHIP_P5)
payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
else
payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
if (likely(skb))
tcp_gro_complete(skb);
#endif
return skb;
}
/* Given the cfa_code of a received packet determine which
* netdev (vf-rep or PF) the packet is destined to.
*/
static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
{
struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
/* if vf-rep dev is NULL, the must belongs to the PF */
return dev ? dev : bp->dev;
}
static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
struct bnxt_cp_ring_info *cpr,
u32 *raw_cons,
struct rx_tpa_end_cmp *tpa_end,
struct rx_tpa_end_cmp_ext *tpa_end1,
u8 *event)
{
struct bnxt_napi *bnapi = cpr->bnapi;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
u8 *data_ptr, agg_bufs;
unsigned int len;
struct bnxt_tpa_info *tpa_info;
dma_addr_t mapping;
struct sk_buff *skb;
u16 idx = 0, agg_id;
void *data;
bool gro;
if (unlikely(bnapi->in_reset)) {
int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
if (rc < 0)
return ERR_PTR(-EBUSY);
return NULL;
}
if (bp->flags & BNXT_FLAG_CHIP_P5) {
agg_id = TPA_END_AGG_ID_P5(tpa_end);
agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
tpa_info = &rxr->rx_tpa[agg_id];
if (unlikely(agg_bufs != tpa_info->agg_count)) {
netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
agg_bufs, tpa_info->agg_count);
agg_bufs = tpa_info->agg_count;
}
tpa_info->agg_count = 0;
*event |= BNXT_AGG_EVENT;
bnxt_free_agg_idx(rxr, agg_id);
idx = agg_id;
gro = !!(bp->flags & BNXT_FLAG_GRO);
} else {
agg_id = TPA_END_AGG_ID(tpa_end);
agg_bufs = TPA_END_AGG_BUFS(tpa_end);
tpa_info = &rxr->rx_tpa[agg_id];
idx = RING_CMP(*raw_cons);
if (agg_bufs) {
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
return ERR_PTR(-EBUSY);
*event |= BNXT_AGG_EVENT;
idx = NEXT_CMP(idx);
}
gro = !!TPA_END_GRO(tpa_end);
}
data = tpa_info->data;
data_ptr = tpa_info->data_ptr;
prefetch(data_ptr);
len = tpa_info->len;
mapping = tpa_info->mapping;
if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
bnxt_abort_tpa(cpr, idx, agg_bufs);
if (agg_bufs > MAX_SKB_FRAGS)
netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
agg_bufs, (int)MAX_SKB_FRAGS);
return NULL;
}
if (len <= bp->rx_copy_thresh) {
skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
if (!skb) {
bnxt_abort_tpa(cpr, idx, agg_bufs);
cpr->sw_stats.rx.rx_oom_discards += 1;
return NULL;
}
} else {
u8 *new_data;
dma_addr_t new_mapping;
new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
if (!new_data) {
bnxt_abort_tpa(cpr, idx, agg_bufs);
cpr->sw_stats.rx.rx_oom_discards += 1;
return NULL;
}
tpa_info->data = new_data;
tpa_info->data_ptr = new_data + bp->rx_offset;
tpa_info->mapping = new_mapping;
skb = build_skb(data, bp->rx_buf_size);
dma_unmap_single_attrs(&bp->pdev->dev, mapping,
bp->rx_buf_use_size, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
if (!skb) {
skb_free_frag(data);
bnxt_abort_tpa(cpr, idx, agg_bufs);
cpr->sw_stats.rx.rx_oom_discards += 1;
return NULL;
}
skb_reserve(skb, bp->rx_offset);
skb_put(skb, len);
}
if (agg_bufs) {
skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
if (!skb) {
/* Page reuse already handled by bnxt_rx_pages(). */
cpr->sw_stats.rx.rx_oom_discards += 1;
return NULL;
}
}
skb->protocol =
eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
(skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
__be16 vlan_proto = htons(tpa_info->metadata >>
RX_CMP_FLAGS2_METADATA_TPID_SFT);
u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
if (eth_type_vlan(vlan_proto)) {
__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
} else {
dev_kfree_skb(skb);
return NULL;
}
}
skb_checksum_none_assert(skb);
if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level =
(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
}
if (gro)
skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
return skb;
}
static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
struct rx_agg_cmp *rx_agg)
{
u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
struct bnxt_tpa_info *tpa_info;
agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
tpa_info = &rxr->rx_tpa[agg_id];
BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
}
static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
struct sk_buff *skb)
{
if (skb->dev != bp->dev) {
/* this packet belongs to a vf-rep */
bnxt_vf_rep_rx(bp, skb);
return;
}
skb_record_rx_queue(skb, bnapi->index);
napi_gro_receive(&bnapi->napi, skb);
}
/* returns the following:
* 1 - 1 packet successfully received
* 0 - successful TPA_START, packet not completed yet
* -EBUSY - completion ring does not have all the agg buffers yet
* -ENOMEM - packet aborted due to out of memory
* -EIO - packet aborted due to hw error indicated in BD
*/
static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
u32 *raw_cons, u8 *event)
{
struct bnxt_napi *bnapi = cpr->bnapi;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
struct net_device *dev = bp->dev;
struct rx_cmp *rxcmp;
struct rx_cmp_ext *rxcmp1;
u32 tmp_raw_cons = *raw_cons;
u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
struct bnxt_sw_rx_bd *rx_buf;
unsigned int len;
u8 *data_ptr, agg_bufs, cmp_type;
bool xdp_active = false;
dma_addr_t dma_addr;
struct sk_buff *skb;
struct xdp_buff xdp;
u32 flags, misc;
void *data;
int rc = 0;
rxcmp = (struct rx_cmp *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
cmp_type = RX_CMP_TYPE(rxcmp);
if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
goto next_rx_no_prod_no_len;
}
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
cp_cons = RING_CMP(tmp_raw_cons);
rxcmp1 = (struct rx_cmp_ext *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
return -EBUSY;
/* The valid test of the entry must be done first before
* reading any further.
*/
dma_rmb();
prod = rxr->rx_prod;
if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
(struct rx_tpa_start_cmp_ext *)rxcmp1);
*event |= BNXT_RX_EVENT;
goto next_rx_no_prod_no_len;
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
(struct rx_tpa_end_cmp *)rxcmp,
(struct rx_tpa_end_cmp_ext *)rxcmp1, event);
if (IS_ERR(skb))
return -EBUSY;
rc = -ENOMEM;
if (likely(skb)) {
bnxt_deliver_skb(bp, bnapi, skb);
rc = 1;
}
*event |= BNXT_RX_EVENT;
goto next_rx_no_prod_no_len;
}
cons = rxcmp->rx_cmp_opaque;
if (unlikely(cons != rxr->rx_next_cons)) {
bnxt_en: Fix RX consumer index logic in the error path. In bnxt_rx_pkt(), the RX buffers are expected to complete in order. If the RX consumer index indicates an out of order buffer completion, it means we are hitting a hardware bug and the driver will abort all remaining RX packets and reset the RX ring. The RX consumer index that we pass to bnxt_discard_rx() is not correct. We should be passing the current index (tmp_raw_cons) instead of the old index (raw_cons). This bug can cause us to be at the wrong index when trying to abort the next RX packet. It can crash like this: #0 [ffff9bbcdf5c39a8] machine_kexec at ffffffff9b05e007 #1 [ffff9bbcdf5c3a00] __crash_kexec at ffffffff9b111232 #2 [ffff9bbcdf5c3ad0] panic at ffffffff9b07d61e #3 [ffff9bbcdf5c3b50] oops_end at ffffffff9b030978 #4 [ffff9bbcdf5c3b78] no_context at ffffffff9b06aaf0 #5 [ffff9bbcdf5c3bd8] __bad_area_nosemaphore at ffffffff9b06ae2e #6 [ffff9bbcdf5c3c28] bad_area_nosemaphore at ffffffff9b06af24 #7 [ffff9bbcdf5c3c38] __do_page_fault at ffffffff9b06b67e #8 [ffff9bbcdf5c3cb0] do_page_fault at ffffffff9b06bb12 #9 [ffff9bbcdf5c3ce0] page_fault at ffffffff9bc015c5 [exception RIP: bnxt_rx_pkt+237] RIP: ffffffffc0259cdd RSP: ffff9bbcdf5c3d98 RFLAGS: 00010213 RAX: 000000005dd8097f RBX: ffff9ba4cb11b7e0 RCX: ffffa923cf6e9000 RDX: 0000000000000fff RSI: 0000000000000627 RDI: 0000000000001000 RBP: ffff9bbcdf5c3e60 R8: 0000000000420003 R9: 000000000000020d R10: ffffa923cf6ec138 R11: ffff9bbcdf5c3e83 R12: ffff9ba4d6f928c0 R13: ffff9ba4cac28080 R14: ffff9ba4cb11b7f0 R15: ffff9ba4d5a30000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Fixes: a1b0e4e684e9 ("bnxt_en: Improve RX consumer index validity check.") Reviewed-by: Pavan Chebbi <pavan.chebbi@broadcom.com> Reviewed-by: Andy Gospodarek <gospo@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-23 22:13:19 +00:00
int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
/* 0xffff is forced error, don't print it */
if (rxr->rx_next_cons != 0xffff)
netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
cons, rxr->rx_next_cons);
bnxt_sched_reset(bp, rxr);
bnxt_en: Fix RX consumer index logic in the error path. In bnxt_rx_pkt(), the RX buffers are expected to complete in order. If the RX consumer index indicates an out of order buffer completion, it means we are hitting a hardware bug and the driver will abort all remaining RX packets and reset the RX ring. The RX consumer index that we pass to bnxt_discard_rx() is not correct. We should be passing the current index (tmp_raw_cons) instead of the old index (raw_cons). This bug can cause us to be at the wrong index when trying to abort the next RX packet. It can crash like this: #0 [ffff9bbcdf5c39a8] machine_kexec at ffffffff9b05e007 #1 [ffff9bbcdf5c3a00] __crash_kexec at ffffffff9b111232 #2 [ffff9bbcdf5c3ad0] panic at ffffffff9b07d61e #3 [ffff9bbcdf5c3b50] oops_end at ffffffff9b030978 #4 [ffff9bbcdf5c3b78] no_context at ffffffff9b06aaf0 #5 [ffff9bbcdf5c3bd8] __bad_area_nosemaphore at ffffffff9b06ae2e #6 [ffff9bbcdf5c3c28] bad_area_nosemaphore at ffffffff9b06af24 #7 [ffff9bbcdf5c3c38] __do_page_fault at ffffffff9b06b67e #8 [ffff9bbcdf5c3cb0] do_page_fault at ffffffff9b06bb12 #9 [ffff9bbcdf5c3ce0] page_fault at ffffffff9bc015c5 [exception RIP: bnxt_rx_pkt+237] RIP: ffffffffc0259cdd RSP: ffff9bbcdf5c3d98 RFLAGS: 00010213 RAX: 000000005dd8097f RBX: ffff9ba4cb11b7e0 RCX: ffffa923cf6e9000 RDX: 0000000000000fff RSI: 0000000000000627 RDI: 0000000000001000 RBP: ffff9bbcdf5c3e60 R8: 0000000000420003 R9: 000000000000020d R10: ffffa923cf6ec138 R11: ffff9bbcdf5c3e83 R12: ffff9ba4d6f928c0 R13: ffff9ba4cac28080 R14: ffff9ba4cb11b7f0 R15: ffff9ba4d5a30000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Fixes: a1b0e4e684e9 ("bnxt_en: Improve RX consumer index validity check.") Reviewed-by: Pavan Chebbi <pavan.chebbi@broadcom.com> Reviewed-by: Andy Gospodarek <gospo@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-23 22:13:19 +00:00
if (rc1)
return rc1;
goto next_rx_no_prod_no_len;
}
rx_buf = &rxr->rx_buf_ring[cons];
data = rx_buf->data;
data_ptr = rx_buf->data_ptr;
prefetch(data_ptr);
misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
if (agg_bufs) {
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
return -EBUSY;
cp_cons = NEXT_CMP(cp_cons);
*event |= BNXT_AGG_EVENT;
}
*event |= BNXT_RX_EVENT;
rx_buf->data = NULL;
if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
bnxt_reuse_rx_data(rxr, cons, data);
if (agg_bufs)
bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
false);
rc = -EIO;
if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
!(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
netdev_warn_once(bp->dev, "RX buffer error %x\n",
rx_err);
bnxt_sched_reset(bp, rxr);
}
}
goto next_rx_no_len;
}
flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
len = flags >> RX_CMP_LEN_SHIFT;
dma_addr = rx_buf->mapping;
if (bnxt_xdp_attached(bp, rxr)) {
bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
if (agg_bufs) {
u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
cp_cons, agg_bufs,
false);
if (!frag_len) {
cpr->sw_stats.rx.rx_oom_discards += 1;
rc = -ENOMEM;
goto next_rx;
}
}
xdp_active = true;
}
if (xdp_active) {
if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
rc = 1;
goto next_rx;
}
}
if (len <= bp->rx_copy_thresh) {
skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
bnxt_reuse_rx_data(rxr, cons, data);
if (!skb) {
if (agg_bufs) {
if (!xdp_active)
bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
agg_bufs, false);
else
bnxt_xdp_buff_frags_free(rxr, &xdp);
}
cpr->sw_stats.rx.rx_oom_discards += 1;
rc = -ENOMEM;
goto next_rx;
}
} else {
u32 payload;
if (rx_buf->data_ptr == data_ptr)
payload = misc & RX_CMP_PAYLOAD_OFFSET;
else
payload = 0;
skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
payload | len);
if (!skb) {
cpr->sw_stats.rx.rx_oom_discards += 1;
rc = -ENOMEM;
goto next_rx;
}
}
if (agg_bufs) {
if (!xdp_active) {
skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
if (!skb) {
cpr->sw_stats.rx.rx_oom_discards += 1;
rc = -ENOMEM;
goto next_rx;
}
} else {
skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
if (!skb) {
/* we should be able to free the old skb here */
bnxt_xdp_buff_frags_free(rxr, &xdp);
cpr->sw_stats.rx.rx_oom_discards += 1;
rc = -ENOMEM;
goto next_rx;
}
}
}
if (RX_CMP_HASH_VALID(rxcmp)) {
u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
enum pkt_hash_types type = PKT_HASH_TYPE_L4;
/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
if (hash_type != 1 && hash_type != 3)
type = PKT_HASH_TYPE_L3;
skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
}
cfa_code = RX_CMP_CFA_CODE(rxcmp1);
skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
if ((rxcmp1->rx_cmp_flags2 &
cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
(skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
__be16 vlan_proto = htons(meta_data >>
RX_CMP_FLAGS2_METADATA_TPID_SFT);
if (eth_type_vlan(vlan_proto)) {
__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
} else {
dev_kfree_skb(skb);
goto next_rx;
}
}
skb_checksum_none_assert(skb);
if (RX_CMP_L4_CS_OK(rxcmp1)) {
if (dev->features & NETIF_F_RXCSUM) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level = RX_CMP_ENCAP(rxcmp1);
}
} else {
if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
if (dev->features & NETIF_F_RXCSUM)
bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
}
}
if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
if (bp->flags & BNXT_FLAG_CHIP_P5) {
u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
u64 ns, ts;
if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
spin_lock_bh(&ptp->ptp_lock);
ns = timecounter_cyc2time(&ptp->tc, ts);
spin_unlock_bh(&ptp->ptp_lock);
memset(skb_hwtstamps(skb), 0,
sizeof(*skb_hwtstamps(skb)));
skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
}
}
}
bnxt_deliver_skb(bp, bnapi, skb);
rc = 1;
next_rx:
cpr->rx_packets += 1;
cpr->rx_bytes += len;
next_rx_no_len:
rxr->rx_prod = NEXT_RX(prod);
rxr->rx_next_cons = NEXT_RX(cons);
next_rx_no_prod_no_len:
*raw_cons = tmp_raw_cons;
return rc;
}
/* In netpoll mode, if we are using a combined completion ring, we need to
* discard the rx packets and recycle the buffers.
*/
static int bnxt_force_rx_discard(struct bnxt *bp,
struct bnxt_cp_ring_info *cpr,
u32 *raw_cons, u8 *event)
{
u32 tmp_raw_cons = *raw_cons;
struct rx_cmp_ext *rxcmp1;
struct rx_cmp *rxcmp;
u16 cp_cons;
u8 cmp_type;
int rc;
cp_cons = RING_CMP(tmp_raw_cons);
rxcmp = (struct rx_cmp *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
cp_cons = RING_CMP(tmp_raw_cons);
rxcmp1 = (struct rx_cmp_ext *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
return -EBUSY;
/* The valid test of the entry must be done first before
* reading any further.
*/
dma_rmb();
cmp_type = RX_CMP_TYPE(rxcmp);
if (cmp_type == CMP_TYPE_RX_L2_CMP) {
rxcmp1->rx_cmp_cfa_code_errors_v2 |=
cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
struct rx_tpa_end_cmp_ext *tpa_end1;
tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
tpa_end1->rx_tpa_end_cmp_errors_v2 |=
cpu_to_le32(RX_TPA_END_CMP_ERRORS);
}
rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
if (rc && rc != -EBUSY)
cpr->sw_stats.rx.rx_netpoll_discards += 1;
return rc;
}
u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
u32 reg = fw_health->regs[reg_idx];
u32 reg_type, reg_off, val = 0;
reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
switch (reg_type) {
case BNXT_FW_HEALTH_REG_TYPE_CFG:
pci_read_config_dword(bp->pdev, reg_off, &val);
break;
case BNXT_FW_HEALTH_REG_TYPE_GRC:
reg_off = fw_health->mapped_regs[reg_idx];
fallthrough;
case BNXT_FW_HEALTH_REG_TYPE_BAR0:
val = readl(bp->bar0 + reg_off);
break;
case BNXT_FW_HEALTH_REG_TYPE_BAR1:
val = readl(bp->bar1 + reg_off);
break;
}
if (reg_idx == BNXT_FW_RESET_INPROG_REG)
val &= fw_health->fw_reset_inprog_reg_mask;
return val;
}
static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
{
int i;
for (i = 0; i < bp->rx_nr_rings; i++) {
u16 grp_idx = bp->rx_ring[i].bnapi->index;
struct bnxt_ring_grp_info *grp_info;
grp_info = &bp->grp_info[grp_idx];
if (grp_info->agg_fw_ring_id == ring_id)
return grp_idx;
}
return INVALID_HW_RING_ID;
}
static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
{
u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
switch (err_type) {
case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
break;
case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
netdev_warn(bp->dev, "Pause Storm detected!\n");
break;
case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
break;
default:
netdev_err(bp->dev, "FW reported unknown error type %u\n",
err_type);
break;
}
}
#define BNXT_GET_EVENT_PORT(data) \
((data) & \
ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
#define BNXT_EVENT_RING_TYPE(data2) \
((data2) & \
ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
#define BNXT_EVENT_RING_TYPE_RX(data2) \
(BNXT_EVENT_RING_TYPE(data2) == \
ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
#define BNXT_EVENT_PHC_EVENT_TYPE(data1) \
(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
#define BNXT_EVENT_PHC_RTC_UPDATE(data1) \
(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
#define BNXT_PHC_BITS 48
static int bnxt_async_event_process(struct bnxt *bp,
struct hwrm_async_event_cmpl *cmpl)
{
u16 event_id = le16_to_cpu(cmpl->event_id);
u32 data1 = le32_to_cpu(cmpl->event_data1);
u32 data2 = le32_to_cpu(cmpl->event_data2);
netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
event_id, data1, data2);
/* TODO CHIMP_FW: Define event id's for link change, error etc */
switch (event_id) {
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
struct bnxt_link_info *link_info = &bp->link_info;
if (BNXT_VF(bp))
goto async_event_process_exit;
/* print unsupported speed warning in forced speed mode only */
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
(data1 & 0x20000)) {
u16 fw_speed = link_info->force_link_speed;
u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
if (speed != SPEED_UNKNOWN)
netdev_warn(bp->dev, "Link speed %d no longer supported\n",
speed);
}
set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
}
fallthrough;
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
fallthrough;
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
break;
case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
break;
case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
u16 port_id = BNXT_GET_EVENT_PORT(data1);
if (BNXT_VF(bp))
break;
if (bp->pf.port_id != port_id)
break;
set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
break;
}
case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
if (BNXT_PF(bp))
goto async_event_process_exit;
set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
break;
case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
char *type_str = "Solicited";
if (!bp->fw_health)
goto async_event_process_exit;
bp->fw_reset_timestamp = jiffies;
bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
if (!bp->fw_reset_min_dsecs)
bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
if (!bp->fw_reset_max_dsecs)
bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
type_str = "Fatal";
bp->fw_health->fatalities++;
set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
type_str = "Non-fatal";
bp->fw_health->survivals++;
set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
}
netif_warn(bp, hw, bp->dev,
"%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
type_str, data1, data2,
bp->fw_reset_min_dsecs * 100,
bp->fw_reset_max_dsecs * 100);
set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
break;
}
case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
struct bnxt_fw_health *fw_health = bp->fw_health;
char *status_desc = "healthy";
u32 status;
if (!fw_health)
goto async_event_process_exit;
if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
fw_health->enabled = false;
netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
break;
}
fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
fw_health->tmr_multiplier =
DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
bp->current_interval * 10);
fw_health->tmr_counter = fw_health->tmr_multiplier;
if (!fw_health->enabled)
fw_health->last_fw_heartbeat =
bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
fw_health->last_fw_reset_cnt =
bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
if (status != BNXT_FW_STATUS_HEALTHY)
status_desc = "unhealthy";
netif_info(bp, drv, bp->dev,
"Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
fw_health->primary ? "primary" : "backup", status,
status_desc, fw_health->last_fw_reset_cnt);
if (!fw_health->enabled) {
/* Make sure tmr_counter is set and visible to
* bnxt_health_check() before setting enabled to true.
*/
smp_wmb();
fw_health->enabled = true;
}
goto async_event_process_exit;
}
case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
netif_notice(bp, hw, bp->dev,
"Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
data1, data2);
goto async_event_process_exit;
case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
struct bnxt_rx_ring_info *rxr;
u16 grp_idx;
if (bp->flags & BNXT_FLAG_CHIP_P5)
goto async_event_process_exit;
netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
BNXT_EVENT_RING_TYPE(data2), data1);
if (!BNXT_EVENT_RING_TYPE_RX(data2))
goto async_event_process_exit;
grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
if (grp_idx == INVALID_HW_RING_ID) {
netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
data1);
goto async_event_process_exit;
}
rxr = bp->bnapi[grp_idx]->rx_ring;
bnxt_sched_reset(bp, rxr);
goto async_event_process_exit;
}
case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
struct bnxt_fw_health *fw_health = bp->fw_health;
netif_notice(bp, hw, bp->dev,
"Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
data1, data2);
if (fw_health) {
fw_health->echo_req_data1 = data1;
fw_health->echo_req_data2 = data2;
set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
break;
}
goto async_event_process_exit;
}
case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
bnxt_ptp_pps_event(bp, data1, data2);
goto async_event_process_exit;
}
case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
bnxt_event_error_report(bp, data1, data2);
goto async_event_process_exit;
}
case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
u64 ns;
spin_lock_bh(&ptp->ptp_lock);
bnxt_ptp_update_current_time(bp);
ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
BNXT_PHC_BITS) | ptp->current_time);
bnxt_ptp_rtc_timecounter_init(ptp, ns);
spin_unlock_bh(&ptp->ptp_lock);
}
break;
}
goto async_event_process_exit;
}
case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
goto async_event_process_exit;
}
default:
goto async_event_process_exit;
}
bnxt_queue_sp_work(bp);
async_event_process_exit:
return 0;
}
static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
{
u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
(struct hwrm_fwd_req_cmpl *)txcmp;
switch (cmpl_type) {
case CMPL_BASE_TYPE_HWRM_DONE:
seq_id = le16_to_cpu(h_cmpl->sequence_id);
hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
break;
case CMPL_BASE_TYPE_HWRM_FWD_REQ:
vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
if ((vf_id < bp->pf.first_vf_id) ||
(vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
vf_id);
return -EINVAL;
}
set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
break;
case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
bnxt_async_event_process(bp,
(struct hwrm_async_event_cmpl *)txcmp);
break;
default:
break;
}
return 0;
}
static irqreturn_t bnxt_msix(int irq, void *dev_instance)
{
struct bnxt_napi *bnapi = dev_instance;
struct bnxt *bp = bnapi->bp;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
u32 cons = RING_CMP(cpr->cp_raw_cons);
cpr->event_ctr++;
prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
napi_schedule(&bnapi->napi);
return IRQ_HANDLED;
}
static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
{
u32 raw_cons = cpr->cp_raw_cons;
u16 cons = RING_CMP(raw_cons);
struct tx_cmp *txcmp;
txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
return TX_CMP_VALID(txcmp, raw_cons);
}
static irqreturn_t bnxt_inta(int irq, void *dev_instance)
{
struct bnxt_napi *bnapi = dev_instance;
struct bnxt *bp = bnapi->bp;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
u32 cons = RING_CMP(cpr->cp_raw_cons);
u32 int_status;
prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
if (!bnxt_has_work(bp, cpr)) {
int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
/* return if erroneous interrupt */
if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
return IRQ_NONE;
}
/* disable ring IRQ */
BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
/* Return here if interrupt is shared and is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
napi_schedule(&bnapi->napi);
return IRQ_HANDLED;
}
static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
int budget)
{
struct bnxt_napi *bnapi = cpr->bnapi;
u32 raw_cons = cpr->cp_raw_cons;
u32 cons;
int tx_pkts = 0;
int rx_pkts = 0;
u8 event = 0;
struct tx_cmp *txcmp;
cpr->has_more_work = 0;
cpr->had_work_done = 1;
while (1) {
int rc;
cons = RING_CMP(raw_cons);
txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
if (!TX_CMP_VALID(txcmp, raw_cons))
break;
/* The valid test of the entry must be done first before
* reading any further.
*/
dma_rmb();
if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
tx_pkts++;
/* return full budget so NAPI will complete. */
if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
rx_pkts = budget;
raw_cons = NEXT_RAW_CMP(raw_cons);
if (budget)
cpr->has_more_work = 1;
break;
}
} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
if (likely(budget))
rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
else
rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
&event);
if (likely(rc >= 0))
rx_pkts += rc;
/* Increment rx_pkts when rc is -ENOMEM to count towards
* the NAPI budget. Otherwise, we may potentially loop
* here forever if we consistently cannot allocate
* buffers.
*/
bnxt_en: Fix sources of spurious netpoll warnings After applying 2270bc5da3497945 ("bnxt_en: Fix netpoll handling") and 903649e718f80da2 ("bnxt_en: Improve -ENOMEM logic in NAPI poll loop."), we still see the following WARN fire: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1875170 at net/core/netpoll.c:165 netpoll_poll_dev+0x15a/0x160 bnxt_poll+0x0/0xd0 exceeded budget in poll <snip> Call Trace: [<ffffffff814be5cd>] dump_stack+0x4d/0x70 [<ffffffff8107e013>] __warn+0xd3/0xf0 [<ffffffff8107e07f>] warn_slowpath_fmt+0x4f/0x60 [<ffffffff8179519a>] netpoll_poll_dev+0x15a/0x160 [<ffffffff81795f38>] netpoll_send_skb_on_dev+0x168/0x250 [<ffffffff817962fc>] netpoll_send_udp+0x2dc/0x440 [<ffffffff815fa9be>] write_ext_msg+0x20e/0x250 [<ffffffff810c8125>] call_console_drivers.constprop.23+0xa5/0x110 [<ffffffff810c9549>] console_unlock+0x339/0x5b0 [<ffffffff810c9a88>] vprintk_emit+0x2c8/0x450 [<ffffffff810c9d5f>] vprintk_default+0x1f/0x30 [<ffffffff81173df5>] printk+0x48/0x50 [<ffffffffa0197713>] edac_raw_mc_handle_error+0x563/0x5c0 [edac_core] [<ffffffffa0197b9b>] edac_mc_handle_error+0x42b/0x6e0 [edac_core] [<ffffffffa01c3a60>] sbridge_mce_output_error+0x410/0x10d0 [sb_edac] [<ffffffffa01c47cc>] sbridge_check_error+0xac/0x130 [sb_edac] [<ffffffffa0197f3c>] edac_mc_workq_function+0x3c/0x90 [edac_core] [<ffffffff81095f8b>] process_one_work+0x19b/0x480 [<ffffffff810967ca>] worker_thread+0x6a/0x520 [<ffffffff8109c7c4>] kthread+0xe4/0x100 [<ffffffff81884c52>] ret_from_fork+0x22/0x40 This happens because we increment rx_pkts on -ENOMEM and -EIO, resulting in rx_pkts > 0. Fix this by only bumping rx_pkts if we were actually given a non-zero budget. Signed-off-by: Calvin Owens <calvinowens@fb.com> Acked-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-08 17:05:26 +00:00
else if (rc == -ENOMEM && budget)
rx_pkts++;
else if (rc == -EBUSY) /* partial completion */
break;
} else if (unlikely((TX_CMP_TYPE(txcmp) ==
CMPL_BASE_TYPE_HWRM_DONE) ||
(TX_CMP_TYPE(txcmp) ==
CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
(TX_CMP_TYPE(txcmp) ==
CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
bnxt_hwrm_handler(bp, txcmp);
}
raw_cons = NEXT_RAW_CMP(raw_cons);
if (rx_pkts && rx_pkts == budget) {
cpr->has_more_work = 1;
break;
}
}
if (event & BNXT_REDIRECT_EVENT)
xdp_do_flush();
if (event & BNXT_TX_EVENT) {
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
u16 prod = txr->tx_prod;
/* Sync BD data before updating doorbell */
wmb();
bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
}
cpr->cp_raw_cons = raw_cons;
bnapi->tx_pkts += tx_pkts;
bnapi->events |= event;
return rx_pkts;
}
static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
{
if (bnapi->tx_pkts) {
bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
bnapi->tx_pkts = 0;
}
if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
}
if (bnapi->events & BNXT_AGG_EVENT) {
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
}
bnapi->events = 0;
}
static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
int budget)
{
struct bnxt_napi *bnapi = cpr->bnapi;
int rx_pkts;
rx_pkts = __bnxt_poll_work(bp, cpr, budget);
/* ACK completion ring before freeing tx ring and producing new
* buffers in rx/agg rings to prevent overflowing the completion
* ring.
*/
bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
__bnxt_poll_work_done(bp, bnapi);
return rx_pkts;
}
static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
{
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
struct bnxt *bp = bnapi->bp;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
struct tx_cmp *txcmp;
struct rx_cmp_ext *rxcmp1;
u32 cp_cons, tmp_raw_cons;
u32 raw_cons = cpr->cp_raw_cons;
u32 rx_pkts = 0;
u8 event = 0;
while (1) {
int rc;
cp_cons = RING_CMP(raw_cons);
txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
if (!TX_CMP_VALID(txcmp, raw_cons))
break;
/* The valid test of the entry must be done first before
* reading any further.
*/
dma_rmb();
if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
cp_cons = RING_CMP(tmp_raw_cons);
rxcmp1 = (struct rx_cmp_ext *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
break;
/* force an error to recycle the buffer */
rxcmp1->rx_cmp_cfa_code_errors_v2 |=
cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
bnxt_en: Fix sources of spurious netpoll warnings After applying 2270bc5da3497945 ("bnxt_en: Fix netpoll handling") and 903649e718f80da2 ("bnxt_en: Improve -ENOMEM logic in NAPI poll loop."), we still see the following WARN fire: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1875170 at net/core/netpoll.c:165 netpoll_poll_dev+0x15a/0x160 bnxt_poll+0x0/0xd0 exceeded budget in poll <snip> Call Trace: [<ffffffff814be5cd>] dump_stack+0x4d/0x70 [<ffffffff8107e013>] __warn+0xd3/0xf0 [<ffffffff8107e07f>] warn_slowpath_fmt+0x4f/0x60 [<ffffffff8179519a>] netpoll_poll_dev+0x15a/0x160 [<ffffffff81795f38>] netpoll_send_skb_on_dev+0x168/0x250 [<ffffffff817962fc>] netpoll_send_udp+0x2dc/0x440 [<ffffffff815fa9be>] write_ext_msg+0x20e/0x250 [<ffffffff810c8125>] call_console_drivers.constprop.23+0xa5/0x110 [<ffffffff810c9549>] console_unlock+0x339/0x5b0 [<ffffffff810c9a88>] vprintk_emit+0x2c8/0x450 [<ffffffff810c9d5f>] vprintk_default+0x1f/0x30 [<ffffffff81173df5>] printk+0x48/0x50 [<ffffffffa0197713>] edac_raw_mc_handle_error+0x563/0x5c0 [edac_core] [<ffffffffa0197b9b>] edac_mc_handle_error+0x42b/0x6e0 [edac_core] [<ffffffffa01c3a60>] sbridge_mce_output_error+0x410/0x10d0 [sb_edac] [<ffffffffa01c47cc>] sbridge_check_error+0xac/0x130 [sb_edac] [<ffffffffa0197f3c>] edac_mc_workq_function+0x3c/0x90 [edac_core] [<ffffffff81095f8b>] process_one_work+0x19b/0x480 [<ffffffff810967ca>] worker_thread+0x6a/0x520 [<ffffffff8109c7c4>] kthread+0xe4/0x100 [<ffffffff81884c52>] ret_from_fork+0x22/0x40 This happens because we increment rx_pkts on -ENOMEM and -EIO, resulting in rx_pkts > 0. Fix this by only bumping rx_pkts if we were actually given a non-zero budget. Signed-off-by: Calvin Owens <calvinowens@fb.com> Acked-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-08 17:05:26 +00:00
if (likely(rc == -EIO) && budget)
rx_pkts++;
else if (rc == -EBUSY) /* partial completion */
break;
} else if (unlikely(TX_CMP_TYPE(txcmp) ==
CMPL_BASE_TYPE_HWRM_DONE)) {
bnxt_hwrm_handler(bp, txcmp);
} else {
netdev_err(bp->dev,
"Invalid completion received on special ring\n");
}
raw_cons = NEXT_RAW_CMP(raw_cons);
if (rx_pkts == budget)
break;
}
cpr->cp_raw_cons = raw_cons;
BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
if (event & BNXT_AGG_EVENT)
bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
napi_complete_done(napi, rx_pkts);
BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
}
return rx_pkts;
}
static int bnxt_poll(struct napi_struct *napi, int budget)
{
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
struct bnxt *bp = bnapi->bp;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
int work_done = 0;
if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
napi_complete(napi);
return 0;
}
while (1) {
work_done += bnxt_poll_work(bp, cpr, budget - work_done);
if (work_done >= budget) {
if (!budget)
BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
break;
}
if (!bnxt_has_work(bp, cpr)) {
if (napi_complete_done(napi, work_done))
BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
break;
}
}
if (bp->flags & BNXT_FLAG_DIM) {
struct dim_sample dim_sample = {};
dim_update_sample(cpr->event_ctr,
cpr->rx_packets,
cpr->rx_bytes,
&dim_sample);
net_dim(&cpr->dim, dim_sample);
}
return work_done;
}
static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
{
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
int i, work_done = 0;
for (i = 0; i < 2; i++) {
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
if (cpr2) {
work_done += __bnxt_poll_work(bp, cpr2,
budget - work_done);
cpr->has_more_work |= cpr2->has_more_work;
}
}
return work_done;
}
static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
u64 dbr_type)
{
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
int i;
for (i = 0; i < 2; i++) {
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
struct bnxt_db_info *db;
if (cpr2 && cpr2->had_work_done) {
db = &cpr2->cp_db;
bnxt_writeq(bp, db->db_key64 | dbr_type |
RING_CMP(cpr2->cp_raw_cons), db->doorbell);
cpr2->had_work_done = 0;
}
}
__bnxt_poll_work_done(bp, bnapi);
}
static int bnxt_poll_p5(struct napi_struct *napi, int budget)
{
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_cp_ring_info *cpr_rx;
u32 raw_cons = cpr->cp_raw_cons;
struct bnxt *bp = bnapi->bp;
struct nqe_cn *nqcmp;
int work_done = 0;
u32 cons;
if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
napi_complete(napi);
return 0;
}
if (cpr->has_more_work) {
cpr->has_more_work = 0;
work_done = __bnxt_poll_cqs(bp, bnapi, budget);
}
while (1) {
cons = RING_CMP(raw_cons);
nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
if (cpr->has_more_work)
break;
__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
cpr->cp_raw_cons = raw_cons;
if (napi_complete_done(napi, work_done))
BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
cpr->cp_raw_cons);
goto poll_done;
}
/* The valid test of the entry must be done first before
* reading any further.
