crypto: tegra - Add Tegra Security Engine driver

Add support for Tegra Security Engine which can accelerate various
crypto algorithms. The Engine has two separate instances within for
AES and HASH algorithms respectively.

The driver registers two crypto engines - one for AES and another for
HASH algorithms and these operate independently and both uses the host1x
bus. Additionally, it provides  hardware-assisted key protection for up
to 15 symmetric keys which it can use for the cipher operations.

Signed-off-by: Akhil R <akhilrajeev@nvidia.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Akhil R 2024-04-03 15:30:37 +05:30 committed by Herbert Xu
parent cc370ff85b
commit 0880bb3b00
9 changed files with 4171 additions and 0 deletions

View file

@ -21702,6 +21702,11 @@ M: Prashant Gaikwad <pgaikwad@nvidia.com>
S: Supported
F: drivers/clk/tegra/
TEGRA CRYPTO DRIVERS
M: Akhil R <akhilrajeev@nvidia.com>
S: Supported
F: drivers/crypto/tegra/*
TEGRA DMA DRIVERS
M: Laxman Dewangan <ldewangan@nvidia.com>
M: Jon Hunter <jonathanh@nvidia.com>

View file

@ -660,6 +660,14 @@ config CRYPTO_DEV_ROCKCHIP_DEBUG
This will create /sys/kernel/debug/rk3288_crypto/stats for displaying
the number of requests per algorithm and other internal stats.
config CRYPTO_DEV_TEGRA
tristate "Enable Tegra Security Engine"
depends on TEGRA_HOST1X
select CRYPTO_ENGINE
help
Select this to enable Tegra Security Engine which accelerates various
AES encryption/decryption and HASH algorithms.
config CRYPTO_DEV_ZYNQMP_AES
tristate "Support for Xilinx ZynqMP AES hw accelerator"

View file

@ -41,6 +41,7 @@ obj-$(CONFIG_CRYPTO_DEV_SAHARA) += sahara.o
obj-$(CONFIG_CRYPTO_DEV_SL3516) += gemini/
obj-y += stm32/
obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o
obj-$(CONFIG_CRYPTO_DEV_TEGRA) += tegra/
obj-$(CONFIG_CRYPTO_DEV_VIRTIO) += virtio/
#obj-$(CONFIG_CRYPTO_DEV_VMX) += vmx/
obj-$(CONFIG_CRYPTO_DEV_BCM_SPU) += bcm/

View file

@ -0,0 +1,9 @@
// SPDX-License-Identifier: GPL-2.0-only
// SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
tegra-se-objs := tegra-se-key.o tegra-se-main.o
tegra-se-y += tegra-se-aes.o
tegra-se-y += tegra-se-hash.o
obj-$(CONFIG_CRYPTO_DEV_TEGRA) += tegra-se.o

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,156 @@
// SPDX-License-Identifier: GPL-2.0-only
// SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
/*
* Crypto driver file to manage keys of NVIDIA Security Engine.
*/
#include <linux/bitops.h>
#include <linux/module.h>
#include <crypto/aes.h>
#include "tegra-se.h"
#define SE_KEY_FULL_MASK GENMASK(SE_MAX_KEYSLOT, 0)
/* Reserve keyslot 0, 14, 15 */
#define SE_KEY_RSVD_MASK (BIT(0) | BIT(14) | BIT(15))
#define SE_KEY_VALID_MASK (SE_KEY_FULL_MASK & ~SE_KEY_RSVD_MASK)
/* Mutex lock to guard keyslots */
static DEFINE_MUTEX(kslt_lock);
/* Keyslot bitmask (0 = available, 1 = in use/not available) */
static u16 tegra_se_keyslots = SE_KEY_RSVD_MASK;
static u16 tegra_keyslot_alloc(void)
{
u16 keyid;
mutex_lock(&kslt_lock);
/* Check if all key slots are full */
if (tegra_se_keyslots == GENMASK(SE_MAX_KEYSLOT, 0)) {
mutex_unlock(&kslt_lock);
return 0;
}
keyid = ffz(tegra_se_keyslots);
tegra_se_keyslots |= BIT(keyid);
mutex_unlock(&kslt_lock);
return keyid;
}
static void tegra_keyslot_free(u16 slot)
{
mutex_lock(&kslt_lock);
tegra_se_keyslots &= ~(BIT(slot));
mutex_unlock(&kslt_lock);
}
static unsigned int tegra_key_prep_ins_cmd(struct tegra_se *se, u32 *cpuvaddr,
const u32 *key, u32 keylen, u16 slot, u32 alg)
{
int i = 0, j;
cpuvaddr[i++] = host1x_opcode_setpayload(1);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->op);
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_DUMMY;
cpuvaddr[i++] = host1x_opcode_setpayload(1);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->manifest);
cpuvaddr[i++] = se->manifest(se->owner, alg, keylen);
cpuvaddr[i++] = host1x_opcode_setpayload(1);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->key_dst);
cpuvaddr[i++] = SE_AES_KEY_DST_INDEX(slot);
for (j = 0; j < keylen / 4; j++) {
/* Set key address */
cpuvaddr[i++] = host1x_opcode_setpayload(1);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->key_addr);
cpuvaddr[i++] = j;
/* Set key data */
cpuvaddr[i++] = host1x_opcode_setpayload(1);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->key_data);
cpuvaddr[i++] = key[j];
}
cpuvaddr[i++] = host1x_opcode_setpayload(1);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->config);
cpuvaddr[i++] = SE_CFG_INS;
cpuvaddr[i++] = host1x_opcode_setpayload(1);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->op);
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_START |
SE_AES_OP_LASTBUF;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "key-slot %u key-manifest %#x\n",
slot, se->manifest(se->owner, alg, keylen));
return i;
}
static bool tegra_key_in_kslt(u32 keyid)
{
bool ret;
if (keyid > SE_MAX_KEYSLOT)
return false;
mutex_lock(&kslt_lock);
ret = ((BIT(keyid) & SE_KEY_VALID_MASK) &&
(BIT(keyid) & tegra_se_keyslots));
mutex_unlock(&kslt_lock);
return ret;
}
static int tegra_key_insert(struct tegra_se *se, const u8 *key,
u32 keylen, u16 slot, u32 alg)
{
const u32 *keyval = (u32 *)key;
u32 *addr = se->cmdbuf->addr, size;
size = tegra_key_prep_ins_cmd(se, addr, keyval, keylen, slot, alg);
return tegra_se_host1x_submit(se, size);
}
void tegra_key_invalidate(struct tegra_se *se, u32 keyid, u32 alg)
{
u8 zkey[AES_MAX_KEY_SIZE] = {0};
if (!keyid)
return;
/* Overwrite the key with 0s */
tegra_key_insert(se, zkey, AES_MAX_KEY_SIZE, keyid, alg);
tegra_keyslot_free(keyid);
}
int tegra_key_submit(struct tegra_se *se, const u8 *key, u32 keylen, u32 alg, u32 *keyid)
{
int ret;
/* Use the existing slot if it is already allocated */
if (!tegra_key_in_kslt(*keyid)) {
*keyid = tegra_keyslot_alloc();
if (!(*keyid)) {
dev_err(se->dev, "failed to allocate key slot\n");
return -ENOMEM;
}
}
ret = tegra_key_insert(se, key, keylen, *keyid, alg);
if (ret)
return ret;
return 0;
}

