mm/vmalloc.c: allow vread() to read out vm_map_ram areas

Currently, vread can read out vmalloc areas which is associated with a
vm_struct.  While this doesn't work for areas created by vm_map_ram()
interface because it doesn't have an associated vm_struct.  Then in
vread(), these areas are all skipped.

Here, add a new function vmap_ram_vread() to read out vm_map_ram areas. 
The area created with vmap_ram_vread() interface directly can be handled
like the other normal vmap areas with aligned_vread().  While areas which
will be further subdivided and managed with vmap_block need carefully read
out page-aligned small regions and zero fill holes.

Link: https://lkml.kernel.org/r/20230206084020.174506-4-bhe@redhat.com
Reported-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Tested-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This commit is contained in:
Baoquan He 2023-02-06 16:40:16 +08:00 committed by Andrew Morton
parent 869176a096
commit 06c8994626
1 changed files with 81 additions and 7 deletions

View File

@ -3463,6 +3463,68 @@ static int aligned_vread(char *buf, char *addr, unsigned long count)
return copied;
}
static void vmap_ram_vread(char *buf, char *addr, int count, unsigned long flags)
{
char *start;
struct vmap_block *vb;
unsigned long offset;
unsigned int rs, re, n;
/*
* If it's area created by vm_map_ram() interface directly, but
* not further subdividing and delegating management to vmap_block,
* handle it here.
*/
if (!(flags & VMAP_BLOCK)) {
aligned_vread(buf, addr, count);
return;
}
/*
* Area is split into regions and tracked with vmap_block, read out
* each region and zero fill the hole between regions.
*/
vb = xa_load(&vmap_blocks, addr_to_vb_idx((unsigned long)addr));
if (!vb)
goto finished;
spin_lock(&vb->lock);
if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
spin_unlock(&vb->lock);
goto finished;
}
for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
if (!count)
break;
start = vmap_block_vaddr(vb->va->va_start, rs);
while (addr < start) {
if (count == 0)
goto unlock;
*buf = '\0';
buf++;
addr++;
count--;
}
/*it could start reading from the middle of used region*/
offset = offset_in_page(addr);
n = ((re - rs + 1) << PAGE_SHIFT) - offset;
if (n > count)
n = count;
aligned_vread(buf, start+offset, n);
buf += n;
addr += n;
count -= n;
}
unlock:
spin_unlock(&vb->lock);
finished:
/* zero-fill the left dirty or free regions */
if (count)
memset(buf, 0, count);
}
/**
* vread() - read vmalloc area in a safe way.
* @buf: buffer for reading data
@ -3493,7 +3555,7 @@ long vread(char *buf, char *addr, unsigned long count)
struct vm_struct *vm;
char *vaddr, *buf_start = buf;
unsigned long buflen = count;
unsigned long n;
unsigned long n, size, flags;
addr = kasan_reset_tag(addr);
@ -3514,12 +3576,21 @@ long vread(char *buf, char *addr, unsigned long count)
if (!count)
break;
if (!va->vm)
vm = va->vm;
flags = va->flags & VMAP_FLAGS_MASK;
/*
* VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
* be set together with VMAP_RAM.
*/
WARN_ON(flags == VMAP_BLOCK);
if (!vm && !flags)
continue;
vm = va->vm;
vaddr = (char *) vm->addr;
if (addr >= vaddr + get_vm_area_size(vm))
vaddr = (char *) va->va_start;
size = vm ? get_vm_area_size(vm) : va_size(va);
if (addr >= vaddr + size)
continue;
while (addr < vaddr) {
if (count == 0)
@ -3529,10 +3600,13 @@ long vread(char *buf, char *addr, unsigned long count)
addr++;
count--;
}
n = vaddr + get_vm_area_size(vm) - addr;
n = vaddr + size - addr;
if (n > count)
n = count;
if (!(vm->flags & VM_IOREMAP))
if (flags & VMAP_RAM)
vmap_ram_vread(buf, addr, n, flags);
else if (!(vm->flags & VM_IOREMAP))
aligned_vread(buf, addr, n);
else /* IOREMAP area is treated as memory hole */
memset(buf, 0, n);