*/
dma_rmb();
if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
struct bnxt_cp_ring_info *cpr2;
/* No more budget for RX work */
if (budget && work_done >= budget && idx == BNXT_RX_HDL)
break;
cpr2 = cpr->cp_ring_arr[idx];
work_done += __bnxt_poll_work(bp, cpr2,
budget - work_done);
cpr->has_more_work |= cpr2->has_more_work;
} else {
bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
}
raw_cons = NEXT_RAW_CMP(raw_cons);
}
__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
if (raw_cons != cpr->cp_raw_cons) {
cpr->cp_raw_cons = raw_cons;
BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
}
poll_done:
cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
struct dim_sample dim_sample = {};
dim_update_sample(cpr->event_ctr,
cpr_rx->rx_packets,
cpr_rx->rx_bytes,
&dim_sample);
net_dim(&cpr->dim, dim_sample);
}
return work_done;
}
static void bnxt_free_tx_skbs(struct bnxt *bp)
{
int i, max_idx;
struct pci_dev *pdev = bp->pdev;
if (!bp->tx_ring)
return;
max_idx = bp->tx_nr_pages * TX_DESC_CNT;
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
int j;
if (!txr->tx_buf_ring)
continue;
for (j = 0; j < max_idx;) {
struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
struct sk_buff *skb;
int k, last;
if (i < bp->tx_nr_rings_xdp &&
tx_buf->action == XDP_REDIRECT) {
dma_unmap_single(&pdev->dev,
dma_unmap_addr(tx_buf, mapping),
dma_unmap_len(tx_buf, len),
net: broadcom: switch from 'pci_' to 'dma_' API The wrappers in include/linux/pci-dma-compat.h should go away. The patch has been generated with the coccinelle script below. It has been compile tested. @@ @@ - PCI_DMA_BIDIRECTIONAL + DMA_BIDIRECTIONAL @@ @@ - PCI_DMA_TODEVICE + DMA_TO_DEVICE @@ @@ - PCI_DMA_FROMDEVICE + DMA_FROM_DEVICE @@ @@ - PCI_DMA_NONE + DMA_NONE @@ expression e1, e2, e3; @@ - pci_alloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3; @@ - pci_zalloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3, e4; @@ - pci_free_consistent(e1, e2, e3, e4) + dma_free_coherent(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_single(e1, e2, e3, e4) + dma_map_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_single(e1, e2, e3, e4) + dma_unmap_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4, e5; @@ - pci_map_page(e1, e2, e3, e4, e5) + dma_map_page(&e1->dev, e2, e3, e4, e5) @@ expression e1, e2, e3, e4; @@ - pci_unmap_page(e1, e2, e3, e4) + dma_unmap_page(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_sg(e1, e2, e3, e4) + dma_map_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_sg(e1, e2, e3, e4) + dma_unmap_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_cpu(e1, e2, e3, e4) + dma_sync_single_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_device(e1, e2, e3, e4) + dma_sync_single_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_cpu(e1, e2, e3, e4) + dma_sync_sg_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_device(e1, e2, e3, e4) + dma_sync_sg_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2; @@ - pci_dma_mapping_error(e1, e2) + dma_mapping_error(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_dma_mask(e1, e2) + dma_set_mask(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_consistent_dma_mask(e1, e2) + dma_set_coherent_mask(&e1->dev, e2) Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-22 05:59:44 +00:00
DMA_TO_DEVICE);
xdp_return_frame(tx_buf->xdpf);
tx_buf->action = 0;
tx_buf->xdpf = NULL;
j++;
continue;
}
skb = tx_buf->skb;
if (!skb) {
j++;
continue;
}
tx_buf->skb = NULL;
if (tx_buf->is_push) {
dev_kfree_skb(skb);
j += 2;
continue;
}
dma_unmap_single(&pdev->dev,
dma_unmap_addr(tx_buf, mapping),
skb_headlen(skb),
net: broadcom: switch from 'pci_' to 'dma_' API The wrappers in include/linux/pci-dma-compat.h should go away. The patch has been generated with the coccinelle script below. It has been compile tested. @@ @@ - PCI_DMA_BIDIRECTIONAL + DMA_BIDIRECTIONAL @@ @@ - PCI_DMA_TODEVICE + DMA_TO_DEVICE @@ @@ - PCI_DMA_FROMDEVICE + DMA_FROM_DEVICE @@ @@ - PCI_DMA_NONE + DMA_NONE @@ expression e1, e2, e3; @@ - pci_alloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3; @@ - pci_zalloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3, e4; @@ - pci_free_consistent(e1, e2, e3, e4) + dma_free_coherent(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_single(e1, e2, e3, e4) + dma_map_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_single(e1, e2, e3, e4) + dma_unmap_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4, e5; @@ - pci_map_page(e1, e2, e3, e4, e5) + dma_map_page(&e1->dev, e2, e3, e4, e5) @@ expression e1, e2, e3, e4; @@ - pci_unmap_page(e1, e2, e3, e4) + dma_unmap_page(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_sg(e1, e2, e3, e4) + dma_map_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_sg(e1, e2, e3, e4) + dma_unmap_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_cpu(e1, e2, e3, e4) + dma_sync_single_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_device(e1, e2, e3, e4) + dma_sync_single_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_cpu(e1, e2, e3, e4) + dma_sync_sg_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_device(e1, e2, e3, e4) + dma_sync_sg_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2; @@ - pci_dma_mapping_error(e1, e2) + dma_mapping_error(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_dma_mask(e1, e2) + dma_set_mask(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_consistent_dma_mask(e1, e2) + dma_set_coherent_mask(&e1->dev, e2) Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-22 05:59:44 +00:00
DMA_TO_DEVICE);
last = tx_buf->nr_frags;
j += 2;
for (k = 0; k < last; k++, j++) {
int ring_idx = j & bp->tx_ring_mask;
skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
tx_buf = &txr->tx_buf_ring[ring_idx];
dma_unmap_page(
&pdev->dev,
dma_unmap_addr(tx_buf, mapping),
net: broadcom: switch from 'pci_' to 'dma_' API The wrappers in include/linux/pci-dma-compat.h should go away. The patch has been generated with the coccinelle script below. It has been compile tested. @@ @@ - PCI_DMA_BIDIRECTIONAL + DMA_BIDIRECTIONAL @@ @@ - PCI_DMA_TODEVICE + DMA_TO_DEVICE @@ @@ - PCI_DMA_FROMDEVICE + DMA_FROM_DEVICE @@ @@ - PCI_DMA_NONE + DMA_NONE @@ expression e1, e2, e3; @@ - pci_alloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3; @@ - pci_zalloc_consistent(e1, e2, e3) + dma_alloc_coherent(&e1->dev, e2, e3, GFP_) @@ expression e1, e2, e3, e4; @@ - pci_free_consistent(e1, e2, e3, e4) + dma_free_coherent(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_single(e1, e2, e3, e4) + dma_map_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_single(e1, e2, e3, e4) + dma_unmap_single(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4, e5; @@ - pci_map_page(e1, e2, e3, e4, e5) + dma_map_page(&e1->dev, e2, e3, e4, e5) @@ expression e1, e2, e3, e4; @@ - pci_unmap_page(e1, e2, e3, e4) + dma_unmap_page(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_map_sg(e1, e2, e3, e4) + dma_map_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_unmap_sg(e1, e2, e3, e4) + dma_unmap_sg(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_cpu(e1, e2, e3, e4) + dma_sync_single_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_single_for_device(e1, e2, e3, e4) + dma_sync_single_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_cpu(e1, e2, e3, e4) + dma_sync_sg_for_cpu(&e1->dev, e2, e3, e4) @@ expression e1, e2, e3, e4; @@ - pci_dma_sync_sg_for_device(e1, e2, e3, e4) + dma_sync_sg_for_device(&e1->dev, e2, e3, e4) @@ expression e1, e2; @@ - pci_dma_mapping_error(e1, e2) + dma_mapping_error(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_dma_mask(e1, e2) + dma_set_mask(&e1->dev, e2) @@ expression e1, e2; @@ - pci_set_consistent_dma_mask(e1, e2) + dma_set_coherent_mask(&e1->dev, e2) Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-22 05:59:44 +00:00
skb_frag_size(frag), DMA_TO_DEVICE);
}
dev_kfree_skb(skb);
}
netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
}
}
static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
{
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
struct pci_dev *pdev = bp->pdev;
struct bnxt_tpa_idx_map *map;
int i, max_idx, max_agg_idx;
max_idx = bp->rx_nr_pages * RX_DESC_CNT;
max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
if (!rxr->rx_tpa)
goto skip_rx_tpa_free;
for (i = 0; i < bp->max_tpa; i++) {
struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
u8 *data = tpa_info->data;
if (!data)
continue;
dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
bp->rx_buf_use_size, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
tpa_info->data = NULL;
skb_free_frag(data);
}
skip_rx_tpa_free:
if (!rxr->rx_buf_ring)
goto skip_rx_buf_free;
for (i = 0; i < max_idx; i++) {
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
dma_addr_t mapping = rx_buf->mapping;
void *data = rx_buf->data;
if (!data)
continue;
rx_buf->data = NULL;
if (BNXT_RX_PAGE_MODE(bp)) {
mapping -= bp->rx_dma_offset;
dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
page_pool_recycle_direct(rxr->page_pool, data);
} else {
dma_unmap_single_attrs(&pdev->dev, mapping,
bp->rx_buf_use_size, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
skb_free_frag(data);
}
}
skip_rx_buf_free:
if (!rxr->rx_agg_ring)
goto skip_rx_agg_free;
for (i = 0; i < max_agg_idx; i++) {
struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
struct page *page = rx_agg_buf->page;
if (!page)
continue;
if (BNXT_RX_PAGE_MODE(bp)) {
dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
BNXT_RX_PAGE_SIZE, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
rx_agg_buf->page = NULL;
__clear_bit(i, rxr->rx_agg_bmap);
page_pool_recycle_direct(rxr->page_pool, page);
} else {
dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
DMA_ATTR_WEAK_ORDERING);
rx_agg_buf->page = NULL;
__clear_bit(i, rxr->rx_agg_bmap);
__free_page(page);
}
}
skip_rx_agg_free:
if (rxr->rx_page) {
__free_page(rxr->rx_page);
rxr->rx_page = NULL;
}
map = rxr->rx_tpa_idx_map;
if (map)
memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
}
static void bnxt_free_rx_skbs(struct bnxt *bp)
{
int i;
if (!bp->rx_ring)
return;
for (i = 0; i < bp->rx_nr_rings; i++)
bnxt_free_one_rx_ring_skbs(bp, i);
}
static void bnxt_free_skbs(struct bnxt *bp)
{
bnxt_free_tx_skbs(bp);
bnxt_free_rx_skbs(bp);
}
static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
{
u8 init_val = mem_init->init_val;
u16 offset = mem_init->offset;
u8 *p2 = p;
int i;
if (!init_val)
return;
if (offset == BNXT_MEM_INVALID_OFFSET) {
memset(p, init_val, len);
return;
}
for (i = 0; i < len; i += mem_init->size)
*(p2 + i + offset) = init_val;
}
static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
{
struct pci_dev *pdev = bp->pdev;
int i;
if (!rmem->pg_arr)
goto skip_pages;
for (i = 0; i < rmem->nr_pages; i++) {
if (!rmem->pg_arr[i])
continue;
dma_free_coherent(&pdev->dev, rmem->page_size,
rmem->pg_arr[i], rmem->dma_arr[i]);
rmem->pg_arr[i] = NULL;
}
skip_pages:
if (rmem->pg_tbl) {
size_t pg_tbl_size = rmem->nr_pages * 8;
if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
pg_tbl_size = rmem->page_size;
dma_free_coherent(&pdev->dev, pg_tbl_size,
rmem->pg_tbl, rmem->pg_tbl_map);
rmem->pg_tbl = NULL;
}
if (rmem->vmem_size && *rmem->vmem) {
vfree(*rmem->vmem);
*rmem->vmem = NULL;
}
}
static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
{
struct pci_dev *pdev = bp->pdev;
u64 valid_bit = 0;
int i;
if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
valid_bit = PTU_PTE_VALID;
if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
size_t pg_tbl_size = rmem->nr_pages * 8;
if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
pg_tbl_size = rmem->page_size;
rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
&rmem->pg_tbl_map,
GFP_KERNEL);
if (!rmem->pg_tbl)
return -ENOMEM;
}
for (i = 0; i < rmem->nr_pages; i++) {
u64 extra_bits = valid_bit;
rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
rmem->page_size,
&rmem->dma_arr[i],
GFP_KERNEL);
if (!rmem->pg_arr[i])
return -ENOMEM;
if (rmem->mem_init)
bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
rmem->page_size);
if (rmem->nr_pages > 1 || rmem->depth > 0) {
if (i == rmem->nr_pages - 2 &&
(rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
extra_bits |= PTU_PTE_NEXT_TO_LAST;
else if (i == rmem->nr_pages - 1 &&
(rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
extra_bits |= PTU_PTE_LAST;
rmem->pg_tbl[i] =
cpu_to_le64(rmem->dma_arr[i] | extra_bits);
}
}
if (rmem->vmem_size) {
*rmem->vmem = vzalloc(rmem->vmem_size);
if (!(*rmem->vmem))
return -ENOMEM;
}
return 0;
}
static void bnxt_free_tpa_info(struct bnxt *bp)
{
int i;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
kfree(rxr->rx_tpa_idx_map);
rxr->rx_tpa_idx_map = NULL;
if (rxr->rx_tpa) {
kfree(rxr->rx_tpa[0].agg_arr);
rxr->rx_tpa[0].agg_arr = NULL;
}
kfree(rxr->rx_tpa);
rxr->rx_tpa = NULL;
}
}
static int bnxt_alloc_tpa_info(struct bnxt *bp)
{
int i, j, total_aggs = 0;
bp->max_tpa = MAX_TPA;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
if (!bp->max_tpa_v2)
return 0;
bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
}
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct rx_agg_cmp *agg;
rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
GFP_KERNEL);
if (!rxr->rx_tpa)
return -ENOMEM;
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
continue;
agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
rxr->rx_tpa[0].agg_arr = agg;
if (!agg)
return -ENOMEM;
for (j = 1; j < bp->max_tpa; j++)
rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
GFP_KERNEL);
if (!rxr->rx_tpa_idx_map)
return -ENOMEM;
}
return 0;
}
static void bnxt_free_rx_rings(struct bnxt *bp)
{
int i;
if (!bp->rx_ring)
return;
bnxt_free_tpa_info(bp);
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring;
if (rxr->xdp_prog)
bpf_prog_put(rxr->xdp_prog);
if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
xdp_rxq_info_unreg(&rxr->xdp_rxq);
page_pool_destroy(rxr->page_pool);
rxr->page_pool = NULL;
kfree(rxr->rx_agg_bmap);
rxr->rx_agg_bmap = NULL;
ring = &rxr->rx_ring_struct;
bnxt_free_ring(bp, &ring->ring_mem);
ring = &rxr->rx_agg_ring_struct;
bnxt_free_ring(bp, &ring->ring_mem);
}
}
static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
struct bnxt_rx_ring_info *rxr)
{
struct page_pool_params pp = { 0 };
pp.pool_size = bp->rx_ring_size;
pp.nid = dev_to_node(&bp->pdev->dev);
pp.dev = &bp->pdev->dev;
pp.dma_dir = DMA_BIDIRECTIONAL;
rxr->page_pool = page_pool_create(&pp);
if (IS_ERR(rxr->page_pool)) {
int err = PTR_ERR(rxr->page_pool);
rxr->page_pool = NULL;
return err;
}
return 0;
}
static int bnxt_alloc_rx_rings(struct bnxt *bp)
{
int i, rc = 0, agg_rings = 0;
if (!bp->rx_ring)
return -ENOMEM;
if (bp->flags & BNXT_FLAG_AGG_RINGS)
agg_rings = 1;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring;
ring = &rxr->rx_ring_struct;
rc = bnxt_alloc_rx_page_pool(bp, rxr);
if (rc)
return rc;
rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
if (rc < 0)
return rc;
rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
MEM_TYPE_PAGE_POOL,
rxr->page_pool);
if (rc) {
xdp_rxq_info_unreg(&rxr->xdp_rxq);
return rc;
}
rc = bnxt_alloc_ring(bp, &ring->ring_mem);
if (rc)
return rc;
ring->grp_idx = i;
if (agg_rings) {
u16 mem_size;
ring = &rxr->rx_agg_ring_struct;
rc = bnxt_alloc_ring(bp, &ring->ring_mem);
if (rc)
return rc;
ring->grp_idx = i;
rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
mem_size = rxr->rx_agg_bmap_size / 8;
rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
if (!rxr->rx_agg_bmap)
return -ENOMEM;
}
}
if (bp->flags & BNXT_FLAG_TPA)
rc = bnxt_alloc_tpa_info(bp);
return rc;
}
static void bnxt_free_tx_rings(struct bnxt *bp)
{
int i;
struct pci_dev *pdev = bp->pdev;
if (!bp->tx_ring)
return;
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring;
if (txr->tx_push) {
dma_free_coherent(&pdev->dev, bp->tx_push_size,
txr->tx_push, txr->tx_push_mapping);
txr->tx_push = NULL;
}
ring = &txr->tx_ring_struct;
bnxt_free_ring(bp, &ring->ring_mem);
}
}
static int bnxt_alloc_tx_rings(struct bnxt *bp)
{
int i, j, rc;
struct pci_dev *pdev = bp->pdev;
bp->tx_push_size = 0;
if (bp->tx_push_thresh) {
int push_size;
push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
bp->tx_push_thresh);
if (push_size > 256) {
push_size = 0;
bp->tx_push_thresh = 0;
}
bp->tx_push_size = push_size;
}
for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring;
u8 qidx;
ring = &txr->tx_ring_struct;
rc = bnxt_alloc_ring(bp, &ring->ring_mem);
if (rc)
return rc;
ring->grp_idx = txr->bnapi->index;
if (bp->tx_push_size) {
dma_addr_t mapping;
/* One pre-allocated DMA buffer to backup
* TX push operation
*/
txr->tx_push = dma_alloc_coherent(&pdev->dev,
bp->tx_push_size,
&txr->tx_push_mapping,
GFP_KERNEL);
if (!txr->tx_push)
return -ENOMEM;
mapping = txr->tx_push_mapping +
sizeof(struct tx_push_bd);
txr->data_mapping = cpu_to_le64(mapping);
}
qidx = bp->tc_to_qidx[j];
ring->queue_id = bp->q_info[qidx].queue_id;
spin_lock_init(&txr->xdp_tx_lock);
if (i < bp->tx_nr_rings_xdp)
continue;
if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
j++;
}
return 0;
}
static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
{
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
kfree(cpr->cp_desc_ring);
cpr->cp_desc_ring = NULL;
ring->ring_mem.pg_arr = NULL;
kfree(cpr->cp_desc_mapping);
cpr->cp_desc_mapping = NULL;
ring->ring_mem.dma_arr = NULL;
}
static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
{
cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
if (!cpr->cp_desc_ring)
return -ENOMEM;
cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
GFP_KERNEL);
if (!cpr->cp_desc_mapping)
return -ENOMEM;
return 0;
}
static void bnxt_free_all_cp_arrays(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
if (!bnapi)
continue;
bnxt_free_cp_arrays(&bnapi->cp_ring);
}
}
static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
{
int i, n = bp->cp_nr_pages;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
int rc;
if (!bnapi)
continue;
rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
if (rc)
return rc;
}
return 0;
}
static void bnxt_free_cp_rings(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
struct bnxt_ring_struct *ring;
int j;
if (!bnapi)
continue;
cpr = &bnapi->cp_ring;
ring = &cpr->cp_ring_struct;
bnxt_free_ring(bp, &ring->ring_mem);
for (j = 0; j < 2; j++) {
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
if (cpr2) {
ring = &cpr2->cp_ring_struct;
bnxt_free_ring(bp, &ring->ring_mem);
bnxt_free_cp_arrays(cpr2);
kfree(cpr2);
cpr->cp_ring_arr[j] = NULL;
}
}
}
}
static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
{
struct bnxt_ring_mem_info *rmem;
struct bnxt_ring_struct *ring;
struct bnxt_cp_ring_info *cpr;
int rc;
cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
if (!cpr)
return NULL;
rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
if (rc) {
bnxt_free_cp_arrays(cpr);
kfree(cpr);
return NULL;
}
ring = &cpr->cp_ring_struct;
rmem = &ring->ring_mem;
rmem->nr_pages = bp->cp_nr_pages;
rmem->page_size = HW_CMPD_RING_SIZE;
rmem->pg_arr = (void **)cpr->cp_desc_ring;
rmem->dma_arr = cpr->cp_desc_mapping;
rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
rc = bnxt_alloc_ring(bp, rmem);
if (rc) {
bnxt_free_ring(bp, rmem);
bnxt_free_cp_arrays(cpr);
kfree(cpr);
cpr = NULL;
}
return cpr;
}
static int bnxt_alloc_cp_rings(struct bnxt *bp)
{
bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
int i, rc, ulp_base_vec, ulp_msix;
ulp_msix = bnxt_get_ulp_msix_num(bp);
ulp_base_vec = bnxt_get_ulp_msix_base(bp);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
struct bnxt_ring_struct *ring;
if (!bnapi)
continue;
cpr = &bnapi->cp_ring;
cpr->bnapi = bnapi;
ring = &cpr->cp_ring_struct;
rc = bnxt_alloc_ring(bp, &ring->ring_mem);
if (rc)
return rc;
if (ulp_msix && i >= ulp_base_vec)
ring->map_idx = i + ulp_msix;
else
ring->map_idx = i;
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
continue;
if (i < bp->rx_nr_rings) {
struct bnxt_cp_ring_info *cpr2 =
bnxt_alloc_cp_sub_ring(bp);
cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
if (!cpr2)
return -ENOMEM;
cpr2->bnapi = bnapi;
}
if ((sh && i < bp->tx_nr_rings) ||
(!sh && i >= bp->rx_nr_rings)) {
struct bnxt_cp_ring_info *cpr2 =
bnxt_alloc_cp_sub_ring(bp);
cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
if (!cpr2)
return -ENOMEM;
cpr2->bnapi = bnapi;
}
}
return 0;
}
static void bnxt_init_ring_struct(struct bnxt *bp)
{
int i;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_ring_mem_info *rmem;
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_ring_info *rxr;
struct bnxt_tx_ring_info *txr;
struct bnxt_ring_struct *ring;
if (!bnapi)
continue;
cpr = &bnapi->cp_ring;
ring = &cpr->cp_ring_struct;
rmem = &ring->ring_mem;
rmem->nr_pages = bp->cp_nr_pages;
rmem->page_size = HW_CMPD_RING_SIZE;
rmem->pg_arr = (void **)cpr->cp_desc_ring;
rmem->dma_arr = cpr->cp_desc_mapping;
rmem->vmem_size = 0;
rxr = bnapi->rx_ring;
if (!rxr)
goto skip_rx;
ring = &rxr->rx_ring_struct;
rmem = &ring->ring_mem;
rmem->nr_pages = bp->rx_nr_pages;
rmem->page_size = HW_RXBD_RING_SIZE;
rmem->pg_arr = (void **)rxr->rx_desc_ring;
rmem->dma_arr = rxr->rx_desc_mapping;
rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
rmem->vmem = (void **)&rxr->rx_buf_ring;
ring = &rxr->rx_agg_ring_struct;
rmem = &ring->ring_mem;
rmem->nr_pages = bp->rx_agg_nr_pages;
rmem->page_size = HW_RXBD_RING_SIZE;
rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
rmem->dma_arr = rxr->rx_agg_desc_mapping;
rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
rmem->vmem = (void **)&rxr->rx_agg_ring;
skip_rx:
txr = bnapi->tx_ring;
if (!txr)
continue;
ring = &txr->tx_ring_struct;
rmem = &ring->ring_mem;
rmem->nr_pages = bp->tx_nr_pages;
rmem->page_size = HW_RXBD_RING_SIZE;
rmem->pg_arr = (void **)txr->tx_desc_ring;
rmem->dma_arr = txr->tx_desc_mapping;
rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
rmem->vmem = (void **)&txr->tx_buf_ring;
}
}
static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
{
int i;
u32 prod;
struct rx_bd **rx_buf_ring;
rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
int j;
struct rx_bd *rxbd;
rxbd = rx_buf_ring[i];
if (!rxbd)
continue;
for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
rxbd->rx_bd_opaque = prod;
}
}
}
static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
{
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
struct net_device *dev = bp->dev;
u32 prod;
int i;
prod = rxr->rx_prod;
for (i = 0; i < bp->rx_ring_size; i++) {
if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
ring_nr, i, bp->rx_ring_size);
break;
}
prod = NEXT_RX(prod);
}
rxr->rx_prod = prod;
if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
return 0;
prod = rxr->rx_agg_prod;
for (i = 0; i < bp->rx_agg_ring_size; i++) {
if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
ring_nr, i, bp->rx_ring_size);
break;
}
prod = NEXT_RX_AGG(prod);
}
rxr->rx_agg_prod = prod;
if (rxr->rx_tpa) {
dma_addr_t mapping;
u8 *data;
for (i = 0; i < bp->max_tpa; i++) {
data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
if (!data)
return -ENOMEM;
rxr->rx_tpa[i].data = data;
rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
rxr->rx_tpa[i].mapping = mapping;
}
}
return 0;
}
static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
{
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring_struct *ring;
u32 type;
type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
if (NET_IP_ALIGN == 2)
type |= RX_BD_FLAGS_SOP;
rxr = &bp->rx_ring[ring_nr];
ring = &rxr->rx_ring_struct;
bnxt_init_rxbd_pages(ring, type);
if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
bpf_prog_add(bp->xdp_prog, 1);
rxr->xdp_prog = bp->xdp_prog;
}
ring->fw_ring_id = INVALID_HW_RING_ID;
ring = &rxr->rx_agg_ring_struct;
ring->fw_ring_id = INVALID_HW_RING_ID;
if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
bnxt_init_rxbd_pages(ring, type);
}
return bnxt_alloc_one_rx_ring(bp, ring_nr);
}
static void bnxt_init_cp_rings(struct bnxt *bp)
{
int i, j;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
ring->fw_ring_id = INVALID_HW_RING_ID;
cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
for (j = 0; j < 2; j++) {
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
if (!cpr2)
continue;
ring = &cpr2->cp_ring_struct;
ring->fw_ring_id = INVALID_HW_RING_ID;
cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
}
}
}
static int bnxt_init_rx_rings(struct bnxt *bp)
{
int i, rc = 0;
if (BNXT_RX_PAGE_MODE(bp)) {
bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
bp->rx_dma_offset = XDP_PACKET_HEADROOM;
} else {
bp->rx_offset = BNXT_RX_OFFSET;
bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
}
for (i = 0; i < bp->rx_nr_rings; i++) {
rc = bnxt_init_one_rx_ring(bp, i);
if (rc)
break;
}
return rc;
}
static int bnxt_init_tx_rings(struct bnxt *bp)
{
u16 i;
bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
BNXT_MIN_TX_DESC_CNT);
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
ring->fw_ring_id = INVALID_HW_RING_ID;
}
return 0;
}
static void bnxt_free_ring_grps(struct bnxt *bp)
{
kfree(bp->grp_info);
bp->grp_info = NULL;
}
static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
{
int i;
if (irq_re_init) {
bp->grp_info = kcalloc(bp->cp_nr_rings,
sizeof(struct bnxt_ring_grp_info),
GFP_KERNEL);
if (!bp->grp_info)
return -ENOMEM;
}
for (i = 0; i < bp->cp_nr_rings; i++) {
if (irq_re_init)
bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
}
return 0;
}
static void bnxt_free_vnics(struct bnxt *bp)
{
kfree(bp->vnic_info);
bp->vnic_info = NULL;
bp->nr_vnics = 0;
}
static int bnxt_alloc_vnics(struct bnxt *bp)
{
int num_vnics = 1;
#ifdef CONFIG_RFS_ACCEL
if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
num_vnics += bp->rx_nr_rings;
#endif
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
num_vnics++;
bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
GFP_KERNEL);
if (!bp->vnic_info)
return -ENOMEM;
bp->nr_vnics = num_vnics;
return 0;
}
static void bnxt_init_vnics(struct bnxt *bp)
{
int i;
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
int j;
vnic->fw_vnic_id = INVALID_HW_RING_ID;
for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
if (bp->vnic_info[i].rss_hash_key) {
if (i == 0)
get_random_bytes(vnic->rss_hash_key,
HW_HASH_KEY_SIZE);
else
memcpy(vnic->rss_hash_key,
bp->vnic_info[0].rss_hash_key,
HW_HASH_KEY_SIZE);
}
}
}
static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
{
int pages;
pages = ring_size / desc_per_pg;
if (!pages)
return 1;
pages++;
while (pages & (pages - 1))
pages++;
return pages;
}
void bnxt_set_tpa_flags(struct bnxt *bp)
{
bp->flags &= ~BNXT_FLAG_TPA;
if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
return;
if (bp->dev->features & NETIF_F_LRO)
bp->flags |= BNXT_FLAG_LRO;
else if (bp->dev->features & NETIF_F_GRO_HW)
bp->flags |= BNXT_FLAG_GRO;
}
/* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
* be set on entry.
*/
void bnxt_set_ring_params(struct bnxt *bp)
{
u32 ring_size, rx_size, rx_space, max_rx_cmpl;
u32 agg_factor = 0, agg_ring_size = 0;
/* 8 for CRC and VLAN */
rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
ring_size = bp->rx_ring_size;
bp->rx_agg_ring_size = 0;
bp->rx_agg_nr_pages = 0;
if (bp->flags & BNXT_FLAG_TPA)
agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
bp->flags &= ~BNXT_FLAG_JUMBO;
if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
u32 jumbo_factor;
bp->flags |= BNXT_FLAG_JUMBO;
jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
if (jumbo_factor > agg_factor)
agg_factor = jumbo_factor;
}
if (agg_factor) {
if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
bp->rx_ring_size, ring_size);
bp->rx_ring_size = ring_size;
}
agg_ring_size = ring_size * agg_factor;
bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
RX_DESC_CNT);
if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
u32 tmp = agg_ring_size;
bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
tmp, agg_ring_size);
}
bp->rx_agg_ring_size = agg_ring_size;
bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
if (BNXT_RX_PAGE_MODE(bp)) {
rx_space = PAGE_SIZE;
rx_size = PAGE_SIZE -
ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
} else {
rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
rx_space = rx_size + NET_SKB_PAD +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
}
bp->rx_buf_use_size = rx_size;
bp->rx_buf_size = rx_space;
bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
ring_size = bp->tx_ring_size;
bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
max_rx_cmpl = bp->rx_ring_size;
/* MAX TPA needs to be added because TPA_START completions are
* immediately recycled, so the TPA completions are not bound by
* the RX ring size.
*/
if (bp->flags & BNXT_FLAG_TPA)
max_rx_cmpl += bp->max_tpa;
/* RX and TPA completions are 32-byte, all others are 16-byte */
ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
bp->cp_ring_size = ring_size;
bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
if (bp->cp_nr_pages > MAX_CP_PAGES) {
bp->cp_nr_pages = MAX_CP_PAGES;
bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
ring_size, bp->cp_ring_size);
}
bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
bp->cp_ring_mask = bp->cp_bit - 1;
}
/* Changing allocation mode of RX rings.
* TODO: Update when extending xdp_rxq_info to support allocation modes.
*/
int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
{
if (page_mode) {
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
bp->flags |= BNXT_FLAG_JUMBO;
bp->rx_skb_func = bnxt_rx_multi_page_skb;
bp->dev->max_mtu =
min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
} else {
bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
bp->rx_skb_func = bnxt_rx_page_skb;
bp->dev->max_mtu =
min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
}
bp->rx_dir = DMA_BIDIRECTIONAL;
/* Disable LRO or GRO_HW */
netdev_update_features(bp->dev);
} else {
bp->dev->max_mtu = bp->max_mtu;
bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
bp->rx_dir = DMA_FROM_DEVICE;
bp->rx_skb_func = bnxt_rx_skb;
}
return 0;
}
static void bnxt_free_vnic_attributes(struct bnxt *bp)
{
int i;
struct bnxt_vnic_info *vnic;
struct pci_dev *pdev = bp->pdev;
if (!bp->vnic_info)
return;
for (i = 0; i < bp->nr_vnics; i++) {
vnic = &bp->vnic_info[i];
kfree(vnic->fw_grp_ids);
vnic->fw_grp_ids = NULL;
kfree(vnic->uc_list);
vnic->uc_list = NULL;
if (vnic->mc_list) {
dma_free_coherent(&pdev->dev, vnic->mc_list_size,
vnic->mc_list, vnic->mc_list_mapping);
vnic->mc_list = NULL;
}
if (vnic->rss_table) {
dma_free_coherent(&pdev->dev, vnic->rss_table_size,
vnic->rss_table,
vnic->rss_table_dma_addr);
vnic->rss_table = NULL;
}
vnic->rss_hash_key = NULL;
vnic->flags = 0;
}
}
static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
{
int i, rc = 0, size;
struct bnxt_vnic_info *vnic;
struct pci_dev *pdev = bp->pdev;
int max_rings;
for (i = 0; i < bp->nr_vnics; i++) {
vnic = &bp->vnic_info[i];
if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
if (mem_size > 0) {
vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
if (!vnic->uc_list) {
rc = -ENOMEM;
goto out;
}
}
}
if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
vnic->mc_list =
dma_alloc_coherent(&pdev->dev,
vnic->mc_list_size,
&vnic->mc_list_mapping,
GFP_KERNEL);
if (!vnic->mc_list) {
rc = -ENOMEM;
goto out;
}
}
if (bp->flags & BNXT_FLAG_CHIP_P5)
goto vnic_skip_grps;
if (vnic->flags & BNXT_VNIC_RSS_FLAG)
max_rings = bp->rx_nr_rings;
else
max_rings = 1;
vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
if (!vnic->fw_grp_ids) {
rc = -ENOMEM;
goto out;
}
vnic_skip_grps:
if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
!(vnic->flags & BNXT_VNIC_RSS_FLAG))
continue;
/* Allocate rss table and hash key */
size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
if (bp->flags & BNXT_FLAG_CHIP_P5)
size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
vnic->rss_table = dma_alloc_coherent(&pdev->dev,
vnic->rss_table_size,
&vnic->rss_table_dma_addr,
GFP_KERNEL);
if (!vnic->rss_table) {
rc = -ENOMEM;
goto out;
}
vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
}
return 0;
out:
return rc;
}
static void bnxt_free_hwrm_resources(struct bnxt *bp)
{
struct bnxt_hwrm_wait_token *token;
bnxt_en: introduce new firmware message API based on DMA pools This change constitutes a major step towards supporting multiple firmware commands in flight by maintaining a separate response buffer for the duration of each request. These firmware commands are also known as Hardware Resource Manager (HWRM) commands. Using separate response buffers requires an API change in order for callers to be able to free the buffer when done. It is impossible to keep the existing APIs unchanged. The existing usage for a simple HWRM message request such as the following: struct input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, REQ_TYPE, -1, -1); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) /* error */ changes to: struct input *req; rc = hwrm_req_init(bp, req, REQ_TYPE); if (rc) /* error */ rc = hwrm_req_send(bp, req); /* consumes req */ if (rc) /* error */ The key changes are: 1. The req is no longer allocated on the stack. 2. The caller must call hwrm_req_init() to allocate a req buffer and check for a valid buffer. 3. The req buffer is automatically released when hwrm_req_send() returns. 4. If the caller wants to check the firmware response, the caller must call hwrm_req_hold() to take ownership of the response buffer and release it afterwards using hwrm_req_drop(). The caller is no longer required to explicitly hold the hwrm_cmd_lock mutex to read the response. 5. Because the firmware commands and responses all have different sizes, some safeguards are added to the code. This patch maintains legacy API compatibiltiy, implementing the old API in terms of the new. The follow-on patches will convert all callers to use the new APIs. v2: Fix redefined writeq with parisc .config Fix "cast from pointer to integer of different size" warning in hwrm_calc_sentinel() Signed-off-by: Edwin Peer <edwin.peer@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-29 07:34:59 +00:00
dma_pool_destroy(bp->hwrm_dma_pool);
bp->hwrm_dma_pool = NULL;
rcu_read_lock();
hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
rcu_read_unlock();
}
static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
{
bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
bnxt_en: introduce new firmware message API based on DMA pools This change constitutes a major step towards supporting multiple firmware commands in flight by maintaining a separate response buffer for the duration of each request. These firmware commands are also known as Hardware Resource Manager (HWRM) commands. Using separate response buffers requires an API change in order for callers to be able to free the buffer when done. It is impossible to keep the existing APIs unchanged. The existing usage for a simple HWRM message request such as the following: struct input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, REQ_TYPE, -1, -1); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) /* error */ changes to: struct input *req; rc = hwrm_req_init(bp, req, REQ_TYPE); if (rc) /* error */ rc = hwrm_req_send(bp, req); /* consumes req */ if (rc) /* error */ The key changes are: 1. The req is no longer allocated on the stack. 2. The caller must call hwrm_req_init() to allocate a req buffer and check for a valid buffer. 3. The req buffer is automatically released when hwrm_req_send() returns. 4. If the caller wants to check the firmware response, the caller must call hwrm_req_hold() to take ownership of the response buffer and release it afterwards using hwrm_req_drop(). The caller is no longer required to explicitly hold the hwrm_cmd_lock mutex to read the response. 5. Because the firmware commands and responses all have different sizes, some safeguards are added to the code. This patch maintains legacy API compatibiltiy, implementing the old API in terms of the new. The follow-on patches will convert all callers to use the new APIs. v2: Fix redefined writeq with parisc .config Fix "cast from pointer to integer of different size" warning in hwrm_calc_sentinel() Signed-off-by: Edwin Peer <edwin.peer@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-29 07:34:59 +00:00
BNXT_HWRM_DMA_SIZE,
BNXT_HWRM_DMA_ALIGN, 0);
if (!bp->hwrm_dma_pool)
return -ENOMEM;
INIT_HLIST_HEAD(&bp->hwrm_pending_list);
return 0;
}
static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
{
kfree(stats->hw_masks);
stats->hw_masks = NULL;
kfree(stats->sw_stats);
stats->sw_stats = NULL;
if (stats->hw_stats) {
dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
stats->hw_stats_map);
stats->hw_stats = NULL;
}
}
static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
bool alloc_masks)
{
stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
&stats->hw_stats_map, GFP_KERNEL);
if (!stats->hw_stats)
return -ENOMEM;
stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
if (!stats->sw_stats)
goto stats_mem_err;
if (alloc_masks) {
stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
if (!stats->hw_masks)
goto stats_mem_err;
}
return 0;
stats_mem_err:
bnxt_free_stats_mem(bp, stats);
return -ENOMEM;
}
static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
{
int i;
for (i = 0; i < count; i++)
mask_arr[i] = mask;
}
static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
{
int i;
for (i = 0; i < count; i++)
mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
}
static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
struct bnxt_stats_mem *stats)
{
struct hwrm_func_qstats_ext_output *resp;
struct hwrm_func_qstats_ext_input *req;
__le64 *hw_masks;
int rc;
if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
!(bp->flags & BNXT_FLAG_CHIP_P5))
return -EOPNOTSUPP;
rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
if (rc)
return rc;
req->fid = cpu_to_le16(0xffff);
req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc) {
hw_masks = &resp->rx_ucast_pkts;
bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
}
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
static void bnxt_init_stats(struct bnxt *bp)
{
struct bnxt_napi *bnapi = bp->bnapi[0];
struct bnxt_cp_ring_info *cpr;
struct bnxt_stats_mem *stats;
__le64 *rx_stats, *tx_stats;
int rc, rx_count, tx_count;
u64 *rx_masks, *tx_masks;
u64 mask;
u8 flags;
cpr = &bnapi->cp_ring;
stats = &cpr->stats;
rc = bnxt_hwrm_func_qstat_ext(bp, stats);
if (rc) {
if (bp->flags & BNXT_FLAG_CHIP_P5)
mask = (1ULL << 48) - 1;
else
mask = -1ULL;
bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
}
if (bp->flags & BNXT_FLAG_PORT_STATS) {
stats = &bp->port_stats;
rx_stats = stats->hw_stats;
rx_masks = stats->hw_masks;
rx_count = sizeof(struct rx_port_stats) / 8;
tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
tx_count = sizeof(struct tx_port_stats) / 8;
flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
rc = bnxt_hwrm_port_qstats(bp, flags);
if (rc) {
mask = (1ULL << 40) - 1;
bnxt_fill_masks(rx_masks, mask, rx_count);
bnxt_fill_masks(tx_masks, mask, tx_count);
} else {
bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
bnxt_hwrm_port_qstats(bp, 0);
}
}
if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
stats = &bp->rx_port_stats_ext;
rx_stats = stats->hw_stats;
rx_masks = stats->hw_masks;
rx_count = sizeof(struct rx_port_stats_ext) / 8;
stats = &bp->tx_port_stats_ext;
tx_stats = stats->hw_stats;
tx_masks = stats->hw_masks;
tx_count = sizeof(struct tx_port_stats_ext) / 8;
flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
rc = bnxt_hwrm_port_qstats_ext(bp, flags);
if (rc) {
mask = (1ULL << 40) - 1;
bnxt_fill_masks(rx_masks, mask, rx_count);
if (tx_stats)
bnxt_fill_masks(tx_masks, mask, tx_count);
} else {
bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
if (tx_stats)
bnxt_copy_hw_masks(tx_masks, tx_stats,
tx_count);
bnxt_hwrm_port_qstats_ext(bp, 0);
}
}
}
static void bnxt_free_port_stats(struct bnxt *bp)
{
bp->flags &= ~BNXT_FLAG_PORT_STATS;
bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
bnxt_free_stats_mem(bp, &bp->port_stats);
bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
}
static void bnxt_free_ring_stats(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
bnxt_free_stats_mem(bp, &cpr->stats);
}
}
static int bnxt_alloc_stats(struct bnxt *bp)
{
u32 size, i;
int rc;
size = bp->hw_ring_stats_size;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
cpr->stats.len = size;
rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
if (rc)
return rc;
cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
}
if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
return 0;
if (bp->port_stats.hw_stats)
goto alloc_ext_stats;
bp->port_stats.len = BNXT_PORT_STATS_SIZE;
rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
if (rc)
return rc;
bp->flags |= BNXT_FLAG_PORT_STATS;
alloc_ext_stats:
/* Display extended statistics only if FW supports it */
if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
return 0;
if (bp->rx_port_stats_ext.hw_stats)
goto alloc_tx_ext_stats;
bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
/* Extended stats are optional */
if (rc)
return 0;
alloc_tx_ext_stats:
if (bp->tx_port_stats_ext.hw_stats)
return 0;
if (bp->hwrm_spec_code >= 0x10902 ||
(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
/* Extended stats are optional */
if (rc)
return 0;
}
bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
return 0;
}
static void bnxt_clear_ring_indices(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_ring_info *rxr;
struct bnxt_tx_ring_info *txr;
if (!bnapi)
continue;
cpr = &bnapi->cp_ring;
cpr->cp_raw_cons = 0;
txr = bnapi->tx_ring;
if (txr) {
txr->tx_prod = 0;
txr->tx_cons = 0;
}
rxr = bnapi->rx_ring;
if (rxr) {
rxr->rx_prod = 0;
rxr->rx_agg_prod = 0;
rxr->rx_sw_agg_prod = 0;
rxr->rx_next_cons = 0;
}
}
}
static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
{
#ifdef CONFIG_RFS_ACCEL
int i;
/* Under rtnl_lock and all our NAPIs have been disabled. It's
* safe to delete the hash table.