View file

@ -0,0 +1,439 @@
// SPDX-License-Identifier: GPL-2.0-only
// SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
/*
* Crypto driver for NVIDIA Security Engine in Tegra Chips
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mod_devicetable.h>
#include <crypto/engine.h>
#include "tegra-se.h"
static struct host1x_bo *tegra_se_cmdbuf_get(struct host1x_bo *host_bo)
{
struct tegra_se_cmdbuf *cmdbuf = container_of(host_bo, struct tegra_se_cmdbuf, bo);
kref_get(&cmdbuf->ref);
return host_bo;
}
static void tegra_se_cmdbuf_release(struct kref *ref)
{
struct tegra_se_cmdbuf *cmdbuf = container_of(ref, struct tegra_se_cmdbuf, ref);
dma_free_attrs(cmdbuf->dev, cmdbuf->size, cmdbuf->addr,
cmdbuf->iova, 0);
kfree(cmdbuf);
}
static void tegra_se_cmdbuf_put(struct host1x_bo *host_bo)
{
struct tegra_se_cmdbuf *cmdbuf = container_of(host_bo, struct tegra_se_cmdbuf, bo);
kref_put(&cmdbuf->ref, tegra_se_cmdbuf_release);
}
static struct host1x_bo_mapping *
tegra_se_cmdbuf_pin(struct device *dev, struct host1x_bo *bo, enum dma_data_direction direction)
{
struct tegra_se_cmdbuf *cmdbuf = container_of(bo, struct tegra_se_cmdbuf, bo);
struct host1x_bo_mapping *map;
int err;
map = kzalloc(sizeof(*map), GFP_KERNEL);
if (!map)
return ERR_PTR(-ENOMEM);
kref_init(&map->ref);
map->bo = host1x_bo_get(bo);
map->direction = direction;
map->dev = dev;
map->sgt = kzalloc(sizeof(*map->sgt), GFP_KERNEL);
if (!map->sgt) {
err = -ENOMEM;
goto free;
}
err = dma_get_sgtable(dev, map->sgt, cmdbuf->addr,
cmdbuf->iova, cmdbuf->words * 4);
if (err)
goto free_sgt;
err = dma_map_sgtable(dev, map->sgt, direction, 0);
if (err)
goto free_sgt;
map->phys = sg_dma_address(map->sgt->sgl);
map->size = cmdbuf->words * 4;
map->chunks = err;
return map;
free_sgt:
sg_free_table(map->sgt);
kfree(map->sgt);
free:
kfree(map);
return ERR_PTR(err);
}
static void tegra_se_cmdbuf_unpin(struct host1x_bo_mapping *map)
{
if (!map)
return;
dma_unmap_sgtable(map->dev, map->sgt, map->direction, 0);
sg_free_table(map->sgt);
kfree(map->sgt);
host1x_bo_put(map->bo);
kfree(map);
}
static void *tegra_se_cmdbuf_mmap(struct host1x_bo *host_bo)
{
struct tegra_se_cmdbuf *cmdbuf = container_of(host_bo, struct tegra_se_cmdbuf, bo);
return cmdbuf->addr;
}
static void tegra_se_cmdbuf_munmap(struct host1x_bo *host_bo, void *addr)
{
}
static const struct host1x_bo_ops tegra_se_cmdbuf_ops = {
.get = tegra_se_cmdbuf_get,
.put = tegra_se_cmdbuf_put,
.pin = tegra_se_cmdbuf_pin,
.unpin = tegra_se_cmdbuf_unpin,
.mmap = tegra_se_cmdbuf_mmap,
.munmap = tegra_se_cmdbuf_munmap,
};
static struct tegra_se_cmdbuf *tegra_se_host1x_bo_alloc(struct tegra_se *se, ssize_t size)
{
struct tegra_se_cmdbuf *cmdbuf;
struct device *dev = se->dev->parent;
cmdbuf = kzalloc(sizeof(*cmdbuf), GFP_KERNEL);
if (!cmdbuf)
return NULL;
cmdbuf->addr = dma_alloc_attrs(dev, size, &cmdbuf->iova,
GFP_KERNEL, 0);
if (!cmdbuf->addr)
return NULL;
cmdbuf->size = size;
cmdbuf->dev = dev;
host1x_bo_init(&cmdbuf->bo, &tegra_se_cmdbuf_ops);
kref_init(&cmdbuf->ref);
return cmdbuf;
}
int tegra_se_host1x_submit(struct tegra_se *se, u32 size)
{
struct host1x_job *job;
int ret;
job = host1x_job_alloc(se->channel, 1, 0, true);
if (!job) {
dev_err(se->dev, "failed to allocate host1x job\n");
return -ENOMEM;
}
job->syncpt = host1x_syncpt_get(se->syncpt);
job->syncpt_incrs = 1;
job->client = &se->client;
job->class = se->client.class;
job->serialize = true;
job->engine_fallback_streamid = se->stream_id;
job->engine_streamid_offset = SE_STREAM_ID;
se->cmdbuf->words = size;
host1x_job_add_gather(job, &se->cmdbuf->bo, size, 0);
ret = host1x_job_pin(job, se->dev);
if (ret) {
dev_err(se->dev, "failed to pin host1x job\n");
goto job_put;
}
ret = host1x_job_submit(job);
if (ret) {
dev_err(se->dev, "failed to submit host1x job\n");
goto job_unpin;
}
ret = host1x_syncpt_wait(job->syncpt, job->syncpt_end,
MAX_SCHEDULE_TIMEOUT, NULL);
if (ret) {
dev_err(se->dev, "host1x job timed out\n");
return ret;
}
host1x_job_put(job);
return 0;
job_unpin:
host1x_job_unpin(job);
job_put:
host1x_job_put(job);
return ret;
}
static int tegra_se_client_init(struct host1x_client *client)
{
struct tegra_se *se = container_of(client, struct tegra_se, client);
int ret;
se->channel = host1x_channel_request(&se->client);
if (!se->channel) {
dev_err(se->dev, "host1x channel map failed\n");
return -ENODEV;
}
se->syncpt = host1x_syncpt_request(&se->client, 0);
if (!se->syncpt) {
dev_err(se->dev, "host1x syncpt allocation failed\n");
ret = -EINVAL;
goto channel_put;
}
se->syncpt_id = host1x_syncpt_id(se->syncpt);
se->cmdbuf = tegra_se_host1x_bo_alloc(se, SZ_4K);
if (!se->cmdbuf) {
ret = -ENOMEM;
goto syncpt_put;
}
ret = se->hw->init_alg(se);
if (ret) {
dev_err(se->dev, "failed to register algorithms\n");