*/
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
struct hlist_head *head;
struct hlist_node *tmp;
struct bnxt_ntuple_filter *fltr;
head = &bp->ntp_fltr_hash_tbl[i];
hlist_for_each_entry_safe(fltr, tmp, head, hash) {
hlist_del(&fltr->hash);
kfree(fltr);
}
}
if (irq_reinit) {
bitmap_free(bp->ntp_fltr_bmap);
bp->ntp_fltr_bmap = NULL;
}
bp->ntp_fltr_count = 0;
#endif
}
static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
{
#ifdef CONFIG_RFS_ACCEL
int i, rc = 0;
if (!(bp->flags & BNXT_FLAG_RFS))
return 0;
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
bp->ntp_fltr_count = 0;
bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
if (!bp->ntp_fltr_bmap)
rc = -ENOMEM;
return rc;
#else
return 0;
#endif
}
static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
{
bnxt_free_vnic_attributes(bp);
bnxt_free_tx_rings(bp);
bnxt_free_rx_rings(bp);
bnxt_free_cp_rings(bp);
bnxt_free_all_cp_arrays(bp);
bnxt_free_ntp_fltrs(bp, irq_re_init);
if (irq_re_init) {
bnxt_free_ring_stats(bp);
if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
bnxt_free_port_stats(bp);
bnxt_free_ring_grps(bp);
bnxt_free_vnics(bp);
kfree(bp->tx_ring_map);
bp->tx_ring_map = NULL;
kfree(bp->tx_ring);
bp->tx_ring = NULL;
kfree(bp->rx_ring);
bp->rx_ring = NULL;
kfree(bp->bnapi);
bp->bnapi = NULL;
} else {
bnxt_clear_ring_indices(bp);
}
}
static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
{
int i, j, rc, size, arr_size;
void *bnapi;
if (irq_re_init) {
/* Allocate bnapi mem pointer array and mem block for
* all queues
*/
arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
bp->cp_nr_rings);
size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
if (!bnapi)
return -ENOMEM;
bp->bnapi = bnapi;
bnapi += arr_size;
for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
bp->bnapi[i] = bnapi;
bp->bnapi[i]->index = i;
bp->bnapi[i]->bp = bp;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
struct bnxt_cp_ring_info *cpr =
&bp->bnapi[i]->cp_ring;
cpr->cp_ring_struct.ring_mem.flags =
BNXT_RMEM_RING_PTE_FLAG;
}
}
bp->rx_ring = kcalloc(bp->rx_nr_rings,
sizeof(struct bnxt_rx_ring_info),
GFP_KERNEL);
if (!bp->rx_ring)
return -ENOMEM;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
if (bp->flags & BNXT_FLAG_CHIP_P5) {
rxr->rx_ring_struct.ring_mem.flags =
BNXT_RMEM_RING_PTE_FLAG;
rxr->rx_agg_ring_struct.ring_mem.flags =
BNXT_RMEM_RING_PTE_FLAG;
}
rxr->bnapi = bp->bnapi[i];
bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
}
bp->tx_ring = kcalloc(bp->tx_nr_rings,
sizeof(struct bnxt_tx_ring_info),
GFP_KERNEL);
if (!bp->tx_ring)
return -ENOMEM;
bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
GFP_KERNEL);
if (!bp->tx_ring_map)
return -ENOMEM;
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
j = 0;
else
j = bp->rx_nr_rings;
for (i = 0; i < bp->tx_nr_rings; i++, j++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
if (bp->flags & BNXT_FLAG_CHIP_P5)
txr->tx_ring_struct.ring_mem.flags =
BNXT_RMEM_RING_PTE_FLAG;
txr->bnapi = bp->bnapi[j];
bp->bnapi[j]->tx_ring = txr;
bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
if (i >= bp->tx_nr_rings_xdp) {
txr->txq_index = i - bp->tx_nr_rings_xdp;
bp->bnapi[j]->tx_int = bnxt_tx_int;
} else {
bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
}
}
rc = bnxt_alloc_stats(bp);
if (rc)
goto alloc_mem_err;
bnxt_init_stats(bp);
rc = bnxt_alloc_ntp_fltrs(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_vnics(bp);
if (rc)
goto alloc_mem_err;
}
rc = bnxt_alloc_all_cp_arrays(bp);
if (rc)
goto alloc_mem_err;
bnxt_init_ring_struct(bp);
rc = bnxt_alloc_rx_rings(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_tx_rings(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_cp_rings(bp);
if (rc)
goto alloc_mem_err;
bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
BNXT_VNIC_UCAST_FLAG;
rc = bnxt_alloc_vnic_attributes(bp);
if (rc)
goto alloc_mem_err;
return 0;
alloc_mem_err:
bnxt_free_mem(bp, true);
return rc;
}
static void bnxt_disable_int(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
if (ring->fw_ring_id != INVALID_HW_RING_ID)
bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
}
}
static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
{
struct bnxt_napi *bnapi = bp->bnapi[n];
struct bnxt_cp_ring_info *cpr;
cpr = &bnapi->cp_ring;
return cpr->cp_ring_struct.map_idx;
}
static void bnxt_disable_int_sync(struct bnxt *bp)
{
int i;
if (!bp->irq_tbl)
return;
atomic_inc(&bp->intr_sem);
bnxt_disable_int(bp);
for (i = 0; i < bp->cp_nr_rings; i++) {
int map_idx = bnxt_cp_num_to_irq_num(bp, i);
synchronize_irq(bp->irq_tbl[map_idx].vector);
}
}
static void bnxt_enable_int(struct bnxt *bp)
{
int i;
atomic_set(&bp->intr_sem, 0);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
}
}
int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
bool async_only)
{
DECLARE_BITMAP(async_events_bmap, 256);
u32 *events = (u32 *)async_events_bmap;
struct hwrm_func_drv_rgtr_output *resp;
struct hwrm_func_drv_rgtr_input *req;
u32 flags;
int rc, i;
rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
if (rc)
return rc;
req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
FUNC_DRV_RGTR_REQ_ENABLES_VER |
FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
req->flags = cpu_to_le32(flags);
req->ver_maj_8b = DRV_VER_MAJ;
req->ver_min_8b = DRV_VER_MIN;
req->ver_upd_8b = DRV_VER_UPD;
req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
req->ver_min = cpu_to_le16(DRV_VER_MIN);
req->ver_upd = cpu_to_le16(DRV_VER_UPD);
if (BNXT_PF(bp)) {
u32 data[8];
int i;
memset(data, 0, sizeof(data));
for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
u16 cmd = bnxt_vf_req_snif[i];
unsigned int bit, idx;
idx = cmd / 32;
bit = cmd % 32;
data[idx] |= 1 << bit;
}
for (i = 0; i < 8; i++)
req->vf_req_fwd[i] = cpu_to_le32(data[i]);
req->enables |=
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
}
if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
req->flags |= cpu_to_le32(
FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
memset(async_events_bmap, 0, sizeof(async_events_bmap));
for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
u16 event_id = bnxt_async_events_arr[i];
if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
continue;
__set_bit(bnxt_async_events_arr[i], async_events_bmap);
}
if (bmap && bmap_size) {
for (i = 0; i < bmap_size; i++) {
if (test_bit(i, bmap))
__set_bit(i, async_events_bmap);
}
}
for (i = 0; i < 8; i++)
req->async_event_fwd[i] |= cpu_to_le32(events[i]);
if (async_only)
req->enables =
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc) {
set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
if (resp->flags &
cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
}
hwrm_req_drop(bp, req);
return rc;
}
int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
{
struct hwrm_func_drv_unrgtr_input *req;
int rc;
if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
return 0;
rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
if (rc)
return rc;
return hwrm_req_send(bp, req);
}
static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
{
struct hwrm_tunnel_dst_port_free_input *req;
int rc;
if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
return 0;
if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
return 0;
rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
if (rc)
return rc;
req->tunnel_type = tunnel_type;
switch (tunnel_type) {
case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
bp->vxlan_port = 0;
bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
break;
case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
bp->nge_port = 0;
bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
break;
default:
break;
}
rc = hwrm_req_send(bp, req);
if (rc)
netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
rc);
return rc;
}
static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
u8 tunnel_type)
{
struct hwrm_tunnel_dst_port_alloc_output *resp;
struct hwrm_tunnel_dst_port_alloc_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
if (rc)
return rc;
req->tunnel_type = tunnel_type;
req->tunnel_dst_port_val = port;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc) {
netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
rc);
goto err_out;
}
switch (tunnel_type) {
case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
bp->vxlan_port = port;
bp->vxlan_fw_dst_port_id =
le16_to_cpu(resp->tunnel_dst_port_id);
break;
case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
bp->nge_port = port;
bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
break;
default:
break;
}
err_out:
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
{
struct hwrm_cfa_l2_set_rx_mask_input *req;
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
if (rc)
return rc;
req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
}
req->mask = cpu_to_le32(vnic->rx_mask);
return hwrm_req_send_silent(bp, req);
}
#ifdef CONFIG_RFS_ACCEL
static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
struct bnxt_ntuple_filter *fltr)
{
struct hwrm_cfa_ntuple_filter_free_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
if (rc)
return rc;
req->ntuple_filter_id = fltr->filter_id;
return hwrm_req_send(bp, req);
}
#define BNXT_NTP_FLTR_FLAGS \
(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
#define BNXT_NTP_TUNNEL_FLTR_FLAG \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
struct bnxt_ntuple_filter *fltr)
{
struct hwrm_cfa_ntuple_filter_alloc_output *resp;
struct hwrm_cfa_ntuple_filter_alloc_input *req;
struct flow_keys *keys = &fltr->fkeys;
struct bnxt_vnic_info *vnic;
u32 flags = 0;
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
if (rc)
return rc;
req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
req->dst_id = cpu_to_le16(fltr->rxq);
} else {
vnic = &bp->vnic_info[fltr->rxq + 1];
req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
}
req->flags = cpu_to_le32(flags);
req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
req->ethertype = htons(ETH_P_IP);
memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
req->ip_protocol = keys->basic.ip_proto;
if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
int i;
req->ethertype = htons(ETH_P_IPV6);
req->ip_addr_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
*(struct in6_addr *)&req->src_ipaddr[0] =
keys->addrs.v6addrs.src;
*(struct in6_addr *)&req->dst_ipaddr[0] =
keys->addrs.v6addrs.dst;
for (i = 0; i < 4; i++) {
req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
}
} else {
req->src_ipaddr[0] = keys->addrs.v4addrs.src;
req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
}
if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
req->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
}
req->src_port = keys->ports.src;
req->src_port_mask = cpu_to_be16(0xffff);
req->dst_port = keys->ports.dst;
req->dst_port_mask = cpu_to_be16(0xffff);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc)
fltr->filter_id = resp->ntuple_filter_id;
hwrm_req_drop(bp, req);
return rc;
}
#endif
static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
const u8 *mac_addr)
{
struct hwrm_cfa_l2_filter_alloc_output *resp;
struct hwrm_cfa_l2_filter_alloc_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
if (rc)
return rc;
req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
req->flags |=
cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
req->enables =
cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
memcpy(req->l2_addr, mac_addr, ETH_ALEN);
req->l2_addr_mask[0] = 0xff;
req->l2_addr_mask[1] = 0xff;
req->l2_addr_mask[2] = 0xff;
req->l2_addr_mask[3] = 0xff;
req->l2_addr_mask[4] = 0xff;
req->l2_addr_mask[5] = 0xff;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc)
bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
resp->l2_filter_id;
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
{
struct hwrm_cfa_l2_filter_free_input *req;
u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
int rc;
/* Any associated ntuple filters will also be cleared by firmware. */
rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
if (rc)
return rc;
hwrm_req_hold(bp, req);
for (i = 0; i < num_of_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
for (j = 0; j < vnic->uc_filter_count; j++) {
req->l2_filter_id = vnic->fw_l2_filter_id[j];
rc = hwrm_req_send(bp, req);
}
vnic->uc_filter_count = 0;
}
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
struct hwrm_vnic_tpa_cfg_input *req;
int rc;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
return 0;
rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
if (rc)
return rc;
if (tpa_flags) {
u16 mss = bp->dev->mtu - 40;
u32 nsegs, n, segs = 0, flags;
flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
if (tpa_flags & BNXT_FLAG_GRO)
flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
req->flags = cpu_to_le32(flags);
req->enables =
cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
/* Number of segs are log2 units, and first packet is not
* included as part of this units.
*/
if (mss <= BNXT_RX_PAGE_SIZE) {
n = BNXT_RX_PAGE_SIZE / mss;
nsegs = (MAX_SKB_FRAGS - 1) * n;
} else {
n = mss / BNXT_RX_PAGE_SIZE;
if (mss & (BNXT_RX_PAGE_SIZE - 1))
n++;
nsegs = (MAX_SKB_FRAGS - n) / n;
}
if (bp->flags & BNXT_FLAG_CHIP_P5) {
segs = MAX_TPA_SEGS_P5;
max_aggs = bp->max_tpa;
} else {
segs = ilog2(nsegs);
}
req->max_agg_segs = cpu_to_le16(segs);
req->max_aggs = cpu_to_le16(max_aggs);
req->min_agg_len = cpu_to_le32(512);
}
req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
return hwrm_req_send(bp, req);
}
static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
{
struct bnxt_ring_grp_info *grp_info;
grp_info = &bp->grp_info[ring->grp_idx];
return grp_info->cp_fw_ring_id;
}
static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
{
if (bp->flags & BNXT_FLAG_CHIP_P5) {
struct bnxt_napi *bnapi = rxr->bnapi;
struct bnxt_cp_ring_info *cpr;
cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
return cpr->cp_ring_struct.fw_ring_id;
} else {
return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
}
}
static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
{
if (bp->flags & BNXT_FLAG_CHIP_P5) {
struct bnxt_napi *bnapi = txr->bnapi;
struct bnxt_cp_ring_info *cpr;
cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
return cpr->cp_ring_struct.fw_ring_id;
} else {
return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
}
}
static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
{
int entries;
if (bp->flags & BNXT_FLAG_CHIP_P5)
entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
else
entries = HW_HASH_INDEX_SIZE;
bp->rss_indir_tbl_entries = entries;
bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
GFP_KERNEL);
if (!bp->rss_indir_tbl)
return -ENOMEM;
return 0;
}
static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
{
u16 max_rings, max_entries, pad, i;
if (!bp->rx_nr_rings)
return;
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
max_rings = bp->rx_nr_rings - 1;
else
max_rings = bp->rx_nr_rings;
max_entries = bnxt_get_rxfh_indir_size(bp->dev);
for (i = 0; i < max_entries; i++)
bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
pad = bp->rss_indir_tbl_entries - max_entries;
if (pad)
memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
}
static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
{
u16 i, tbl_size, max_ring = 0;
if (!bp->rss_indir_tbl)
return 0;
tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
for (i = 0; i < tbl_size; i++)
max_ring = max(max_ring, bp->rss_indir_tbl[i]);
return max_ring;
}
int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
{
if (bp->flags & BNXT_FLAG_CHIP_P5)
return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
return 2;
return 1;
}
static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
u16 i, j;
/* Fill the RSS indirection table with ring group ids */
for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
if (!no_rss)
j = bp->rss_indir_tbl[i];
vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
}
}
static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
struct bnxt_vnic_info *vnic)
{
__le16 *ring_tbl = vnic->rss_table;
struct bnxt_rx_ring_info *rxr;
u16 tbl_size, i;
tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
for (i = 0; i < tbl_size; i++) {
u16 ring_id, j;
j = bp->rss_indir_tbl[i];
rxr = &bp->rx_ring[j];
ring_id = rxr->rx_ring_struct.fw_ring_id;
*ring_tbl++ = cpu_to_le16(ring_id);
ring_id = bnxt_cp_ring_for_rx(bp, rxr);
*ring_tbl++ = cpu_to_le16(ring_id);
}
}
static void
__bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
struct bnxt_vnic_info *vnic)
{
if (bp->flags & BNXT_FLAG_CHIP_P5)
bnxt_fill_hw_rss_tbl_p5(bp, vnic);
else
bnxt_fill_hw_rss_tbl(bp, vnic);
if (bp->rss_hash_delta) {
req->hash_type = cpu_to_le32(bp->rss_hash_delta);
if (bp->rss_hash_cfg & bp->rss_hash_delta)
req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
else
req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
} else {
req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
}
req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
}
static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
struct hwrm_vnic_rss_cfg_input *req;
int rc;
if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
return 0;
rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
if (rc)
return rc;
if (set_rss)
__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
return hwrm_req_send(bp, req);
}
static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
struct hwrm_vnic_rss_cfg_input *req;
dma_addr_t ring_tbl_map;
u32 i, nr_ctxs;
int rc;
rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
if (rc)
return rc;
req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
if (!set_rss)
return hwrm_req_send(bp, req);
__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
ring_tbl_map = vnic->rss_table_dma_addr;
nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
hwrm_req_hold(bp, req);
for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
req->ring_table_pair_index = i;
req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
rc = hwrm_req_send(bp, req);
if (rc)
goto exit;
}
exit:
hwrm_req_drop(bp, req);
return rc;
}
static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
struct hwrm_vnic_rss_qcfg_output *resp;
struct hwrm_vnic_rss_qcfg_input *req;
if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
return;
/* all contexts configured to same hash_type, zero always exists */
req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
resp = hwrm_req_hold(bp, req);
if (!hwrm_req_send(bp, req)) {
bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
bp->rss_hash_delta = 0;
}
hwrm_req_drop(bp, req);
}
static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
struct hwrm_vnic_plcmodes_cfg_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
if (rc)
return rc;
req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
if (BNXT_RX_PAGE_MODE(bp)) {
req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
} else {
req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
req->enables |=
cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
}
req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
return hwrm_req_send(bp, req);
}
static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
u16 ctx_idx)
{
struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
return;
req->rss_cos_lb_ctx_id =
cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
hwrm_req_send(bp, req);
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
}
static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
{
int i, j;
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
}
}
bp->rsscos_nr_ctxs = 0;
}
static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
{
struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc)
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
le16_to_cpu(resp->rss_cos_lb_ctx_id);
hwrm_req_drop(bp, req);
return rc;
}
static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
{
if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
}
int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
struct hwrm_vnic_cfg_input *req;
unsigned int ring = 0, grp_idx;
u16 def_vlan = 0;
int rc;
rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
if (rc)
return rc;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
req->default_rx_ring_id =
cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
req->default_cmpl_ring_id =
cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
req->enables =
cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
goto vnic_mru;
}
req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
/* Only RSS support for now TBD: COS & LB */
if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
VNIC_CFG_REQ_ENABLES_MRU);
} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
req->rss_rule =
cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
VNIC_CFG_REQ_ENABLES_MRU);
req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
} else {
req->rss_rule = cpu_to_le16(0xffff);
}
if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
(vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
} else {
req->cos_rule = cpu_to_le16(0xffff);
}
if (vnic->flags & BNXT_VNIC_RSS_FLAG)
ring = 0;
else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
ring = vnic_id - 1;
else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
ring = bp->rx_nr_rings - 1;
grp_idx = bp->rx_ring[ring].bnapi->index;
req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
req->lb_rule = cpu_to_le16(0xffff);
vnic_mru:
req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
#ifdef CONFIG_BNXT_SRIOV
if (BNXT_VF(bp))
def_vlan = bp->vf.vlan;
#endif
if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
if (!vnic_id && bnxt_ulp_registered(bp->edev))
req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
return hwrm_req_send(bp, req);
}
static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
{
if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
struct hwrm_vnic_free_input *req;
if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
return;
req->vnic_id =
cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
hwrm_req_send(bp, req);
bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
}
}
static void bnxt_hwrm_vnic_free(struct bnxt *bp)
{
u16 i;
for (i = 0; i < bp->nr_vnics; i++)
bnxt_hwrm_vnic_free_one(bp, i);
}
static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
unsigned int start_rx_ring_idx,
unsigned int nr_rings)
{
unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
struct hwrm_vnic_alloc_output *resp;
struct hwrm_vnic_alloc_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
if (rc)
return rc;
if (bp->flags & BNXT_FLAG_CHIP_P5)
goto vnic_no_ring_grps;
/* map ring groups to this vnic */
for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
grp_idx = bp->rx_ring[i].bnapi->index;
if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
j, nr_rings);
break;
}
vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
}
vnic_no_ring_grps:
for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
if (vnic_id == 0)
req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc)
vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
{
struct hwrm_vnic_qcaps_output *resp;
struct hwrm_vnic_qcaps_input *req;
int rc;
bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
if (bp->hwrm_spec_code < 0x10600)
return 0;
rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc) {
u32 flags = le32_to_cpu(resp->flags);
if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
(flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
if (flags &
VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
/* Older P5 fw before EXT_HW_STATS support did not set
* VLAN_STRIP_CAP properly.
*/
if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
(BNXT_CHIP_P5_THOR(bp) &&
!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA;
bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
if (bp->max_tpa_v2) {
if (BNXT_CHIP_P5_THOR(bp))
bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
else
bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
}
}
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
{
struct hwrm_ring_grp_alloc_output *resp;
struct hwrm_ring_grp_alloc_input *req;
int rc;
u16 i;
if (bp->flags & BNXT_FLAG_CHIP_P5)
return 0;
rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
for (i = 0; i < bp->rx_nr_rings; i++) {
unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
rc = hwrm_req_send(bp, req);
if (rc)
break;
bp->grp_info[grp_idx].fw_grp_id =
le32_to_cpu(resp->ring_group_id);
}
hwrm_req_drop(bp, req);
return rc;
}
static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
{
struct hwrm_ring_grp_free_input *req;
u16 i;
if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
return;
if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
return;
hwrm_req_hold(bp, req);
for (i = 0; i < bp->cp_nr_rings; i++) {
if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
continue;
req->ring_group_id =
cpu_to_le32(bp->grp_info[i].fw_grp_id);
hwrm_req_send(bp, req);
bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
}
hwrm_req_drop(bp, req);
}
static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
struct bnxt_ring_struct *ring,
u32 ring_type, u32 map_index)
{
struct hwrm_ring_alloc_output *resp;
struct hwrm_ring_alloc_input *req;
struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
struct bnxt_ring_grp_info *grp_info;
int rc, err = 0;
u16 ring_id;
rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
if (rc)
goto exit;
req->enables = 0;
if (rmem->nr_pages > 1) {
req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
/* Page size is in log2 units */
req->page_size = BNXT_PAGE_SHIFT;
req->page_tbl_depth = 1;
} else {
req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]);
}
req->fbo = 0;
/* Association of ring index with doorbell index and MSIX number */
req->logical_id = cpu_to_le16(map_index);
switch (ring_type) {
case HWRM_RING_ALLOC_TX: {
struct bnxt_tx_ring_info *txr;
txr = container_of(ring, struct bnxt_tx_ring_info,
tx_ring_struct);
req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
/* Association of transmit ring with completion ring */
grp_info = &bp->grp_info[ring->grp_idx];
req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
req->length = cpu_to_le32(bp->tx_ring_mask + 1);
req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
req->queue_id = cpu_to_le16(ring->queue_id);
break;
}
case HWRM_RING_ALLOC_RX:
req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
req->length = cpu_to_le32(bp->rx_ring_mask + 1);
if (bp->flags & BNXT_FLAG_CHIP_P5) {
u16 flags = 0;
/* Association of rx ring with stats context */
grp_info = &bp->grp_info[ring->grp_idx];
req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
req->enables |= cpu_to_le32(
RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
if (NET_IP_ALIGN == 2)
flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
req->flags = cpu_to_le16(flags);
}
break;
case HWRM_RING_ALLOC_AGG:
if (bp->flags & BNXT_FLAG_CHIP_P5) {
req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
/* Association of agg ring with rx ring */
grp_info = &bp->grp_info[ring->grp_idx];
req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
req->enables |= cpu_to_le32(
RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
} else {
req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
}
req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
break;
case HWRM_RING_ALLOC_CMPL:
req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
req->length = cpu_to_le32(bp->cp_ring_mask + 1);
if (bp->flags & BNXT_FLAG_CHIP_P5) {
/* Association of cp ring with nq */
grp_info = &bp->grp_info[map_index];
req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
req->cq_handle = cpu_to_le64(ring->handle);
req->enables |= cpu_to_le32(
RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
}
break;
case HWRM_RING_ALLOC_NQ:
req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
req->length = cpu_to_le32(bp->cp_ring_mask + 1);
if (bp->flags & BNXT_FLAG_USING_MSIX)
req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
break;
default:
netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
ring_type);
return -1;
}
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
err = le16_to_cpu(resp->error_code);
ring_id = le16_to_cpu(resp->ring_id);
hwrm_req_drop(bp, req);
exit:
if (rc || err) {
netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
ring_type, rc, err);
return -EIO;
}
ring->fw_ring_id = ring_id;
return rc;
}
static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
{
int rc;
if (BNXT_PF(bp)) {
struct hwrm_func_cfg_input *req;
rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
if (rc)
return rc;
req->fid = cpu_to_le16(0xffff);
req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
req->async_event_cr = cpu_to_le16(idx);
return hwrm_req_send(bp, req);
} else {
struct hwrm_func_vf_cfg_input *req;
rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
if (rc)
return rc;
req->enables =
cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
req->async_event_cr = cpu_to_le16(idx);
return hwrm_req_send(bp, req);
}
}
static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
u32 map_idx, u32 xid)
{
if (bp->flags & BNXT_FLAG_CHIP_P5) {
if (BNXT_PF(bp))
db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
else
db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
switch (ring_type) {
case HWRM_RING_ALLOC_TX:
db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
break;
case HWRM_RING_ALLOC_RX:
case HWRM_RING_ALLOC_AGG:
db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
break;
case HWRM_RING_ALLOC_CMPL:
db->db_key64 = DBR_PATH_L2;
break;
case HWRM_RING_ALLOC_NQ:
db->db_key64 = DBR_PATH_L2;
break;
}
db->db_key64 |= (u64)xid << DBR_XID_SFT;
} else {
db->doorbell = bp->bar1 + map_idx * 0x80;
switch (ring_type) {
case HWRM_RING_ALLOC_TX:
db->db_key32 = DB_KEY_TX;
break;
case HWRM_RING_ALLOC_RX:
case HWRM_RING_ALLOC_AGG:
db->db_key32 = DB_KEY_RX;
break;
case HWRM_RING_ALLOC_CMPL:
db->db_key32 = DB_KEY_CP;
break;
}
}
}
static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
{
bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
int i, rc = 0;
u32 type;
if (bp->flags & BNXT_FLAG_CHIP_P5)
type = HWRM_RING_ALLOC_NQ;
else
type = HWRM_RING_ALLOC_CMPL;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
u32 map_idx = ring->map_idx;
unsigned int vector;
vector = bp->irq_tbl[map_idx].vector;
disable_irq_nosync(vector);
rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
if (rc) {
enable_irq(vector);
goto err_out;
}
bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
enable_irq(vector);
bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
if (!i) {
rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
if (rc)
netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
}
}
type = HWRM_RING_ALLOC_TX;
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring;
u32 map_idx;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
struct bnxt_napi *bnapi = txr->bnapi;
struct bnxt_cp_ring_info *cpr, *cpr2;
u32 type2 = HWRM_RING_ALLOC_CMPL;
cpr = &bnapi->cp_ring;
cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
ring = &cpr2->cp_ring_struct;
ring->handle = BNXT_TX_HDL;
map_idx = bnapi->index;
rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
if (rc)
goto err_out;
bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
ring->fw_ring_id);
bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
}
ring = &txr->tx_ring_struct;
map_idx = i;
rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
if (rc)
goto err_out;
bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
}
type = HWRM_RING_ALLOC_RX;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
struct bnxt_napi *bnapi = rxr->bnapi;
u32 map_idx = bnapi->index;
rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
if (rc)
goto err_out;
bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
/* If we have agg rings, post agg buffers first. */
if (!agg_rings)
bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
u32 type2 = HWRM_RING_ALLOC_CMPL;
struct bnxt_cp_ring_info *cpr2;
cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
ring = &cpr2->cp_ring_struct;
ring->handle = BNXT_RX_HDL;
rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
if (rc)
goto err_out;
bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
ring->fw_ring_id);
bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
}
}
if (agg_rings) {
type = HWRM_RING_ALLOC_AGG;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring =
&rxr->rx_agg_ring_struct;
u32 grp_idx = ring->grp_idx;
u32 map_idx = grp_idx + bp->rx_nr_rings;
rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
if (rc)
goto err_out;
bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
ring->fw_ring_id);
bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
}
}
err_out:
return rc;
}
static int hwrm_ring_free_send_msg(struct bnxt *bp,
struct bnxt_ring_struct *ring,
u32 ring_type, int cmpl_ring_id)
{
struct hwrm_ring_free_output *resp;
struct hwrm_ring_free_input *req;
u16 error_code = 0;
int rc;
if (BNXT_NO_FW_ACCESS(bp))
return 0;
rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
if (rc)
goto exit;
req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
req->ring_type = ring_type;
req->ring_id = cpu_to_le16(ring->fw_ring_id);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
error_code = le16_to_cpu(resp->error_code);
hwrm_req_drop(bp, req);
exit:
if (rc || error_code) {
netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
ring_type, rc, error_code);
return -EIO;
}
return 0;
}
static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
{
u32 type;
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
hwrm_ring_free_send_msg(bp, ring,
RING_FREE_REQ_RING_TYPE_TX,
close_path ? cmpl_ring_id :
INVALID_HW_RING_ID);
ring->fw_ring_id = INVALID_HW_RING_ID;
}
}
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
u32 grp_idx = rxr->bnapi->index;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
hwrm_ring_free_send_msg(bp, ring,
RING_FREE_REQ_RING_TYPE_RX,
close_path ? cmpl_ring_id :
INVALID_HW_RING_ID);
ring->fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[grp_idx].rx_fw_ring_id =
INVALID_HW_RING_ID;
}
}
if (bp->flags & BNXT_FLAG_CHIP_P5)
type = RING_FREE_REQ_RING_TYPE_RX_AGG;
else
type = RING_FREE_REQ_RING_TYPE_RX;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
u32 grp_idx = rxr->bnapi->index;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
hwrm_ring_free_send_msg(bp, ring, type,
close_path ? cmpl_ring_id :
INVALID_HW_RING_ID);
ring->fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[grp_idx].agg_fw_ring_id =
INVALID_HW_RING_ID;
}
}
/* The completion rings are about to be freed. After that the
* IRQ doorbell will not work anymore. So we need to disable
* IRQ here.
*/
bnxt_disable_int_sync(bp);
if (bp->flags & BNXT_FLAG_CHIP_P5)
type = RING_FREE_REQ_RING_TYPE_NQ;
else
type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_ring_struct *ring;
int j;
for (j = 0; j < 2; j++) {
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
if (cpr2) {
ring = &cpr2->cp_ring_struct;
if (ring->fw_ring_id == INVALID_HW_RING_ID)
continue;
hwrm_ring_free_send_msg(bp, ring,
RING_FREE_REQ_RING_TYPE_L2_CMPL,
INVALID_HW_RING_ID);
ring->fw_ring_id = INVALID_HW_RING_ID;
}
}
ring = &cpr->cp_ring_struct;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
hwrm_ring_free_send_msg(bp, ring, type,
INVALID_HW_RING_ID);
ring->fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
}
}
}
static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
bool shared);
static int bnxt_hwrm_get_rings(struct bnxt *bp)
{
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
struct hwrm_func_qcfg_output *resp;
struct hwrm_func_qcfg_input *req;
int rc;
if (bp->hwrm_spec_code < 0x10601)
return 0;
rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
if (rc)
return rc;
req->fid = cpu_to_le16(0xffff);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc) {
hwrm_req_drop(bp, req);
return rc;
}
hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
if (BNXT_NEW_RM(bp)) {
u16 cp, stats;
hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
hw_resc->resv_hw_ring_grps =
le32_to_cpu(resp->alloc_hw_ring_grps);
hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
cp = le16_to_cpu(resp->alloc_cmpl_rings);
stats = le16_to_cpu(resp->alloc_stat_ctx);
hw_resc->resv_irqs = cp;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
int rx = hw_resc->resv_rx_rings;
int tx = hw_resc->resv_tx_rings;
if (bp->flags & BNXT_FLAG_AGG_RINGS)
rx >>= 1;
if (cp < (rx + tx)) {
bnxt_trim_rings(bp, &rx, &tx, cp, false);
if (bp->flags & BNXT_FLAG_AGG_RINGS)
rx <<= 1;
hw_resc->resv_rx_rings = rx;
hw_resc->resv_tx_rings = tx;
}
hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
hw_resc->resv_hw_ring_grps = rx;
}
hw_resc->resv_cp_rings = cp;
hw_resc->resv_stat_ctxs = stats;
}
hwrm_req_drop(bp, req);
return 0;
}
int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
{
struct hwrm_func_qcfg_output *resp;
struct hwrm_func_qcfg_input *req;
int rc;
if (bp->hwrm_spec_code < 0x10601)
return 0;
rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
if (rc)
return rc;
req->fid = cpu_to_le16(fid);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc)
*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
hwrm_req_drop(bp, req);
return rc;
}
static bool bnxt_rfs_supported(struct bnxt *bp);
static struct hwrm_func_cfg_input *
__bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
int ring_grps, int cp_rings, int stats, int vnics)
{
struct hwrm_func_cfg_input *req;
u32 enables = 0;
if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
return NULL;
req->fid = cpu_to_le16(0xffff);
enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
req->num_tx_rings = cpu_to_le16(tx_rings);
if (BNXT_NEW_RM(bp)) {
enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
enables |= tx_rings + ring_grps ?
FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
enables |= rx_rings ?
FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
} else {
enables |= cp_rings ?
FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
enables |= ring_grps ?
FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
}
enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
req->num_rx_rings = cpu_to_le16(rx_rings);
if (bp->flags & BNXT_FLAG_CHIP_P5) {
req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
req->num_msix = cpu_to_le16(cp_rings);
req->num_rsscos_ctxs =
cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
} else {
req->num_cmpl_rings = cpu_to_le16(cp_rings);
req->num_hw_ring_grps = cpu_to_le16(ring_grps);
req->num_rsscos_ctxs = cpu_to_le16(1);
if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
bnxt_rfs_supported(bp))
req->num_rsscos_ctxs =
cpu_to_le16(ring_grps + 1);
}
req->num_stat_ctxs = cpu_to_le16(stats);
req->num_vnics = cpu_to_le16(vnics);
}
req->enables = cpu_to_le32(enables);
return req;
}
static struct hwrm_func_vf_cfg_input *
__bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
int ring_grps, int cp_rings, int stats, int vnics)
{
struct hwrm_func_vf_cfg_input *req;
u32 enables = 0;
if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
return NULL;
enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
enables |= tx_rings + ring_grps ?
FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
} else {
enables |= cp_rings ?
FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
enables |= ring_grps ?
FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
}
enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
req->num_tx_rings = cpu_to_le16(tx_rings);
req->num_rx_rings = cpu_to_le16(rx_rings);
if (bp->flags & BNXT_FLAG_CHIP_P5) {
req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
} else {
req->num_cmpl_rings = cpu_to_le16(cp_rings);
req->num_hw_ring_grps = cpu_to_le16(ring_grps);
req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
}
req->num_stat_ctxs = cpu_to_le16(stats);
req->num_vnics = cpu_to_le16(vnics);
req->enables = cpu_to_le32(enables);
return req;
}
static int
bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
int ring_grps, int cp_rings, int stats, int vnics)
{
struct hwrm_func_cfg_input *req;
int rc;
req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
cp_rings, stats, vnics);
if (!req)
return -ENOMEM;
if (!req->enables) {
hwrm_req_drop(bp, req);
return 0;
}
rc = hwrm_req_send(bp, req);
if (rc)
return rc;
if (bp->hwrm_spec_code < 0x10601)
bp->hw_resc.resv_tx_rings = tx_rings;
return bnxt_hwrm_get_rings(bp);
}
static int
bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
int ring_grps, int cp_rings, int stats, int vnics)
{
struct hwrm_func_vf_cfg_input *req;
int rc;
if (!BNXT_NEW_RM(bp)) {
bp->hw_resc.resv_tx_rings = tx_rings;
return 0;
}
req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
cp_rings, stats, vnics);
if (!req)
return -ENOMEM;
rc = hwrm_req_send(bp, req);
if (rc)
return rc;
return bnxt_hwrm_get_rings(bp);
}
static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
int cp, int stat, int vnic)
{
if (BNXT_PF(bp))
return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
vnic);
else
return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
vnic);
}
int bnxt_nq_rings_in_use(struct bnxt *bp)
{
int cp = bp->cp_nr_rings;
int ulp_msix, ulp_base;
ulp_msix = bnxt_get_ulp_msix_num(bp);
if (ulp_msix) {
ulp_base = bnxt_get_ulp_msix_base(bp);
cp += ulp_msix;
if ((ulp_base + ulp_msix) > cp)
cp = ulp_base + ulp_msix;
}
return cp;
}
static int bnxt_cp_rings_in_use(struct bnxt *bp)
{
int cp;
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
return bnxt_nq_rings_in_use(bp);
cp = bp->tx_nr_rings + bp->rx_nr_rings;
return cp;
}
static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
{
int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
int cp = bp->cp_nr_rings;
if (!ulp_stat)
return cp;
if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
return bnxt_get_ulp_msix_base(bp) + ulp_stat;
return cp + ulp_stat;
}
/* Check if a default RSS map needs to be setup. This function is only
* used on older firmware that does not require reserving RX rings.
*/
static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
{
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
/* The RSS map is valid for RX rings set to resv_rx_rings */
if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
hw_resc->resv_rx_rings = bp->rx_nr_rings;
if (!netif_is_rxfh_configured(bp->dev))
bnxt_set_dflt_rss_indir_tbl(bp);
}
}
static bool bnxt_need_reserve_rings(struct bnxt *bp)
{
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
int cp = bnxt_cp_rings_in_use(bp);
int nq = bnxt_nq_rings_in_use(bp);
int rx = bp->rx_nr_rings, stat;
int vnic = 1, grp = rx;
if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
bp->hwrm_spec_code >= 0x10601)
return true;
/* Old firmware does not need RX ring reservations but we still
* need to setup a default RSS map when needed. With new firmware
* we go through RX ring reservations first and then set up the
* RSS map for the successfully reserved RX rings when needed.
*/
if (!BNXT_NEW_RM(bp)) {
bnxt_check_rss_tbl_no_rmgr(bp);
return false;
}
if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
vnic = rx + 1;
if (bp->flags & BNXT_FLAG_AGG_RINGS)
rx <<= 1;
stat = bnxt_get_func_stat_ctxs(bp);
if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
(hw_resc->resv_hw_ring_grps != grp &&
!(bp->flags & BNXT_FLAG_CHIP_P5)))
return true;
if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
hw_resc->resv_irqs != nq)
return true;
return false;
}
static int __bnxt_reserve_rings(struct bnxt *bp)
{
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
int cp = bnxt_nq_rings_in_use(bp);
int tx = bp->tx_nr_rings;
int rx = bp->rx_nr_rings;
int grp, rx_rings, rc;
int vnic = 1, stat;
bool sh = false;
if (!bnxt_need_reserve_rings(bp))
return 0;
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
sh = true;
if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
vnic = rx + 1;
if (bp->flags & BNXT_FLAG_AGG_RINGS)
rx <<= 1;
grp = bp->rx_nr_rings;
stat = bnxt_get_func_stat_ctxs(bp);
rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
if (rc)
return rc;
tx = hw_resc->resv_tx_rings;
if (BNXT_NEW_RM(bp)) {
rx = hw_resc->resv_rx_rings;
cp = hw_resc->resv_irqs;
grp = hw_resc->resv_hw_ring_grps;
vnic = hw_resc->resv_vnics;
stat = hw_resc->resv_stat_ctxs;
}
rx_rings = rx;
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
if (rx >= 2) {
rx_rings = rx >> 1;
} else {
if (netif_running(bp->dev))
return -ENOMEM;
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
bp->dev->hw_features &= ~NETIF_F_LRO;
bp->dev->features &= ~NETIF_F_LRO;
bnxt_set_ring_params(bp);
}
}
rx_rings = min_t(int, rx_rings, grp);
cp = min_t(int, cp, bp->cp_nr_rings);
if (stat > bnxt_get_ulp_stat_ctxs(bp))
stat -= bnxt_get_ulp_stat_ctxs(bp);
cp = min_t(int, cp, stat);
rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
if (bp->flags & BNXT_FLAG_AGG_RINGS)
rx = rx_rings << 1;
cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
bp->tx_nr_rings = tx;
/* If we cannot reserve all the RX rings, reset the RSS map only
* if absolutely necessary
*/
if (rx_rings != bp->rx_nr_rings) {
netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
rx_rings, bp->rx_nr_rings);
if (netif_is_rxfh_configured(bp->dev) &&
(bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
bnxt_get_max_rss_ring(bp) >= rx_rings)) {
netdev_warn(bp->dev, "RSS table entries reverting to default\n");
bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
}
}
bp->rx_nr_rings = rx_rings;
bp->cp_nr_rings = cp;
if (!tx || !rx || !cp || !grp || !vnic || !stat)
return -ENOMEM;
if (!netif_is_rxfh_configured(bp->dev))
bnxt_set_dflt_rss_indir_tbl(bp);
return rc;
}
static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
int ring_grps, int cp_rings, int stats,
int vnics)
{
struct hwrm_func_vf_cfg_input *req;
u32 flags;
if (!BNXT_NEW_RM(bp))
return 0;
req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
cp_rings, stats, vnics);
flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
req->flags = cpu_to_le32(flags);
return hwrm_req_send_silent(bp, req);
}
static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
int ring_grps, int cp_rings, int stats,
int vnics)
{
struct hwrm_func_cfg_input *req;
u32 flags;
req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
cp_rings, stats, vnics);
flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
if (BNXT_NEW_RM(bp)) {
flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
if (bp->flags & BNXT_FLAG_CHIP_P5)
flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
else
flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
}
req->flags = cpu_to_le32(flags);
return hwrm_req_send_silent(bp, req);
}
static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
int ring_grps, int cp_rings, int stats,
int vnics)
{
if (bp->hwrm_spec_code < 0x10801)
return 0;
if (BNXT_PF(bp))
return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
ring_grps, cp_rings, stats,
vnics);
return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
cp_rings, stats, vnics);
}
static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
{
struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
struct hwrm_ring_aggint_qcaps_output *resp;
struct hwrm_ring_aggint_qcaps_input *req;
int rc;
coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
coal_cap->num_cmpl_dma_aggr_max = 63;
coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
coal_cap->cmpl_aggr_dma_tmr_max = 65535;
coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
coal_cap->int_lat_tmr_min_max = 65535;
coal_cap->int_lat_tmr_max_max = 65535;
coal_cap->num_cmpl_aggr_int_max = 65535;
coal_cap->timer_units = 80;
if (bp->hwrm_spec_code < 0x10902)
return;
if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
return;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send_silent(bp, req);
if (!rc) {
coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
coal_cap->nq_params = le32_to_cpu(resp->nq_params);
coal_cap->num_cmpl_dma_aggr_max =
le16_to_cpu(resp->num_cmpl_dma_aggr_max);
coal_cap->num_cmpl_dma_aggr_during_int_max =
le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
coal_cap->cmpl_aggr_dma_tmr_max =
le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
coal_cap->cmpl_aggr_dma_tmr_during_int_max =
le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
coal_cap->int_lat_tmr_min_max =
le16_to_cpu(resp->int_lat_tmr_min_max);
coal_cap->int_lat_tmr_max_max =
le16_to_cpu(resp->int_lat_tmr_max_max);
coal_cap->num_cmpl_aggr_int_max =
le16_to_cpu(resp->num_cmpl_aggr_int_max);
coal_cap->timer_units = le16_to_cpu(resp->timer_units);
}
hwrm_req_drop(bp, req);
}
static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
{
struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
return usec * 1000 / coal_cap->timer_units;
}
static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
struct bnxt_coal *hw_coal,
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
{
struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
u16 val, tmr, max, flags = hw_coal->flags;
u32 cmpl_params = coal_cap->cmpl_params;
max = hw_coal->bufs_per_record * 128;
if (hw_coal->budget)
max = hw_coal->bufs_per_record * hw_coal->budget;
max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
req->num_cmpl_aggr_int = cpu_to_le16(val);
val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
req->num_cmpl_dma_aggr = cpu_to_le16(val);
val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
coal_cap->num_cmpl_dma_aggr_during_int_max);
req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
req->int_lat_tmr_max = cpu_to_le16(tmr);
/* min timer set to 1/2 of interrupt timer */
if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
val = tmr / 2;
val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
req->int_lat_tmr_min = cpu_to_le16(val);
req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
}
/* buf timer set to 1/4 of interrupt timer */
val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
if (cmpl_params &
RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
val = clamp_t(u16, tmr, 1,
coal_cap->cmpl_aggr_dma_tmr_during_int_max);
req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
req->enables |=
cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
}
if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
req->flags = cpu_to_le16(flags);
req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
}
static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
struct bnxt_coal *hw_coal)
{
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
u32 nq_params = coal_cap->nq_params;
u16 tmr;
int rc;
if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
return 0;
rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
if (rc)
return rc;
req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
req->flags =
cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
req->int_lat_tmr_min = cpu_to_le16(tmr);
req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
return hwrm_req_send(bp, req);
}
int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
{
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_coal coal;
int rc;
/* Tick values in micro seconds.