goto cmdbuf_put;
}
return 0;
cmdbuf_put:
tegra_se_cmdbuf_put(&se->cmdbuf->bo);
syncpt_put:
host1x_syncpt_put(se->syncpt);
channel_put:
host1x_channel_put(se->channel);
return ret;
}
static int tegra_se_client_deinit(struct host1x_client *client)
{
struct tegra_se *se = container_of(client, struct tegra_se, client);
se->hw->deinit_alg(se);
tegra_se_cmdbuf_put(&se->cmdbuf->bo);
host1x_syncpt_put(se->syncpt);
host1x_channel_put(se->channel);
return 0;
}
static const struct host1x_client_ops tegra_se_client_ops = {
.init = tegra_se_client_init,
.exit = tegra_se_client_deinit,
};
static int tegra_se_host1x_register(struct tegra_se *se)
{
INIT_LIST_HEAD(&se->client.list);
se->client.dev = se->dev;
se->client.ops = &tegra_se_client_ops;
se->client.class = se->hw->host1x_class;
se->client.num_syncpts = 1;
host1x_client_register(&se->client);
return 0;
}
static int tegra_se_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tegra_se *se;
int ret;
se = devm_kzalloc(dev, sizeof(*se), GFP_KERNEL);
if (!se)
return -ENOMEM;
se->dev = dev;
se->owner = TEGRA_GPSE_ID;
se->hw = device_get_match_data(&pdev->dev);
se->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(se->base))
return PTR_ERR(se->base);
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39));
platform_set_drvdata(pdev, se);
se->clk = devm_clk_get_enabled(se->dev, NULL);
if (IS_ERR(se->clk))
return dev_err_probe(dev, PTR_ERR(se->clk),
"failed to enable clocks\n");
if (!tegra_dev_iommu_get_stream_id(dev, &se->stream_id))
return dev_err_probe(dev, -ENODEV,
"failed to get IOMMU stream ID\n");
writel(se->stream_id, se->base + SE_STREAM_ID);
se->engine = crypto_engine_alloc_init(dev, 0);
if (!se->engine)
return dev_err_probe(dev, -ENOMEM, "failed to init crypto engine\n");
ret = crypto_engine_start(se->engine);
if (ret) {
crypto_engine_exit(se->engine);
return dev_err_probe(dev, ret, "failed to start crypto engine\n");
}
ret = tegra_se_host1x_register(se);
if (ret) {
crypto_engine_stop(se->engine);
crypto_engine_exit(se->engine);
return dev_err_probe(dev, ret, "failed to init host1x params\n");
}
return 0;
}
static int tegra_se_remove(struct platform_device *pdev)
{
struct tegra_se *se = platform_get_drvdata(pdev);
crypto_engine_stop(se->engine);
crypto_engine_exit(se->engine);
iommu_fwspec_free(se->dev);
host1x_client_unregister(&se->client);
return 0;
}
static const struct tegra_se_regs tegra234_aes1_regs = {
.config = SE_AES1_CFG,
.op = SE_AES1_OPERATION,
.last_blk = SE_AES1_LAST_BLOCK,
.linear_ctr = SE_AES1_LINEAR_CTR,
.aad_len = SE_AES1_AAD_LEN,
.cryp_msg_len = SE_AES1_CRYPTO_MSG_LEN,
.manifest = SE_AES1_KEYMANIFEST,
.key_addr = SE_AES1_KEY_ADDR,
.key_data = SE_AES1_KEY_DATA,
.key_dst = SE_AES1_KEY_DST,
.result = SE_AES1_CMAC_RESULT,
};
static const struct tegra_se_regs tegra234_hash_regs = {
.config = SE_SHA_CFG,
.op = SE_SHA_OPERATION,
.manifest = SE_SHA_KEYMANIFEST,
.key_addr = SE_SHA_KEY_ADDR,
.key_data = SE_SHA_KEY_DATA,
.key_dst = SE_SHA_KEY_DST,
.result = SE_SHA_HASH_RESULT,
};
static const struct tegra_se_hw tegra234_aes_hw = {
.regs = &tegra234_aes1_regs,
.kac_ver = 1,
.host1x_class = 0x3b,
.init_alg = tegra_init_aes,
.deinit_alg = tegra_deinit_aes,
};
static const struct tegra_se_hw tegra234_hash_hw = {
.regs = &tegra234_hash_regs,
.kac_ver = 1,
.host1x_class = 0x3d,
.init_alg = tegra_init_hash,
.deinit_alg = tegra_deinit_hash,
};
static const struct of_device_id tegra_se_of_match[] = {
{
.compatible = "nvidia,tegra234-se-aes",
.data = &tegra234_aes_hw
}, {
.compatible = "nvidia,tegra234-se-hash",
.data = &tegra234_hash_hw,
},
{ },
};
MODULE_DEVICE_TABLE(of, tegra_se_of_match);
static struct platform_driver tegra_se_driver = {
.driver = {
.name = "tegra-se",
.of_match_table = tegra_se_of_match,
},
.probe = tegra_se_probe,
.remove = tegra_se_remove,
};
static int tegra_se_host1x_probe(struct host1x_device *dev)
{
return host1x_device_init(dev);
}
static int tegra_se_host1x_remove(struct host1x_device *dev)
{
host1x_device_exit(dev);
return 0;
}
static struct host1x_driver tegra_se_host1x_driver = {
.driver = {
.name = "tegra-se-host1x",
},
.probe = tegra_se_host1x_probe,
.remove = tegra_se_host1x_remove,
.subdevs = tegra_se_of_match,
};
static int __init tegra_se_module_init(void)
{
int ret;
ret = host1x_driver_register(&tegra_se_host1x_driver);
if (ret)
return ret;
return platform_driver_register(&tegra_se_driver);
}
static void __exit tegra_se_module_exit(void)
{
host1x_driver_unregister(&tegra_se_host1x_driver);
platform_driver_unregister(&tegra_se_driver);
}
module_init(tegra_se_module_init);
module_exit(tegra_se_module_exit);
MODULE_DESCRIPTION("NVIDIA Tegra Security Engine Driver");
MODULE_AUTHOR("Akhil R <akhilrajeev@nvidia.com>");
MODULE_LICENSE("GPL");

View file

@ -0,0 +1,560 @@
/* SPDX-License-Identifier: GPL-2.0-only
* SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* Header file for NVIDIA Security Engine driver.
*/
#ifndef _TEGRA_SE_H
#define _TEGRA_SE_H
#include <linux/bitfield.h>
#include <linux/iommu.h>
#include <linux/host1x.h>
#include <crypto/aead.h>
#include <crypto/engine.h>
#include <crypto/hash.h>
#include <crypto/sha1.h>
#include <crypto/sha3.h>
#include <crypto/skcipher.h>
#define SE_OWNERSHIP 0x14
#define SE_OWNERSHIP_UID(x) FIELD_GET(GENMASK(7, 0), x)
#define TEGRA_GPSE_ID 3
#define SE_STREAM_ID 0x90
#define SE_SHA_CFG 0x4004
#define SE_SHA_KEY_ADDR 0x4094
#define SE_SHA_KEY_DATA 0x4098
#define SE_SHA_KEYMANIFEST 0x409c
#define SE_SHA_CRYPTO_CFG 0x40a4
#define SE_SHA_KEY_DST 0x40a8
#define SE_SHA_SRC_KSLT 0x4180
#define SE_SHA_TGT_KSLT 0x4184
#define SE_SHA_MSG_LENGTH 0x401c
#define SE_SHA_OPERATION 0x407c
#define SE_SHA_HASH_RESULT 0x40b0
#define SE_SHA_ENC_MODE(x) FIELD_PREP(GENMASK(31, 24), x)
#define SE_SHA_ENC_MODE_SHA1 SE_SHA_ENC_MODE(0)
#define SE_SHA_ENC_MODE_SHA224 SE_SHA_ENC_MODE(4)
#define SE_SHA_ENC_MODE_SHA256 SE_SHA_ENC_MODE(5)
#define SE_SHA_ENC_MODE_SHA384 SE_SHA_ENC_MODE(6)
#define SE_SHA_ENC_MODE_SHA512 SE_SHA_ENC_MODE(7)
#define SE_SHA_ENC_MODE_SHA_CTX_INTEGRITY SE_SHA_ENC_MODE(8)
#define SE_SHA_ENC_MODE_SHA3_224 SE_SHA_ENC_MODE(9)
#define SE_SHA_ENC_MODE_SHA3_256 SE_SHA_ENC_MODE(10)
#define SE_SHA_ENC_MODE_SHA3_384 SE_SHA_ENC_MODE(11)
#define SE_SHA_ENC_MODE_SHA3_512 SE_SHA_ENC_MODE(12)
#define SE_SHA_ENC_MODE_SHAKE128 SE_SHA_ENC_MODE(13)
#define SE_SHA_ENC_MODE_SHAKE256 SE_SHA_ENC_MODE(14)
#define SE_SHA_ENC_MODE_HMAC_SHA256_1KEY SE_SHA_ENC_MODE(0)
#define SE_SHA_ENC_MODE_HMAC_SHA256_2KEY SE_SHA_ENC_MODE(1)
#define SE_SHA_ENC_MODE_SM3_256 SE_SHA_ENC_MODE(0)
#define SE_SHA_CFG_ENC_ALG(x) FIELD_PREP(GENMASK(15, 12), x)
#define SE_SHA_ENC_ALG_NOP SE_SHA_CFG_ENC_ALG(0)
#define SE_SHA_ENC_ALG_SHA_ENC SE_SHA_CFG_ENC_ALG(1)
#define SE_SHA_ENC_ALG_RNG SE_SHA_CFG_ENC_ALG(2)
#define SE_SHA_ENC_ALG_SHA SE_SHA_CFG_ENC_ALG(3)
#define SE_SHA_ENC_ALG_SM3 SE_SHA_CFG_ENC_ALG(4)
#define SE_SHA_ENC_ALG_HMAC SE_SHA_CFG_ENC_ALG(7)
#define SE_SHA_ENC_ALG_KDF SE_SHA_CFG_ENC_ALG(8)
#define SE_SHA_ENC_ALG_KEY_INVLD SE_SHA_CFG_ENC_ALG(10)
#define SE_SHA_ENC_ALG_KEY_INQUIRE SE_SHA_CFG_ENC_ALG(12)
#define SE_SHA_ENC_ALG_INS SE_SHA_CFG_ENC_ALG(13)
#define SE_SHA_OP_LASTBUF FIELD_PREP(BIT(16), 1)
#define SE_SHA_OP_WRSTALL FIELD_PREP(BIT(15), 1)
#define SE_SHA_OP_OP(x) FIELD_PREP(GENMASK(2, 0), x)
#define SE_SHA_OP_START SE_SHA_OP_OP(1)
#define SE_SHA_OP_RESTART_OUT SE_SHA_OP_OP(2)
#define SE_SHA_OP_RESTART_IN SE_SHA_OP_OP(4)
#define SE_SHA_OP_RESTART_INOUT SE_SHA_OP_OP(5)
#define SE_SHA_OP_DUMMY SE_SHA_OP_OP(6)
#define SE_SHA_CFG_DEC_ALG(x) FIELD_PREP(GENMASK(11, 8), x)
#define SE_SHA_DEC_ALG_NOP SE_SHA_CFG_DEC_ALG(0)
#define SE_SHA_DEC_ALG_AES_DEC SE_SHA_CFG_DEC_ALG(1)
#define SE_SHA_DEC_ALG_HMAC SE_SHA_CFG_DEC_ALG(7)
#define SE_SHA_DEC_ALG_HMAC_VERIFY SE_SHA_CFG_DEC_ALG(9)
#define SE_SHA_CFG_DST(x) FIELD_PREP(GENMASK(4, 2), x)
#define SE_SHA_DST_MEMORY SE_SHA_CFG_DST(0)
#define SE_SHA_DST_HASH_REG SE_SHA_CFG_DST(1)
#define SE_SHA_DST_KEYTABLE SE_SHA_CFG_DST(2)
#define SE_SHA_DST_SRK SE_SHA_CFG_DST(3)
#define SE_SHA_TASK_HASH_INIT BIT(0)
/* AES Configuration */
#define SE_AES0_CFG 0x1004
#define SE_AES0_CRYPTO_CONFIG 0x1008
#define SE_AES0_KEY_DST 0x1030
#define SE_AES0_OPERATION 0x1038
#define SE_AES0_LINEAR_CTR 0x101c
#define SE_AES0_LAST_BLOCK 0x102c