* 1 coal_buf x bufs_per_record = 1 completion record.
*/
memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
if (!bnapi->rx_ring)
return -ENODEV;
rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
if (rc)
return rc;
bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
return hwrm_req_send(bp, req_rx);
}
int bnxt_hwrm_set_coal(struct bnxt *bp)
{
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
*req;
int i, rc;
rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
if (rc)
return rc;
rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
if (rc) {
hwrm_req_drop(bp, req_rx);
return rc;
}
bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
hwrm_req_hold(bp, req_rx);
hwrm_req_hold(bp, req_tx);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_coal *hw_coal;
u16 ring_id;
req = req_rx;
if (!bnapi->rx_ring) {
ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
req = req_tx;
} else {
ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
}
req->ring_id = cpu_to_le16(ring_id);
rc = hwrm_req_send(bp, req);
if (rc)
break;
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
continue;
if (bnapi->rx_ring && bnapi->tx_ring) {
req = req_tx;
ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
req->ring_id = cpu_to_le16(ring_id);
rc = hwrm_req_send(bp, req);
if (rc)
break;
}
if (bnapi->rx_ring)
hw_coal = &bp->rx_coal;
else
hw_coal = &bp->tx_coal;
__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
}
hwrm_req_drop(bp, req_rx);
hwrm_req_drop(bp, req_tx);
return rc;
}
static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
{
struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
struct hwrm_stat_ctx_free_input *req;
int i;
if (!bp->bnapi)
return;
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
return;
if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
return;
if (BNXT_FW_MAJ(bp) <= 20) {
if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
hwrm_req_drop(bp, req);
return;
}
hwrm_req_hold(bp, req0);
}
hwrm_req_hold(bp, req);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
if (req0) {
req0->stat_ctx_id = req->stat_ctx_id;
hwrm_req_send(bp, req0);
}
hwrm_req_send(bp, req);
cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
}
}
hwrm_req_drop(bp, req);
if (req0)
hwrm_req_drop(bp, req0);
}
static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
{
struct hwrm_stat_ctx_alloc_output *resp;
struct hwrm_stat_ctx_alloc_input *req;
int rc, i;
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
return 0;
rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
if (rc)
return rc;
req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
resp = hwrm_req_hold(bp, req);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
rc = hwrm_req_send(bp, req);
if (rc)
break;
cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
}
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
{
struct hwrm_func_qcfg_output *resp;
struct hwrm_func_qcfg_input *req;
u32 min_db_offset = 0;
u16 flags;
int rc;
rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
if (rc)
return rc;
req->fid = cpu_to_le16(0xffff);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc)
goto func_qcfg_exit;
#ifdef CONFIG_BNXT_SRIOV
if (BNXT_VF(bp)) {
struct bnxt_vf_info *vf = &bp->vf;
vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
} else {
bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
}
#endif
flags = le16_to_cpu(resp->flags);
if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
}
if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) {
bp->flags |= BNXT_FLAG_MULTI_HOST;
if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC)
bp->fw_cap &= ~BNXT_FW_CAP_PTP_RTC;
}
if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
switch (resp->port_partition_type) {
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
bp->port_partition_type = resp->port_partition_type;
break;
}
if (bp->hwrm_spec_code < 0x10707 ||
resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
bp->br_mode = BRIDGE_MODE_VEB;
else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
bp->br_mode = BRIDGE_MODE_VEPA;
else
bp->br_mode = BRIDGE_MODE_UNDEF;
bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
if (!bp->max_mtu)
bp->max_mtu = BNXT_MAX_MTU;
if (bp->db_size)
goto func_qcfg_exit;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
if (BNXT_PF(bp))
min_db_offset = DB_PF_OFFSET_P5;
else
min_db_offset = DB_VF_OFFSET_P5;
}
bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
1024);
if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
bp->db_size <= min_db_offset)
bp->db_size = pci_resource_len(bp->pdev, 2);
func_qcfg_exit:
hwrm_req_drop(bp, req);
return rc;
}
static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
struct hwrm_func_backing_store_qcaps_output *resp)
{
struct bnxt_mem_init *mem_init;
u16 init_mask;
u8 init_val;
u8 *offset;
int i;
init_val = resp->ctx_kind_initializer;
init_mask = le16_to_cpu(resp->ctx_init_mask);
offset = &resp->qp_init_offset;
mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
mem_init->init_val = init_val;
mem_init->offset = BNXT_MEM_INVALID_OFFSET;
if (!init_mask)
continue;
if (i == BNXT_CTX_MEM_INIT_STAT)
offset = &resp->stat_init_offset;
if (init_mask & (1 << i))
mem_init->offset = *offset * 4;
else
mem_init->init_val = 0;
}
ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
}
static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
{
struct hwrm_func_backing_store_qcaps_output *resp;
struct hwrm_func_backing_store_qcaps_input *req;
int rc;
if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
return 0;
rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send_silent(bp, req);
if (!rc) {
struct bnxt_ctx_pg_info *ctx_pg;
struct bnxt_ctx_mem_info *ctx;
int i, tqm_rings;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
rc = -ENOMEM;
goto ctx_err;
}
ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
ctx->vnic_max_vnic_entries =
le16_to_cpu(resp->vnic_max_vnic_entries);
ctx->vnic_max_ring_table_entries =
le16_to_cpu(resp->vnic_max_ring_table_entries);
ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
ctx->tqm_min_entries_per_ring =
le32_to_cpu(resp->tqm_min_entries_per_ring);
ctx->tqm_max_entries_per_ring =
le32_to_cpu(resp->tqm_max_entries_per_ring);
ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
if (!ctx->tqm_entries_multiple)
ctx->tqm_entries_multiple = 1;
ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
ctx->mrav_num_entries_units =
le16_to_cpu(resp->mrav_num_entries_units);
ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
bnxt_init_ctx_initializer(ctx, resp);
ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
if (!ctx->tqm_fp_rings_count)
ctx->tqm_fp_rings_count = bp->max_q;
else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
if (!ctx_pg) {
kfree(ctx);
rc = -ENOMEM;
goto ctx_err;
}
for (i = 0; i < tqm_rings; i++, ctx_pg++)
ctx->tqm_mem[i] = ctx_pg;
bp->ctx = ctx;
} else {
rc = 0;
}
ctx_err:
hwrm_req_drop(bp, req);
return rc;
}
static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
__le64 *pg_dir)
{
if (!rmem->nr_pages)
return;
BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
if (rmem->depth >= 1) {
if (rmem->depth == 2)
*pg_attr |= 2;
else
*pg_attr |= 1;
*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
} else {
*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
}
}
#define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \
(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \
FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \
FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \
FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \
FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
{
struct hwrm_func_backing_store_cfg_input *req;
struct bnxt_ctx_mem_info *ctx = bp->ctx;
struct bnxt_ctx_pg_info *ctx_pg;
void **__req = (void **)&req;
u32 req_len = sizeof(*req);
__le32 *num_entries;
__le64 *pg_dir;
u32 flags = 0;
u8 *pg_attr;
u32 ena;
int rc;
int i;
if (!ctx)
return 0;
if (req_len > bp->hwrm_max_ext_req_len)
req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
if (rc)
return rc;
req->enables = cpu_to_le32(enables);
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
ctx_pg = &ctx->qp_mem;
req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req->qpc_pg_size_qpc_lvl,
&req->qpc_page_dir);
}
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
ctx_pg = &ctx->srq_mem;
req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req->srq_pg_size_srq_lvl,
&req->srq_page_dir);
}
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
ctx_pg = &ctx->cq_mem;
req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req->cq_pg_size_cq_lvl,
&req->cq_page_dir);
}
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
ctx_pg = &ctx->vnic_mem;
req->vnic_num_vnic_entries =
cpu_to_le16(ctx->vnic_max_vnic_entries);
req->vnic_num_ring_table_entries =
cpu_to_le16(ctx->vnic_max_ring_table_entries);
req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req->vnic_pg_size_vnic_lvl,
&req->vnic_page_dir);
}
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
ctx_pg = &ctx->stat_mem;
req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req->stat_pg_size_stat_lvl,
&req->stat_page_dir);
}
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
ctx_pg = &ctx->mrav_mem;
req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
if (ctx->mrav_num_entries_units)
flags |=
FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req->mrav_pg_size_mrav_lvl,
&req->mrav_page_dir);
}
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
ctx_pg = &ctx->tim_mem;
req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req->tim_pg_size_tim_lvl,
&req->tim_page_dir);
}
for (i = 0, num_entries = &req->tqm_sp_num_entries,
pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
pg_dir = &req->tqm_sp_page_dir,
ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
i < BNXT_MAX_TQM_RINGS;
i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
if (!(enables & ena))
continue;
req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
ctx_pg = ctx->tqm_mem[i];
*num_entries = cpu_to_le32(ctx_pg->entries);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
}
req->flags = cpu_to_le32(flags);
return hwrm_req_send(bp, req);
}
static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
struct bnxt_ctx_pg_info *ctx_pg)
{
struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
rmem->page_size = BNXT_PAGE_SIZE;
rmem->pg_arr = ctx_pg->ctx_pg_arr;
rmem->dma_arr = ctx_pg->ctx_dma_arr;
rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
if (rmem->depth >= 1)
rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
return bnxt_alloc_ring(bp, rmem);
}
static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
u8 depth, struct bnxt_mem_init *mem_init)
{
struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
int rc;
if (!mem_size)
return -EINVAL;
ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
ctx_pg->nr_pages = 0;
return -EINVAL;
}
if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
int nr_tbls, i;
rmem->depth = 2;
ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
GFP_KERNEL);
if (!ctx_pg->ctx_pg_tbl)
return -ENOMEM;
nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
rmem->nr_pages = nr_tbls;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
if (rc)
return rc;
for (i = 0; i < nr_tbls; i++) {
struct bnxt_ctx_pg_info *pg_tbl;
pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
if (!pg_tbl)
return -ENOMEM;
ctx_pg->ctx_pg_tbl[i] = pg_tbl;
rmem = &pg_tbl->ring_mem;
rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
rmem->depth = 1;
rmem->nr_pages = MAX_CTX_PAGES;
rmem->mem_init = mem_init;
if (i == (nr_tbls - 1)) {
int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
if (rem)
rmem->nr_pages = rem;
}
rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
if (rc)
break;
}
} else {
rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
if (rmem->nr_pages > 1 || depth)
rmem->depth = 1;
rmem->mem_init = mem_init;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
}
return rc;
}
static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
struct bnxt_ctx_pg_info *ctx_pg)
{
struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
ctx_pg->ctx_pg_tbl) {
int i, nr_tbls = rmem->nr_pages;
for (i = 0; i < nr_tbls; i++) {
struct bnxt_ctx_pg_info *pg_tbl;
struct bnxt_ring_mem_info *rmem2;
pg_tbl = ctx_pg->ctx_pg_tbl[i];
if (!pg_tbl)
continue;
rmem2 = &pg_tbl->ring_mem;
bnxt_free_ring(bp, rmem2);
ctx_pg->ctx_pg_arr[i] = NULL;
kfree(pg_tbl);
ctx_pg->ctx_pg_tbl[i] = NULL;
}
kfree(ctx_pg->ctx_pg_tbl);
ctx_pg->ctx_pg_tbl = NULL;
}
bnxt_free_ring(bp, rmem);
ctx_pg->nr_pages = 0;
}
void bnxt_free_ctx_mem(struct bnxt *bp)
{
struct bnxt_ctx_mem_info *ctx = bp->ctx;
int i;
if (!ctx)
return;
if (ctx->tqm_mem[0]) {
for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
kfree(ctx->tqm_mem[0]);
ctx->tqm_mem[0] = NULL;
}
bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
ctx->flags &= ~BNXT_CTX_FLAG_INITED;
}
static int bnxt_alloc_ctx_mem(struct bnxt *bp)
{
struct bnxt_ctx_pg_info *ctx_pg;
struct bnxt_ctx_mem_info *ctx;
struct bnxt_mem_init *init;
u32 mem_size, ena, entries;
u32 entries_sp, min;
u32 num_mr, num_ah;
u32 extra_srqs = 0;
u32 extra_qps = 0;
u8 pg_lvl = 1;
int i, rc;
rc = bnxt_hwrm_func_backing_store_qcaps(bp);
if (rc) {
netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
rc);
return rc;
}
ctx = bp->ctx;
if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
return 0;
if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
pg_lvl = 2;
extra_qps = 65536;
extra_srqs = 8192;
}
ctx_pg = &ctx->qp_mem;
ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
extra_qps;
if (ctx->qp_entry_size) {
mem_size = ctx->qp_entry_size * ctx_pg->entries;
init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
if (rc)
return rc;
}
ctx_pg = &ctx->srq_mem;
ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
if (ctx->srq_entry_size) {
mem_size = ctx->srq_entry_size * ctx_pg->entries;
init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
if (rc)
return rc;
}
ctx_pg = &ctx->cq_mem;
ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
if (ctx->cq_entry_size) {
mem_size = ctx->cq_entry_size * ctx_pg->entries;
init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
if (rc)
return rc;
}
ctx_pg = &ctx->vnic_mem;
ctx_pg->entries = ctx->vnic_max_vnic_entries +
ctx->vnic_max_ring_table_entries;
if (ctx->vnic_entry_size) {
mem_size = ctx->vnic_entry_size * ctx_pg->entries;
init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
if (rc)
return rc;
}
ctx_pg = &ctx->stat_mem;
ctx_pg->entries = ctx->stat_max_entries;
if (ctx->stat_entry_size) {
mem_size = ctx->stat_entry_size * ctx_pg->entries;
init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
if (rc)
return rc;
}
ena = 0;
if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
goto skip_rdma;
ctx_pg = &ctx->mrav_mem;
/* 128K extra is needed to accommodate static AH context
* allocation by f/w.
*/
num_mr = 1024 * 256;
num_ah = 1024 * 128;
ctx_pg->entries = num_mr + num_ah;
if (ctx->mrav_entry_size) {
mem_size = ctx->mrav_entry_size * ctx_pg->entries;
init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
if (rc)
return rc;
}
ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
if (ctx->mrav_num_entries_units)
ctx_pg->entries =
((num_mr / ctx->mrav_num_entries_units) << 16) |
(num_ah / ctx->mrav_num_entries_units);
ctx_pg = &ctx->tim_mem;
ctx_pg->entries = ctx->qp_mem.entries;
if (ctx->tim_entry_size) {
mem_size = ctx->tim_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
if (rc)
return rc;
}
ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
skip_rdma:
min = ctx->tqm_min_entries_per_ring;
entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
entries = roundup(entries, ctx->tqm_entries_multiple);
entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
ctx_pg = ctx->tqm_mem[i];
ctx_pg->entries = i ? entries : entries_sp;
if (ctx->tqm_entry_size) {
mem_size = ctx->tqm_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
NULL);
if (rc)
return rc;
}
ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
}
ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
if (rc) {
netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
rc);
return rc;
}
ctx->flags |= BNXT_CTX_FLAG_INITED;
return 0;
}
int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
{
struct hwrm_func_resource_qcaps_output *resp;
struct hwrm_func_resource_qcaps_input *req;
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
int rc;
rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
if (rc)
return rc;
req->fid = cpu_to_le16(0xffff);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send_silent(bp, req);
if (rc)
goto hwrm_func_resc_qcaps_exit;
hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
if (!all)
goto hwrm_func_resc_qcaps_exit;
hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
if (bp->flags & BNXT_FLAG_CHIP_P5) {
u16 max_msix = le16_to_cpu(resp->max_msix);
hw_resc->max_nqs = max_msix;
hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
}
if (BNXT_PF(bp)) {
struct bnxt_pf_info *pf = &bp->pf;
pf->vf_resv_strategy =
le16_to_cpu(resp->vf_reservation_strategy);
if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
}
hwrm_func_resc_qcaps_exit:
hwrm_req_drop(bp, req);
return rc;
}
static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
{
struct hwrm_port_mac_ptp_qcfg_output *resp;
struct hwrm_port_mac_ptp_qcfg_input *req;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
bool phc_cfg;
u8 flags;
int rc;
if (bp->hwrm_spec_code < 0x10801) {
rc = -ENODEV;
goto no_ptp;
}
rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
if (rc)
goto no_ptp;
req->port_id = cpu_to_le16(bp->pf.port_id);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc)
goto exit;
flags = resp->flags;
if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
rc = -ENODEV;
goto exit;
}
if (!ptp) {
ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
if (!ptp) {
rc = -ENOMEM;
goto exit;
}
ptp->bp = bp;
bp->ptp_cfg = ptp;
}
if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
} else {
rc = -ENODEV;
goto exit;
}
phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
rc = bnxt_ptp_init(bp, phc_cfg);
if (rc)
netdev_warn(bp->dev, "PTP initialization failed.\n");
exit:
hwrm_req_drop(bp, req);
if (!rc)
return 0;
no_ptp:
bnxt_ptp_clear(bp);
kfree(ptp);
bp->ptp_cfg = NULL;
return rc;
}
static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
{
struct hwrm_func_qcaps_output *resp;
struct hwrm_func_qcaps_input *req;
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
u32 flags, flags_ext, flags_ext2;
int rc;
rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
if (rc)
return rc;
req->fid = cpu_to_le16(0xffff);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc)
goto hwrm_func_qcaps_exit;
flags = le32_to_cpu(resp->flags);
if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
bp->flags |= BNXT_FLAG_ROCEV1_CAP;
if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
bp->flags |= BNXT_FLAG_ROCEV2_CAP;
if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
flags_ext = le32_to_cpu(resp->flags_ext);
if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
flags_ext2 = le32_to_cpu(resp->flags_ext2);
if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
bp->tx_push_thresh = 0;
if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
BNXT_FW_MAJ(bp) > 217)
bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
if (!hw_resc->max_hw_ring_grps)
hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
if (BNXT_PF(bp)) {
struct bnxt_pf_info *pf = &bp->pf;
pf->fw_fid = le16_to_cpu(resp->fid);
pf->port_id = le16_to_cpu(resp->port_id);
memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
pf->max_vfs = le16_to_cpu(resp->max_vfs);
pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
bp->flags &= ~BNXT_FLAG_WOL_CAP;
if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
bp->flags |= BNXT_FLAG_WOL_CAP;
if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
__bnxt_hwrm_ptp_qcfg(bp);
} else {
bnxt_ptp_clear(bp);
kfree(bp->ptp_cfg);
bp->ptp_cfg = NULL;
}
} else {
#ifdef CONFIG_BNXT_SRIOV
struct bnxt_vf_info *vf = &bp->vf;
vf->fw_fid = le16_to_cpu(resp->fid);
memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
#endif
}
hwrm_func_qcaps_exit:
hwrm_req_drop(bp, req);
return rc;
}
static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
{
struct hwrm_dbg_qcaps_output *resp;
struct hwrm_dbg_qcaps_input *req;
int rc;
bp->fw_dbg_cap = 0;
if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
return;
rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
if (rc)
return;
req->fid = cpu_to_le16(0xffff);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc)
goto hwrm_dbg_qcaps_exit;
bp->fw_dbg_cap = le32_to_cpu(resp->flags);
hwrm_dbg_qcaps_exit:
hwrm_req_drop(bp, req);
}
static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
int bnxt_hwrm_func_qcaps(struct bnxt *bp)
{
int rc;
rc = __bnxt_hwrm_func_qcaps(bp);
if (rc)
return rc;
bnxt_hwrm_dbg_qcaps(bp);
rc = bnxt_hwrm_queue_qportcfg(bp);
if (rc) {
netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
return rc;
}
if (bp->hwrm_spec_code >= 0x10803) {
rc = bnxt_alloc_ctx_mem(bp);
if (rc)
return rc;
rc = bnxt_hwrm_func_resc_qcaps(bp, true);
if (!rc)
bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
}
return 0;
}
static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
{
struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
u32 flags;
int rc;
if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
return 0;
rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc)
goto hwrm_cfa_adv_qcaps_exit;
flags = le32_to_cpu(resp->flags);
if (flags &
CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
hwrm_cfa_adv_qcaps_exit:
hwrm_req_drop(bp, req);
return rc;
}
static int __bnxt_alloc_fw_health(struct bnxt *bp)
{
if (bp->fw_health)
return 0;
bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
if (!bp->fw_health)
return -ENOMEM;
mutex_init(&bp->fw_health->lock);
return 0;
}
static int bnxt_alloc_fw_health(struct bnxt *bp)
{
int rc;
if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
return 0;
rc = __bnxt_alloc_fw_health(bp);
if (rc) {
bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
return rc;
}
return 0;
}
static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
{
writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
BNXT_GRCPF_REG_WINDOW_BASE_OUT +
BNXT_FW_HEALTH_WIN_MAP_OFF);
}
static void bnxt_inv_fw_health_reg(struct bnxt *bp)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
u32 reg_type;
if (!fw_health)
return;
reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
fw_health->status_reliable = false;
reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
fw_health->resets_reliable = false;
}
static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
{
void __iomem *hs;
u32 status_loc;
u32 reg_type;
u32 sig;
if (bp->fw_health)
bp->fw_health->status_reliable = false;
__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
if (!bp->chip_num) {
__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
bp->chip_num = readl(bp->bar0 +
BNXT_FW_HEALTH_WIN_BASE +
BNXT_GRC_REG_CHIP_NUM);
}
if (!BNXT_CHIP_P5(bp))
return;
status_loc = BNXT_GRC_REG_STATUS_P5 |
BNXT_FW_HEALTH_REG_TYPE_BAR0;
} else {
status_loc = readl(hs + offsetof(struct hcomm_status,
fw_status_loc));
}
if (__bnxt_alloc_fw_health(bp)) {
netdev_warn(bp->dev, "no memory for firmware status checks\n");
return;
}
bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
__bnxt_map_fw_health_reg(bp, status_loc);
bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
BNXT_FW_HEALTH_WIN_OFF(status_loc);
}
bp->fw_health->status_reliable = true;
}
static int bnxt_map_fw_health_regs(struct bnxt *bp)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
u32 reg_base = 0xffffffff;
int i;
bp->fw_health->status_reliable = false;
bp->fw_health->resets_reliable = false;
/* Only pre-map the monitoring GRC registers using window 3 */
for (i = 0; i < 4; i++) {
u32 reg = fw_health->regs[i];
if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
continue;
if (reg_base == 0xffffffff)
reg_base = reg & BNXT_GRC_BASE_MASK;
if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
return -ERANGE;
fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
}
bp->fw_health->status_reliable = true;
bp->fw_health->resets_reliable = true;
if (reg_base == 0xffffffff)
return 0;
__bnxt_map_fw_health_reg(bp, reg_base);
return 0;
}
static void bnxt_remap_fw_health_regs(struct bnxt *bp)
{
if (!bp->fw_health)
return;
if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
bp->fw_health->status_reliable = true;
bp->fw_health->resets_reliable = true;
} else {
bnxt_try_map_fw_health_reg(bp);
}
}
static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
struct hwrm_error_recovery_qcfg_output *resp;
struct hwrm_error_recovery_qcfg_input *req;
int rc, i;
if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
return 0;
rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc)
goto err_recovery_out;
fw_health->flags = le32_to_cpu(resp->flags);
if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
!(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
rc = -EINVAL;
goto err_recovery_out;
}
fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
fw_health->master_func_wait_dsecs =
le32_to_cpu(resp->master_func_wait_period);
fw_health->normal_func_wait_dsecs =
le32_to_cpu(resp->normal_func_wait_period);
fw_health->post_reset_wait_dsecs =
le32_to_cpu(resp->master_func_wait_period_after_reset);
fw_health->post_reset_max_wait_dsecs =
le32_to_cpu(resp->max_bailout_time_after_reset);
fw_health->regs[BNXT_FW_HEALTH_REG] =
le32_to_cpu(resp->fw_health_status_reg);
fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
le32_to_cpu(resp->fw_heartbeat_reg);
fw_health->regs[BNXT_FW_RESET_CNT_REG] =
le32_to_cpu(resp->fw_reset_cnt_reg);
fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
le32_to_cpu(resp->reset_inprogress_reg);
fw_health->fw_reset_inprog_reg_mask =
le32_to_cpu(resp->reset_inprogress_reg_mask);
fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
if (fw_health->fw_reset_seq_cnt >= 16) {
rc = -EINVAL;
goto err_recovery_out;
}
for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
fw_health->fw_reset_seq_regs[i] =
le32_to_cpu(resp->reset_reg[i]);
fw_health->fw_reset_seq_vals[i] =
le32_to_cpu(resp->reset_reg_val[i]);
fw_health->fw_reset_seq_delay_msec[i] =
resp->delay_after_reset[i];
}
err_recovery_out:
hwrm_req_drop(bp, req);
if (!rc)
rc = bnxt_map_fw_health_regs(bp);
if (rc)
bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
return rc;
}
static int bnxt_hwrm_func_reset(struct bnxt *bp)
{
struct hwrm_func_reset_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
if (rc)
return rc;
req->enables = 0;
hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
return hwrm_req_send(bp, req);
}
static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
{
struct hwrm_nvm_get_dev_info_output nvm_info;
if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
nvm_info.nvm_cfg_ver_upd);
}
static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
{
struct hwrm_queue_qportcfg_output *resp;
struct hwrm_queue_qportcfg_input *req;
u8 i, j, *qptr;
bool no_rdma;
int rc = 0;
rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc)
goto qportcfg_exit;
if (!resp->max_configurable_queues) {
rc = -EINVAL;
goto qportcfg_exit;
}
bp->max_tc = resp->max_configurable_queues;
bp->max_lltc = resp->max_configurable_lossless_queues;
if (bp->max_tc > BNXT_MAX_QUEUE)
bp->max_tc = BNXT_MAX_QUEUE;
no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
qptr = &resp->queue_id0;
for (i = 0, j = 0; i < bp->max_tc; i++) {
bp->q_info[j].queue_id = *qptr;
bp->q_ids[i] = *qptr++;
bp->q_info[j].queue_profile = *qptr++;
bp->tc_to_qidx[j] = j;
if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
(no_rdma && BNXT_PF(bp)))
j++;
}
bp->max_q = bp->max_tc;
bp->max_tc = max_t(u8, j, 1);
if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
bp->max_tc = 1;
if (bp->max_lltc > bp->max_tc)
bp->max_lltc = bp->max_tc;
qportcfg_exit:
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_hwrm_poll(struct bnxt *bp)
{
struct hwrm_ver_get_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_VER_GET);
if (rc)
return rc;
req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
req->hwrm_intf_min = HWRM_VERSION_MINOR;
req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
rc = hwrm_req_send(bp, req);
return rc;
}
static int bnxt_hwrm_ver_get(struct bnxt *bp)
{
struct hwrm_ver_get_output *resp;
struct hwrm_ver_get_input *req;
u16 fw_maj, fw_min, fw_bld, fw_rsv;
u32 dev_caps_cfg, hwrm_ver;
int rc, len;
rc = hwrm_req_init(bp, req, HWRM_VER_GET);
if (rc)
return rc;
hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
req->hwrm_intf_min = HWRM_VERSION_MINOR;
req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc)
goto hwrm_ver_get_exit;
memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
resp->hwrm_intf_min_8b << 8 |
resp->hwrm_intf_upd_8b;
if (resp->hwrm_intf_maj_8b < 1) {
netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
resp->hwrm_intf_upd_8b);
netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
}
hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
HWRM_VERSION_UPDATE;
if (bp->hwrm_spec_code > hwrm_ver)
snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
HWRM_VERSION_UPDATE);
else
snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
resp->hwrm_intf_upd_8b);
fw_maj = le16_to_cpu(resp->hwrm_fw_major);
if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
fw_min = le16_to_cpu(resp->hwrm_fw_minor);
fw_bld = le16_to_cpu(resp->hwrm_fw_build);
fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
len = FW_VER_STR_LEN;
} else {
fw_maj = resp->hwrm_fw_maj_8b;
fw_min = resp->hwrm_fw_min_8b;
fw_bld = resp->hwrm_fw_bld_8b;
fw_rsv = resp->hwrm_fw_rsvd_8b;
len = BC_HWRM_STR_LEN;
}
bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
fw_rsv);
if (strlen(resp->active_pkg_name)) {
int fw_ver_len = strlen(bp->fw_ver_str);
snprintf(bp->fw_ver_str + fw_ver_len,
FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
resp->active_pkg_name);
bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
}
bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
if (!bp->hwrm_cmd_timeout)
bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
if (!bp->hwrm_cmd_max_timeout)
bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
bp->hwrm_cmd_max_timeout / 1000);
if (resp->hwrm_intf_maj_8b >= 1) {
bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
}
if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
bp->chip_num = le16_to_cpu(resp->chip_num);
bp->chip_rev = resp->chip_rev;
if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
!resp->chip_metal)
bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
(dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
if (dev_caps_cfg &
VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
if (dev_caps_cfg &
VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
if (dev_caps_cfg &
VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
hwrm_ver_get_exit:
hwrm_req_drop(bp, req);
return rc;
}
int bnxt_hwrm_fw_set_time(struct bnxt *bp)
{
struct hwrm_fw_set_time_input *req;
struct tm tm;
time64_t now = ktime_get_real_seconds();
int rc;
if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
bp->hwrm_spec_code < 0x10400)
return -EOPNOTSUPP;
time64_to_tm(now, 0, &tm);
rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
if (rc)
return rc;
req->year = cpu_to_le16(1900 + tm.tm_year);
req->month = 1 + tm.tm_mon;
req->day = tm.tm_mday;
req->hour = tm.tm_hour;
req->minute = tm.tm_min;
req->second = tm.tm_sec;
return hwrm_req_send(bp, req);
}
static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
{
u64 sw_tmp;
hw &= mask;
sw_tmp = (*sw & ~mask) | hw;
if (hw < (*sw & mask))
sw_tmp += mask + 1;
WRITE_ONCE(*sw, sw_tmp);
}
static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
int count, bool ignore_zero)
{
int i;
for (i = 0; i < count; i++) {
u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
if (ignore_zero && !hw)
continue;
if (masks[i] == -1ULL)
sw_stats[i] = hw;
else
bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
}
}
static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
{
if (!stats->hw_stats)
return;
__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
stats->hw_masks, stats->len / 8, false);
}
static void bnxt_accumulate_all_stats(struct bnxt *bp)
{
struct bnxt_stats_mem *ring0_stats;
bool ignore_zero = false;
int i;
/* Chip bug. Counter intermittently becomes 0. */
if (bp->flags & BNXT_FLAG_CHIP_P5)
ignore_zero = true;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
struct bnxt_stats_mem *stats;
cpr = &bnapi->cp_ring;
stats = &cpr->stats;
if (!i)
ring0_stats = stats;
__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
ring0_stats->hw_masks,
ring0_stats->len / 8, ignore_zero);
}
if (bp->flags & BNXT_FLAG_PORT_STATS) {
struct bnxt_stats_mem *stats = &bp->port_stats;
__le64 *hw_stats = stats->hw_stats;
u64 *sw_stats = stats->sw_stats;
u64 *masks = stats->hw_masks;
int cnt;
cnt = sizeof(struct rx_port_stats) / 8;
__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
cnt = sizeof(struct tx_port_stats) / 8;
__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
}
if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
bnxt_accumulate_stats(&bp->rx_port_stats_ext);
bnxt_accumulate_stats(&bp->tx_port_stats_ext);
}
}
static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
{
struct hwrm_port_qstats_input *req;
struct bnxt_pf_info *pf = &bp->pf;
int rc;
if (!(bp->flags & BNXT_FLAG_PORT_STATS))
return 0;
if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
return -EOPNOTSUPP;
rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
if (rc)
return rc;
req->flags = flags;
req->port_id = cpu_to_le16(pf->port_id);
req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
BNXT_TX_PORT_STATS_BYTE_OFFSET);
req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
return hwrm_req_send(bp, req);
}
static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
{
struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
struct hwrm_queue_pri2cos_qcfg_input *req_qc;
struct hwrm_port_qstats_ext_output *resp_qs;
struct hwrm_port_qstats_ext_input *req_qs;
struct bnxt_pf_info *pf = &bp->pf;
u32 tx_stat_size;
int rc;
if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
return 0;
if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
return -EOPNOTSUPP;
rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
if (rc)
return rc;
req_qs->flags = flags;
req_qs->port_id = cpu_to_le16(pf->port_id);
req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
sizeof(struct tx_port_stats_ext) : 0;
req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
resp_qs = hwrm_req_hold(bp, req_qs);
rc = hwrm_req_send(bp, req_qs);
if (!rc) {
bp->fw_rx_stats_ext_size =
le16_to_cpu(resp_qs->rx_stat_size) / 8;
if (BNXT_FW_MAJ(bp) < 220 &&
bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
bp->fw_tx_stats_ext_size = tx_stat_size ?