#define SE_AES0_KEY_ADDR 0x10bc
#define SE_AES0_KEY_DATA 0x10c0
#define SE_AES0_CMAC_RESULT 0x10c4
#define SE_AES0_SRC_KSLT 0x1100
#define SE_AES0_TGT_KSLT 0x1104
#define SE_AES0_KEYMANIFEST 0x1114
#define SE_AES0_AAD_LEN 0x112c
#define SE_AES0_CRYPTO_MSG_LEN 0x1134
#define SE_AES1_CFG 0x2004
#define SE_AES1_CRYPTO_CONFIG 0x2008
#define SE_AES1_KEY_DST 0x2030
#define SE_AES1_OPERATION 0x2038
#define SE_AES1_LINEAR_CTR 0x201c
#define SE_AES1_LAST_BLOCK 0x202c
#define SE_AES1_KEY_ADDR 0x20bc
#define SE_AES1_KEY_DATA 0x20c0
#define SE_AES1_CMAC_RESULT 0x20c4
#define SE_AES1_SRC_KSLT 0x2100
#define SE_AES1_TGT_KSLT 0x2104
#define SE_AES1_KEYMANIFEST 0x2114
#define SE_AES1_AAD_LEN 0x212c
#define SE_AES1_CRYPTO_MSG_LEN 0x2134
#define SE_AES_CFG_ENC_MODE(x) FIELD_PREP(GENMASK(31, 24), x)
#define SE_AES_ENC_MODE_GMAC SE_AES_CFG_ENC_MODE(3)
#define SE_AES_ENC_MODE_GCM SE_AES_CFG_ENC_MODE(4)
#define SE_AES_ENC_MODE_GCM_FINAL SE_AES_CFG_ENC_MODE(5)
#define SE_AES_ENC_MODE_CMAC SE_AES_CFG_ENC_MODE(7)
#define SE_AES_ENC_MODE_CBC_MAC SE_AES_CFG_ENC_MODE(12)
#define SE_AES_CFG_DEC_MODE(x) FIELD_PREP(GENMASK(23, 16), x)
#define SE_AES_DEC_MODE_GMAC SE_AES_CFG_DEC_MODE(3)
#define SE_AES_DEC_MODE_GCM SE_AES_CFG_DEC_MODE(4)
#define SE_AES_DEC_MODE_GCM_FINAL SE_AES_CFG_DEC_MODE(5)
#define SE_AES_DEC_MODE_CBC_MAC SE_AES_CFG_DEC_MODE(12)
#define SE_AES_CFG_ENC_ALG(x) FIELD_PREP(GENMASK(15, 12), x)
#define SE_AES_ENC_ALG_NOP SE_AES_CFG_ENC_ALG(0)
#define SE_AES_ENC_ALG_AES_ENC SE_AES_CFG_ENC_ALG(1)
#define SE_AES_ENC_ALG_RNG SE_AES_CFG_ENC_ALG(2)
#define SE_AES_ENC_ALG_SHA SE_AES_CFG_ENC_ALG(3)
#define SE_AES_ENC_ALG_HMAC SE_AES_CFG_ENC_ALG(7)
#define SE_AES_ENC_ALG_KDF SE_AES_CFG_ENC_ALG(8)
#define SE_AES_ENC_ALG_INS SE_AES_CFG_ENC_ALG(13)
#define SE_AES_CFG_DEC_ALG(x) FIELD_PREP(GENMASK(11, 8), x)
#define SE_AES_DEC_ALG_NOP SE_AES_CFG_DEC_ALG(0)
#define SE_AES_DEC_ALG_AES_DEC SE_AES_CFG_DEC_ALG(1)
#define SE_AES_CFG_DST(x) FIELD_PREP(GENMASK(4, 2), x)
#define SE_AES_DST_MEMORY SE_AES_CFG_DST(0)
#define SE_AES_DST_HASH_REG SE_AES_CFG_DST(1)
#define SE_AES_DST_KEYTABLE SE_AES_CFG_DST(2)
#define SE_AES_DST_SRK SE_AES_CFG_DST(3)
/* AES Crypto Configuration */
#define SE_AES_KEY2_INDEX(x) FIELD_PREP(GENMASK(31, 28), x)
#define SE_AES_KEY_INDEX(x) FIELD_PREP(GENMASK(27, 24), x)
#define SE_AES_CRYPTO_CFG_SCC_DIS FIELD_PREP(BIT(20), 1)
#define SE_AES_CRYPTO_CFG_CTR_CNTN(x) FIELD_PREP(GENMASK(18, 11), x)
#define SE_AES_CRYPTO_CFG_IV_MODE(x) FIELD_PREP(BIT(10), x)
#define SE_AES_IV_MODE_SWIV SE_AES_CRYPTO_CFG_IV_MODE(0)
#define SE_AES_IV_MODE_HWIV SE_AES_CRYPTO_CFG_IV_MODE(1)
#define SE_AES_CRYPTO_CFG_CORE_SEL(x) FIELD_PREP(BIT(9), x)
#define SE_AES_CORE_SEL_DECRYPT SE_AES_CRYPTO_CFG_CORE_SEL(0)
#define SE_AES_CORE_SEL_ENCRYPT SE_AES_CRYPTO_CFG_CORE_SEL(1)
#define SE_AES_CRYPTO_CFG_IV_SEL(x) FIELD_PREP(GENMASK(8, 7), x)
#define SE_AES_IV_SEL_UPDATED SE_AES_CRYPTO_CFG_IV_SEL(1)
#define SE_AES_IV_SEL_REG SE_AES_CRYPTO_CFG_IV_SEL(2)
#define SE_AES_IV_SEL_RANDOM SE_AES_CRYPTO_CFG_IV_SEL(3)
#define SE_AES_CRYPTO_CFG_VCTRAM_SEL(x) FIELD_PREP(GENMASK(6, 5), x)
#define SE_AES_VCTRAM_SEL_MEMORY SE_AES_CRYPTO_CFG_VCTRAM_SEL(0)
#define SE_AES_VCTRAM_SEL_TWEAK SE_AES_CRYPTO_CFG_VCTRAM_SEL(1)
#define SE_AES_VCTRAM_SEL_AESOUT SE_AES_CRYPTO_CFG_VCTRAM_SEL(2)
#define SE_AES_VCTRAM_SEL_PREV_MEM SE_AES_CRYPTO_CFG_VCTRAM_SEL(3)
#define SE_AES_CRYPTO_CFG_INPUT_SEL(x) FIELD_PREP(GENMASK(4, 3), x)
#define SE_AES_INPUT_SEL_MEMORY SE_AES_CRYPTO_CFG_INPUT_SEL(0)