le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
} else {
bp->fw_rx_stats_ext_size = 0;
bp->fw_tx_stats_ext_size = 0;
}
hwrm_req_drop(bp, req_qs);
if (flags)
return rc;
if (bp->fw_tx_stats_ext_size <=
offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
bp->pri2cos_valid = 0;
return rc;
}
rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
if (rc)
return rc;
req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
resp_qc = hwrm_req_hold(bp, req_qc);
rc = hwrm_req_send(bp, req_qc);
if (!rc) {
u8 *pri2cos;
int i, j;
pri2cos = &resp_qc->pri0_cos_queue_id;
for (i = 0; i < 8; i++) {
u8 queue_id = pri2cos[i];
u8 queue_idx;
/* Per port queue IDs start from 0, 10, 20, etc */
queue_idx = queue_id % 10;
if (queue_idx > BNXT_MAX_QUEUE) {
bp->pri2cos_valid = false;
hwrm_req_drop(bp, req_qc);
return rc;
}
for (j = 0; j < bp->max_q; j++) {
if (bp->q_ids[j] == queue_id)
bp->pri2cos_idx[i] = queue_idx;
}
}
bp->pri2cos_valid = true;
}
hwrm_req_drop(bp, req_qc);
return rc;
}
static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
{
bnxt_hwrm_tunnel_dst_port_free(bp,
TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
bnxt_hwrm_tunnel_dst_port_free(bp,
TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
}
static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
{
int rc, i;
u32 tpa_flags = 0;
if (set_tpa)
tpa_flags = bp->flags & BNXT_FLAG_TPA;
else if (BNXT_NO_FW_ACCESS(bp))
return 0;
for (i = 0; i < bp->nr_vnics; i++) {
rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
if (rc) {
netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
i, rc);
return rc;
}
}
return 0;
}
static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
{
int i;
for (i = 0; i < bp->nr_vnics; i++)
bnxt_hwrm_vnic_set_rss(bp, i, false);
}
static void bnxt_clear_vnic(struct bnxt *bp)
{
if (!bp->vnic_info)
return;
bnxt_hwrm_clear_vnic_filter(bp);
if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
/* clear all RSS setting before free vnic ctx */
bnxt_hwrm_clear_vnic_rss(bp);
bnxt_hwrm_vnic_ctx_free(bp);
}
/* before free the vnic, undo the vnic tpa settings */
if (bp->flags & BNXT_FLAG_TPA)
bnxt_set_tpa(bp, false);
bnxt_hwrm_vnic_free(bp);
if (bp->flags & BNXT_FLAG_CHIP_P5)
bnxt_hwrm_vnic_ctx_free(bp);
}
static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
bool irq_re_init)
{
bnxt_clear_vnic(bp);
bnxt_hwrm_ring_free(bp, close_path);
bnxt_hwrm_ring_grp_free(bp);
if (irq_re_init) {
bnxt_hwrm_stat_ctx_free(bp);
bnxt_hwrm_free_tunnel_ports(bp);
}
}
static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
{
struct hwrm_func_cfg_input *req;
u8 evb_mode;
int rc;
if (br_mode == BRIDGE_MODE_VEB)
evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
else if (br_mode == BRIDGE_MODE_VEPA)
evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
else
return -EINVAL;
rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
if (rc)
return rc;
req->fid = cpu_to_le16(0xffff);
req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
req->evb_mode = evb_mode;
return hwrm_req_send(bp, req);
}
static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
{
struct hwrm_func_cfg_input *req;
int rc;
if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
return 0;
rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
if (rc)
return rc;
req->fid = cpu_to_le16(0xffff);
req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
if (size == 128)
req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
return hwrm_req_send(bp, req);
}
static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
int rc;
if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
goto skip_rss_ctx;
/* allocate context for vnic */
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
vnic_id, rc);
goto vnic_setup_err;
}
bp->rsscos_nr_ctxs++;
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
vnic_id, rc);
goto vnic_setup_err;
}
bp->rsscos_nr_ctxs++;
}
skip_rss_ctx:
/* configure default vnic, ring grp */
rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
vnic_id, rc);
goto vnic_setup_err;
}
/* Enable RSS hashing on vnic */
rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
vnic_id, rc);
goto vnic_setup_err;
}
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
vnic_id, rc);
}
}
vnic_setup_err:
return rc;
}
static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
{
int rc, i, nr_ctxs;
nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
for (i = 0; i < nr_ctxs; i++) {
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
vnic_id, i, rc);
break;
}
bp->rsscos_nr_ctxs++;
}
if (i < nr_ctxs)
return -ENOMEM;
rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
vnic_id, rc);
return rc;
}
rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
vnic_id, rc);
return rc;
}
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
vnic_id, rc);
}
}
return rc;
}
static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
{
if (bp->flags & BNXT_FLAG_CHIP_P5)
return __bnxt_setup_vnic_p5(bp, vnic_id);
else
return __bnxt_setup_vnic(bp, vnic_id);
}
static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
{
#ifdef CONFIG_RFS_ACCEL
int i, rc = 0;
if (bp->flags & BNXT_FLAG_CHIP_P5)
return 0;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_vnic_info *vnic;
u16 vnic_id = i + 1;
u16 ring_id = i;
if (vnic_id >= bp->nr_vnics)
break;
vnic = &bp->vnic_info[vnic_id];
vnic->flags |= BNXT_VNIC_RFS_FLAG;
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
vnic_id, rc);
break;
}
rc = bnxt_setup_vnic(bp, vnic_id);
if (rc)
break;
}
return rc;
#else
return 0;
#endif
}
/* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
static bool bnxt_promisc_ok(struct bnxt *bp)
{
#ifdef CONFIG_BNXT_SRIOV
if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
return false;
#endif
return true;
}
static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
{
unsigned int rc = 0;
rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
if (rc) {
netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
rc);
return rc;
}
rc = bnxt_hwrm_vnic_cfg(bp, 1);
if (rc) {
netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
rc);
return rc;
}
return rc;
}
static int bnxt_cfg_rx_mode(struct bnxt *);
static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
int rc = 0;
unsigned int rx_nr_rings = bp->rx_nr_rings;
if (irq_re_init) {
rc = bnxt_hwrm_stat_ctx_alloc(bp);
if (rc) {
netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
rc);
goto err_out;
}
}
rc = bnxt_hwrm_ring_alloc(bp);
if (rc) {
netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
goto err_out;
}
rc = bnxt_hwrm_ring_grp_alloc(bp);
if (rc) {
netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
goto err_out;
}
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
rx_nr_rings--;
/* default vnic 0 */
rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
if (rc) {
netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
goto err_out;
}
rc = bnxt_setup_vnic(bp, 0);
if (rc)
goto err_out;
if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
bnxt_hwrm_update_rss_hash_cfg(bp);
if (bp->flags & BNXT_FLAG_RFS) {
rc = bnxt_alloc_rfs_vnics(bp);
if (rc)
goto err_out;
}
if (bp->flags & BNXT_FLAG_TPA) {
rc = bnxt_set_tpa(bp, true);
if (rc)
goto err_out;
}
if (BNXT_VF(bp))
bnxt_update_vf_mac(bp);
/* Filter for default vnic 0 */
rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
if (rc) {
if (BNXT_VF(bp) && rc == -ENODEV)
netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
else
netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
goto err_out;
}
vnic->uc_filter_count = 1;
vnic->rx_mask = 0;
if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
goto skip_rx_mask;
if (bp->dev->flags & IFF_BROADCAST)
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
if (bp->dev->flags & IFF_PROMISC)
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
if (bp->dev->flags & IFF_ALLMULTI) {
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
vnic->mc_list_count = 0;
} else if (bp->dev->flags & IFF_MULTICAST) {
u32 mask = 0;
bnxt_mc_list_updated(bp, &mask);
vnic->rx_mask |= mask;
}
rc = bnxt_cfg_rx_mode(bp);
if (rc)
goto err_out;
skip_rx_mask:
rc = bnxt_hwrm_set_coal(bp);
if (rc)
netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
rc);
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
rc = bnxt_setup_nitroa0_vnic(bp);
if (rc)
netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
rc);
}
if (BNXT_VF(bp)) {
bnxt_hwrm_func_qcfg(bp);
netdev_update_features(bp->dev);
}
return 0;
err_out:
bnxt_hwrm_resource_free(bp, 0, true);
return rc;
}
static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
{
bnxt_hwrm_resource_free(bp, 1, irq_re_init);
return 0;
}
static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
{
bnxt_init_cp_rings(bp);
bnxt_init_rx_rings(bp);
bnxt_init_tx_rings(bp);
bnxt_init_ring_grps(bp, irq_re_init);
bnxt_init_vnics(bp);
return bnxt_init_chip(bp, irq_re_init);
}
static int bnxt_set_real_num_queues(struct bnxt *bp)
{
int rc;
struct net_device *dev = bp->dev;
rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
bp->tx_nr_rings_xdp);
if (rc)
return rc;
rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
if (rc)
return rc;
#ifdef CONFIG_RFS_ACCEL
if (bp->flags & BNXT_FLAG_RFS)
dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
#endif
return rc;
}
static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
bool shared)
{
int _rx = *rx, _tx = *tx;
if (shared) {
*rx = min_t(int, _rx, max);
*tx = min_t(int, _tx, max);
} else {
if (max < 2)
return -ENOMEM;
while (_rx + _tx > max) {
if (_rx > _tx && _rx > 1)
_rx--;
else if (_tx > 1)
_tx--;
}
*rx = _rx;
*tx = _tx;
}
return 0;
}
static void bnxt_setup_msix(struct bnxt *bp)
{
const int len = sizeof(bp->irq_tbl[0].name);
struct net_device *dev = bp->dev;
int tcs, i;
tcs = netdev_get_num_tc(dev);
if (tcs) {
int i, off, count;
for (i = 0; i < tcs; i++) {
count = bp->tx_nr_rings_per_tc;
off = i * count;
netdev_set_tc_queue(dev, i, count, off);
}
}
for (i = 0; i < bp->cp_nr_rings; i++) {
int map_idx = bnxt_cp_num_to_irq_num(bp, i);
char *attr;
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
attr = "TxRx";
else if (i < bp->rx_nr_rings)
attr = "rx";
else
attr = "tx";
snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
attr, i);
bp->irq_tbl[map_idx].handler = bnxt_msix;
}
}
static void bnxt_setup_inta(struct bnxt *bp)
{
const int len = sizeof(bp->irq_tbl[0].name);
if (netdev_get_num_tc(bp->dev))
netdev_reset_tc(bp->dev);
snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
0);
bp->irq_tbl[0].handler = bnxt_inta;
}
bnxt_en: reliably allocate IRQ table on reset to avoid crash The following trace excerpt corresponds with a NULL pointer dereference of 'bp->irq_tbl' in bnxt_setup_inta() on an Aarch64 system after many device resets: Unable to handle kernel NULL pointer dereference at ... 000000d ... pc : string+0x3c/0x80 lr : vsnprintf+0x294/0x7e0 sp : ffff00000f61ba70 pstate : 20000145 x29: ffff00000f61ba70 x28: 000000000000000d x27: ffff0000009c8b5a x26: ffff00000f61bb80 x25: ffff0000009c8b5a x24: 0000000000000012 x23: 00000000ffffffe0 x22: ffff000008990428 x21: ffff00000f61bb80 x20: 000000000000000d x19: 000000000000001f x18: 0000000000000000 x17: 0000000000000000 x16: ffff800b6d0fb400 x15: 0000000000000000 x14: ffff800b7fe31ae8 x13: 00001ed16472c920 x12: ffff000008c6b1c9 x11: ffff000008cf0580 x10: ffff00000f61bb80 x9 : 00000000ffffffd8 x8 : 000000000000000c x7 : ffff800b684b8000 x6 : 0000000000000000 x5 : 0000000000000065 x4 : 0000000000000001 x3 : ffff0a00ffffff04 x2 : 000000000000001f x1 : 0000000000000000 x0 : 000000000000000d Call trace: string+0x3c/0x80 vsnprintf+0x294/0x7e0 snprintf+0x44/0x50 __bnxt_open_nic+0x34c/0x928 [bnxt_en] bnxt_open+0xe8/0x238 [bnxt_en] __dev_open+0xbc/0x130 __dev_change_flags+0x12c/0x168 dev_change_flags+0x20/0x60 ... Ordinarily, a call to bnxt_setup_inta() (not in trace due to inlining) would not be expected on a system supporting MSIX at all. However, if bnxt_init_int_mode() does not end up being called after the call to bnxt_clear_int_mode() in bnxt_fw_reset_close(), then the driver will think that only INTA is supported and bp->irq_tbl will be NULL, causing the above crash. In the error recovery scenario, we call bnxt_clear_int_mode() in bnxt_fw_reset_close() early in the sequence. Ordinarily, we will call bnxt_init_int_mode() in bnxt_hwrm_if_change() after we reestablish communication with the firmware after reset. However, if the sequence has to abort before we call bnxt_init_int_mode() and if the user later attempts to re-open the device, then it will cause the crash above. We fix it in 2 ways: 1. Check for bp->irq_tbl in bnxt_setup_int_mode(). If it is NULL, call bnxt_init_init_mode(). 2. If we need to abort in bnxt_hwrm_if_change() and cannot complete the error recovery sequence, set the BNXT_STATE_ABORT_ERR flag. This will cause more drastic recovery at the next attempt to re-open the device, including a call to bnxt_init_int_mode(). Fixes: 3bc7d4a352ef ("bnxt_en: Add BNXT_STATE_IN_FW_RESET state.") Reviewed-by: Scott Branden <scott.branden@broadcom.com> Signed-off-by: Edwin Peer <edwin.peer@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-26 09:43:10 +00:00
static int bnxt_init_int_mode(struct bnxt *bp);
static int bnxt_setup_int_mode(struct bnxt *bp)
{
int rc;
bnxt_en: reliably allocate IRQ table on reset to avoid crash The following trace excerpt corresponds with a NULL pointer dereference of 'bp->irq_tbl' in bnxt_setup_inta() on an Aarch64 system after many device resets: Unable to handle kernel NULL pointer dereference at ... 000000d ... pc : string+0x3c/0x80 lr : vsnprintf+0x294/0x7e0 sp : ffff00000f61ba70 pstate : 20000145 x29: ffff00000f61ba70 x28: 000000000000000d x27: ffff0000009c8b5a x26: ffff00000f61bb80 x25: ffff0000009c8b5a x24: 0000000000000012 x23: 00000000ffffffe0 x22: ffff000008990428 x21: ffff00000f61bb80 x20: 000000000000000d x19: 000000000000001f x18: 0000000000000000 x17: 0000000000000000 x16: ffff800b6d0fb400 x15: 0000000000000000 x14: ffff800b7fe31ae8 x13: 00001ed16472c920 x12: ffff000008c6b1c9 x11: ffff000008cf0580 x10: ffff00000f61bb80 x9 : 00000000ffffffd8 x8 : 000000000000000c x7 : ffff800b684b8000 x6 : 0000000000000000 x5 : 0000000000000065 x4 : 0000000000000001 x3 : ffff0a00ffffff04 x2 : 000000000000001f x1 : 0000000000000000 x0 : 000000000000000d Call trace: string+0x3c/0x80 vsnprintf+0x294/0x7e0 snprintf+0x44/0x50 __bnxt_open_nic+0x34c/0x928 [bnxt_en] bnxt_open+0xe8/0x238 [bnxt_en] __dev_open+0xbc/0x130 __dev_change_flags+0x12c/0x168 dev_change_flags+0x20/0x60 ... Ordinarily, a call to bnxt_setup_inta() (not in trace due to inlining) would not be expected on a system supporting MSIX at all. However, if bnxt_init_int_mode() does not end up being called after the call to bnxt_clear_int_mode() in bnxt_fw_reset_close(), then the driver will think that only INTA is supported and bp->irq_tbl will be NULL, causing the above crash. In the error recovery scenario, we call bnxt_clear_int_mode() in bnxt_fw_reset_close() early in the sequence. Ordinarily, we will call bnxt_init_int_mode() in bnxt_hwrm_if_change() after we reestablish communication with the firmware after reset. However, if the sequence has to abort before we call bnxt_init_int_mode() and if the user later attempts to re-open the device, then it will cause the crash above. We fix it in 2 ways: 1. Check for bp->irq_tbl in bnxt_setup_int_mode(). If it is NULL, call bnxt_init_init_mode(). 2. If we need to abort in bnxt_hwrm_if_change() and cannot complete the error recovery sequence, set the BNXT_STATE_ABORT_ERR flag. This will cause more drastic recovery at the next attempt to re-open the device, including a call to bnxt_init_int_mode(). Fixes: 3bc7d4a352ef ("bnxt_en: Add BNXT_STATE_IN_FW_RESET state.") Reviewed-by: Scott Branden <scott.branden@broadcom.com> Signed-off-by: Edwin Peer <edwin.peer@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-26 09:43:10 +00:00
if (!bp->irq_tbl) {
rc = bnxt_init_int_mode(bp);
if (rc || !bp->irq_tbl)
return rc ?: -ENODEV;
}
if (bp->flags & BNXT_FLAG_USING_MSIX)
bnxt_setup_msix(bp);
else
bnxt_setup_inta(bp);
rc = bnxt_set_real_num_queues(bp);
return rc;
}
#ifdef CONFIG_RFS_ACCEL
static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
{
return bp->hw_resc.max_rsscos_ctxs;
}
static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
{
return bp->hw_resc.max_vnics;
}
#endif
unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
{
return bp->hw_resc.max_stat_ctxs;
}
unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
{
return bp->hw_resc.max_cp_rings;
}
static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
{
unsigned int cp = bp->hw_resc.max_cp_rings;
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
cp -= bnxt_get_ulp_msix_num(bp);
return cp;
}
static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
{
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
if (bp->flags & BNXT_FLAG_CHIP_P5)
return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
}
static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
{
bp->hw_resc.max_irqs = max_irqs;
}
unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
{
unsigned int cp;
cp = bnxt_get_max_func_cp_rings_for_en(bp);
if (bp->flags & BNXT_FLAG_CHIP_P5)
return cp - bp->rx_nr_rings - bp->tx_nr_rings;
else
return cp - bp->cp_nr_rings;
}
unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
{
return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
}
int bnxt_get_avail_msix(struct bnxt *bp, int num)
{
int max_cp = bnxt_get_max_func_cp_rings(bp);
int max_irq = bnxt_get_max_func_irqs(bp);
int total_req = bp->cp_nr_rings + num;
int max_idx, avail_msix;
max_idx = bp->total_irqs;
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
max_idx = min_t(int, bp->total_irqs, max_cp);
avail_msix = max_idx - bp->cp_nr_rings;
if (!BNXT_NEW_RM(bp) || avail_msix >= num)
return avail_msix;
if (max_irq < total_req) {
num = max_irq - bp->cp_nr_rings;
if (num <= 0)
return 0;
}
return num;
}
static int bnxt_get_num_msix(struct bnxt *bp)
{
if (!BNXT_NEW_RM(bp))
return bnxt_get_max_func_irqs(bp);
return bnxt_nq_rings_in_use(bp);
}
static int bnxt_init_msix(struct bnxt *bp)
{
int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
struct msix_entry *msix_ent;
total_vecs = bnxt_get_num_msix(bp);
max = bnxt_get_max_func_irqs(bp);
if (total_vecs > max)
total_vecs = max;
if (!total_vecs)
return 0;
msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
if (!msix_ent)
return -ENOMEM;
for (i = 0; i < total_vecs; i++) {
msix_ent[i].entry = i;
msix_ent[i].vector = 0;
}
if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
min = 2;
total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
ulp_msix = bnxt_get_ulp_msix_num(bp);
if (total_vecs < 0 || total_vecs < ulp_msix) {
rc = -ENODEV;
goto msix_setup_exit;
}
bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
if (bp->irq_tbl) {
for (i = 0; i < total_vecs; i++)
bp->irq_tbl[i].vector = msix_ent[i].vector;
bp->total_irqs = total_vecs;
/* Trim rings based upon num of vectors allocated */
rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
total_vecs - ulp_msix, min == 1);
if (rc)
goto msix_setup_exit;
bp->cp_nr_rings = (min == 1) ?
max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
bp->tx_nr_rings + bp->rx_nr_rings;
} else {
rc = -ENOMEM;
goto msix_setup_exit;
}
bp->flags |= BNXT_FLAG_USING_MSIX;
kfree(msix_ent);
return 0;
msix_setup_exit:
netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
kfree(bp->irq_tbl);
bp->irq_tbl = NULL;
pci_disable_msix(bp->pdev);
kfree(msix_ent);
return rc;
}
static int bnxt_init_inta(struct bnxt *bp)
{
bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
if (!bp->irq_tbl)
return -ENOMEM;
bp->total_irqs = 1;
bp->rx_nr_rings = 1;
bp->tx_nr_rings = 1;
bp->cp_nr_rings = 1;
bp->flags |= BNXT_FLAG_SHARED_RINGS;
bp->irq_tbl[0].vector = bp->pdev->irq;
return 0;
}
static int bnxt_init_int_mode(struct bnxt *bp)
{
bnxt_en: reliably allocate IRQ table on reset to avoid crash The following trace excerpt corresponds with a NULL pointer dereference of 'bp->irq_tbl' in bnxt_setup_inta() on an Aarch64 system after many device resets: Unable to handle kernel NULL pointer dereference at ... 000000d ... pc : string+0x3c/0x80 lr : vsnprintf+0x294/0x7e0 sp : ffff00000f61ba70 pstate : 20000145 x29: ffff00000f61ba70 x28: 000000000000000d x27: ffff0000009c8b5a x26: ffff00000f61bb80 x25: ffff0000009c8b5a x24: 0000000000000012 x23: 00000000ffffffe0 x22: ffff000008990428 x21: ffff00000f61bb80 x20: 000000000000000d x19: 000000000000001f x18: 0000000000000000 x17: 0000000000000000 x16: ffff800b6d0fb400 x15: 0000000000000000 x14: ffff800b7fe31ae8 x13: 00001ed16472c920 x12: ffff000008c6b1c9 x11: ffff000008cf0580 x10: ffff00000f61bb80 x9 : 00000000ffffffd8 x8 : 000000000000000c x7 : ffff800b684b8000 x6 : 0000000000000000 x5 : 0000000000000065 x4 : 0000000000000001 x3 : ffff0a00ffffff04 x2 : 000000000000001f x1 : 0000000000000000 x0 : 000000000000000d Call trace: string+0x3c/0x80 vsnprintf+0x294/0x7e0 snprintf+0x44/0x50 __bnxt_open_nic+0x34c/0x928 [bnxt_en] bnxt_open+0xe8/0x238 [bnxt_en] __dev_open+0xbc/0x130 __dev_change_flags+0x12c/0x168 dev_change_flags+0x20/0x60 ... Ordinarily, a call to bnxt_setup_inta() (not in trace due to inlining) would not be expected on a system supporting MSIX at all. However, if bnxt_init_int_mode() does not end up being called after the call to bnxt_clear_int_mode() in bnxt_fw_reset_close(), then the driver will think that only INTA is supported and bp->irq_tbl will be NULL, causing the above crash. In the error recovery scenario, we call bnxt_clear_int_mode() in bnxt_fw_reset_close() early in the sequence. Ordinarily, we will call bnxt_init_int_mode() in bnxt_hwrm_if_change() after we reestablish communication with the firmware after reset. However, if the sequence has to abort before we call bnxt_init_int_mode() and if the user later attempts to re-open the device, then it will cause the crash above. We fix it in 2 ways: 1. Check for bp->irq_tbl in bnxt_setup_int_mode(). If it is NULL, call bnxt_init_init_mode(). 2. If we need to abort in bnxt_hwrm_if_change() and cannot complete the error recovery sequence, set the BNXT_STATE_ABORT_ERR flag. This will cause more drastic recovery at the next attempt to re-open the device, including a call to bnxt_init_int_mode(). Fixes: 3bc7d4a352ef ("bnxt_en: Add BNXT_STATE_IN_FW_RESET state.") Reviewed-by: Scott Branden <scott.branden@broadcom.com> Signed-off-by: Edwin Peer <edwin.peer@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-26 09:43:10 +00:00
int rc = -ENODEV;
if (bp->flags & BNXT_FLAG_MSIX_CAP)
rc = bnxt_init_msix(bp);
if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
/* fallback to INTA */
rc = bnxt_init_inta(bp);
}
return rc;
}
static void bnxt_clear_int_mode(struct bnxt *bp)
{
if (bp->flags & BNXT_FLAG_USING_MSIX)
pci_disable_msix(bp->pdev);
kfree(bp->irq_tbl);
bp->irq_tbl = NULL;
bp->flags &= ~BNXT_FLAG_USING_MSIX;
}
int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
{
int tcs = netdev_get_num_tc(bp->dev);
bool irq_cleared = false;
int rc;
if (!bnxt_need_reserve_rings(bp))
return 0;
if (irq_re_init && BNXT_NEW_RM(bp) &&
bnxt_get_num_msix(bp) != bp->total_irqs) {
bnxt_ulp_irq_stop(bp);
bnxt_clear_int_mode(bp);
irq_cleared = true;
}
rc = __bnxt_reserve_rings(bp);
if (irq_cleared) {
if (!rc)
rc = bnxt_init_int_mode(bp);
bnxt_ulp_irq_restart(bp, rc);
}
if (rc) {
netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
return rc;
}
if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
netdev_err(bp->dev, "tx ring reservation failure\n");
netdev_reset_tc(bp->dev);
if (bp->tx_nr_rings_xdp)
bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
else
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
return -ENOMEM;
}
return 0;
}
static void bnxt_free_irq(struct bnxt *bp)
{
struct bnxt_irq *irq;
int i;
#ifdef CONFIG_RFS_ACCEL
free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
bp->dev->rx_cpu_rmap = NULL;
#endif
if (!bp->irq_tbl || !bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
int map_idx = bnxt_cp_num_to_irq_num(bp, i);
irq = &bp->irq_tbl[map_idx];
if (irq->requested) {
if (irq->have_cpumask) {
irq_set_affinity_hint(irq->vector, NULL);
free_cpumask_var(irq->cpu_mask);
irq->have_cpumask = 0;
}
free_irq(irq->vector, bp->bnapi[i]);
}
irq->requested = 0;
}
}
static int bnxt_request_irq(struct bnxt *bp)
{
int i, j, rc = 0;
unsigned long flags = 0;
#ifdef CONFIG_RFS_ACCEL
struct cpu_rmap *rmap;
#endif
rc = bnxt_setup_int_mode(bp);
if (rc) {
netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
rc);
return rc;
}
#ifdef CONFIG_RFS_ACCEL
rmap = bp->dev->rx_cpu_rmap;
#endif
if (!(bp->flags & BNXT_FLAG_USING_MSIX))
flags = IRQF_SHARED;
for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
int map_idx = bnxt_cp_num_to_irq_num(bp, i);
struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
#ifdef CONFIG_RFS_ACCEL
if (rmap && bp->bnapi[i]->rx_ring) {
rc = irq_cpu_rmap_add(rmap, irq->vector);
if (rc)
netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
j);
j++;
}
#endif
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
bp->bnapi[i]);
if (rc)
break;
irq->requested = 1;
if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
int numa_node = dev_to_node(&bp->pdev->dev);
irq->have_cpumask = 1;
cpumask_set_cpu(cpumask_local_spread(i, numa_node),
irq->cpu_mask);
rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
if (rc) {
netdev_warn(bp->dev,
"Set affinity failed, IRQ = %d\n",
irq->vector);
break;
}
}
}
return rc;
}
static void bnxt_del_napi(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
__netif_napi_del(&bnapi->napi);
}
/* We called __netif_napi_del(), we need
* to respect an RCU grace period before freeing napi structures.
*/
synchronize_net();
}
static void bnxt_init_napi(struct bnxt *bp)
{
int i;
unsigned int cp_nr_rings = bp->cp_nr_rings;
struct bnxt_napi *bnapi;
if (bp->flags & BNXT_FLAG_USING_MSIX) {
int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
if (bp->flags & BNXT_FLAG_CHIP_P5)
poll_fn = bnxt_poll_p5;
else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
cp_nr_rings--;
for (i = 0; i < cp_nr_rings; i++) {
bnapi = bp->bnapi[i];
netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
}
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
bnapi = bp->bnapi[cp_nr_rings];
netif_napi_add(bp->dev, &bnapi->napi,
bnxt_poll_nitroa0);
}
} else {
bnapi = bp->bnapi[0];
netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
}
}
static void bnxt_disable_napi(struct bnxt *bp)
{
int i;
if (!bp->bnapi ||
test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
napi_disable(&bp->bnapi[i]->napi);
if (bp->bnapi[i]->rx_ring)
cancel_work_sync(&cpr->dim.work);
}
}
static void bnxt_enable_napi(struct bnxt *bp)
{
int i;
clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
cpr = &bnapi->cp_ring;
if (bnapi->in_reset)
cpr->sw_stats.rx.rx_resets++;
bnapi->in_reset = false;
if (bnapi->rx_ring) {
INIT_WORK(&cpr->dim.work, bnxt_dim_work);
cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
}
napi_enable(&bnapi->napi);
}
}
void bnxt_tx_disable(struct bnxt *bp)
{
int i;
struct bnxt_tx_ring_info *txr;
if (bp->tx_ring) {
for (i = 0; i < bp->tx_nr_rings; i++) {
txr = &bp->tx_ring[i];
WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
}
}
/* Make sure napi polls see @dev_state change */
synchronize_net();
/* Drop carrier first to prevent TX timeout */
netif_carrier_off(bp->dev);
/* Stop all TX queues */
netif_tx_disable(bp->dev);
}
void bnxt_tx_enable(struct bnxt *bp)
{
int i;
struct bnxt_tx_ring_info *txr;
for (i = 0; i < bp->tx_nr_rings; i++) {
txr = &bp->tx_ring[i];
WRITE_ONCE(txr->dev_state, 0);
}
/* Make sure napi polls see @dev_state change */
synchronize_net();
netif_tx_wake_all_queues(bp->dev);
if (BNXT_LINK_IS_UP(bp))
netif_carrier_on(bp->dev);
}
static char *bnxt_report_fec(struct bnxt_link_info *link_info)
{
u8 active_fec = link_info->active_fec_sig_mode &
PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
switch (active_fec) {
default:
case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
return "None";
case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
return "Clause 74 BaseR";
case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
return "Clause 91 RS(528,514)";
case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
return "Clause 91 RS544_1XN";
case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
return "Clause 91 RS(544,514)";
case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
return "Clause 91 RS272_1XN";
case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
return "Clause 91 RS(272,257)";
}
}
void bnxt_report_link(struct bnxt *bp)
{
if (BNXT_LINK_IS_UP(bp)) {
const char *signal = "";
const char *flow_ctrl;
const char *duplex;
u32 speed;
u16 fec;
netif_carrier_on(bp->dev);
speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
if (speed == SPEED_UNKNOWN) {
netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
return;
}
if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
duplex = "full";
else
duplex = "half";
if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
flow_ctrl = "ON - receive & transmit";
else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
flow_ctrl = "ON - transmit";
else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
flow_ctrl = "ON - receive";
else
flow_ctrl = "none";
if (bp->link_info.phy_qcfg_resp.option_flags &
PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
u8 sig_mode = bp->link_info.active_fec_sig_mode &
PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
switch (sig_mode) {
case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
signal = "(NRZ) ";
break;
case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
signal = "(PAM4) ";
break;
default:
break;
}
}
netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
speed, signal, duplex, flow_ctrl);
if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
netdev_info(bp->dev, "EEE is %s\n",
bp->eee.eee_active ? "active" :
"not active");
fec = bp->link_info.fec_cfg;
if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
(fec & BNXT_FEC_AUTONEG) ? "on" : "off",
bnxt_report_fec(&bp->link_info));
} else {
netif_carrier_off(bp->dev);
netdev_err(bp->dev, "NIC Link is Down\n");
}
}
static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
{
if (!resp->supported_speeds_auto_mode &&
!resp->supported_speeds_force_mode &&
!resp->supported_pam4_speeds_auto_mode &&
!resp->supported_pam4_speeds_force_mode)
return true;
return false;
}
static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
{
struct bnxt_link_info *link_info = &bp->link_info;
struct hwrm_port_phy_qcaps_output *resp;
struct hwrm_port_phy_qcaps_input *req;
int rc = 0;
if (bp->hwrm_spec_code < 0x10201)
return 0;
rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc)
goto hwrm_phy_qcaps_exit;
bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
struct ethtool_eee *eee = &bp->eee;
u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
}
if (bp->hwrm_spec_code >= 0x10a01) {
if (bnxt_phy_qcaps_no_speed(resp)) {
link_info->phy_state = BNXT_PHY_STATE_DISABLED;
netdev_warn(bp->dev, "Ethernet link disabled\n");
} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
link_info->phy_state = BNXT_PHY_STATE_ENABLED;
netdev_info(bp->dev, "Ethernet link enabled\n");
/* Phy re-enabled, reprobe the speeds */
link_info->support_auto_speeds = 0;
link_info->support_pam4_auto_speeds = 0;
}
}
if (resp->supported_speeds_auto_mode)
link_info->support_auto_speeds =
le16_to_cpu(resp->supported_speeds_auto_mode);
if (resp->supported_pam4_speeds_auto_mode)
link_info->support_pam4_auto_speeds =
le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
bp->port_count = resp->port_cnt;
hwrm_phy_qcaps_exit:
hwrm_req_drop(bp, req);
return rc;
}
static bool bnxt_support_dropped(u16 advertising, u16 supported)
{
u16 diff = advertising ^ supported;
return ((supported | diff) != supported);
}
int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
{
struct bnxt_link_info *link_info = &bp->link_info;
struct hwrm_port_phy_qcfg_output *resp;
struct hwrm_port_phy_qcfg_input *req;
u8 link_state = link_info->link_state;
bool support_changed = false;
int rc;
rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc) {
hwrm_req_drop(bp, req);
if (BNXT_VF(bp) && rc == -ENODEV) {
netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
rc = 0;
}
return rc;
}
memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
link_info->phy_link_status = resp->link;
link_info->duplex = resp->duplex_cfg;
if (bp->hwrm_spec_code >= 0x10800)
link_info->duplex = resp->duplex_state;
link_info->pause = resp->pause;
link_info->auto_mode = resp->auto_mode;
link_info->auto_pause_setting = resp->auto_pause;
link_info->lp_pause = resp->link_partner_adv_pause;
link_info->force_pause_setting = resp->force_pause;
link_info->duplex_setting = resp->duplex_cfg;
if (link_info->phy_link_status == BNXT_LINK_LINK)
link_info->link_speed = le16_to_cpu(resp->link_speed);
else
link_info->link_speed = 0;
link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
link_info->force_pam4_link_speed =
le16_to_cpu(resp->force_pam4_link_speed);
link_info->support_speeds = le16_to_cpu(resp->support_speeds);
link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
link_info->auto_pam4_link_speeds =
le16_to_cpu(resp->auto_pam4_link_speed_mask);
link_info->lp_auto_link_speeds =
le16_to_cpu(resp->link_partner_adv_speeds);
link_info->lp_auto_pam4_link_speeds =
resp->link_partner_pam4_adv_speeds;
link_info->preemphasis = le32_to_cpu(resp->preemphasis);
link_info->phy_ver[0] = resp->phy_maj;
link_info->phy_ver[1] = resp->phy_min;
link_info->phy_ver[2] = resp->phy_bld;
link_info->media_type = resp->media_type;
link_info->phy_type = resp->phy_type;
link_info->transceiver = resp->xcvr_pkg_type;
link_info->phy_addr = resp->eee_config_phy_addr &
PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
link_info->module_status = resp->module_status;
if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
struct ethtool_eee *eee = &bp->eee;
u16 fw_speeds;
eee->eee_active = 0;
if (resp->eee_config_phy_addr &
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
eee->eee_active = 1;
fw_speeds = le16_to_cpu(
resp->link_partner_adv_eee_link_speed_mask);
eee->lp_advertised =
_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
}
/* Pull initial EEE config */
if (!chng_link_state) {
if (resp->eee_config_phy_addr &
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
eee->eee_enabled = 1;
fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
eee->advertised =
_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
if (resp->eee_config_phy_addr &
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
__le32 tmr;
eee->tx_lpi_enabled = 1;
tmr = resp->xcvr_identifier_type_tx_lpi_timer;
eee->tx_lpi_timer = le32_to_cpu(tmr) &
PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
}
}
}
link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
if (bp->hwrm_spec_code >= 0x10504) {
link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
}
/* TODO: need to add more logic to report VF link */
if (chng_link_state) {
if (link_info->phy_link_status == BNXT_LINK_LINK)
link_info->link_state = BNXT_LINK_STATE_UP;
else
link_info->link_state = BNXT_LINK_STATE_DOWN;
if (link_state != link_info->link_state)
bnxt_report_link(bp);
} else {
/* always link down if not require to update link state */
link_info->link_state = BNXT_LINK_STATE_DOWN;
}
hwrm_req_drop(bp, req);
if (!BNXT_PHY_CFG_ABLE(bp))
return 0;
/* Check if any advertised speeds are no longer supported. The caller
* holds the link_lock mutex, so we can modify link_info settings.
*/
if (bnxt_support_dropped(link_info->advertising,
link_info->support_auto_speeds)) {
link_info->advertising = link_info->support_auto_speeds;
support_changed = true;
}
if (bnxt_support_dropped(link_info->advertising_pam4,
link_info->support_pam4_auto_speeds)) {
link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
support_changed = true;
}
if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
bnxt_hwrm_set_link_setting(bp, true, false);
return 0;
}
static void bnxt_get_port_module_status(struct bnxt *bp)
{
struct bnxt_link_info *link_info = &bp->link_info;
struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
u8 module_status;
if (bnxt_update_link(bp, true))
return;
module_status = link_info->module_status;
switch (module_status) {
case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
bp->pf.port_id);
if (bp->hwrm_spec_code >= 0x10201) {
netdev_warn(bp->dev, "Module part number %s\n",
resp->phy_vendor_partnumber);
}
if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
netdev_warn(bp->dev, "TX is disabled\n");
if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
netdev_warn(bp->dev, "SFP+ module is shutdown\n");
}
}
static void
bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
{
if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
if (bp->hwrm_spec_code >= 0x10201)
req->auto_pause =
PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
req->enables |=
cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
} else {
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
req->enables |=
cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
if (bp->hwrm_spec_code >= 0x10201) {
req->auto_pause = req->force_pause;
req->enables |= cpu_to_le32(
PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
}
}
}
static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
{
if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
if (bp->link_info.advertising) {
req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
}
if (bp->link_info.advertising_pam4) {
req->enables |=
cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
req->auto_link_pam4_speed_mask =
cpu_to_le16(bp->link_info.advertising_pam4);
}
req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
} else {
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
} else {
req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
}
}
/* tell chimp that the setting takes effect immediately */
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
}
int bnxt_hwrm_set_pause(struct bnxt *bp)
{
struct hwrm_port_phy_cfg_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
if (rc)
return rc;
bnxt_hwrm_set_pause_common(bp, req);
if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
bp->link_info.force_link_chng)
bnxt_hwrm_set_link_common(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
/* since changing of pause setting doesn't trigger any link
* change event, the driver needs to update the current pause
* result upon successfully return of the phy_cfg command
*/
bp->link_info.pause =
bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
bp->link_info.auto_pause_setting = 0;
if (!bp->link_info.force_link_chng)
bnxt_report_link(bp);
}
bp->link_info.force_link_chng = false;
return rc;
}
static void bnxt_hwrm_set_eee(struct bnxt *bp,
struct hwrm_port_phy_cfg_input *req)
{
struct ethtool_eee *eee = &bp->eee;
if (eee->eee_enabled) {
u16 eee_speeds;
u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
if (eee->tx_lpi_enabled)
flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
else
flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
req->flags |= cpu_to_le32(flags);
eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
} else {
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
}
}
int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
{
struct hwrm_port_phy_cfg_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
if (rc)
return rc;
if (set_pause)
bnxt_hwrm_set_pause_common(bp, req);
bnxt_hwrm_set_link_common(bp, req);
if (set_eee)
bnxt_hwrm_set_eee(bp, req);
return hwrm_req_send(bp, req);
}
static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
{
struct hwrm_port_phy_cfg_input *req;
int rc;
if (!BNXT_SINGLE_PF(bp))
return 0;
if (pci_num_vf(bp->pdev) &&
!(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
return 0;
rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
if (rc)
return rc;
req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
rc = hwrm_req_send(bp, req);
if (!rc) {
mutex_lock(&bp->link_lock);
/* Device is not obliged link down in certain scenarios, even
* when forced. Setting the state unknown is consistent with
* driver startup and will force link state to be reported
* during subsequent open based on PORT_PHY_QCFG.
*/
bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
mutex_unlock(&bp->link_lock);
}
return rc;
}
static int bnxt_fw_reset_via_optee(struct bnxt *bp)
{
#ifdef CONFIG_TEE_BNXT_FW
int rc = tee_bnxt_fw_load();
if (rc)
netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
return rc;
#else
netdev_err(bp->dev, "OP-TEE not supported\n");
return -ENODEV;
#endif
}
static int bnxt_try_recover_fw(struct bnxt *bp)
{
if (bp->fw_health && bp->fw_health->status_reliable) {
int retry = 0, rc;
u32 sts;
do {
sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
rc = bnxt_hwrm_poll(bp);
if (!BNXT_FW_IS_BOOTING(sts) &&
!BNXT_FW_IS_RECOVERING(sts))
break;
retry++;
} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
if (!BNXT_FW_IS_HEALTHY(sts)) {
netdev_err(bp->dev,
"Firmware not responding, status: 0x%x\n",
sts);
rc = -ENODEV;
}
if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
return bnxt_fw_reset_via_optee(bp);
}
return rc;
}
return -ENODEV;
}
static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
{
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
if (!BNXT_NEW_RM(bp))
return; /* no resource reservations required */
hw_resc->resv_cp_rings = 0;
hw_resc->resv_stat_ctxs = 0;
hw_resc->resv_irqs = 0;
hw_resc->resv_tx_rings = 0;
hw_resc->resv_rx_rings = 0;
hw_resc->resv_hw_ring_grps = 0;
hw_resc->resv_vnics = 0;
if (!fw_reset) {
bp->tx_nr_rings = 0;
bp->rx_nr_rings = 0;
}
}
int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
{
int rc;
if (!BNXT_NEW_RM(bp))
return 0; /* no resource reservations required */
rc = bnxt_hwrm_func_resc_qcaps(bp, true);
if (rc)
netdev_err(bp->dev, "resc_qcaps failed\n");
bnxt_clear_reservations(bp, fw_reset);
return rc;
}
static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
{
struct hwrm_func_drv_if_change_output *resp;
struct hwrm_func_drv_if_change_input *req;
bnxt_en: reliably allocate IRQ table on reset to avoid crash The following trace excerpt corresponds with a NULL pointer dereference of 'bp->irq_tbl' in bnxt_setup_inta() on an Aarch64 system after many device resets: Unable to handle kernel NULL pointer dereference at ... 000000d ... pc : string+0x3c/0x80 lr : vsnprintf+0x294/0x7e0 sp : ffff00000f61ba70 pstate : 20000145 x29: ffff00000f61ba70 x28: 000000000000000d x27: ffff0000009c8b5a x26: ffff00000f61bb80 x25: ffff0000009c8b5a x24: 0000000000000012 x23: 00000000ffffffe0 x22: ffff000008990428 x21: ffff00000f61bb80 x20: 000000000000000d x19: 000000000000001f x18: 0000000000000000 x17: 0000000000000000 x16: ffff800b6d0fb400 x15: 0000000000000000 x14: ffff800b7fe31ae8 x13: 00001ed16472c920 x12: ffff000008c6b1c9 x11: ffff000008cf0580 x10: ffff00000f61bb80 x9 : 00000000ffffffd8 x8 : 000000000000000c x7 : ffff800b684b8000 x6 : 0000000000000000 x5 : 0000000000000065 x4 : 0000000000000001 x3 : ffff0a00ffffff04 x2 : 000000000000001f x1 : 0000000000000000 x0 : 000000000000000d Call trace: string+0x3c/0x80 vsnprintf+0x294/0x7e0 snprintf+0x44/0x50 __bnxt_open_nic+0x34c/0x928 [bnxt_en] bnxt_open+0xe8/0x238 [bnxt_en] __dev_open+0xbc/0x130 __dev_change_flags+0x12c/0x168 dev_change_flags+0x20/0x60 ... Ordinarily, a call to bnxt_setup_inta() (not in trace due to inlining) would not be expected on a system supporting MSIX at all. However, if bnxt_init_int_mode() does not end up being called after the call to bnxt_clear_int_mode() in bnxt_fw_reset_close(), then the driver will think that only INTA is supported and bp->irq_tbl will be NULL, causing the above crash. In the error recovery scenario, we call bnxt_clear_int_mode() in bnxt_fw_reset_close() early in the sequence. Ordinarily, we will call bnxt_init_int_mode() in bnxt_hwrm_if_change() after we reestablish communication with the firmware after reset. However, if the sequence has to abort before we call bnxt_init_int_mode() and if the user later attempts to re-open the device, then it will cause the crash above. We fix it in 2 ways: 1. Check for bp->irq_tbl in bnxt_setup_int_mode(). If it is NULL, call bnxt_init_init_mode(). 2. If we need to abort in bnxt_hwrm_if_change() and cannot complete the error recovery sequence, set the BNXT_STATE_ABORT_ERR flag. This will cause more drastic recovery at the next attempt to re-open the device, including a call to bnxt_init_int_mode(). Fixes: 3bc7d4a352ef ("bnxt_en: Add BNXT_STATE_IN_FW_RESET state.") Reviewed-by: Scott Branden <scott.branden@broadcom.com> Signed-off-by: Edwin Peer <edwin.peer@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-26 09:43:10 +00:00
bool fw_reset = !bp->irq_tbl;
bool resc_reinit = false;
int rc, retry = 0;
u32 flags = 0;
if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
return 0;
rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
if (rc)
return rc;
if (up)
req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
resp = hwrm_req_hold(bp, req);
hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
while (retry < BNXT_FW_IF_RETRY) {
rc = hwrm_req_send(bp, req);
if (rc != -EAGAIN)
break;
msleep(50);
retry++;
}
if (rc == -EAGAIN) {
hwrm_req_drop(bp, req);
return rc;
} else if (!rc) {
flags = le32_to_cpu(resp->flags);
} else if (up) {
rc = bnxt_try_recover_fw(bp);
fw_reset = true;
}
hwrm_req_drop(bp, req);
if (rc)
return rc;
if (!up) {
bnxt_inv_fw_health_reg(bp);
return 0;
}
if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
resc_reinit = true;
if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
fw_reset = true;
else
bnxt_remap_fw_health_regs(bp);
if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
bnxt_en: reliably allocate IRQ table on reset to avoid crash The following trace excerpt corresponds with a NULL pointer dereference of 'bp->irq_tbl' in bnxt_setup_inta() on an Aarch64 system after many device resets: Unable to handle kernel NULL pointer dereference at ... 000000d ... pc : string+0x3c/0x80 lr : vsnprintf+0x294/0x7e0 sp : ffff00000f61ba70 pstate : 20000145 x29: ffff00000f61ba70 x28: 000000000000000d x27: ffff0000009c8b5a x26: ffff00000f61bb80 x25: ffff0000009c8b5a x24: 0000000000000012 x23: 00000000ffffffe0 x22: ffff000008990428 x21: ffff00000f61bb80 x20: 000000000000000d x19: 000000000000001f x18: 0000000000000000 x17: 0000000000000000 x16: ffff800b6d0fb400 x15: 0000000000000000 x14: ffff800b7fe31ae8 x13: 00001ed16472c920 x12: ffff000008c6b1c9 x11: ffff000008cf0580 x10: ffff00000f61bb80 x9 : 00000000ffffffd8 x8 : 000000000000000c x7 : ffff800b684b8000 x6 : 0000000000000000 x5 : 0000000000000065 x4 : 0000000000000001 x3 : ffff0a00ffffff04 x2 : 000000000000001f x1 : 0000000000000000 x0 : 000000000000000d Call trace: string+0x3c/0x80 vsnprintf+0x294/0x7e0 snprintf+0x44/0x50 __bnxt_open_nic+0x34c/0x928 [bnxt_en] bnxt_open+0xe8/0x238 [bnxt_en] __dev_open+0xbc/0x130 __dev_change_flags+0x12c/0x168 dev_change_flags+0x20/0x60 ... Ordinarily, a call to bnxt_setup_inta() (not in trace due to inlining) would not be expected on a system supporting MSIX at all. However, if bnxt_init_int_mode() does not end up being called after the call to bnxt_clear_int_mode() in bnxt_fw_reset_close(), then the driver will think that only INTA is supported and bp->irq_tbl will be NULL, causing the above crash. In the error recovery scenario, we call bnxt_clear_int_mode() in bnxt_fw_reset_close() early in the sequence. Ordinarily, we will call bnxt_init_int_mode() in bnxt_hwrm_if_change() after we reestablish communication with the firmware after reset. However, if the sequence has to abort before we call bnxt_init_int_mode() and if the user later attempts to re-open the device, then it will cause the crash above. We fix it in 2 ways: 1. Check for bp->irq_tbl in bnxt_setup_int_mode(). If it is NULL, call bnxt_init_init_mode(). 2. If we need to abort in bnxt_hwrm_if_change() and cannot complete the error recovery sequence, set the BNXT_STATE_ABORT_ERR flag. This will cause more drastic recovery at the next attempt to re-open the device, including a call to bnxt_init_int_mode(). Fixes: 3bc7d4a352ef ("bnxt_en: Add BNXT_STATE_IN_FW_RESET state.") Reviewed-by: Scott Branden <scott.branden@broadcom.com> Signed-off-by: Edwin Peer <edwin.peer@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-26 09:43:10 +00:00
set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
return -ENODEV;
}
if (resc_reinit || fw_reset) {
if (fw_reset) {
set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
bnxt_ulp_stop(bp);
bnxt_free_ctx_mem(bp);
kfree(bp->ctx);
bp->ctx = NULL;
bnxt_dcb_free(bp);
rc = bnxt_fw_init_one(bp);
if (rc) {
clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
return rc;
}
bnxt_clear_int_mode(bp);
rc = bnxt_init_int_mode(bp);
if (rc) {
clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
netdev_err(bp->dev, "init int mode failed\n");
return rc;
}
}
rc = bnxt_cancel_reservations(bp, fw_reset);
}
return rc;
}
static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
{
struct hwrm_port_led_qcaps_output *resp;
struct hwrm_port_led_qcaps_input *req;
struct bnxt_pf_info *pf = &bp->pf;
int rc;
bp->num_leds = 0;
if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
return 0;
rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
if (rc)
return rc;
req->port_id = cpu_to_le16(pf->port_id);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (rc) {
hwrm_req_drop(bp, req);
return rc;
}
if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
int i;
bp->num_leds = resp->num_leds;
memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
bp->num_leds);
for (i = 0; i < bp->num_leds; i++) {
struct bnxt_led_info *led = &bp->leds[i];
__le16 caps = led->led_state_caps;
if (!led->led_group_id ||
!BNXT_LED_ALT_BLINK_CAP(caps)) {
bp->num_leds = 0;
break;
}
}
}
hwrm_req_drop(bp, req);
return 0;
}
int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
{
struct hwrm_wol_filter_alloc_output *resp;
struct hwrm_wol_filter_alloc_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
if (rc)
return rc;
req->port_id = cpu_to_le16(bp->pf.port_id);
req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc)
bp->wol_filter_id = resp->wol_filter_id;
hwrm_req_drop(bp, req);
return rc;
}
int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
{
struct hwrm_wol_filter_free_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
if (rc)
return rc;
req->port_id = cpu_to_le16(bp->pf.port_id);
req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
req->wol_filter_id = bp->wol_filter_id;
return hwrm_req_send(bp, req);
}
static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
{
struct hwrm_wol_filter_qcfg_output *resp;
struct hwrm_wol_filter_qcfg_input *req;
u16 next_handle = 0;
int rc;
rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
if (rc)
return rc;
req->port_id = cpu_to_le16(bp->pf.port_id);
req->handle = cpu_to_le16(handle);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc) {
next_handle = le16_to_cpu(resp->next_handle);
if (next_handle != 0) {
if (resp->wol_type ==
WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
bp->wol = 1;
bp->wol_filter_id = resp->wol_filter_id;
}
}
}
hwrm_req_drop(bp, req);
return next_handle;
}
static void bnxt_get_wol_settings(struct bnxt *bp)
{
u16 handle = 0;
bp->wol = 0;
if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
return;
do {
handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
} while (handle && handle != 0xffff);
}
#ifdef CONFIG_BNXT_HWMON
static ssize_t bnxt_show_temp(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct hwrm_temp_monitor_query_output *resp;
struct hwrm_temp_monitor_query_input *req;
struct bnxt *bp = dev_get_drvdata(dev);
u32 len = 0;
int rc;
rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
if (rc)
return rc;
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc)
len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
hwrm_req_drop(bp, req);
if (rc)
return rc;
return len;
}
static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
static struct attribute *bnxt_attrs[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
NULL
};
ATTRIBUTE_GROUPS(bnxt);
static void bnxt_hwmon_close(struct bnxt *bp)
{
if (bp->hwmon_dev) {
hwmon_device_unregister(bp->hwmon_dev);
bp->hwmon_dev = NULL;
}
}
static void bnxt_hwmon_open(struct bnxt *bp)
{
struct hwrm_temp_monitor_query_input *req;
struct pci_dev *pdev = bp->pdev;
int rc;
rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
if (!rc)
rc = hwrm_req_send_silent(bp, req);
if (rc == -EACCES || rc == -EOPNOTSUPP) {
bnxt_hwmon_close(bp);
return;
}
if (bp->hwmon_dev)
return;
bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
DRV_MODULE_NAME, bp,
bnxt_groups);
if (IS_ERR(bp->hwmon_dev)) {
bp->hwmon_dev = NULL;
dev_warn(&pdev->dev, "Cannot register hwmon device\n");
}
}
#else
static void bnxt_hwmon_close(struct bnxt *bp)
{
}
static void bnxt_hwmon_open(struct bnxt *bp)
{
}
#endif
static bool bnxt_eee_config_ok(struct bnxt *bp)
{
struct ethtool_eee *eee = &bp->eee;
struct bnxt_link_info *link_info = &bp->link_info;
if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
return true;
if (eee->eee_enabled) {
u32 advertising =
_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
eee->eee_enabled = 0;
return false;
}
if (eee->advertised & ~advertising) {
eee->advertised = advertising & eee->supported;
return false;
}
}
return true;
}
static int bnxt_update_phy_setting(struct bnxt *bp)
{
int rc;
bool update_link = false;
bool update_pause = false;
bool update_eee = false;
struct bnxt_link_info *link_info = &bp->link_info;
rc = bnxt_update_link(bp, true);
if (rc) {
netdev_err(bp->dev, "failed to update link (rc: %x)\n",
rc);
return rc;
}
if (!BNXT_SINGLE_PF(bp))
return 0;
if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
(link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
link_info->req_flow_ctrl)
update_pause = true;
if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
link_info->force_pause_setting != link_info->req_flow_ctrl)
update_pause = true;
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
if (BNXT_AUTO_MODE(link_info->auto_mode))
update_link = true;
if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
link_info->req_link_speed != link_info->force_link_speed)
update_link = true;
else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
link_info->req_link_speed != link_info->force_pam4_link_speed)
update_link = true;
if (link_info->req_duplex != link_info->duplex_setting)
update_link = true;
} else {
if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
update_link = true;
if (link_info->advertising != link_info->auto_link_speeds ||
link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
update_link = true;
}
/* The last close may have shutdown the link, so need to call
* PHY_CFG to bring it back up.