#define SE_AES_INPUT_SEL_RANDOM SE_AES_CRYPTO_CFG_INPUT_SEL(1)
#define SE_AES_INPUT_SEL_AESOUT SE_AES_CRYPTO_CFG_INPUT_SEL(2)
#define SE_AES_INPUT_SEL_LINEAR_CTR SE_AES_CRYPTO_CFG_INPUT_SEL(3)
#define SE_AES_INPUT_SEL_REG SE_AES_CRYPTO_CFG_INPUT_SEL(1)
#define SE_AES_CRYPTO_CFG_XOR_POS(x) FIELD_PREP(GENMASK(2, 1), x)
#define SE_AES_XOR_POS_BYPASS SE_AES_CRYPTO_CFG_XOR_POS(0)
#define SE_AES_XOR_POS_BOTH SE_AES_CRYPTO_CFG_XOR_POS(1)
#define SE_AES_XOR_POS_TOP SE_AES_CRYPTO_CFG_XOR_POS(2)
#define SE_AES_XOR_POS_BOTTOM SE_AES_CRYPTO_CFG_XOR_POS(3)
#define SE_AES_CRYPTO_CFG_HASH_EN(x) FIELD_PREP(BIT(0), x)
#define SE_AES_HASH_DISABLE SE_AES_CRYPTO_CFG_HASH_EN(0)
#define SE_AES_HASH_ENABLE SE_AES_CRYPTO_CFG_HASH_EN(1)
#define SE_LAST_BLOCK_VAL(x) FIELD_PREP(GENMASK(19, 0), x)
#define SE_LAST_BLOCK_RES_BITS(x) FIELD_PREP(GENMASK(26, 20), x)
#define SE_AES_OP_LASTBUF FIELD_PREP(BIT(16), 1)
#define SE_AES_OP_WRSTALL FIELD_PREP(BIT(15), 1)
#define SE_AES_OP_FINAL FIELD_PREP(BIT(5), 1)
#define SE_AES_OP_INIT FIELD_PREP(BIT(4), 1)
#define SE_AES_OP_OP(x) FIELD_PREP(GENMASK(2, 0), x)
#define SE_AES_OP_START SE_AES_OP_OP(1)
#define SE_AES_OP_RESTART_OUT SE_AES_OP_OP(2)
#define SE_AES_OP_RESTART_IN SE_AES_OP_OP(4)
#define SE_AES_OP_RESTART_INOUT SE_AES_OP_OP(5)
#define SE_AES_OP_DUMMY SE_AES_OP_OP(6)
#define SE_KAC_SIZE(x) FIELD_PREP(GENMASK(15, 14), x)
#define SE_KAC_SIZE_128 SE_KAC_SIZE(0)
#define SE_KAC_SIZE_192 SE_KAC_SIZE(1)
#define SE_KAC_SIZE_256 SE_KAC_SIZE(2)
#define SE_KAC_EXPORTABLE FIELD_PREP(BIT(12), 1)
#define SE_KAC_PURPOSE(x) FIELD_PREP(GENMASK(11, 8), x)
#define SE_KAC_ENC SE_KAC_PURPOSE(0)
#define SE_KAC_CMAC SE_KAC_PURPOSE(1)
#define SE_KAC_HMAC SE_KAC_PURPOSE(2)
#define SE_KAC_GCM_KW SE_KAC_PURPOSE(3)
#define SE_KAC_HMAC_KDK SE_KAC_PURPOSE(6)
#define SE_KAC_HMAC_KDD SE_KAC_PURPOSE(7)
#define SE_KAC_HMAC_KDD_KUW SE_KAC_PURPOSE(8)
#define SE_KAC_XTS SE_KAC_PURPOSE(9)
#define SE_KAC_GCM SE_KAC_PURPOSE(10)
#define SE_KAC_USER_NS FIELD_PREP(GENMASK(6, 4), 3)
#define SE_AES_KEY_DST_INDEX(x) FIELD_PREP(GENMASK(11, 8), x)
#define SE_ADDR_HI_MSB(x) FIELD_PREP(GENMASK(31, 24), x)
#define SE_ADDR_HI_SZ(x) FIELD_PREP(GENMASK(23, 0), x)
#define SE_CFG_AES_ENCRYPT (SE_AES_ENC_ALG_AES_ENC | \
SE_AES_DEC_ALG_NOP | \
SE_AES_DST_MEMORY)
#define SE_CFG_AES_DECRYPT (SE_AES_ENC_ALG_NOP | \
SE_AES_DEC_ALG_AES_DEC | \
SE_AES_DST_MEMORY)
#define SE_CFG_GMAC_ENCRYPT (SE_AES_ENC_ALG_AES_ENC | \
SE_AES_DEC_ALG_NOP | \
SE_AES_ENC_MODE_GMAC | \
SE_AES_DST_MEMORY)
#define SE_CFG_GMAC_DECRYPT (SE_AES_ENC_ALG_NOP | \
SE_AES_DEC_ALG_AES_DEC | \
SE_AES_DEC_MODE_GMAC | \
SE_AES_DST_MEMORY)
#define SE_CFG_GCM_ENCRYPT (SE_AES_ENC_ALG_AES_ENC | \
SE_AES_DEC_ALG_NOP | \
SE_AES_ENC_MODE_GCM | \
SE_AES_DST_MEMORY)
#define SE_CFG_GCM_DECRYPT (SE_AES_ENC_ALG_NOP | \
SE_AES_DEC_ALG_AES_DEC | \
SE_AES_DEC_MODE_GCM | \
SE_AES_DST_MEMORY)
#define SE_CFG_GCM_FINAL_ENCRYPT (SE_AES_ENC_ALG_AES_ENC | \
SE_AES_DEC_ALG_NOP | \
SE_AES_ENC_MODE_GCM_FINAL | \
SE_AES_DST_MEMORY)
#define SE_CFG_GCM_FINAL_DECRYPT (SE_AES_ENC_ALG_NOP | \
SE_AES_DEC_ALG_AES_DEC | \
SE_AES_DEC_MODE_GCM_FINAL | \
SE_AES_DST_MEMORY)
#define SE_CFG_CMAC (SE_AES_ENC_ALG_AES_ENC | \
SE_AES_ENC_MODE_CMAC | \
SE_AES_DST_HASH_REG)
#define SE_CFG_CBC_MAC (SE_AES_ENC_ALG_AES_ENC | \
SE_AES_ENC_MODE_CBC_MAC)
#define SE_CFG_INS (SE_AES_ENC_ALG_INS | \
SE_AES_DEC_ALG_NOP)
#define SE_CRYPTO_CFG_ECB_ENCRYPT (SE_AES_INPUT_SEL_MEMORY | \
SE_AES_XOR_POS_BYPASS | \
SE_AES_CORE_SEL_ENCRYPT)
#define SE_CRYPTO_CFG_ECB_DECRYPT (SE_AES_INPUT_SEL_MEMORY | \
SE_AES_XOR_POS_BYPASS | \
SE_AES_CORE_SEL_DECRYPT)
#define SE_CRYPTO_CFG_CBC_ENCRYPT (SE_AES_INPUT_SEL_MEMORY | \
SE_AES_VCTRAM_SEL_AESOUT | \
SE_AES_XOR_POS_TOP | \
SE_AES_CORE_SEL_ENCRYPT | \
SE_AES_IV_SEL_REG)
#define SE_CRYPTO_CFG_CBC_DECRYPT (SE_AES_INPUT_SEL_MEMORY | \
SE_AES_VCTRAM_SEL_PREV_MEM | \
SE_AES_XOR_POS_BOTTOM | \
SE_AES_CORE_SEL_DECRYPT | \
SE_AES_IV_SEL_REG)
#define SE_CRYPTO_CFG_CTR (SE_AES_INPUT_SEL_LINEAR_CTR | \
SE_AES_VCTRAM_SEL_MEMORY | \
SE_AES_XOR_POS_BOTTOM | \
SE_AES_CORE_SEL_ENCRYPT | \
SE_AES_CRYPTO_CFG_CTR_CNTN(1) | \
SE_AES_IV_SEL_REG)
#define SE_CRYPTO_CFG_XTS_ENCRYPT (SE_AES_INPUT_SEL_MEMORY | \
SE_AES_VCTRAM_SEL_TWEAK | \
SE_AES_XOR_POS_BOTH | \
SE_AES_CORE_SEL_ENCRYPT | \
SE_AES_IV_SEL_REG)
#define SE_CRYPTO_CFG_XTS_DECRYPT (SE_AES_INPUT_SEL_MEMORY | \
SE_AES_VCTRAM_SEL_TWEAK | \
SE_AES_XOR_POS_BOTH | \
SE_AES_CORE_SEL_DECRYPT | \
SE_AES_IV_SEL_REG)
#define SE_CRYPTO_CFG_XTS_DECRYPT (SE_AES_INPUT_SEL_MEMORY | \
SE_AES_VCTRAM_SEL_TWEAK | \
SE_AES_XOR_POS_BOTH | \
SE_AES_CORE_SEL_DECRYPT | \
SE_AES_IV_SEL_REG)
#define SE_CRYPTO_CFG_CBC_MAC (SE_AES_INPUT_SEL_MEMORY | \
SE_AES_VCTRAM_SEL_AESOUT | \
SE_AES_XOR_POS_TOP | \
SE_AES_CORE_SEL_ENCRYPT | \
SE_AES_HASH_ENABLE | \
SE_AES_IV_SEL_REG)
#define HASH_RESULT_REG_COUNT 50
#define CMAC_RESULT_REG_COUNT 4
#define SE_CRYPTO_CTR_REG_COUNT 4
#define SE_MAX_KEYSLOT 15
#define SE_MAX_MEM_ALLOC SZ_4M
#define SE_AES_BUFLEN 0x8000
#define SE_SHA_BUFLEN 0x2000
#define SHA_FIRST BIT(0)
#define SHA_UPDATE BIT(1)
#define SHA_FINAL BIT(2)
/* Security Engine operation modes */
enum se_aes_alg {
SE_ALG_CBC, /* Cipher Block Chaining (CBC) mode */
SE_ALG_ECB, /* Electronic Codebook (ECB) mode */
SE_ALG_CTR, /* Counter (CTR) mode */
SE_ALG_XTS, /* XTS mode */
SE_ALG_GMAC, /* GMAC mode */
SE_ALG_GCM, /* GCM mode */
SE_ALG_GCM_FINAL, /* GCM FINAL mode */
SE_ALG_CMAC, /* Cipher-based MAC (CMAC) mode */
SE_ALG_CBC_MAC, /* CBC MAC mode */
};
enum se_hash_alg {
SE_ALG_RNG_DRBG, /* Deterministic Random Bit Generator */
SE_ALG_SHA1, /* Secure Hash Algorithm-1 (SHA1) mode */
SE_ALG_SHA224, /* Secure Hash Algorithm-224 (SHA224) mode */
SE_ALG_SHA256, /* Secure Hash Algorithm-256 (SHA256) mode */
SE_ALG_SHA384, /* Secure Hash Algorithm-384 (SHA384) mode */
SE_ALG_SHA512, /* Secure Hash Algorithm-512 (SHA512) mode */
SE_ALG_SHA3_224, /* Secure Hash Algorithm3-224 (SHA3-224) mode */
SE_ALG_SHA3_256, /* Secure Hash Algorithm3-256 (SHA3-256) mode */
SE_ALG_SHA3_384, /* Secure Hash Algorithm3-384 (SHA3-384) mode */
SE_ALG_SHA3_512, /* Secure Hash Algorithm3-512 (SHA3-512) mode */
SE_ALG_SHAKE128, /* Secure Hash Algorithm3 (SHAKE128) mode */
SE_ALG_SHAKE256, /* Secure Hash Algorithm3 (SHAKE256) mode */
SE_ALG_HMAC_SHA224, /* Hash based MAC (HMAC) - 224 */
SE_ALG_HMAC_SHA256, /* Hash based MAC (HMAC) - 256 */
SE_ALG_HMAC_SHA384, /* Hash based MAC (HMAC) - 384 */
SE_ALG_HMAC_SHA512, /* Hash based MAC (HMAC) - 512 */
};
struct tegra_se_alg {
struct tegra_se *se_dev;
const char *alg_base;
union {
struct skcipher_engine_alg skcipher;
struct aead_engine_alg aead;
struct ahash_engine_alg ahash;
} alg;
};
struct tegra_se_regs {
u32 op;
u32 config;
u32 last_blk;
u32 linear_ctr;
u32 out_addr;
u32 aad_len;
u32 cryp_msg_len;
u32 manifest;
u32 key_addr;
u32 key_data;
u32 key_dst;
u32 result;
};
struct tegra_se_hw {
const struct tegra_se_regs *regs;
int (*init_alg)(struct tegra_se *se);
void (*deinit_alg)(struct tegra_se *se);
bool support_sm_alg;
u32 host1x_class;
u32 kac_ver;