*/
if (!BNXT_LINK_IS_UP(bp))
update_link = true;
if (!bnxt_eee_config_ok(bp))
update_eee = true;
if (update_link)
rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
else if (update_pause)
rc = bnxt_hwrm_set_pause(bp);
if (rc) {
netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
rc);
return rc;
}
return rc;
}
/* Common routine to pre-map certain register block to different GRC window.
* A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
* in PF and 3 windows in VF that can be customized to map in different
* register blocks.
*/
static void bnxt_preset_reg_win(struct bnxt *bp)
{
if (BNXT_PF(bp)) {
/* CAG registers map to GRC window #4 */
writel(BNXT_CAG_REG_BASE,
bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
}
}
static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
static int bnxt_reinit_after_abort(struct bnxt *bp)
{
int rc;
if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
return -EBUSY;
if (bp->dev->reg_state == NETREG_UNREGISTERED)
return -ENODEV;
rc = bnxt_fw_init_one(bp);
if (!rc) {
bnxt_clear_int_mode(bp);
rc = bnxt_init_int_mode(bp);
if (!rc) {
clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
}
}
return rc;
}
static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
{
int rc = 0;
bnxt_preset_reg_win(bp);
netif_carrier_off(bp->dev);
if (irq_re_init) {
/* Reserve rings now if none were reserved at driver probe. */
rc = bnxt_init_dflt_ring_mode(bp);
if (rc) {
netdev_err(bp->dev, "Failed to reserve default rings at open\n");
return rc;
}
}
rc = bnxt_reserve_rings(bp, irq_re_init);
if (rc)
return rc;
if ((bp->flags & BNXT_FLAG_RFS) &&
!(bp->flags & BNXT_FLAG_USING_MSIX)) {
/* disable RFS if falling back to INTA */
bp->dev->hw_features &= ~NETIF_F_NTUPLE;
bp->flags &= ~BNXT_FLAG_RFS;
}
rc = bnxt_alloc_mem(bp, irq_re_init);
if (rc) {
netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
goto open_err_free_mem;
}
if (irq_re_init) {
bnxt_init_napi(bp);
rc = bnxt_request_irq(bp);
if (rc) {
netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
goto open_err_irq;
}
}
rc = bnxt_init_nic(bp, irq_re_init);
if (rc) {
netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
goto open_err_irq;
}
bnxt_enable_napi(bp);
bnxt_debug_dev_init(bp);
if (link_re_init) {
mutex_lock(&bp->link_lock);
rc = bnxt_update_phy_setting(bp);
mutex_unlock(&bp->link_lock);
if (rc) {
netdev_warn(bp->dev, "failed to update phy settings\n");
if (BNXT_SINGLE_PF(bp)) {
bp->link_info.phy_retry = true;
bp->link_info.phy_retry_expires =
jiffies + 5 * HZ;
}
}
}
if (irq_re_init)
udp_tunnel_nic_reset_ntf(bp->dev);
if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
if (!static_key_enabled(&bnxt_xdp_locking_key))
static_branch_enable(&bnxt_xdp_locking_key);
} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
static_branch_disable(&bnxt_xdp_locking_key);
}
set_bit(BNXT_STATE_OPEN, &bp->state);
bnxt_enable_int(bp);
/* Enable TX queues */
bnxt_tx_enable(bp);
mod_timer(&bp->timer, jiffies + bp->current_interval);
/* Poll link status and check for SFP+ module status */
mutex_lock(&bp->link_lock);
bnxt_get_port_module_status(bp);
mutex_unlock(&bp->link_lock);
/* VF-reps may need to be re-opened after the PF is re-opened */
if (BNXT_PF(bp))
bnxt_vf_reps_open(bp);
bnxt_ptp_init_rtc(bp, true);
bnxt_ptp_cfg_tstamp_filters(bp);
return 0;
open_err_irq:
bnxt_del_napi(bp);
open_err_free_mem:
bnxt_free_skbs(bp);
bnxt_free_irq(bp);
bnxt_free_mem(bp, true);
return rc;
}
/* rtnl_lock held */
int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
{
int rc = 0;
bnxt_en: Check abort error state in bnxt_open_nic(). bnxt_open_nic() is called during configuration changes that require the NIC to be closed and then opened. This call is protected by rtnl_lock. Firmware reset can be happening at the same time. Only critical portions of the entire firmware reset sequence are protected by the rtnl_lock. It is possible that bnxt_open_nic() can be called when the firmware reset sequence is aborting. In that case, bnxt_open_nic() needs to check if the ABORT_ERR flag is set and abort if it is. The configuration change that resulted in the bnxt_open_nic() call will fail but the NIC will be brought to a consistent IF_DOWN state. Without this patch, if bnxt_open_nic() were to continue in this error state, it may crash like this: [ 1648.659736] BUG: unable to handle kernel NULL pointer dereference at (null) [ 1648.659768] IP: [<ffffffffc01e9b3a>] bnxt_alloc_mem+0x50a/0x1140 [bnxt_en] [ 1648.659796] PGD 101e1b3067 PUD 101e1b2067 PMD 0 [ 1648.659813] Oops: 0000 [#1] SMP [ 1648.659825] Modules linked in: xt_CHECKSUM iptable_mangle ipt_MASQUERADE nf_nat_masquerade_ipv4 iptable_nat nf_nat_ipv4 nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack ipt_REJECT nf_reject_ipv4 tun bridge stp llc ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter sunrpc dell_smbios dell_wmi_descriptor dcdbas amd64_edac_mod edac_mce_amd kvm_amd kvm irqbypass crc32_pclmul ghash_clmulni_intel aesni_intel lrw gf128mul glue_helper ablk_helper vfat cryptd fat pcspkr ipmi_ssif sg k10temp i2c_piix4 wmi ipmi_si ipmi_devintf ipmi_msghandler tpm_crb acpi_power_meter sch_fq_codel ip_tables xfs libcrc32c sd_mod crc_t10dif crct10dif_generic mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm ahci drm libahci megaraid_sas crct10dif_pclmul crct10dif_common [ 1648.660063] tg3 libata crc32c_intel bnxt_en(OE) drm_panel_orientation_quirks devlink ptp pps_core dm_mirror dm_region_hash dm_log dm_mod fuse [ 1648.660105] CPU: 13 PID: 3867 Comm: ethtool Kdump: loaded Tainted: G OE ------------ 3.10.0-1152.el7.x86_64 #1 [ 1648.660911] Hardware name: Dell Inc. PowerEdge R7515/0R4CNN, BIOS 1.2.14 01/28/2020 [ 1648.661662] task: ffff94e64cbc9080 ti: ffff94f55df1c000 task.ti: ffff94f55df1c000 [ 1648.662409] RIP: 0010:[<ffffffffc01e9b3a>] [<ffffffffc01e9b3a>] bnxt_alloc_mem+0x50a/0x1140 [bnxt_en] [ 1648.663171] RSP: 0018:ffff94f55df1fba8 EFLAGS: 00010202 [ 1648.663927] RAX: 0000000000000000 RBX: ffff94e6827e0000 RCX: 0000000000000000 [ 1648.664684] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff94e6827e08c0 [ 1648.665433] RBP: ffff94f55df1fc20 R08: 00000000000001ff R09: 0000000000000008 [ 1648.666184] R10: 0000000000000d53 R11: ffff94f55df1f7ce R12: ffff94e6827e08c0 [ 1648.666940] R13: ffff94e6827e08c0 R14: ffff94e6827e08c0 R15: ffffffffb9115e40 [ 1648.667695] FS: 00007f8aadba5740(0000) GS:ffff94f57eb40000(0000) knlGS:0000000000000000 [ 1648.668447] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1648.669202] CR2: 0000000000000000 CR3: 0000001022772000 CR4: 0000000000340fe0 [ 1648.669966] Call Trace: [ 1648.670730] [<ffffffffc01f1d5d>] ? bnxt_need_reserve_rings+0x9d/0x170 [bnxt_en] [ 1648.671496] [<ffffffffc01fa7ea>] __bnxt_open_nic+0x8a/0x9a0 [bnxt_en] [ 1648.672263] [<ffffffffc01f7479>] ? bnxt_close_nic+0x59/0x1b0 [bnxt_en] [ 1648.673031] [<ffffffffc01fb11b>] bnxt_open_nic+0x1b/0x50 [bnxt_en] [ 1648.673793] [<ffffffffc020037c>] bnxt_set_ringparam+0x6c/0xa0 [bnxt_en] [ 1648.674550] [<ffffffffb8a5f564>] dev_ethtool+0x1334/0x21a0 [ 1648.675306] [<ffffffffb8a719ff>] dev_ioctl+0x1ef/0x5f0 [ 1648.676061] [<ffffffffb8a324bd>] sock_do_ioctl+0x4d/0x60 [ 1648.676810] [<ffffffffb8a326bb>] sock_ioctl+0x1eb/0x2d0 [ 1648.677548] [<ffffffffb8663230>] do_vfs_ioctl+0x3a0/0x5b0 [ 1648.678282] [<ffffffffb8b8e678>] ? __do_page_fault+0x238/0x500 [ 1648.679016] [<ffffffffb86634e1>] SyS_ioctl+0xa1/0xc0 [ 1648.679745] [<ffffffffb8b93f92>] system_call_fastpath+0x25/0x2a [ 1648.680461] Code: 9e 60 01 00 00 0f 1f 40 00 45 8b 8e 48 01 00 00 31 c9 45 85 c9 0f 8e 73 01 00 00 66 0f 1f 44 00 00 49 8b 86 a8 00 00 00 48 63 d1 <48> 8b 14 d0 48 85 d2 0f 84 46 01 00 00 41 8b 86 44 01 00 00 c7 [ 1648.681986] RIP [<ffffffffc01e9b3a>] bnxt_alloc_mem+0x50a/0x1140 [bnxt_en] [ 1648.682724] RSP <ffff94f55df1fba8> [ 1648.683451] CR2: 0000000000000000 Fixes: ec5d31e3c15d ("bnxt_en: Handle firmware reset status during IF_UP.") Reviewed-by: Vasundhara Volam <vasundhara-v.volam@broadcom.com> Reviewed-by: Pavan Chebbi <pavan.chebbi@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-26 04:18:20 +00:00
if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
rc = -EIO;
if (!rc)
rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
if (rc) {
netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
dev_close(bp->dev);
}
return rc;
}
/* rtnl_lock held, open the NIC half way by allocating all resources, but
* NAPI, IRQ, and TX are not enabled. This is mainly used for offline
* self tests.
*/
int bnxt_half_open_nic(struct bnxt *bp)
{
int rc = 0;
bnxt_en: Check abort error state in bnxt_half_open_nic() bnxt_half_open_nic() is called during during ethtool self test and is protected by rtnl_lock. Firmware reset can be happening at the same time. Only critical portions of the entire firmware reset sequence are protected by the rtnl_lock. It is possible that bnxt_half_open_nic() can be called when the firmware reset sequence is aborting. In that case, bnxt_half_open_nic() needs to check if the ABORT_ERR flag is set and abort if it is. The ethtool self test will fail but the NIC will be brought to a consistent IF_DOWN state. Without this patch, if bnxt_half_open_nic() were to continue in this error state, it may crash like this: bnxt_en 0000:82:00.1 enp130s0f1np1: FW reset in progress during close, FW reset will be aborted Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 ... Process ethtool (pid: 333327, stack limit = 0x0000000046476577) Call trace: bnxt_alloc_mem+0x444/0xef0 [bnxt_en] bnxt_half_open_nic+0x24/0xb8 [bnxt_en] bnxt_self_test+0x2dc/0x390 [bnxt_en] ethtool_self_test+0xe0/0x1f8 dev_ethtool+0x1744/0x22d0 dev_ioctl+0x190/0x3e0 sock_ioctl+0x238/0x480 do_vfs_ioctl+0xc4/0x758 ksys_ioctl+0x84/0xb8 __arm64_sys_ioctl+0x28/0x38 el0_svc_handler+0xb0/0x180 el0_svc+0x8/0xc Fixes: a1301f08c5ac ("bnxt_en: Check abort error state in bnxt_open_nic().") Signed-off-by: Somnath Kotur <somnath.kotur@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-18 19:36:31 +00:00
if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
rc = -ENODEV;
goto half_open_err;
}
rc = bnxt_alloc_mem(bp, true);
if (rc) {
netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
goto half_open_err;
}
set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
rc = bnxt_init_nic(bp, true);
if (rc) {
clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
goto half_open_err;
}
return 0;
half_open_err:
bnxt_free_skbs(bp);
bnxt_free_mem(bp, true);
dev_close(bp->dev);
return rc;
}
/* rtnl_lock held, this call can only be made after a previous successful
* call to bnxt_half_open_nic().
*/
void bnxt_half_close_nic(struct bnxt *bp)
{
bnxt_hwrm_resource_free(bp, false, true);
bnxt_free_skbs(bp);
bnxt_free_mem(bp, true);
clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
}
void bnxt_reenable_sriov(struct bnxt *bp)
{
if (BNXT_PF(bp)) {
struct bnxt_pf_info *pf = &bp->pf;
int n = pf->active_vfs;
if (n)
bnxt_cfg_hw_sriov(bp, &n, true);
}
}
static int bnxt_open(struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
int rc;
if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
rc = bnxt_reinit_after_abort(bp);
if (rc) {
if (rc == -EBUSY)
netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
else
netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
return -ENODEV;
}
}
rc = bnxt_hwrm_if_change(bp, true);
if (rc)
return rc;
rc = __bnxt_open_nic(bp, true, true);
if (rc) {
bnxt_hwrm_if_change(bp, false);
} else {
if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
bnxt_ulp_start(bp, 0);
bnxt_reenable_sriov(bp);
}
}
bnxt_hwmon_open(bp);
}
return rc;
}
static bool bnxt_drv_busy(struct bnxt *bp)
{
return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
test_bit(BNXT_STATE_READ_STATS, &bp->state));
}
static void bnxt_get_ring_stats(struct bnxt *bp,
struct rtnl_link_stats64 *stats);
static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
bool link_re_init)
{
/* Close the VF-reps before closing PF */
if (BNXT_PF(bp))
bnxt_vf_reps_close(bp);
/* Change device state to avoid TX queue wake up's */
bnxt_tx_disable(bp);
clear_bit(BNXT_STATE_OPEN, &bp->state);
smp_mb__after_atomic();
while (bnxt_drv_busy(bp))
msleep(20);
/* Flush rings and disable interrupts */
bnxt_shutdown_nic(bp, irq_re_init);
/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
bnxt_debug_dev_exit(bp);
bnxt_disable_napi(bp);
del_timer_sync(&bp->timer);
bnxt_free_skbs(bp);
/* Save ring stats before shutdown */
if (bp->bnapi && irq_re_init)
bnxt_get_ring_stats(bp, &bp->net_stats_prev);
if (irq_re_init) {
bnxt_free_irq(bp);
bnxt_del_napi(bp);
}
bnxt_free_mem(bp, irq_re_init);
}
int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
{
int rc = 0;
if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
/* If we get here, it means firmware reset is in progress
* while we are trying to close. We can safely proceed with
* the close because we are holding rtnl_lock(). Some firmware
* messages may fail as we proceed to close. We set the
* ABORT_ERR flag here so that the FW reset thread will later
* abort when it gets the rtnl_lock() and sees the flag.
*/
netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
}
#ifdef CONFIG_BNXT_SRIOV
if (bp->sriov_cfg) {
rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
!bp->sriov_cfg,
BNXT_SRIOV_CFG_WAIT_TMO);
if (rc)
netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
}
#endif
__bnxt_close_nic(bp, irq_re_init, link_re_init);
return rc;
}
static int bnxt_close(struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
bnxt_hwmon_close(bp);
bnxt_close_nic(bp, true, true);
bnxt_hwrm_shutdown_link(bp);
bnxt_hwrm_if_change(bp, false);
return 0;
}
static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
u16 *val)
{
struct hwrm_port_phy_mdio_read_output *resp;
struct hwrm_port_phy_mdio_read_input *req;
int rc;
if (bp->hwrm_spec_code < 0x10a00)
return -EOPNOTSUPP;
rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
if (rc)
return rc;
req->port_id = cpu_to_le16(bp->pf.port_id);
req->phy_addr = phy_addr;
req->reg_addr = cpu_to_le16(reg & 0x1f);
if (mdio_phy_id_is_c45(phy_addr)) {
req->cl45_mdio = 1;
req->phy_addr = mdio_phy_id_prtad(phy_addr);
req->dev_addr = mdio_phy_id_devad(phy_addr);
req->reg_addr = cpu_to_le16(reg);
}
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc)
*val = le16_to_cpu(resp->reg_data);
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
u16 val)
{
struct hwrm_port_phy_mdio_write_input *req;
int rc;
if (bp->hwrm_spec_code < 0x10a00)
return -EOPNOTSUPP;
rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
if (rc)
return rc;
req->port_id = cpu_to_le16(bp->pf.port_id);
req->phy_addr = phy_addr;
req->reg_addr = cpu_to_le16(reg & 0x1f);
if (mdio_phy_id_is_c45(phy_addr)) {
req->cl45_mdio = 1;
req->phy_addr = mdio_phy_id_prtad(phy_addr);
req->dev_addr = mdio_phy_id_devad(phy_addr);
req->reg_addr = cpu_to_le16(reg);
}
req->reg_data = cpu_to_le16(val);
return hwrm_req_send(bp, req);
}
/* rtnl_lock held */
static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *mdio = if_mii(ifr);
struct bnxt *bp = netdev_priv(dev);
int rc;
switch (cmd) {
case SIOCGMIIPHY:
mdio->phy_id = bp->link_info.phy_addr;
fallthrough;
case SIOCGMIIREG: {
u16 mii_regval = 0;
if (!netif_running(dev))
return -EAGAIN;
rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
&mii_regval);
mdio->val_out = mii_regval;
return rc;
}
case SIOCSMIIREG:
if (!netif_running(dev))
return -EAGAIN;
return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
mdio->val_in);
case SIOCSHWTSTAMP:
return bnxt_hwtstamp_set(dev, ifr);
case SIOCGHWTSTAMP:
return bnxt_hwtstamp_get(dev, ifr);
default:
/* do nothing */
break;
}
return -EOPNOTSUPP;
}
static void bnxt_get_ring_stats(struct bnxt *bp,
struct rtnl_link_stats64 *stats)
{
int i;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
u64 *sw = cpr->stats.sw_stats;
stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
stats->rx_missed_errors +=
BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
stats->rx_dropped +=
cpr->sw_stats.rx.rx_netpoll_discards +
cpr->sw_stats.rx.rx_oom_discards;
}
}
static void bnxt_add_prev_stats(struct bnxt *bp,
struct rtnl_link_stats64 *stats)
{
struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
stats->rx_packets += prev_stats->rx_packets;
stats->tx_packets += prev_stats->tx_packets;
stats->rx_bytes += prev_stats->rx_bytes;
stats->tx_bytes += prev_stats->tx_bytes;
stats->rx_missed_errors += prev_stats->rx_missed_errors;
stats->multicast += prev_stats->multicast;
stats->rx_dropped += prev_stats->rx_dropped;
stats->tx_dropped += prev_stats->tx_dropped;
}
static void
bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
struct bnxt *bp = netdev_priv(dev);
set_bit(BNXT_STATE_READ_STATS, &bp->state);
/* Make sure bnxt_close_nic() sees that we are reading stats before
* we check the BNXT_STATE_OPEN flag.
*/
smp_mb__after_atomic();
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
clear_bit(BNXT_STATE_READ_STATS, &bp->state);
*stats = bp->net_stats_prev;
return;
}
bnxt_get_ring_stats(bp, stats);
bnxt_add_prev_stats(bp, stats);
if (bp->flags & BNXT_FLAG_PORT_STATS) {
u64 *rx = bp->port_stats.sw_stats;
u64 *tx = bp->port_stats.sw_stats +
BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
stats->rx_crc_errors =
BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
stats->rx_frame_errors =
BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
stats->rx_length_errors =
BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
stats->rx_errors =
BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
stats->collisions =
BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
stats->tx_fifo_errors =
BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
}
clear_bit(BNXT_STATE_READ_STATS, &bp->state);
}
static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
{
struct net_device *dev = bp->dev;
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
struct netdev_hw_addr *ha;
u8 *haddr;
int mc_count = 0;
bool update = false;
int off = 0;
netdev_for_each_mc_addr(ha, dev) {
if (mc_count >= BNXT_MAX_MC_ADDRS) {
*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
vnic->mc_list_count = 0;
return false;
}
haddr = ha->addr;
if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
update = true;
}
off += ETH_ALEN;
mc_count++;
}
if (mc_count)
*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
if (mc_count != vnic->mc_list_count) {
vnic->mc_list_count = mc_count;
update = true;
}
return update;
}
static bool bnxt_uc_list_updated(struct bnxt *bp)
{
struct net_device *dev = bp->dev;
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
struct netdev_hw_addr *ha;
int off = 0;
if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
return true;
netdev_for_each_uc_addr(ha, dev) {
if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
return true;
off += ETH_ALEN;
}
return false;
}
static void bnxt_set_rx_mode(struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
struct bnxt_vnic_info *vnic;
bool mc_update = false;
bool uc_update;
u32 mask;
if (!test_bit(BNXT_STATE_OPEN, &bp->state))
return;
vnic = &bp->vnic_info[0];
mask = vnic->rx_mask;
mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
if (dev->flags & IFF_PROMISC)
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
uc_update = bnxt_uc_list_updated(bp);
if (dev->flags & IFF_BROADCAST)
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
if (dev->flags & IFF_ALLMULTI) {
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
vnic->mc_list_count = 0;
} else if (dev->flags & IFF_MULTICAST) {
mc_update = bnxt_mc_list_updated(bp, &mask);
}
if (mask != vnic->rx_mask || uc_update || mc_update) {
vnic->rx_mask = mask;
set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
}
static int bnxt_cfg_rx_mode(struct bnxt *bp)
{
struct net_device *dev = bp->dev;
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
struct hwrm_cfa_l2_filter_free_input *req;
struct netdev_hw_addr *ha;
int i, off = 0, rc;
bool uc_update;
netif_addr_lock_bh(dev);
uc_update = bnxt_uc_list_updated(bp);
netif_addr_unlock_bh(dev);
if (!uc_update)
goto skip_uc;
rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
if (rc)
return rc;
hwrm_req_hold(bp, req);
for (i = 1; i < vnic->uc_filter_count; i++) {
req->l2_filter_id = vnic->fw_l2_filter_id[i];
rc = hwrm_req_send(bp, req);
}
hwrm_req_drop(bp, req);
vnic->uc_filter_count = 1;
netif_addr_lock_bh(dev);
if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
} else {
netdev_for_each_uc_addr(ha, dev) {
memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
off += ETH_ALEN;
vnic->uc_filter_count++;
}
}
netif_addr_unlock_bh(dev);
for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
if (rc) {
if (BNXT_VF(bp) && rc == -ENODEV) {
if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
else
netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
rc = 0;
} else {
netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
}
vnic->uc_filter_count = i;
return rc;
}
}
if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
skip_uc:
if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
!bnxt_promisc_ok(bp))
vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
rc);
vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
vnic->mc_list_count = 0;
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
}
if (rc)
netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
rc);
return rc;
}
static bool bnxt_can_reserve_rings(struct bnxt *bp)
{
#ifdef CONFIG_BNXT_SRIOV
if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
/* No minimum rings were provisioned by the PF. Don't
* reserve rings by default when device is down.
*/
if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
return true;
if (!netif_running(bp->dev))
return false;
}
#endif
return true;
}
/* If the chip and firmware supports RFS */
static bool bnxt_rfs_supported(struct bnxt *bp)
{
if (bp->flags & BNXT_FLAG_CHIP_P5) {
if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
return true;
return false;
}
/* 212 firmware is broken for aRFS */
if (BNXT_FW_MAJ(bp) == 212)
return false;
if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
return true;
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
return true;
return false;
}
/* If runtime conditions support RFS */
static bool bnxt_rfs_capable(struct bnxt *bp)
{
#ifdef CONFIG_RFS_ACCEL
int vnics, max_vnics, max_rss_ctxs;
if (bp->flags & BNXT_FLAG_CHIP_P5)
return bnxt_rfs_supported(bp);
if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
return false;
vnics = 1 + bp->rx_nr_rings;
max_vnics = bnxt_get_max_func_vnics(bp);
max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
/* RSS contexts not a limiting factor */
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
max_rss_ctxs = max_vnics;
if (vnics > max_vnics || vnics > max_rss_ctxs) {
if (bp->rx_nr_rings > 1)
netdev_warn(bp->dev,
"Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
min(max_rss_ctxs - 1, max_vnics - 1));
return false;
}
if (!BNXT_NEW_RM(bp))
return true;
if (vnics == bp->hw_resc.resv_vnics)
return true;
bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
if (vnics <= bp->hw_resc.resv_vnics)
return true;
netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
return false;
#else
return false;
#endif
}
static netdev_features_t bnxt_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct bnxt *bp = netdev_priv(dev);
netdev_features_t vlan_features;
if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
features &= ~NETIF_F_NTUPLE;
if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
if (!(features & NETIF_F_GRO))
features &= ~NETIF_F_GRO_HW;
if (features & NETIF_F_GRO_HW)
features &= ~NETIF_F_LRO;
/* Both CTAG and STAG VLAN accelaration on the RX side have to be
* turned on or off together.
*/
vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
else if (vlan_features)
features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
}
#ifdef CONFIG_BNXT_SRIOV
if (BNXT_VF(bp) && bp->vf.vlan)
features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
#endif
return features;
}
static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
{
struct bnxt *bp = netdev_priv(dev);
u32 flags = bp->flags;
u32 changes;
int rc = 0;
bool re_init = false;
bool update_tpa = false;
flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
if (features & NETIF_F_GRO_HW)
flags |= BNXT_FLAG_GRO;
else if (features & NETIF_F_LRO)
flags |= BNXT_FLAG_LRO;
if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
flags &= ~BNXT_FLAG_TPA;
if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
flags |= BNXT_FLAG_STRIP_VLAN;
if (features & NETIF_F_NTUPLE)
flags |= BNXT_FLAG_RFS;
changes = flags ^ bp->flags;
if (changes & BNXT_FLAG_TPA) {
update_tpa = true;
if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
(flags & BNXT_FLAG_TPA) == 0 ||
(bp->flags & BNXT_FLAG_CHIP_P5))
re_init = true;
}
if (changes & ~BNXT_FLAG_TPA)
re_init = true;
if (flags != bp->flags) {
u32 old_flags = bp->flags;
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
bp->flags = flags;
if (update_tpa)
bnxt_set_ring_params(bp);
return rc;
}
if (re_init) {
bnxt_close_nic(bp, false, false);
bp->flags = flags;
if (update_tpa)
bnxt_set_ring_params(bp);
return bnxt_open_nic(bp, false, false);
}
if (update_tpa) {
bp->flags = flags;
rc = bnxt_set_tpa(bp,
(flags & BNXT_FLAG_TPA) ?
true : false);
if (rc)
bp->flags = old_flags;
}
}
return rc;
}
static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
u8 **nextp)
{
struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
struct hop_jumbo_hdr *jhdr;
int hdr_count = 0;
u8 *nexthdr;
int start;
/* Check that there are at most 2 IPv6 extension headers, no
* fragment header, and each is <= 64 bytes.
*/
start = nw_off + sizeof(*ip6h);
nexthdr = &ip6h->nexthdr;
while (ipv6_ext_hdr(*nexthdr)) {
struct ipv6_opt_hdr *hp;
int hdrlen;
if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
*nexthdr == NEXTHDR_FRAGMENT)
return false;
hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
skb_headlen(skb), NULL);
if (!hp)
return false;
if (*nexthdr == NEXTHDR_AUTH)
hdrlen = ipv6_authlen(hp);
else
hdrlen = ipv6_optlen(hp);
if (hdrlen > 64)
return false;
/* The ext header may be a hop-by-hop header inserted for
* big TCP purposes. This will be removed before sending
* from NIC, so do not count it.
*/
if (*nexthdr == NEXTHDR_HOP) {
if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
goto increment_hdr;
jhdr = (struct hop_jumbo_hdr *)hp;
if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
jhdr->nexthdr != IPPROTO_TCP)
goto increment_hdr;
goto next_hdr;
}
increment_hdr:
hdr_count++;
next_hdr:
nexthdr = &hp->nexthdr;
start += hdrlen;
}
if (nextp) {
/* Caller will check inner protocol */
if (skb->encapsulation) {
*nextp = nexthdr;
return true;
}
*nextp = NULL;
}
/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
}
/* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
{
struct udphdr *uh = udp_hdr(skb);
__be16 udp_port = uh->dest;
if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
return false;
if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
struct ethhdr *eh = inner_eth_hdr(skb);
switch (eh->h_proto) {
case htons(ETH_P_IP):
return true;
case htons(ETH_P_IPV6):
return bnxt_exthdr_check(bp, skb,
skb_inner_network_offset(skb),
NULL);
}
}
return false;
}
static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
{
switch (l4_proto) {
case IPPROTO_UDP:
return bnxt_udp_tunl_check(bp, skb);
case IPPROTO_IPIP:
return true;
case IPPROTO_GRE: {
switch (skb->inner_protocol) {
default:
return false;
case htons(ETH_P_IP):
return true;
case htons(ETH_P_IPV6):
fallthrough;
}
}
case IPPROTO_IPV6:
/* Check ext headers of inner ipv6 */
return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
NULL);
}
return false;
}
static netdev_features_t bnxt_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
struct bnxt *bp = netdev_priv(dev);
u8 *l4_proto;
features = vlan_features_check(skb, features);
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
if (!skb->encapsulation)
return features;
l4_proto = &ip_hdr(skb)->protocol;
if (bnxt_tunl_check(bp, skb, *l4_proto))
return features;
break;
case htons(ETH_P_IPV6):
if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
&l4_proto))
break;
if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
return features;
break;
}
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
u32 *reg_buf)
{
struct hwrm_dbg_read_direct_output *resp;
struct hwrm_dbg_read_direct_input *req;
__le32 *dbg_reg_buf;
dma_addr_t mapping;
int rc, i;
rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
if (rc)
return rc;
dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
&mapping);
if (!dbg_reg_buf) {
rc = -ENOMEM;
goto dbg_rd_reg_exit;
}
req->host_dest_addr = cpu_to_le64(mapping);
resp = hwrm_req_hold(bp, req);
req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
req->read_len32 = cpu_to_le32(num_words);
rc = hwrm_req_send(bp, req);
if (rc || resp->error_code) {
rc = -EIO;
goto dbg_rd_reg_exit;
}
for (i = 0; i < num_words; i++)
reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
dbg_rd_reg_exit:
hwrm_req_drop(bp, req);
return rc;
}
static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
u32 ring_id, u32 *prod, u32 *cons)
{
struct hwrm_dbg_ring_info_get_output *resp;
struct hwrm_dbg_ring_info_get_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
if (rc)
return rc;
req->ring_type = ring_type;
req->fw_ring_id = cpu_to_le32(ring_id);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc) {
*prod = le32_to_cpu(resp->producer_index);
*cons = le32_to_cpu(resp->consumer_index);
}
hwrm_req_drop(bp, req);
return rc;
}
static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
{
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
int i = bnapi->index;
if (!txr)
return;
netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
txr->tx_cons);
}
static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
{
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
int i = bnapi->index;
if (!rxr)
return;
netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
rxr->rx_sw_agg_prod);
}
static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
{
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
int i = bnapi->index;
netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
}
static void bnxt_dbg_dump_states(struct bnxt *bp)
{
int i;
struct bnxt_napi *bnapi;
for (i = 0; i < bp->cp_nr_rings; i++) {
bnapi = bp->bnapi[i];
if (netif_msg_drv(bp)) {
bnxt_dump_tx_sw_state(bnapi);
bnxt_dump_rx_sw_state(bnapi);
bnxt_dump_cp_sw_state(bnapi);
}
}
}
static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
{
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
struct hwrm_ring_reset_input *req;
struct bnxt_napi *bnapi = rxr->bnapi;
struct bnxt_cp_ring_info *cpr;
u16 cp_ring_id;
int rc;
rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
if (rc)
return rc;
cpr = &bnapi->cp_ring;
cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
req->cmpl_ring = cpu_to_le16(cp_ring_id);
req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
return hwrm_req_send_silent(bp, req);
}
static void bnxt_reset_task(struct bnxt *bp, bool silent)
{
if (!silent)
bnxt_dbg_dump_states(bp);
if (netif_running(bp->dev)) {
int rc;
if (silent) {
bnxt_close_nic(bp, false, false);
bnxt_open_nic(bp, false, false);
} else {
bnxt_ulp_stop(bp);
bnxt_close_nic(bp, true, false);
rc = bnxt_open_nic(bp, true, false);
bnxt_ulp_start(bp, rc);
}
}
}
netdev: pass the stuck queue to the timeout handler This allows incrementing the correct timeout statistic without any mess. Down the road, devices can learn to reset just the specific queue. The patch was generated with the following script: use strict; use warnings; our $^I = '.bak'; my @work = ( ["arch/m68k/emu/nfeth.c", "nfeth_tx_timeout"], ["arch/um/drivers/net_kern.c", "uml_net_tx_timeout"], ["arch/um/drivers/vector_kern.c", "vector_net_tx_timeout"], ["arch/xtensa/platforms/iss/network.c", "iss_net_tx_timeout"], ["drivers/char/pcmcia/synclink_cs.c", "hdlcdev_tx_timeout"], ["drivers/infiniband/ulp/ipoib/ipoib_main.c", "ipoib_timeout"], ["drivers/infiniband/ulp/ipoib/ipoib_main.c", "ipoib_timeout"], ["drivers/message/fusion/mptlan.c", "mpt_lan_tx_timeout"], ["drivers/misc/sgi-xp/xpnet.c", "xpnet_dev_tx_timeout"], ["drivers/net/appletalk/cops.c", "cops_timeout"], ["drivers/net/arcnet/arcdevice.h", "arcnet_timeout"], ["drivers/net/arcnet/arcnet.c", "arcnet_timeout"], ["drivers/net/arcnet/com20020.c", "arcnet_timeout"], ["drivers/net/ethernet/3com/3c509.c", "el3_tx_timeout"], ["drivers/net/ethernet/3com/3c515.c", "corkscrew_timeout"], ["drivers/net/ethernet/3com/3c574_cs.c", "el3_tx_timeout"], ["drivers/net/ethernet/3com/3c589_cs.c", "el3_tx_timeout"], ["drivers/net/ethernet/3com/3c59x.c", "vortex_tx_timeout"], ["drivers/net/ethernet/3com/3c59x.c", "vortex_tx_timeout"], ["drivers/net/ethernet/3com/typhoon.c", "typhoon_tx_timeout"], ["drivers/net/ethernet/8390/8390.h", "ei_tx_timeout"], ["drivers/net/ethernet/8390/8390.h", "eip_tx_timeout"], ["drivers/net/ethernet/8390/8390.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/8390p.c", "eip_tx_timeout"], ["drivers/net/ethernet/8390/ax88796.c", "ax_ei_tx_timeout"], ["drivers/net/ethernet/8390/axnet_cs.c", "axnet_tx_timeout"], ["drivers/net/ethernet/8390/etherh.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/hydra.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/mac8390.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/mcf8390.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/lib8390.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/ne2k-pci.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/pcnet_cs.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/smc-ultra.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/wd.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/zorro8390.c", "__ei_tx_timeout"], ["drivers/net/ethernet/adaptec/starfire.c", "tx_timeout"], ["drivers/net/ethernet/agere/et131x.c", "et131x_tx_timeout"], ["drivers/net/ethernet/allwinner/sun4i-emac.c", "emac_timeout"], ["drivers/net/ethernet/alteon/acenic.c", "ace_watchdog"], ["drivers/net/ethernet/amazon/ena/ena_netdev.c", "ena_tx_timeout"], ["drivers/net/ethernet/amd/7990.h", "lance_tx_timeout"], ["drivers/net/ethernet/amd/7990.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/a2065.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/am79c961a.c", "am79c961_timeout"], ["drivers/net/ethernet/amd/amd8111e.c", "amd8111e_tx_timeout"], ["drivers/net/ethernet/amd/ariadne.c", "ariadne_tx_timeout"], ["drivers/net/ethernet/amd/atarilance.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/au1000_eth.c", "au1000_tx_timeout"], ["drivers/net/ethernet/amd/declance.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/lance.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/mvme147.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/ni65.c", "ni65_timeout"], ["drivers/net/ethernet/amd/nmclan_cs.c", "mace_tx_timeout"], ["drivers/net/ethernet/amd/pcnet32.c", "pcnet32_tx_timeout"], ["drivers/net/ethernet/amd/sunlance.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/xgbe/xgbe-drv.c", "xgbe_tx_timeout"], ["drivers/net/ethernet/apm/xgene-v2/main.c", "xge_timeout"], ["drivers/net/ethernet/apm/xgene/xgene_enet_main.c", "xgene_enet_timeout"], ["drivers/net/ethernet/apple/macmace.c", "mace_tx_timeout"], ["drivers/net/ethernet/atheros/ag71xx.c", "ag71xx_tx_timeout"], ["drivers/net/ethernet/atheros/alx/main.c", "alx_tx_timeout"], ["drivers/net/ethernet/atheros/atl1c/atl1c_main.c", "atl1c_tx_timeout"], ["drivers/net/ethernet/atheros/atl1e/atl1e_main.c", "atl1e_tx_timeout"], ["drivers/net/ethernet/atheros/atlx/atl.c", "atlx_tx_timeout"], ["drivers/net/ethernet/atheros/atlx/atl1.c", "atlx_tx_timeout"], ["drivers/net/ethernet/atheros/atlx/atl2.c", "atl2_tx_timeout"], ["drivers/net/ethernet/broadcom/b44.c", "b44_tx_timeout"], ["drivers/net/ethernet/broadcom/bcmsysport.c", "bcm_sysport_tx_timeout"], ["drivers/net/ethernet/broadcom/bnx2.c", "bnx2_tx_timeout"], ["drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.h", "bnx2x_tx_timeout"], ["drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c", "bnx2x_tx_timeout"], ["drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c", "bnx2x_tx_timeout"], ["drivers/net/ethernet/broadcom/bnxt/bnxt.c", "bnxt_tx_timeout"], ["drivers/net/ethernet/broadcom/genet/bcmgenet.c", "bcmgenet_timeout"], ["drivers/net/ethernet/broadcom/sb1250-mac.c", "sbmac_tx_timeout"], ["drivers/net/ethernet/broadcom/tg3.c", "tg3_tx_timeout"], ["drivers/net/ethernet/calxeda/xgmac.c", "xgmac_tx_timeout"], ["drivers/net/ethernet/cavium/liquidio/lio_main.c", "liquidio_tx_timeout"], ["drivers/net/ethernet/cavium/liquidio/lio_vf_main.c", "liquidio_tx_timeout"], ["drivers/net/ethernet/cavium/liquidio/lio_vf_rep.c", "lio_vf_rep_tx_timeout"], ["drivers/net/ethernet/cavium/thunder/nicvf_main.c", "nicvf_tx_timeout"], ["drivers/net/ethernet/cirrus/cs89x0.c", "net_timeout"], ["drivers/net/ethernet/cisco/enic/enic_main.c", "enic_tx_timeout"], ["drivers/net/ethernet/cisco/enic/enic_main.c", "enic_tx_timeout"], ["drivers/net/ethernet/cortina/gemini.c", "gmac_tx_timeout"], ["drivers/net/ethernet/davicom/dm9000.c", "dm9000_timeout"], ["drivers/net/ethernet/dec/tulip/de2104x.c", "de_tx_timeout"], ["drivers/net/ethernet/dec/tulip/tulip_core.c", "tulip_tx_timeout"], ["drivers/net/ethernet/dec/tulip/winbond-840.c", "tx_timeout"], ["drivers/net/ethernet/dlink/dl2k.c", "rio_tx_timeout"], ["drivers/net/ethernet/dlink/sundance.c", "tx_timeout"], ["drivers/net/ethernet/emulex/benet/be_main.c", "be_tx_timeout"], ["drivers/net/ethernet/ethoc.c", "ethoc_tx_timeout"], ["drivers/net/ethernet/faraday/ftgmac100.c", "ftgmac100_tx_timeout"], ["drivers/net/ethernet/fealnx.c", "fealnx_tx_timeout"], ["drivers/net/ethernet/freescale/dpaa/dpaa_eth.c", "dpaa_tx_timeout"], ["drivers/net/ethernet/freescale/fec_main.c", "fec_timeout"], ["drivers/net/ethernet/freescale/fec_mpc52xx.c", "mpc52xx_fec_tx_timeout"], ["drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c", "fs_timeout"], ["drivers/net/ethernet/freescale/gianfar.c", "gfar_timeout"], ["drivers/net/ethernet/freescale/ucc_geth.c", "ucc_geth_timeout"], ["drivers/net/ethernet/fujitsu/fmvj18x_cs.c", "fjn_tx_timeout"], ["drivers/net/ethernet/google/gve/gve_main.c", "gve_tx_timeout"], ["drivers/net/ethernet/hisilicon/hip04_eth.c", "hip04_timeout"], ["drivers/net/ethernet/hisilicon/hix5hd2_gmac.c", "hix5hd2_net_timeout"], ["drivers/net/ethernet/hisilicon/hns/hns_enet.c", "hns_nic_net_timeout"], ["drivers/net/ethernet/hisilicon/hns3/hns3_enet.c", "hns3_nic_net_timeout"], ["drivers/net/ethernet/huawei/hinic/hinic_main.c", "hinic_tx_timeout"], ["drivers/net/ethernet/i825xx/82596.c", "i596_tx_timeout"], ["drivers/net/ethernet/i825xx/ether1.c", "ether1_timeout"], ["drivers/net/ethernet/i825xx/lib82596.c", "i596_tx_timeout"], ["drivers/net/ethernet/i825xx/sun3_82586.c", "sun3_82586_timeout"], ["drivers/net/ethernet/ibm/ehea/ehea_main.c", "ehea_tx_watchdog"], ["drivers/net/ethernet/ibm/emac/core.c", "emac_tx_timeout"], ["drivers/net/ethernet/ibm/emac/core.c", "emac_tx_timeout"], ["drivers/net/ethernet/ibm/ibmvnic.c", "ibmvnic_tx_timeout"], ["drivers/net/ethernet/intel/e100.c", "e100_tx_timeout"], ["drivers/net/ethernet/intel/e1000/e1000_main.c", "e1000_tx_timeout"], ["drivers/net/ethernet/intel/e1000e/netdev.c", "e1000_tx_timeout"], ["drivers/net/ethernet/intel/fm10k/fm10k_netdev.c", "fm10k_tx_timeout"], ["drivers/net/ethernet/intel/i40e/i40e_main.c", "i40e_tx_timeout"], ["drivers/net/ethernet/intel/iavf/iavf_main.c", "iavf_tx_timeout"], ["drivers/net/ethernet/intel/ice/ice_main.c", "ice_tx_timeout"], ["drivers/net/ethernet/intel/ice/ice_main.c", "ice_tx_timeout"], ["drivers/net/ethernet/intel/igb/igb_main.c", "igb_tx_timeout"], ["drivers/net/ethernet/intel/igbvf/netdev.c", "igbvf_tx_timeout"], ["drivers/net/ethernet/intel/ixgb/ixgb_main.c", "ixgb_tx_timeout"], ["drivers/net/ethernet/intel/ixgbe/ixgbe_debugfs.c", "adapter->netdev->netdev_ops->ndo_tx_timeout(adapter->netdev);"], ["drivers/net/ethernet/intel/ixgbe/ixgbe_main.c", "ixgbe_tx_timeout"], ["drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c", "ixgbevf_tx_timeout"], ["drivers/net/ethernet/jme.c", "jme_tx_timeout"], ["drivers/net/ethernet/korina.c", "korina_tx_timeout"], ["drivers/net/ethernet/lantiq_etop.c", "ltq_etop_tx_timeout"], ["drivers/net/ethernet/marvell/mv643xx_eth.c", "mv643xx_eth_tx_timeout"], ["drivers/net/ethernet/marvell/pxa168_eth.c", "pxa168_eth_tx_timeout"], ["drivers/net/ethernet/marvell/skge.c", "skge_tx_timeout"], ["drivers/net/ethernet/marvell/sky2.c", "sky2_tx_timeout"], ["drivers/net/ethernet/marvell/sky2.c", "sky2_tx_timeout"], ["drivers/net/ethernet/mediatek/mtk_eth_soc.c", "mtk_tx_timeout"], ["drivers/net/ethernet/mellanox/mlx4/en_netdev.c", "mlx4_en_tx_timeout"], ["drivers/net/ethernet/mellanox/mlx4/en_netdev.c", "mlx4_en_tx_timeout"], ["drivers/net/ethernet/mellanox/mlx5/core/en_main.c", "mlx5e_tx_timeout"], ["drivers/net/ethernet/micrel/ks8842.c", "ks8842_tx_timeout"], ["drivers/net/ethernet/micrel/ksz884x.c", "netdev_tx_timeout"], ["drivers/net/ethernet/microchip/enc28j60.c", "enc28j60_tx_timeout"], ["drivers/net/ethernet/microchip/encx24j600.c", "encx24j600_tx_timeout"], ["drivers/net/ethernet/natsemi/sonic.h", "sonic_tx_timeout"], ["drivers/net/ethernet/natsemi/sonic.c", "sonic_tx_timeout"], ["drivers/net/ethernet/natsemi/jazzsonic.c", "sonic_tx_timeout"], ["drivers/net/ethernet/natsemi/macsonic.c", "sonic_tx_timeout"], ["drivers/net/ethernet/natsemi/natsemi.c", "ns_tx_timeout"], ["drivers/net/ethernet/natsemi/ns83820.c", "ns83820_tx_timeout"], ["drivers/net/ethernet/natsemi/xtsonic.c", "sonic_tx_timeout"], ["drivers/net/ethernet/neterion/s2io.h", "s2io_tx_watchdog"], ["drivers/net/ethernet/neterion/s2io.c", "s2io_tx_watchdog"], ["drivers/net/ethernet/neterion/vxge/vxge-main.c", "vxge_tx_watchdog"], ["drivers/net/ethernet/netronome/nfp/nfp_net_common.c", "nfp_net_tx_timeout"], ["drivers/net/ethernet/nvidia/forcedeth.c", "nv_tx_timeout"], ["drivers/net/ethernet/nvidia/forcedeth.c", "nv_tx_timeout"], ["drivers/net/ethernet/oki-semi/pch_gbe/pch_gbe_main.c", "pch_gbe_tx_timeout"], ["drivers/net/ethernet/packetengines/hamachi.c", "hamachi_tx_timeout"], ["drivers/net/ethernet/packetengines/yellowfin.c", "yellowfin_tx_timeout"], ["drivers/net/ethernet/pensando/ionic/ionic_lif.c", "ionic_tx_timeout"], ["drivers/net/ethernet/qlogic/netxen/netxen_nic_main.c", "netxen_tx_timeout"], ["drivers/net/ethernet/qlogic/qla3xxx.c", "ql3xxx_tx_timeout"], ["drivers/net/ethernet/qlogic/qlcnic/qlcnic_main.c", "qlcnic_tx_timeout"], ["drivers/net/ethernet/qualcomm/emac/emac.c", "emac_tx_timeout"], ["drivers/net/ethernet/qualcomm/qca_spi.c", "qcaspi_netdev_tx_timeout"], ["drivers/net/ethernet/qualcomm/qca_uart.c", "qcauart_netdev_tx_timeout"], ["drivers/net/ethernet/rdc/r6040.c", "r6040_tx_timeout"], ["drivers/net/ethernet/realtek/8139cp.c", "cp_tx_timeout"], ["drivers/net/ethernet/realtek/8139too.c", "rtl8139_tx_timeout"], ["drivers/net/ethernet/realtek/atp.c", "tx_timeout"], ["drivers/net/ethernet/realtek/r8169_main.c", "rtl8169_tx_timeout"], ["drivers/net/ethernet/renesas/ravb_main.c", "ravb_tx_timeout"], ["drivers/net/ethernet/renesas/sh_eth.c", "sh_eth_tx_timeout"], ["drivers/net/ethernet/renesas/sh_eth.c", "sh_eth_tx_timeout"], ["drivers/net/ethernet/samsung/sxgbe/sxgbe_main.c", "sxgbe_tx_timeout"], ["drivers/net/ethernet/seeq/ether3.c", "ether3_timeout"], ["drivers/net/ethernet/seeq/sgiseeq.c", "timeout"], ["drivers/net/ethernet/sfc/efx.c", "efx_watchdog"], ["drivers/net/ethernet/sfc/falcon/efx.c", "ef4_watchdog"], ["drivers/net/ethernet/sgi/ioc3-eth.c", "ioc3_timeout"], ["drivers/net/ethernet/sgi/meth.c", "meth_tx_timeout"], ["drivers/net/ethernet/silan/sc92031.c", "sc92031_tx_timeout"], ["drivers/net/ethernet/sis/sis190.c", "sis190_tx_timeout"], ["drivers/net/ethernet/sis/sis900.c", "sis900_tx_timeout"], ["drivers/net/ethernet/smsc/epic100.c", "epic_tx_timeout"], ["drivers/net/ethernet/smsc/smc911x.c", "smc911x_timeout"], ["drivers/net/ethernet/smsc/smc9194.c", "smc_timeout"], ["drivers/net/ethernet/smsc/smc91c92_cs.c", "smc_tx_timeout"], ["drivers/net/ethernet/smsc/smc91x.c", "smc_timeout"], ["drivers/net/ethernet/stmicro/stmmac/stmmac_main.c", "stmmac_tx_timeout"], ["drivers/net/ethernet/sun/cassini.c", "cas_tx_timeout"], ["drivers/net/ethernet/sun/ldmvsw.c", "sunvnet_tx_timeout_common"], ["drivers/net/ethernet/sun/niu.c", "niu_tx_timeout"], ["drivers/net/ethernet/sun/sunbmac.c", "bigmac_tx_timeout"], ["drivers/net/ethernet/sun/sungem.c", "gem_tx_timeout"], ["drivers/net/ethernet/sun/sunhme.c", "happy_meal_tx_timeout"], ["drivers/net/ethernet/sun/sunqe.c", "qe_tx_timeout"], ["drivers/net/ethernet/sun/sunvnet.c", "sunvnet_tx_timeout_common"], ["drivers/net/ethernet/sun/sunvnet_common.c", "sunvnet_tx_timeout_common"], ["drivers/net/ethernet/sun/sunvnet_common.h", "sunvnet_tx_timeout_common"], ["drivers/net/ethernet/synopsys/dwc-xlgmac-net.c", "xlgmac_tx_timeout"], ["drivers/net/ethernet/ti/cpmac.c", "cpmac_tx_timeout"], ["drivers/net/ethernet/ti/cpsw.c", "cpsw_ndo_tx_timeout"], ["drivers/net/ethernet/ti/cpsw_priv.c", "cpsw_ndo_tx_timeout"], ["drivers/net/ethernet/ti/cpsw_priv.h", "cpsw_ndo_tx_timeout"], ["drivers/net/ethernet/ti/davinci_emac.c", "emac_dev_tx_timeout"], ["drivers/net/ethernet/ti/netcp_core.c", "netcp_ndo_tx_timeout"], ["drivers/net/ethernet/ti/tlan.c", "tlan_tx_timeout"], ["drivers/net/ethernet/toshiba/ps3_gelic_net.h", "gelic_net_tx_timeout"], ["drivers/net/ethernet/toshiba/ps3_gelic_net.c", "gelic_net_tx_timeout"], ["drivers/net/ethernet/toshiba/ps3_gelic_wireless.c", "gelic_net_tx_timeout"], ["drivers/net/ethernet/toshiba/spider_net.c", "spider_net_tx_timeout"], ["drivers/net/ethernet/toshiba/tc35815.c", "tc35815_tx_timeout"], ["drivers/net/ethernet/via/via-rhine.c", "rhine_tx_timeout"], ["drivers/net/ethernet/wiznet/w5100.c", "w5100_tx_timeout"], ["drivers/net/ethernet/wiznet/w5300.c", "w5300_tx_timeout"], ["drivers/net/ethernet/xilinx/xilinx_emaclite.c", "xemaclite_tx_timeout"], ["drivers/net/ethernet/xircom/xirc2ps_cs.c", "xirc_tx_timeout"], ["drivers/net/fjes/fjes_main.c", "fjes_tx_retry"], ["drivers/net/slip/slip.c", "sl_tx_timeout"], ["include/linux/usb/usbnet.h", "usbnet_tx_timeout"], ["drivers/net/usb/aqc111.c", "usbnet_tx_timeout"], ["drivers/net/usb/asix_devices.c", "usbnet_tx_timeout"], ["drivers/net/usb/asix_devices.c", "usbnet_tx_timeout"], ["drivers/net/usb/asix_devices.c", "usbnet_tx_timeout"], ["drivers/net/usb/ax88172a.c", "usbnet_tx_timeout"], ["drivers/net/usb/ax88179_178a.c", "usbnet_tx_timeout"], ["drivers/net/usb/catc.c", "catc_tx_timeout"], ["drivers/net/usb/cdc_mbim.c", "usbnet_tx_timeout"], ["drivers/net/usb/cdc_ncm.c", "usbnet_tx_timeout"], ["drivers/net/usb/dm9601.c", "usbnet_tx_timeout"], ["drivers/net/usb/hso.c", "hso_net_tx_timeout"], ["drivers/net/usb/int51x1.c", "usbnet_tx_timeout"], ["drivers/net/usb/ipheth.c", "ipheth_tx_timeout"], ["drivers/net/usb/kaweth.c", "kaweth_tx_timeout"], ["drivers/net/usb/lan78xx.c", "lan78xx_tx_timeout"], ["drivers/net/usb/mcs7830.c", "usbnet_tx_timeout"], ["drivers/net/usb/pegasus.c", "pegasus_tx_timeout"], ["drivers/net/usb/qmi_wwan.c", "usbnet_tx_timeout"], ["drivers/net/usb/r8152.c", "rtl8152_tx_timeout"], ["drivers/net/usb/rndis_host.c", "usbnet_tx_timeout"], ["drivers/net/usb/rtl8150.c", "rtl8150_tx_timeout"], ["drivers/net/usb/sierra_net.c", "usbnet_tx_timeout"], ["drivers/net/usb/smsc75xx.c", "usbnet_tx_timeout"], ["drivers/net/usb/smsc95xx.c", "usbnet_tx_timeout"], ["drivers/net/usb/sr9700.c", "usbnet_tx_timeout"], ["drivers/net/usb/sr9800.c", "usbnet_tx_timeout"], ["drivers/net/usb/usbnet.c", "usbnet_tx_timeout"], ["drivers/net/vmxnet3/vmxnet3_drv.c", "vmxnet3_tx_timeout"], ["drivers/net/wan/cosa.c", "cosa_net_timeout"], ["drivers/net/wan/farsync.c", "fst_tx_timeout"], ["drivers/net/wan/fsl_ucc_hdlc.c", "uhdlc_tx_timeout"], ["drivers/net/wan/lmc/lmc_main.c", "lmc_driver_timeout"], ["drivers/net/wan/x25_asy.c", "x25_asy_timeout"], ["drivers/net/wimax/i2400m/netdev.c", "i2400m_tx_timeout"], ["drivers/net/wireless/intel/ipw2x00/ipw2100.c", "ipw2100_tx_timeout"], ["drivers/net/wireless/intersil/hostap/hostap_main.c", "prism2_tx_timeout"], ["drivers/net/wireless/intersil/hostap/hostap_main.c", "prism2_tx_timeout"], ["drivers/net/wireless/intersil/hostap/hostap_main.c", "prism2_tx_timeout"], ["drivers/net/wireless/intersil/orinoco/main.c", "orinoco_tx_timeout"], ["drivers/net/wireless/intersil/orinoco/orinoco_usb.c", "orinoco_tx_timeout"], ["drivers/net/wireless/intersil/orinoco/orinoco.h", "orinoco_tx_timeout"], ["drivers/net/wireless/intersil/prism54/islpci_dev.c", "islpci_eth_tx_timeout"], ["drivers/net/wireless/intersil/prism54/islpci_eth.c", "islpci_eth_tx_timeout"], ["drivers/net/wireless/intersil/prism54/islpci_eth.h", "islpci_eth_tx_timeout"], ["drivers/net/wireless/marvell/mwifiex/main.c", "mwifiex_tx_timeout"], ["drivers/net/wireless/quantenna/qtnfmac/core.c", "qtnf_netdev_tx_timeout"], ["drivers/net/wireless/quantenna/qtnfmac/core.h", "qtnf_netdev_tx_timeout"], ["drivers/net/wireless/rndis_wlan.c", "usbnet_tx_timeout"], ["drivers/net/wireless/wl3501_cs.c", "wl3501_tx_timeout"], ["drivers/net/wireless/zydas/zd1201.c", "zd1201_tx_timeout"], ["drivers/s390/net/qeth_core.h", "qeth_tx_timeout"], ["drivers/s390/net/qeth_core_main.c", "qeth_tx_timeout"], ["drivers/s390/net/qeth_l2_main.c", "qeth_tx_timeout"], ["drivers/s390/net/qeth_l2_main.c", "qeth_tx_timeout"], ["drivers/s390/net/qeth_l3_main.c", "qeth_tx_timeout"], ["drivers/s390/net/qeth_l3_main.c", "qeth_tx_timeout"], ["drivers/staging/ks7010/ks_wlan_net.c", "ks_wlan_tx_timeout"], ["drivers/staging/qlge/qlge_main.c", "qlge_tx_timeout"], ["drivers/staging/rtl8192e/rtl8192e/rtl_core.c", "_rtl92e_tx_timeout"], ["drivers/staging/rtl8192u/r8192U_core.c", "tx_timeout"], ["drivers/staging/unisys/visornic/visornic_main.c", "visornic_xmit_timeout"], ["drivers/staging/wlan-ng/p80211netdev.c", "p80211knetdev_tx_timeout"], ["drivers/tty/n_gsm.c", "gsm_mux_net_tx_timeout"], ["drivers/tty/synclink.c", "hdlcdev_tx_timeout"], ["drivers/tty/synclink_gt.c", "hdlcdev_tx_timeout"], ["drivers/tty/synclinkmp.c", "hdlcdev_tx_timeout"], ["net/atm/lec.c", "lec_tx_timeout"], ["net/bluetooth/bnep/netdev.c", "bnep_net_timeout"] ); for my $p (@work) { my @pair = @$p; my $file = $pair[0]; my $func = $pair[1]; print STDERR $file , ": ", $func,"\n"; our @ARGV = ($file); while (<ARGV>) { if (m/($func\s*\(struct\s+net_device\s+\*[A-Za-z_]?[A-Za-z-0-9_]*)(\))/) { print STDERR "found $1+$2 in $file\n"; } if (s/($func\s*\(struct\s+net_device\s+\*[A-Za-z_]?[A-Za-z-0-9_]*)(\))/$1, unsigned int txqueue$2/) { print STDERR "$func found in $file\n"; } print; } } where the list of files and functions is simply from: git grep ndo_tx_timeout, with manual addition of headers in the rare cases where the function is from a header, then manually changing the few places which actually call ndo_tx_timeout. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Heiner Kallweit <hkallweit1@gmail.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Acked-by: Shannon Nelson <snelson@pensando.io> Reviewed-by: Martin Habets <mhabets@solarflare.com> changes from v9: fixup a forward declaration changes from v9: more leftovers from v3 change changes from v8: fix up a missing direct call to timeout rebased on net-next changes from v7: fixup leftovers from v3 change changes from v6: fix typo in rtl driver changes from v5: add missing files (allow any net device argument name) changes from v4: add a missing driver header changes from v3: change queue # to unsigned Changes from v2: added headers Changes from v1: Fix errors found by kbuild: generalize the pattern a bit, to pick up a couple of instances missed by the previous version. Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-10 14:23:51 +00:00
static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct bnxt *bp = netdev_priv(dev);
netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
static void bnxt_fw_health_check(struct bnxt *bp)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
u32 val;
if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
return;
/* Make sure it is enabled before checking the tmr_counter. */
smp_rmb();
if (fw_health->tmr_counter) {
fw_health->tmr_counter--;
return;
}
val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
if (val == fw_health->last_fw_heartbeat) {
fw_health->arrests++;
goto fw_reset;
}
fw_health->last_fw_heartbeat = val;
val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
if (val != fw_health->last_fw_reset_cnt) {
fw_health->discoveries++;
goto fw_reset;
}
fw_health->tmr_counter = fw_health->tmr_multiplier;
return;
fw_reset:
set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
static void bnxt_timer(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
struct bnxt *bp = from_timer(bp, t, timer);
struct net_device *dev = bp->dev;
if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
return;
if (atomic_read(&bp->intr_sem) != 0)
goto bnxt_restart_timer;
if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
bnxt_fw_health_check(bp);
if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
if (bnxt_tc_flower_enabled(bp)) {
set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
#ifdef CONFIG_RFS_ACCEL
if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
#endif /*CONFIG_RFS_ACCEL*/
if (bp->link_info.phy_retry) {
if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
bp->link_info.phy_retry = false;
netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
} else {
set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
}
if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
netif_carrier_ok(dev)) {
set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
bnxt_restart_timer:
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
static void bnxt_rtnl_lock_sp(struct bnxt *bp)
{
/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
* set. If the device is being closed, bnxt_close() may be holding
* rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
* must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
*/
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
rtnl_lock();
}
static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
{
set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
rtnl_unlock();
}
/* Only called from bnxt_sp_task() */
static void bnxt_reset(struct bnxt *bp, bool silent)
{
bnxt_rtnl_lock_sp(bp);
if (test_bit(BNXT_STATE_OPEN, &bp->state))
bnxt_reset_task(bp, silent);
bnxt_rtnl_unlock_sp(bp);
}
/* Only called from bnxt_sp_task() */
static void bnxt_rx_ring_reset(struct bnxt *bp)
{
int i;
bnxt_rtnl_lock_sp(bp);
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
bnxt_rtnl_unlock_sp(bp);
return;
}
/* Disable and flush TPA before resetting the RX ring */
if (bp->flags & BNXT_FLAG_TPA)
bnxt_set_tpa(bp, false);
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_cp_ring_info *cpr;
int rc;
if (!rxr->bnapi->in_reset)
continue;
rc = bnxt_hwrm_rx_ring_reset(bp, i);
if (rc) {
if (rc == -EINVAL || rc == -EOPNOTSUPP)
netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
else
netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
rc);
bnxt_reset_task(bp, true);
break;
}
bnxt_free_one_rx_ring_skbs(bp, i);
rxr->rx_prod = 0;
rxr->rx_agg_prod = 0;
rxr->rx_sw_agg_prod = 0;
rxr->rx_next_cons = 0;
rxr->bnapi->in_reset = false;
bnxt_alloc_one_rx_ring(bp, i);
cpr = &rxr->bnapi->cp_ring;
cpr->sw_stats.rx.rx_resets++;
if (bp->flags & BNXT_FLAG_AGG_RINGS)
bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
}
if (bp->flags & BNXT_FLAG_TPA)
bnxt_set_tpa(bp, true);
bnxt_rtnl_unlock_sp(bp);
}
static void bnxt_fw_reset_close(struct bnxt *bp)
{
bnxt_ulp_stop(bp);
/* When firmware is in fatal state, quiesce device and disable
* bus master to prevent any potential bad DMAs before freeing
* kernel memory.
*/
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
u16 val = 0;
pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
if (val == 0xffff)
bp->fw_reset_min_dsecs = 0;
bnxt_tx_disable(bp);
bnxt_disable_napi(bp);
bnxt_disable_int_sync(bp);
bnxt_free_irq(bp);
bnxt_clear_int_mode(bp);
pci_disable_device(bp->pdev);
}
__bnxt_close_nic(bp, true, false);
bnxt_vf_reps_free(bp);
bnxt_clear_int_mode(bp);
bnxt_hwrm_func_drv_unrgtr(bp);
if (pci_is_enabled(bp->pdev))
pci_disable_device(bp->pdev);
bnxt_free_ctx_mem(bp);
kfree(bp->ctx);
bp->ctx = NULL;
}
static bool is_bnxt_fw_ok(struct bnxt *bp)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
bool no_heartbeat = false, has_reset = false;
u32 val;
val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
if (val == fw_health->last_fw_heartbeat)
no_heartbeat = true;
val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
if (val != fw_health->last_fw_reset_cnt)
has_reset = true;
if (!no_heartbeat && has_reset)
return true;
return false;
}
/* rtnl_lock is acquired before calling this function */
static void bnxt_force_fw_reset(struct bnxt *bp)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
u32 wait_dsecs;
if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
return;
if (ptp) {
spin_lock_bh(&ptp->ptp_lock);
set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
spin_unlock_bh(&ptp->ptp_lock);
} else {
set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
}
bnxt_fw_reset_close(bp);
wait_dsecs = fw_health->master_func_wait_dsecs;
if (fw_health->primary) {
if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
wait_dsecs = 0;
bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
} else {
bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
wait_dsecs = fw_health->normal_func_wait_dsecs;
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
}
bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
}
void bnxt_fw_exception(struct bnxt *bp)
{
netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
bnxt_rtnl_lock_sp(bp);
bnxt_force_fw_reset(bp);
bnxt_rtnl_unlock_sp(bp);
}
/* Returns the number of registered VFs, or 1 if VF configuration is pending, or
* < 0 on error.
*/
static int bnxt_get_registered_vfs(struct bnxt *bp)
{
#ifdef CONFIG_BNXT_SRIOV
int rc;
if (!BNXT_PF(bp))
return 0;
rc = bnxt_hwrm_func_qcfg(bp);
if (rc) {
netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
return rc;
}
if (bp->pf.registered_vfs)
return bp->pf.registered_vfs;
if (bp->sriov_cfg)
return 1;
#endif
return 0;
}
void bnxt_fw_reset(struct bnxt *bp)
{
bnxt_rtnl_lock_sp(bp);
if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
int n = 0, tmo;
if (ptp) {
spin_lock_bh(&ptp->ptp_lock);
set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
spin_unlock_bh(&ptp->ptp_lock);
} else {
set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
}
if (bp->pf.active_vfs &&
!test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
n = bnxt_get_registered_vfs(bp);
if (n < 0) {
netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
n);
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
dev_close(bp->dev);
goto fw_reset_exit;
} else if (n > 0) {
u16 vf_tmo_dsecs = n * 10;
if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
bp->fw_reset_max_dsecs = vf_tmo_dsecs;
bp->fw_reset_state =
BNXT_FW_RESET_STATE_POLL_VF;
bnxt_queue_fw_reset_work(bp, HZ / 10);
goto fw_reset_exit;
}
bnxt_fw_reset_close(bp);
if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
tmo = HZ / 10;
} else {
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
tmo = bp->fw_reset_min_dsecs * HZ / 10;
}
bnxt_queue_fw_reset_work(bp, tmo);
}
fw_reset_exit:
bnxt_rtnl_unlock_sp(bp);
}
static void bnxt_chk_missed_irq(struct bnxt *bp)
{
int i;
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
u32 fw_ring_id;
int j;
if (!bnapi)
continue;
cpr = &bnapi->cp_ring;
for (j = 0; j < 2; j++) {
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
u32 val[2];
if (!cpr2 || cpr2->has_more_work ||
!bnxt_has_work(bp, cpr2))
continue;
if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
continue;
}
fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
bnxt_dbg_hwrm_ring_info_get(bp,
DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
fw_ring_id, &val[0], &val[1]);
cpr->sw_stats.cmn.missed_irqs++;
}
}
}
static void bnxt_cfg_ntp_filters(struct bnxt *);
static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
{
struct bnxt_link_info *link_info = &bp->link_info;
if (BNXT_AUTO_MODE(link_info->auto_mode)) {
link_info->autoneg = BNXT_AUTONEG_SPEED;
if (bp->hwrm_spec_code >= 0x10201) {
if (link_info->auto_pause_setting &
PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
} else {
link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
}
link_info->advertising = link_info->auto_link_speeds;
link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
} else {
link_info->req_link_speed = link_info->force_link_speed;
link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
if (link_info->force_pam4_link_speed) {
link_info->req_link_speed =
link_info->force_pam4_link_speed;
link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
}
link_info->req_duplex = link_info->duplex_setting;
}
if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
link_info->req_flow_ctrl =
link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
else
link_info->req_flow_ctrl = link_info->force_pause_setting;
}
static void bnxt_fw_echo_reply(struct bnxt *bp)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
struct hwrm_func_echo_response_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
if (rc)
return;
req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
hwrm_req_send(bp, req);
}
static void bnxt_sp_task(struct work_struct *work)
{
struct bnxt *bp = container_of(work, struct bnxt, sp_task);
set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
smp_mb__after_atomic();
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
return;
}
if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
bnxt_cfg_rx_mode(bp);
if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
bnxt_cfg_ntp_filters(bp);
if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
bnxt_hwrm_exec_fwd_req(bp);
if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
bnxt_hwrm_port_qstats(bp, 0);
bnxt_hwrm_port_qstats_ext(bp, 0);
bnxt_accumulate_all_stats(bp);
}
if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
int rc;
mutex_lock(&bp->link_lock);
if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
&bp->sp_event))
bnxt_hwrm_phy_qcaps(bp);
rc = bnxt_update_link(bp, true);
if (rc)
netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
rc);
if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
&bp->sp_event))
bnxt_init_ethtool_link_settings(bp);
mutex_unlock(&bp->link_lock);
}
if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
int rc;
mutex_lock(&bp->link_lock);
rc = bnxt_update_phy_setting(bp);
mutex_unlock(&bp->link_lock);
if (rc) {
netdev_warn(bp->dev, "update phy settings retry failed\n");
} else {
bp->link_info.phy_retry = false;
netdev_info(bp->dev, "update phy settings retry succeeded\n");
}
}
if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
mutex_lock(&bp->link_lock);
bnxt_get_port_module_status(bp);
mutex_unlock(&bp->link_lock);
}
if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
bnxt_tc_flow_stats_work(bp);
if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
bnxt_chk_missed_irq(bp);
if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
bnxt_fw_echo_reply(bp);
/* These functions below will clear BNXT_STATE_IN_SP_TASK. They
* must be the last functions to be called before exiting.
*/
if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
bnxt_reset(bp, false);
if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
bnxt_reset(bp, true);
if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
bnxt_rx_ring_reset(bp);
if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
bnxt_devlink_health_fw_report(bp);
else
bnxt_fw_reset(bp);
}
if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
if (!is_bnxt_fw_ok(bp))
bnxt_devlink_health_fw_report(bp);
}
smp_mb__before_atomic();
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
}
/* Under rtnl_lock */
int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
int tx_xdp)
{
int max_rx, max_tx, tx_sets = 1;
int tx_rings_needed, stats;
int rx_rings = rx;
int cp, vnics, rc;
if (tcs)
tx_sets = tcs;
rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
if (rc)
return rc;
if (max_rx < rx)
return -ENOMEM;
tx_rings_needed = tx * tx_sets + tx_xdp;
if (max_tx < tx_rings_needed)
return -ENOMEM;
vnics = 1;
if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
vnics += rx_rings;
if (bp->flags & BNXT_FLAG_AGG_RINGS)
rx_rings <<= 1;
cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
stats = cp;
if (BNXT_NEW_RM(bp)) {
cp += bnxt_get_ulp_msix_num(bp);
stats += bnxt_get_ulp_stat_ctxs(bp);
}
return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
stats, vnics);
}
static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
{
if (bp->bar2) {
pci_iounmap(pdev, bp->bar2);
bp->bar2 = NULL;
}
if (bp->bar1) {
pci_iounmap(pdev, bp->bar1);
bp->bar1 = NULL;
}
if (bp->bar0) {
pci_iounmap(pdev, bp->bar0);
bp->bar0 = NULL;
}
}
static void bnxt_cleanup_pci(struct bnxt *bp)
{
bnxt_unmap_bars(bp, bp->pdev);
pci_release_regions(bp->pdev);
if (pci_is_enabled(bp->pdev))
pci_disable_device(bp->pdev);
}
static void bnxt_init_dflt_coal(struct bnxt *bp)
{
struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
struct bnxt_coal *coal;
u16 flags = 0;
if (coal_cap->cmpl_params &
RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
/* Tick values in micro seconds.
* 1 coal_buf x bufs_per_record = 1 completion record.
*/
coal = &bp->rx_coal;
coal->coal_ticks = 10;
coal->coal_bufs = 30;
coal->coal_ticks_irq = 1;
coal->coal_bufs_irq = 2;
coal->idle_thresh = 50;
coal->bufs_per_record = 2;
coal->budget = 64; /* NAPI budget */
coal->flags = flags;
coal = &bp->tx_coal;
coal->coal_ticks = 28;
coal->coal_bufs = 30;
coal->coal_ticks_irq = 2;
coal->coal_bufs_irq = 2;
coal->bufs_per_record = 1;
coal->flags = flags;
bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
}
static int bnxt_fw_init_one_p1(struct bnxt *bp)
{
int rc;
bp->fw_cap = 0;
rc = bnxt_hwrm_ver_get(bp);
bnxt_try_map_fw_health_reg(bp);
if (rc) {
rc = bnxt_try_recover_fw(bp);
if (rc)
return rc;
rc = bnxt_hwrm_ver_get(bp);
if (rc)
return rc;
}
bnxt_nvm_cfg_ver_get(bp);
rc = bnxt_hwrm_func_reset(bp);
if (rc)
return -ENODEV;
bnxt_hwrm_fw_set_time(bp);
return 0;
}
static int bnxt_fw_init_one_p2(struct bnxt *bp)
{
int rc;
/* Get the MAX capabilities for this function */
rc = bnxt_hwrm_func_qcaps(bp);
if (rc) {
netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
rc);
return -ENODEV;
}
rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
if (rc)
netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
rc);
if (bnxt_alloc_fw_health(bp)) {
netdev_warn(bp->dev, "no memory for firmware error recovery\n");
} else {
rc = bnxt_hwrm_error_recovery_qcfg(bp);
if (rc)
netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
rc);
}
rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
if (rc)
return -ENODEV;
bnxt_hwrm_func_qcfg(bp);
bnxt_hwrm_vnic_qcaps(bp);
bnxt_hwrm_port_led_qcaps(bp);
bnxt_ethtool_init(bp);
bnxt_dcb_init(bp);
return 0;
}
static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
{
bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
bp->rss_hash_delta = bp->rss_hash_cfg;
if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
}
}
static void bnxt_set_dflt_rfs(struct bnxt *bp)
{
struct net_device *dev = bp->dev;
dev->hw_features &= ~NETIF_F_NTUPLE;
dev->features &= ~NETIF_F_NTUPLE;
bp->flags &= ~BNXT_FLAG_RFS;
if (bnxt_rfs_supported(bp)) {
dev->hw_features |= NETIF_F_NTUPLE;
if (bnxt_rfs_capable(bp)) {
bp->flags |= BNXT_FLAG_RFS;
dev->features |= NETIF_F_NTUPLE;
}
}
}
static void bnxt_fw_init_one_p3(struct bnxt *bp)
{
struct pci_dev *pdev = bp->pdev;
bnxt_set_dflt_rss_hash_type(bp);
bnxt_set_dflt_rfs(bp);
bnxt_get_wol_settings(bp);
if (bp->flags & BNXT_FLAG_WOL_CAP)
device_set_wakeup_enable(&pdev->dev, bp->wol);
else
device_set_wakeup_capable(&pdev->dev, false);
bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
bnxt_hwrm_coal_params_qcaps(bp);
}
static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
int bnxt_fw_init_one(struct bnxt *bp)
{
int rc;
rc = bnxt_fw_init_one_p1(bp);
if (rc) {
netdev_err(bp->dev, "Firmware init phase 1 failed\n");
return rc;
}
rc = bnxt_fw_init_one_p2(bp);
if (rc) {
netdev_err(bp->dev, "Firmware init phase 2 failed\n");
return rc;
}
rc = bnxt_probe_phy(bp, false);
if (rc)
return rc;
rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
if (rc)
return rc;
bnxt_fw_init_one_p3(bp);
return 0;
}
static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
u32 val = fw_health->fw_reset_seq_vals[reg_idx];
u32 reg_type, reg_off, delay_msecs;
delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
switch (reg_type) {
case BNXT_FW_HEALTH_REG_TYPE_CFG:
pci_write_config_dword(bp->pdev, reg_off, val);
break;
case BNXT_FW_HEALTH_REG_TYPE_GRC:
writel(reg_off & BNXT_GRC_BASE_MASK,
bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
fallthrough;
case BNXT_FW_HEALTH_REG_TYPE_BAR0:
writel(val, bp->bar0 + reg_off);
break;
case BNXT_FW_HEALTH_REG_TYPE_BAR1:
writel(val, bp->bar1 + reg_off);
break;
}
if (delay_msecs) {
pci_read_config_dword(bp->pdev, 0, &val);
msleep(delay_msecs);
}
}
bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
{
struct hwrm_func_qcfg_output *resp;
struct hwrm_func_qcfg_input *req;
bool result = true; /* firmware will enforce if unknown */
if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
return result;
if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
return result;
req->fid = cpu_to_le16(0xffff);
resp = hwrm_req_hold(bp, req);
if (!hwrm_req_send(bp, req))
result = !!(le16_to_cpu(resp->flags) &
FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
hwrm_req_drop(bp, req);
return result;
}
static void bnxt_reset_all(struct bnxt *bp)
{
struct bnxt_fw_health *fw_health = bp->fw_health;
int i, rc;
if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
bnxt_fw_reset_via_optee(bp);
bp->fw_reset_timestamp = jiffies;
return;
}
if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
bnxt_fw_reset_writel(bp, i);
} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
struct hwrm_fw_reset_input *req;
rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
if (!rc) {
req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
rc = hwrm_req_send(bp, req);
}
if (rc != -ENODEV)
netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
}
bp->fw_reset_timestamp = jiffies;
}
static bool bnxt_fw_reset_timeout(struct bnxt *bp)
{
return time_after(jiffies, bp->fw_reset_timestamp +
(bp->fw_reset_max_dsecs * HZ / 10));
}
static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
{
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
bnxt_ulp_start(bp, rc);
bnxt_dl_health_fw_status_update(bp, false);
}
bp->fw_reset_state = 0;
dev_close(bp->dev);
}
static void bnxt_fw_reset_task(struct work_struct *work)
{
struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
int rc = 0;
if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
return;
}
switch (bp->fw_reset_state) {
case BNXT_FW_RESET_STATE_POLL_VF: {
int n = bnxt_get_registered_vfs(bp);
int tmo;
if (n < 0) {
netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
n, jiffies_to_msecs(jiffies -
bp->fw_reset_timestamp));
goto fw_reset_abort;
} else if (n > 0) {
if (bnxt_fw_reset_timeout(bp)) {
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
bp->fw_reset_state = 0;
netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
n);
return;
}
bnxt_queue_fw_reset_work(bp, HZ / 10);
return;
}
bp->fw_reset_timestamp = jiffies;
rtnl_lock();
if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
bnxt_fw_reset_abort(bp, rc);
rtnl_unlock();
return;
}
bnxt_fw_reset_close(bp);
if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
tmo = HZ / 10;
} else {
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
tmo = bp->fw_reset_min_dsecs * HZ / 10;
}
rtnl_unlock();
bnxt_queue_fw_reset_work(bp, tmo);
return;
}
case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
u32 val;
val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
!bnxt_fw_reset_timeout(bp)) {
bnxt_queue_fw_reset_work(bp, HZ / 5);
return;
}
if (!bp->fw_health->primary) {
u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
return;
}
bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
}
fallthrough;
case BNXT_FW_RESET_STATE_RESET_FW:
bnxt_reset_all(bp);
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
return;
case BNXT_FW_RESET_STATE_ENABLE_DEV:
bnxt_inv_fw_health_reg(bp);
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
!bp->fw_reset_min_dsecs) {
u16 val;
pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
if (val == 0xffff) {
if (bnxt_fw_reset_timeout(bp)) {
netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
rc = -ETIMEDOUT;
goto fw_reset_abort;
}
bnxt_queue_fw_reset_work(bp, HZ / 1000);
return;
}
}
clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
!test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
bnxt_dl_remote_reload(bp);
if (pci_enable_device(bp->pdev)) {
netdev_err(bp->dev, "Cannot re-enable PCI device\n");
rc = -ENODEV;
goto fw_reset_abort;
}
pci_set_master(bp->pdev);
bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
fallthrough;
case BNXT_FW_RESET_STATE_POLL_FW:
bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
rc = bnxt_hwrm_poll(bp);
if (rc) {
if (bnxt_fw_reset_timeout(bp)) {
netdev_err(bp->dev, "Firmware reset aborted\n");
goto fw_reset_abort_status;
}
bnxt_queue_fw_reset_work(bp, HZ / 5);
return;
}
bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
fallthrough;
case BNXT_FW_RESET_STATE_OPENING:
while (!rtnl_trylock()) {
bnxt_queue_fw_reset_work(bp, HZ / 10);
return;
}
rc = bnxt_open(bp->dev);
if (rc) {
netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
bnxt_fw_reset_abort(bp, rc);
rtnl_unlock();
return;
}
if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
bp->fw_health->enabled) {
bp->fw_health->last_fw_reset_cnt =
bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
}
bp->fw_reset_state = 0;
/* Make sure fw_reset_state is 0 before clearing the flag */
smp_mb__before_atomic();
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
bnxt_ulp_start(bp, 0);
bnxt_reenable_sriov(bp);
bnxt_vf_reps_alloc(bp);
bnxt_vf_reps_open(bp);
bnxt_ptp_reapply_pps(bp);
clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
bnxt_dl_health_fw_recovery_done(bp);
bnxt_dl_health_fw_status_update(bp, true);
}
rtnl_unlock();
break;
}
return;
fw_reset_abort_status:
if (bp->fw_health->status_reliable ||
(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
}
fw_reset_abort:
rtnl_lock();
bnxt_fw_reset_abort(bp, rc);
rtnl_unlock();
}
static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
{
int rc;
struct bnxt *bp = netdev_priv(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
/* enable device (incl. PCI PM wakeup), and bus-mastering */
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
goto init_err;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&pdev->dev,
"Cannot find PCI device base address, aborting\n");
rc = -ENODEV;
goto init_err_disable;
}
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
if (rc) {
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
goto init_err_disable;
}
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
dev_err(&pdev->dev, "System does not support DMA, aborting\n");
rc = -EIO;
goto init_err_release;
}
pci_set_master(pdev);
bp->dev = dev;
bp->pdev = pdev;
/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
* determines the BAR size.