};
struct tegra_se {
int (*manifest)(u32 user, u32 alg, u32 keylen);
const struct tegra_se_hw *hw;
struct host1x_client client;
struct host1x_channel *channel;
struct tegra_se_cmdbuf *cmdbuf;
struct crypto_engine *engine;
struct host1x_syncpt *syncpt;
struct device *dev;
struct clk *clk;
unsigned int opcode_addr;
unsigned int stream_id;
unsigned int syncpt_id;
void __iomem *base;
u32 owner;
};
struct tegra_se_cmdbuf {
dma_addr_t iova;
u32 *addr;
struct device *dev;
struct kref ref;
struct host1x_bo bo;
ssize_t size;
u32 words;
};
struct tegra_se_datbuf {
u8 *buf;
dma_addr_t addr;
ssize_t size;
};
static inline int se_algname_to_algid(const char *name)
{
if (!strcmp(name, "cbc(aes)"))
return SE_ALG_CBC;
else if (!strcmp(name, "ecb(aes)"))
return SE_ALG_ECB;
else if (!strcmp(name, "ctr(aes)"))
return SE_ALG_CTR;
else if (!strcmp(name, "xts(aes)"))
return SE_ALG_XTS;
else if (!strcmp(name, "cmac(aes)"))
return SE_ALG_CMAC;
else if (!strcmp(name, "gcm(aes)"))
return SE_ALG_GCM;
else if (!strcmp(name, "ccm(aes)"))
return SE_ALG_CBC_MAC;
else if (!strcmp(name, "sha1"))
return SE_ALG_SHA1;
else if (!strcmp(name, "sha224"))
return SE_ALG_SHA224;
else if (!strcmp(name, "sha256"))
return SE_ALG_SHA256;
else if (!strcmp(name, "sha384"))
return SE_ALG_SHA384;
else if (!strcmp(name, "sha512"))
return SE_ALG_SHA512;
else if (!strcmp(name, "sha3-224"))
return SE_ALG_SHA3_224;
else if (!strcmp(name, "sha3-256"))
return SE_ALG_SHA3_256;
else if (!strcmp(name, "sha3-384"))
return SE_ALG_SHA3_384;
else if (!strcmp(name, "sha3-512"))
return SE_ALG_SHA3_512;
else if (!strcmp(name, "hmac(sha224)"))
return SE_ALG_HMAC_SHA224;
else if (!strcmp(name, "hmac(sha256)"))
return SE_ALG_HMAC_SHA256;
else if (!strcmp(name, "hmac(sha384)"))
return SE_ALG_HMAC_SHA384;
else if (!strcmp(name, "hmac(sha512)"))
return SE_ALG_HMAC_SHA512;
else
return -EINVAL;
}
/* Functions */
int tegra_init_aes(struct tegra_se *se);
int tegra_init_hash(struct tegra_se *se);
void tegra_deinit_aes(struct tegra_se *se);
void tegra_deinit_hash(struct tegra_se *se);
int tegra_key_submit(struct tegra_se *se, const u8 *key,
u32 keylen, u32 alg, u32 *keyid);
void tegra_key_invalidate(struct tegra_se *se, u32 keyid, u32 alg);
int tegra_se_host1x_submit(struct tegra_se *se, u32 size);
/* HOST1x OPCODES */
static inline u32 host1x_opcode_setpayload(unsigned int payload)
{
return (9 << 28) | payload;
}
static inline u32 host1x_opcode_incr_w(unsigned int offset)
{
/* 22-bit offset supported */
return (10 << 28) | offset;
}
static inline u32 host1x_opcode_nonincr_w(unsigned int offset)
{
/* 22-bit offset supported */
return (11 << 28) | offset;
}
static inline u32 host1x_opcode_incr(unsigned int offset, unsigned int count)
{
return (1 << 28) | (offset << 16) | count;
}
static inline u32 host1x_opcode_nonincr(unsigned int offset, unsigned int count)
{
return (2 << 28) | (offset << 16) | count;
}
static inline u32 host1x_uclass_incr_syncpt_cond_f(u32 v)
{
return (v & 0xff) << 10;
}
static inline u32 host1x_uclass_incr_syncpt_indx_f(u32 v)
{
return (v & 0x3ff) << 0;
}
static inline u32 host1x_uclass_wait_syncpt_r(void)
{
return 0x8;
}
static inline u32 host1x_uclass_incr_syncpt_r(void)
{
return 0x0;
}
#define se_host1x_opcode_incr_w(x) host1x_opcode_incr_w((x) / 4)
#define se_host1x_opcode_nonincr_w(x) host1x_opcode_nonincr_w((x) / 4)
#define se_host1x_opcode_incr(x, y) host1x_opcode_incr((x) / 4, y)
#define se_host1x_opcode_nonincr(x, y) host1x_opcode_nonincr((x) / 4, y)
#endif /*_TEGRA_SE_H*/