*/
bp->bar0 = pci_ioremap_bar(pdev, 0);
if (!bp->bar0) {
dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
rc = -ENOMEM;
goto init_err_release;
}
bp->bar2 = pci_ioremap_bar(pdev, 4);
if (!bp->bar2) {
dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
rc = -ENOMEM;
goto init_err_release;
}
pci_enable_pcie_error_reporting(pdev);
INIT_WORK(&bp->sp_task, bnxt_sp_task);
INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
spin_lock_init(&bp->ntp_fltr_lock);
#if BITS_PER_LONG == 32
spin_lock_init(&bp->db_lock);
#endif
bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
timer_setup(&bp->timer, bnxt_timer, 0);
bp->current_interval = BNXT_TIMER_INTERVAL;
bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
clear_bit(BNXT_STATE_OPEN, &bp->state);
return 0;
init_err_release:
bnxt_unmap_bars(bp, pdev);
pci_release_regions(pdev);
init_err_disable:
pci_disable_device(pdev);
init_err:
return rc;
}
/* rtnl_lock held */
static int bnxt_change_mac_addr(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct bnxt *bp = netdev_priv(dev);
int rc = 0;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (ether_addr_equal(addr->sa_data, dev->dev_addr))
return 0;
rc = bnxt_approve_mac(bp, addr->sa_data, true);
if (rc)
return rc;
eth_hw_addr_set(dev, addr->sa_data);
if (netif_running(dev)) {
bnxt_close_nic(bp, false, false);
rc = bnxt_open_nic(bp, false, false);
}
return rc;
}
/* rtnl_lock held */
static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
{
struct bnxt *bp = netdev_priv(dev);
if (netif_running(dev))
bnxt_close_nic(bp, true, false);
dev->mtu = new_mtu;
bnxt_set_ring_params(bp);
if (netif_running(dev))
return bnxt_open_nic(bp, true, false);
return 0;
}
int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
{
struct bnxt *bp = netdev_priv(dev);
bool sh = false;
int rc;
if (tc > bp->max_tc) {
netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
tc, bp->max_tc);
return -EINVAL;
}
if (netdev_get_num_tc(dev) == tc)
return 0;
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
sh = true;
rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
sh, tc, bp->tx_nr_rings_xdp);
if (rc)
return rc;
/* Needs to close the device and do hw resource re-allocations */
if (netif_running(bp->dev))
bnxt_close_nic(bp, true, false);
if (tc) {
bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
netdev_set_num_tc(dev, tc);
} else {
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
netdev_reset_tc(dev);
}
bp->tx_nr_rings += bp->tx_nr_rings_xdp;
bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
bp->tx_nr_rings + bp->rx_nr_rings;
if (netif_running(bp->dev))
return bnxt_open_nic(bp, true, false);
return 0;
}
static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct bnxt *bp = cb_priv;
if (!bnxt_tc_flower_enabled(bp) ||
!tc_cls_can_offload_and_chain0(bp->dev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
default:
return -EOPNOTSUPP;
}
}
LIST_HEAD(bnxt_block_cb_list);
static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
struct bnxt *bp = netdev_priv(dev);
switch (type) {
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&bnxt_block_cb_list,
bnxt_setup_tc_block_cb,
bp, bp, true);
case TC_SETUP_QDISC_MQPRIO: {
struct tc_mqprio_qopt *mqprio = type_data;
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
return bnxt_setup_mq_tc(dev, mqprio->num_tc);
}
default:
return -EOPNOTSUPP;
}
}
#ifdef CONFIG_RFS_ACCEL
static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
struct bnxt_ntuple_filter *f2)
{
struct flow_keys *keys1 = &f1->fkeys;
struct flow_keys *keys2 = &f2->fkeys;
if (keys1->basic.n_proto != keys2->basic.n_proto ||
keys1->basic.ip_proto != keys2->basic.ip_proto)
return false;
if (keys1->basic.n_proto == htons(ETH_P_IP)) {
if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
return false;
} else {
if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
sizeof(keys1->addrs.v6addrs.src)) ||
memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
sizeof(keys1->addrs.v6addrs.dst)))
return false;
}
if (keys1->ports.ports == keys2->ports.ports &&
keys1->control.flags == keys2->control.flags &&
ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
return true;
return false;
}
static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
u16 rxq_index, u32 flow_id)
{
struct bnxt *bp = netdev_priv(dev);
struct bnxt_ntuple_filter *fltr, *new_fltr;
struct flow_keys *fkeys;
struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
int rc = 0, idx, bit_id, l2_idx = 0;
struct hlist_head *head;
u32 flags;
if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
int off = 0, j;
netif_addr_lock_bh(dev);
for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
if (ether_addr_equal(eth->h_dest,
vnic->uc_list + off)) {
l2_idx = j + 1;
break;
}
}
netif_addr_unlock_bh(dev);
if (!l2_idx)
return -EINVAL;
}
new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
if (!new_fltr)
return -ENOMEM;
fkeys = &new_fltr->fkeys;
if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
rc = -EPROTONOSUPPORT;
goto err_free;
}
if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
((fkeys->basic.ip_proto != IPPROTO_TCP) &&
(fkeys->basic.ip_proto != IPPROTO_UDP))) {
rc = -EPROTONOSUPPORT;
goto err_free;
}
if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
bp->hwrm_spec_code < 0x10601) {
rc = -EPROTONOSUPPORT;
goto err_free;
}
flags = fkeys->control.flags;
if (((flags & FLOW_DIS_ENCAPSULATION) &&
bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
rc = -EPROTONOSUPPORT;
goto err_free;
}
memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
head = &bp->ntp_fltr_hash_tbl[idx];
rcu_read_lock();
hlist_for_each_entry_rcu(fltr, head, hash) {
if (bnxt_fltr_match(fltr, new_fltr)) {
rc = fltr->sw_id;
rcu_read_unlock();
goto err_free;
}
}
rcu_read_unlock();
spin_lock_bh(&bp->ntp_fltr_lock);
bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
BNXT_NTP_FLTR_MAX_FLTR, 0);
if (bit_id < 0) {
spin_unlock_bh(&bp->ntp_fltr_lock);
rc = -ENOMEM;
goto err_free;
}
new_fltr->sw_id = (u16)bit_id;
new_fltr->flow_id = flow_id;
new_fltr->l2_fltr_idx = l2_idx;
new_fltr->rxq = rxq_index;
hlist_add_head_rcu(&new_fltr->hash, head);
bp->ntp_fltr_count++;
spin_unlock_bh(&bp->ntp_fltr_lock);
set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
return new_fltr->sw_id;
err_free:
kfree(new_fltr);
return rc;
}
static void bnxt_cfg_ntp_filters(struct bnxt *bp)
{
int i;
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
struct hlist_head *head;
struct hlist_node *tmp;
struct bnxt_ntuple_filter *fltr;
int rc;
head = &bp->ntp_fltr_hash_tbl[i];
hlist_for_each_entry_safe(fltr, tmp, head, hash) {
bool del = false;
if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
if (rps_may_expire_flow(bp->dev, fltr->rxq,
fltr->flow_id,
fltr->sw_id)) {
bnxt_hwrm_cfa_ntuple_filter_free(bp,
fltr);
del = true;
}
} else {
rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
fltr);
if (rc)
del = true;
else
set_bit(BNXT_FLTR_VALID, &fltr->state);
}
if (del) {
spin_lock_bh(&bp->ntp_fltr_lock);
hlist_del_rcu(&fltr->hash);
bp->ntp_fltr_count--;
spin_unlock_bh(&bp->ntp_fltr_lock);
synchronize_rcu();
clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
kfree(fltr);
}
}
}
if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
netdev_info(bp->dev, "Receive PF driver unload event!\n");
}
#else
static void bnxt_cfg_ntp_filters(struct bnxt *bp)
{
}
#endif /* CONFIG_RFS_ACCEL */
static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
{
struct bnxt *bp = netdev_priv(netdev);
struct udp_tunnel_info ti;
unsigned int cmd;
udp_tunnel_nic_get_port(netdev, table, 0, &ti);
if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
else
cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
if (ti.port)
return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
}
static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
.sync_table = bnxt_udp_tunnel_sync,
.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
.tables = {
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
},
};
static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev, u32 filter_mask,
int nlflags)
{
struct bnxt *bp = netdev_priv(dev);
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
nlflags, filter_mask, NULL);
}
static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
u16 flags, struct netlink_ext_ack *extack)
{
struct bnxt *bp = netdev_priv(dev);
struct nlattr *attr, *br_spec;
int rem, rc = 0;
if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
return -EOPNOTSUPP;
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (!br_spec)
return -EINVAL;
nla_for_each_nested(attr, br_spec, rem) {
u16 mode;
if (nla_type(attr) != IFLA_BRIDGE_MODE)
continue;
if (nla_len(attr) < sizeof(mode))
return -EINVAL;
mode = nla_get_u16(attr);
if (mode == bp->br_mode)
break;
rc = bnxt_hwrm_set_br_mode(bp, mode);
if (!rc)
bp->br_mode = mode;
break;
}
return rc;
}
int bnxt_get_port_parent_id(struct net_device *dev,
struct netdev_phys_item_id *ppid)
{
struct bnxt *bp = netdev_priv(dev);
if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
return -EOPNOTSUPP;
/* The PF and it's VF-reps only support the switchdev framework */
if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
return -EOPNOTSUPP;
ppid->id_len = sizeof(bp->dsn);
memcpy(ppid->id, bp->dsn, ppid->id_len);
return 0;
}
static const struct net_device_ops bnxt_netdev_ops = {
.ndo_open = bnxt_open,
.ndo_start_xmit = bnxt_start_xmit,
.ndo_stop = bnxt_close,
.ndo_get_stats64 = bnxt_get_stats64,
.ndo_set_rx_mode = bnxt_set_rx_mode,
.ndo_eth_ioctl = bnxt_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = bnxt_change_mac_addr,
.ndo_change_mtu = bnxt_change_mtu,
.ndo_fix_features = bnxt_fix_features,
.ndo_set_features = bnxt_set_features,
.ndo_features_check = bnxt_features_check,
.ndo_tx_timeout = bnxt_tx_timeout,
#ifdef CONFIG_BNXT_SRIOV
.ndo_get_vf_config = bnxt_get_vf_config,
.ndo_set_vf_mac = bnxt_set_vf_mac,
.ndo_set_vf_vlan = bnxt_set_vf_vlan,
.ndo_set_vf_rate = bnxt_set_vf_bw,
.ndo_set_vf_link_state = bnxt_set_vf_link_state,
.ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
.ndo_set_vf_trust = bnxt_set_vf_trust,
#endif
.ndo_setup_tc = bnxt_setup_tc,
#ifdef CONFIG_RFS_ACCEL
.ndo_rx_flow_steer = bnxt_rx_flow_steer,
#endif
.ndo_bpf = bnxt_xdp,
.ndo_xdp_xmit = bnxt_xdp_xmit,
.ndo_bridge_getlink = bnxt_bridge_getlink,
.ndo_bridge_setlink = bnxt_bridge_setlink,
};
static void bnxt_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(dev);
if (BNXT_PF(bp))
bnxt_sriov_disable(bp);
bnxt_rdma_aux_device_uninit(bp);
bnxt_ptp_clear(bp);
pci_disable_pcie_error_reporting(pdev);
unregister_netdev(dev);
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
/* Flush any pending tasks */
cancel_work_sync(&bp->sp_task);
cancel_delayed_work_sync(&bp->fw_reset_task);
bp->sp_event = 0;
bnxt_dl_fw_reporters_destroy(bp);
bnxt_dl_unregister(bp);
bnxt_shutdown_tc(bp);
bnxt_clear_int_mode(bp);
bnxt_hwrm_func_drv_unrgtr(bp);
bnxt_free_hwrm_resources(bp);
bnxt_ethtool_free(bp);
bnxt_dcb_free(bp);
kfree(bp->edev);
bp->edev = NULL;
kfree(bp->ptp_cfg);
bp->ptp_cfg = NULL;
kfree(bp->fw_health);
bp->fw_health = NULL;
bnxt_cleanup_pci(bp);
bnxt_free_ctx_mem(bp);
kfree(bp->ctx);
bp->ctx = NULL;
kfree(bp->rss_indir_tbl);
bp->rss_indir_tbl = NULL;
bnxt_free_port_stats(bp);
free_netdev(dev);
}
static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
{
int rc = 0;
struct bnxt_link_info *link_info = &bp->link_info;
bp->phy_flags = 0;
rc = bnxt_hwrm_phy_qcaps(bp);
if (rc) {
netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
rc);
return rc;
}
if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
bp->dev->priv_flags |= IFF_SUPP_NOFCS;
else
bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
if (!fw_dflt)
return 0;
mutex_lock(&bp->link_lock);
rc = bnxt_update_link(bp, false);
if (rc) {
mutex_unlock(&bp->link_lock);
netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
rc);
return rc;
}
/* Older firmware does not have supported_auto_speeds, so assume
* that all supported speeds can be autonegotiated.
*/
if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
link_info->support_auto_speeds = link_info->support_speeds;
bnxt_init_ethtool_link_settings(bp);
mutex_unlock(&bp->link_lock);
return 0;
}
static int bnxt_get_max_irq(struct pci_dev *pdev)
{
u16 ctrl;
if (!pdev->msix_cap)
return 1;
pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
}
static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
int *max_cp)
{
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
int max_ring_grps = 0, max_irq;
*max_tx = hw_resc->max_tx_rings;
*max_rx = hw_resc->max_rx_rings;
*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
bnxt_get_ulp_msix_num(bp),
hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
*max_cp = min_t(int, *max_cp, max_irq);
max_ring_grps = hw_resc->max_hw_ring_grps;
if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
*max_cp -= 1;
*max_rx -= 2;
}
if (bp->flags & BNXT_FLAG_AGG_RINGS)
*max_rx >>= 1;
if (bp->flags & BNXT_FLAG_CHIP_P5) {
bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
/* On P5 chips, max_cp output param should be available NQs */
*max_cp = max_irq;
}
*max_rx = min_t(int, *max_rx, max_ring_grps);
}
int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
{
int rx, tx, cp;
_bnxt_get_max_rings(bp, &rx, &tx, &cp);
*max_rx = rx;
*max_tx = tx;
if (!rx || !tx || !cp)
return -ENOMEM;
return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
}
static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
bool shared)
{
int rc;
rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
/* Not enough rings, try disabling agg rings. */
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
if (rc) {
/* set BNXT_FLAG_AGG_RINGS back for consistency */
bp->flags |= BNXT_FLAG_AGG_RINGS;
return rc;
}
bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
bnxt_set_ring_params(bp);
}
if (bp->flags & BNXT_FLAG_ROCE_CAP) {
int max_cp, max_stat, max_irq;
/* Reserve minimum resources for RoCE */
max_cp = bnxt_get_max_func_cp_rings(bp);
max_stat = bnxt_get_max_func_stat_ctxs(bp);
max_irq = bnxt_get_max_func_irqs(bp);
if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
return 0;
max_cp -= BNXT_MIN_ROCE_CP_RINGS;
max_irq -= BNXT_MIN_ROCE_CP_RINGS;
max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
max_cp = min_t(int, max_cp, max_irq);
max_cp = min_t(int, max_cp, max_stat);
rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
if (rc)
rc = 0;
}
return rc;
}
/* In initial default shared ring setting, each shared ring must have a
* RX/TX ring pair.
*/
static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
{
bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
bp->rx_nr_rings = bp->cp_nr_rings;
bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
}
static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
{
int dflt_rings, max_rx_rings, max_tx_rings, rc;
if (!bnxt_can_reserve_rings(bp))
return 0;
if (sh)
bp->flags |= BNXT_FLAG_SHARED_RINGS;
dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
/* Reduce default rings on multi-port cards so that total default
* rings do not exceed CPU count.
*/
if (bp->port_count > 1) {
int max_rings =
max_t(int, num_online_cpus() / bp->port_count, 1);
dflt_rings = min_t(int, dflt_rings, max_rings);
}
rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
if (rc)
return rc;
bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
if (sh)
bnxt_trim_dflt_sh_rings(bp);
else
bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
rc = __bnxt_reserve_rings(bp);
if (rc && rc != -ENODEV)
netdev_warn(bp->dev, "Unable to reserve tx rings\n");
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
if (sh)
bnxt_trim_dflt_sh_rings(bp);
/* Rings may have been trimmed, re-reserve the trimmed rings. */
if (bnxt_need_reserve_rings(bp)) {
rc = __bnxt_reserve_rings(bp);
if (rc && rc != -ENODEV)
netdev_warn(bp->dev, "2nd rings reservation failed.\n");
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
}
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
bp->rx_nr_rings++;
bp->cp_nr_rings++;
}
if (rc) {
bp->tx_nr_rings = 0;
bp->rx_nr_rings = 0;
}
return rc;
}
static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
{
int rc;
if (bp->tx_nr_rings)
return 0;
bnxt_ulp_irq_stop(bp);
bnxt_clear_int_mode(bp);
rc = bnxt_set_dflt_rings(bp, true);
if (rc) {
if (BNXT_VF(bp) && rc == -ENODEV)
netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
else
netdev_err(bp->dev, "Not enough rings available.\n");
goto init_dflt_ring_err;
}
rc = bnxt_init_int_mode(bp);
if (rc)
goto init_dflt_ring_err;
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
bnxt_set_dflt_rfs(bp);
init_dflt_ring_err:
bnxt_ulp_irq_restart(bp, rc);
return rc;
}
int bnxt_restore_pf_fw_resources(struct bnxt *bp)
{
int rc;
ASSERT_RTNL();
bnxt_hwrm_func_qcaps(bp);
if (netif_running(bp->dev))
__bnxt_close_nic(bp, true, false);
bnxt_ulp_irq_stop(bp);
bnxt_clear_int_mode(bp);
rc = bnxt_init_int_mode(bp);
bnxt_ulp_irq_restart(bp, rc);
if (netif_running(bp->dev)) {
if (rc)
dev_close(bp->dev);
else
rc = bnxt_open_nic(bp, true, false);
}
return rc;
}
static int bnxt_init_mac_addr(struct bnxt *bp)
{
int rc = 0;
if (BNXT_PF(bp)) {
eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
} else {
#ifdef CONFIG_BNXT_SRIOV
struct bnxt_vf_info *vf = &bp->vf;
bool strict_approval = true;
if (is_valid_ether_addr(vf->mac_addr)) {
/* overwrite netdev dev_addr with admin VF MAC */
eth_hw_addr_set(bp->dev, vf->mac_addr);
/* Older PF driver or firmware may not approve this
* correctly.
*/
strict_approval = false;
} else {
eth_hw_addr_random(bp->dev);
}
rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
#endif
}
return rc;
}
static void bnxt_vpd_read_info(struct bnxt *bp)
{
struct pci_dev *pdev = bp->pdev;
unsigned int vpd_size, kw_len;
int pos, size;
u8 *vpd_data;
vpd_data = pci_vpd_alloc(pdev, &vpd_size);
if (IS_ERR(vpd_data)) {
pci_warn(pdev, "Unable to read VPD\n");
return;
}
pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
if (pos < 0)
goto read_sn;
size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
memcpy(bp->board_partno, &vpd_data[pos], size);
read_sn:
pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
PCI_VPD_RO_KEYWORD_SERIALNO,
&kw_len);
if (pos < 0)
goto exit;
size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
memcpy(bp->board_serialno, &vpd_data[pos], size);
exit:
kfree(vpd_data);
}
static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
{
struct pci_dev *pdev = bp->pdev;
u64 qword;
qword = pci_get_dsn(pdev);
if (!qword) {
netdev_info(bp->dev, "Unable to read adapter's DSN\n");
return -EOPNOTSUPP;
}
put_unaligned_le64(qword, dsn);
bp->flags |= BNXT_FLAG_DSN_VALID;
return 0;
}
static int bnxt_map_db_bar(struct bnxt *bp)
{
if (!bp->db_size)
return -ENODEV;
bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
if (!bp->bar1)
return -ENOMEM;
return 0;
}
void bnxt_print_device_info(struct bnxt *bp)
{
netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
board_info[bp->board_idx].name,
(long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
pcie_print_link_status(bp->pdev);
}
static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *dev;
struct bnxt *bp;
int rc, max_irqs;
if (pci_is_bridge(pdev))
return -ENODEV;
/* Clear any pending DMA transactions from crash kernel
* while loading driver in capture kernel.
*/
if (is_kdump_kernel()) {
pci_clear_master(pdev);
pcie_flr(pdev);
}
max_irqs = bnxt_get_max_irq(pdev);
dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
if (!dev)
return -ENOMEM;
bp = netdev_priv(dev);
bp->board_idx = ent->driver_data;
bp->msg_enable = BNXT_DEF_MSG_ENABLE;
bnxt_set_max_func_irqs(bp, max_irqs);
if (bnxt_vf_pciid(bp->board_idx))
bp->flags |= BNXT_FLAG_VF;
bnxt_en: fix devlink port registration to netdev We don't register a devlink port in case of a VF so avoid setting the devlink pointer to netdev. Also, SET_NETDEV_DEVLINK_PORT has to be moved so that we determine whether the device is PF/VF first. This fixes the NULL pointer dereference of devlink_port->devlink when creating VFs: BUG: kernel NULL pointer dereference, address: 0000000000000160 PGD 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 14 PID: 388 Comm: kworker/14:1 Kdump: loaded Not tainted 6.1.0-rc8 #5 Hardware name: Dell Inc. PowerEdge R750/06V45N, BIOS 1.3.8 08/31/2021 Workqueue: events work_for_cpu_fn RIP: 0010:devlink_nl_port_handle_size+0xb/0x50 Code: 83 c4 10 5b 5d c3 cc cc cc cc b8 a6 ff ff ff eb de e8 c9 59 21 00 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 53 48 8b 47 20 <48> 8b a8 60 01 00 00 48 8b 45 60 48 8b 38 e8 92 90 1a 00 48 8b 7d RSP: 0018:ff4fe5394846fcd8 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000794 RCX: 0000000000000000 RDX: ff1f129683a30a40 RSI: 0000000000000008 RDI: ff1f1296bb496188 RBP: 0000000000000334 R08: 0000000000000cc0 R09: 0000000000000000 R10: ff1f1296bb494298 R11: ffffffffffffffc0 R12: 0000000000000000 R13: 0000000000000000 R14: ff1f1296bb494000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ff1f129e5fa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000160 CR3: 000000131f610006 CR4: 0000000000771ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> if_nlmsg_size+0x14a/0x220 rtmsg_ifinfo_build_skb+0x3c/0x100 rtmsg_ifinfo+0x9c/0xc0 register_netdevice+0x59d/0x670 register_netdev+0x1c/0x40 bnxt_init_one+0x674/0xa60 [bnxt_en] local_pci_probe+0x42/0x80 work_for_cpu_fn+0x13/0x20 process_one_work+0x1e2/0x3b0 ? rescuer_thread+0x390/0x390 worker_thread+0x1c4/0x3a0 ? rescuer_thread+0x390/0x390 kthread+0xd6/0x100 ? kthread_complete_and_exit+0x20/0x20 Fixes: ac73d4bf2cda ("net: make drivers to use SET_NETDEV_DEVLINK_PORT to set devlink_port") Cc: Jiri Pirko <jiri@nvidia.com> Signed-off-by: Vikas Gupta <vikas.gupta@broadcom.com> Reviewed-by: Andy Gospodarek <andrew.gospodarek@broadcom.com> Reviewed-by: Kalesh Anakkur Purayil <kalesh-anakkur.purayil@broadcom.com> Reviewed-by: Damodharam Ammepalli <damodharam.ammepalli@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-12-27 03:19:36 +00:00
/* No devlink port registration in case of a VF */
if (BNXT_PF(bp))
SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
if (pdev->msix_cap)
bp->flags |= BNXT_FLAG_MSIX_CAP;
rc = bnxt_init_board(pdev, dev);
if (rc < 0)
goto init_err_free;
dev->netdev_ops = &bnxt_netdev_ops;
dev->watchdog_timeo = BNXT_TX_TIMEOUT;
dev->ethtool_ops = &bnxt_ethtool_ops;
pci_set_drvdata(pdev, dev);
rc = bnxt_alloc_hwrm_resources(bp);
if (rc)
goto init_err_pci_clean;
mutex_init(&bp->hwrm_cmd_lock);
mutex_init(&bp->link_lock);
rc = bnxt_fw_init_one_p1(bp);
if (rc)
goto init_err_pci_clean;
if (BNXT_PF(bp))
bnxt_vpd_read_info(bp);
if (BNXT_CHIP_P5(bp)) {
bp->flags |= BNXT_FLAG_CHIP_P5;
if (BNXT_CHIP_SR2(bp))
bp->flags |= BNXT_FLAG_CHIP_SR2;
}
rc = bnxt_alloc_rss_indir_tbl(bp);
if (rc)
goto init_err_pci_clean;
rc = bnxt_fw_init_one_p2(bp);
if (rc)
goto init_err_pci_clean;
rc = bnxt_map_db_bar(bp);
if (rc) {
dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
rc);
goto init_err_pci_clean;
}
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_TSO6 |
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
NETIF_F_GSO_IPXIP4 |
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
NETIF_F_RXCSUM | NETIF_F_GRO;
if (BNXT_SUPPORTS_TPA(bp))
dev->hw_features |= NETIF_F_LRO;
dev->hw_enc_features =
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_TSO6 |
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_GSO_GRE_CSUM;
dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
if (BNXT_SUPPORTS_TPA(bp))
dev->hw_features |= NETIF_F_GRO_HW;
dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
if (dev->features & NETIF_F_GRO_HW)
dev->features &= ~NETIF_F_LRO;
dev->priv_flags |= IFF_UNICAST_FLT;
netif_set_tso_max_size(dev, GSO_MAX_SIZE);
drivers: net: turn on XDP features A summary of the flags being set for various drivers is given below. Note that XDP_F_REDIRECT_TARGET and XDP_F_FRAG_TARGET are features that can be turned off and on at runtime. This means that these flags may be set and unset under RTNL lock protection by the driver. Hence, READ_ONCE must be used by code loading the flag value. Also, these flags are not used for synchronization against the availability of XDP resources on a device. It is merely a hint, and hence the read may race with the actual teardown of XDP resources on the device. This may change in the future, e.g. operations taking a reference on the XDP resources of the driver, and in turn inhibiting turning off this flag. However, for now, it can only be used as a hint to check whether device supports becoming a redirection target. Turn 'hw-offload' feature flag on for: - netronome (nfp) - netdevsim. Turn 'native' and 'zerocopy' features flags on for: - intel (i40e, ice, ixgbe, igc) - mellanox (mlx5). - stmmac - netronome (nfp) Turn 'native' features flags on for: - amazon (ena) - broadcom (bnxt) - freescale (dpaa, dpaa2, enetc) - funeth - intel (igb) - marvell (mvneta, mvpp2, octeontx2) - mellanox (mlx4) - mtk_eth_soc - qlogic (qede) - sfc - socionext (netsec) - ti (cpsw) - tap - tsnep - veth - xen - virtio_net. Turn 'basic' (tx, pass, aborted and drop) features flags on for: - netronome (nfp) - cavium (thunder) - hyperv. Turn 'redirect_target' feature flag on for: - amanzon (ena) - broadcom (bnxt) - freescale (dpaa, dpaa2) - intel (i40e, ice, igb, ixgbe) - ti (cpsw) - marvell (mvneta, mvpp2) - sfc - socionext (netsec) - qlogic (qede) - mellanox (mlx5) - tap - veth - virtio_net - xen Reviewed-by: Gerhard Engleder <gerhard@engleder-embedded.com> Reviewed-by: Simon Horman <simon.horman@corigine.com> Acked-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Co-developed-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Co-developed-by: Lorenzo Bianconi <lorenzo@kernel.org> Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org> Signed-off-by: Marek Majtyka <alardam@gmail.com> Link: https://lore.kernel.org/r/3eca9fafb308462f7edb1f58e451d59209aa07eb.1675245258.git.lorenzo@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-01 10:24:18 +00:00
dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_RX_SG;
#ifdef CONFIG_BNXT_SRIOV
init_waitqueue_head(&bp->sriov_cfg_wait);
#endif
if (BNXT_SUPPORTS_TPA(bp)) {
bp->gro_func = bnxt_gro_func_5730x;
if (BNXT_CHIP_P4(bp))
bp->gro_func = bnxt_gro_func_5731x;
else if (BNXT_CHIP_P5(bp))
bp->gro_func = bnxt_gro_func_5750x;
}
if (!BNXT_CHIP_P4_PLUS(bp))
bp->flags |= BNXT_FLAG_DOUBLE_DB;
rc = bnxt_init_mac_addr(bp);
if (rc) {
dev_err(&pdev->dev, "Unable to initialize mac address.\n");
rc = -EADDRNOTAVAIL;
goto init_err_pci_clean;
}
if (BNXT_PF(bp)) {
/* Read the adapter's DSN to use as the eswitch switch_id */
rc = bnxt_pcie_dsn_get(bp, bp->dsn);
}
/* MTU range: 60 - FW defined max */
dev->min_mtu = ETH_ZLEN;
dev->max_mtu = bp->max_mtu;
rc = bnxt_probe_phy(bp, true);
if (rc)
goto init_err_pci_clean;
bnxt_set_rx_skb_mode(bp, false);
bnxt_set_tpa_flags(bp);
bnxt_set_ring_params(bp);
rc = bnxt_set_dflt_rings(bp, true);
if (rc) {
if (BNXT_VF(bp) && rc == -ENODEV) {
netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
} else {
netdev_err(bp->dev, "Not enough rings available.\n");
rc = -ENOMEM;
}
goto init_err_pci_clean;
}
bnxt_fw_init_one_p3(bp);
bnxt_init_dflt_coal(bp);
if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
bp->flags |= BNXT_FLAG_STRIP_VLAN;
rc = bnxt_init_int_mode(bp);
if (rc)
goto init_err_pci_clean;
/* No TC has been set yet and rings may have been trimmed due to
* limited MSIX, so we re-initialize the TX rings per TC.
*/
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
if (BNXT_PF(bp)) {
if (!bnxt_pf_wq) {
bnxt_pf_wq =
create_singlethread_workqueue("bnxt_pf_wq");
if (!bnxt_pf_wq) {
dev_err(&pdev->dev, "Unable to create workqueue.\n");
rc = -ENOMEM;
goto init_err_pci_clean;
}
}
rc = bnxt_init_tc(bp);
if (rc)
netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
rc);
}
bnxt_inv_fw_health_reg(bp);
rc = bnxt_dl_register(bp);
if (rc)
goto init_err_dl;
rc = register_netdev(dev);
if (rc)
goto init_err_cleanup;
bnxt_dl_fw_reporters_create(bp);
bnxt_rdma_aux_device_init(bp);
bnxt_print_device_info(bp);
pci_save_state(pdev);
return 0;
init_err_cleanup:
bnxt_dl_unregister(bp);
init_err_dl:
bnxt_shutdown_tc(bp);
bnxt_clear_int_mode(bp);
init_err_pci_clean:
bnxt_hwrm_func_drv_unrgtr(bp);
bnxt_free_hwrm_resources(bp);
bnxt_ethtool_free(bp);
bnxt_ptp_clear(bp);
kfree(bp->ptp_cfg);
bp->ptp_cfg = NULL;
kfree(bp->fw_health);
bp->fw_health = NULL;
bnxt_cleanup_pci(bp);
bnxt_free_ctx_mem(bp);
kfree(bp->ctx);
bp->ctx = NULL;
kfree(bp->rss_indir_tbl);
bp->rss_indir_tbl = NULL;
init_err_free:
free_netdev(dev);
return rc;
}
static void bnxt_shutdown(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnxt *bp;
if (!dev)
return;
rtnl_lock();
bp = netdev_priv(dev);
if (!bp)
goto shutdown_exit;
if (netif_running(dev))
dev_close(dev);
bnxt_clear_int_mode(bp);
pci_disable_device(pdev);
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, bp->wol);
pci_set_power_state(pdev, PCI_D3hot);
}
shutdown_exit:
rtnl_unlock();
}
#ifdef CONFIG_PM_SLEEP
static int bnxt_suspend(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct bnxt *bp = netdev_priv(dev);
int rc = 0;
rtnl_lock();
bnxt_ulp_stop(bp);
if (netif_running(dev)) {
netif_device_detach(dev);
rc = bnxt_close(dev);
}
bnxt_hwrm_func_drv_unrgtr(bp);
pci_disable_device(bp->pdev);
bnxt_free_ctx_mem(bp);
kfree(bp->ctx);
bp->ctx = NULL;
rtnl_unlock();
return rc;
}
static int bnxt_resume(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct bnxt *bp = netdev_priv(dev);
int rc = 0;
rtnl_lock();
rc = pci_enable_device(bp->pdev);
if (rc) {
netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
rc);
goto resume_exit;
}
pci_set_master(bp->pdev);
if (bnxt_hwrm_ver_get(bp)) {
rc = -ENODEV;
goto resume_exit;
}
rc = bnxt_hwrm_func_reset(bp);
if (rc) {
rc = -EBUSY;
goto resume_exit;
}
rc = bnxt_hwrm_func_qcaps(bp);
if (rc)
goto resume_exit;
if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
rc = -ENODEV;
goto resume_exit;
}
bnxt_get_wol_settings(bp);
if (netif_running(dev)) {
rc = bnxt_open(dev);
if (!rc)
netif_device_attach(dev);
}
resume_exit:
bnxt_ulp_start(bp, rc);
if (!rc)
bnxt_reenable_sriov(bp);
rtnl_unlock();
return rc;
}
static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
#define BNXT_PM_OPS (&bnxt_pm_ops)
#else
#define BNXT_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
/**
* bnxt_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(netdev);
netdev_info(netdev, "PCI I/O error detected\n");
rtnl_lock();
netif_device_detach(netdev);
bnxt_ulp_stop(bp);
if (state == pci_channel_io_perm_failure) {
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
if (state == pci_channel_io_frozen)
set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
if (netif_running(netdev))
bnxt_close(netdev);
if (pci_is_enabled(pdev))
pci_disable_device(pdev);
bnxt_free_ctx_mem(bp);
kfree(bp->ctx);
bp->ctx = NULL;
rtnl_unlock();
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* bnxt_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
* At this point, the card has exprienced a hard reset,
* followed by fixups by BIOS, and has its config space
* set up identically to what it was at cold boot.
*/
static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
{
pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
struct net_device *netdev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(netdev);
int retry = 0;
int err = 0;
int off;
netdev_info(bp->dev, "PCI Slot Reset\n");
rtnl_lock();
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
} else {
pci_set_master(pdev);
/* Upon fatal error, our device internal logic that latches to
* BAR value is getting reset and will restore only upon
* rewritting the BARs.
*
* As pci_restore_state() does not re-write the BARs if the
* value is same as saved value earlier, driver needs to
* write the BARs to 0 to force restore, in case of fatal error.
*/
if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
&bp->state)) {
for (off = PCI_BASE_ADDRESS_0;
off <= PCI_BASE_ADDRESS_5; off += 4)
pci_write_config_dword(bp->pdev, off, 0);
}
pci_restore_state(pdev);
pci_save_state(pdev);
bnxt_inv_fw_health_reg(bp);
bnxt_try_map_fw_health_reg(bp);
/* In some PCIe AER scenarios, firmware may take up to
* 10 seconds to become ready in the worst case.
*/
do {
err = bnxt_try_recover_fw(bp);
if (!err)
break;
retry++;
} while (retry < BNXT_FW_SLOT_RESET_RETRY);
if (err) {
dev_err(&pdev->dev, "Firmware not ready\n");
goto reset_exit;
}
err = bnxt_hwrm_func_reset(bp);
if (!err)
result = PCI_ERS_RESULT_RECOVERED;
bnxt_ulp_irq_stop(bp);
bnxt_clear_int_mode(bp);
err = bnxt_init_int_mode(bp);
bnxt_ulp_irq_restart(bp, err);
}
reset_exit:
bnxt_clear_reservations(bp, true);
rtnl_unlock();
return result;
}
/**
* bnxt_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells
* us that its OK to resume normal operation.
*/
static void bnxt_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(netdev);
int err;
netdev_info(bp->dev, "PCI Slot Resume\n");
rtnl_lock();
err = bnxt_hwrm_func_qcaps(bp);
if (!err && netif_running(netdev))
err = bnxt_open(netdev);
bnxt_ulp_start(bp, err);
if (!err) {
bnxt_reenable_sriov(bp);
netif_device_attach(netdev);
}
rtnl_unlock();
}
static const struct pci_error_handlers bnxt_err_handler = {
.error_detected = bnxt_io_error_detected,
.slot_reset = bnxt_io_slot_reset,
.resume = bnxt_io_resume
};
static struct pci_driver bnxt_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = bnxt_pci_tbl,
.probe = bnxt_init_one,
.remove = bnxt_remove_one,
.shutdown = bnxt_shutdown,
.driver.pm = BNXT_PM_OPS,
.err_handler = &bnxt_err_handler,
#if defined(CONFIG_BNXT_SRIOV)
.sriov_configure = bnxt_sriov_configure,
#endif
};
static int __init bnxt_init(void)
{
int err;
bnxt_debug_init();
err = pci_register_driver(&bnxt_pci_driver);
if (err) {
bnxt_debug_exit();
return err;
}
return 0;
}
static void __exit bnxt_exit(void)
{
pci_unregister_driver(&bnxt_pci_driver);
if (bnxt_pf_wq)
destroy_workqueue(bnxt_pf_wq);
bnxt_debug_exit();
}
module_init(bnxt_init);
module_exit(bnxt_exit);