KVM fixes for 6.9-rcN:

- Fix a mostly benign bug in the gfn_to_pfn_cache infrastructure where KVM
    would allow userspace to refresh the cache with a bogus GPA.  The bug has
    existed for quite some time, but was exposed by a new sanity check added in
    6.9 (to ensure a cache is either GPA-based or HVA-based).
 
  - Drop an unused param from gfn_to_pfn_cache_invalidate_start() that got left
    behind during a 6.9 cleanup.
 
  - Disable support for virtualizing adaptive PEBS, as KVM's implementation is
    architecturally broken and can leak host LBRs to the guest.
 
  - Fix a bug where KVM neglects to set the enable bits for general purpose
    counters in PERF_GLOBAL_CTRL when initializing the virtual PMU.  Both Intel
    and AMD architectures require the bits to be set at RESET in order for v2
    PMUs to be backwards compatible with software that was written for v1 PMUs,
    i.e. for software that will never manually set the global enables.
 
  - Disable LBR virtualization on CPUs that don't support LBR callstacks, as
    KVM unconditionally uses PERF_SAMPLE_BRANCH_CALL_STACK when creating the
    virtual LBR perf event, i.e. KVM will always fail to create LBR events on
    such CPUs.
 
  - Fix a math goof in x86's hugepage logic for KVM_SET_MEMORY_ATTRIBUTES that
    results in an array overflow (detected by KASAN).
 
  - Fix a flaw in the max_guest_memory selftest that results in it exhausting
    the supply of ucall structures when run with more than 256 vCPUs.
 
  - Mark KVM_MEM_READONLY as supported for RISC-V in set_memory_region_test.
 
  - Fix a bug where KVM incorrectly thinks a TDP MMU root is an indirect shadow
    root due KVM unnecessarily clobbering root_role.direct when userspace sets
    guest CPUID.
 
  - Fix a dirty logging bug in the where KVM fails to write-protect TDP MMU
    SPTEs used for L2 if Page-Modification Logging is enabled for L1 and the L1
    hypervisor is NOT using EPT (if nEPT is enabled, KVM doesn't use the TDP MMU
    to run L2).  For simplicity, KVM always disables PML when running L2, but
    the TDP MMU wasn't accounting for root-specific conditions that force write-
    protect based dirty logging.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmYYRoUACgkQOlYIJqCj
 N/2sDQ/8Dgd8lvzHieVZaWRCXzvtrmqZqxr08NTHJo4yqXiPxUd5z3lC1s6mSSQc
 RHAD21A6JstSdz6O6p3Y+koYws8YTVAZNhlBCiRnVyNuopEs+EVmUQQI5YfQiVFO
 0dX7aWRUlPH7q4OQVFhI7/owLahsuzvYCEFInWQt+586oQCpkPiiRRKF48d+n/Ba
 fuY2jYxmxI72lMoSVFE/ZSh23lKyhpyiJW/qMCBv2jbNFR8tkbrQkcuBMaHJ6Z7d
 f/7sJ4T5SA4VH+4fwctONqepAGk1jLcfZFl/21Peyf2Ieh/Oy1d1+MOmVgbpdUZR
 WE9pVsktoDMH4tMSgNI7uOgVIh43/mDVIoYwYnfrKFjoASGWpFJV7UOf87X2soVi
 MHxjYKc9PXkaG8Kua1jM0VB2jo7LKFtSoHjFBHLeKJa9Y2CS1eE8y0iWarZufEtA
 tlt6KUqOdICzB8lbNWLwRtB9jp3V/LYWRJ+YqL3QKiN9kpTB79qH+mIOjhzunASV
 RfkT8No76dCoTgX1e/qhElmWJ0OBB0zhtmELxHxGCH5AUZG4JgebyomsqkZaUAeM
 DMgMb3nZMiijW94n8xQCGVEJ1SHL3L70DtNFej3udY6Q49c6RDsoppkMSlO3D90r
 ratTwHhMc5KTk51zDW+DRmVgbBZwyhDfVK2KKJi37PbObfbJyIY=
 =0hRN
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-fixes-6.9-rcN' of https://github.com/kvm-x86/linux into HEAD

- Fix a mostly benign bug in the gfn_to_pfn_cache infrastructure where KVM
  would allow userspace to refresh the cache with a bogus GPA.  The bug has
  existed for quite some time, but was exposed by a new sanity check added in
  6.9 (to ensure a cache is either GPA-based or HVA-based).

- Drop an unused param from gfn_to_pfn_cache_invalidate_start() that got left
  behind during a 6.9 cleanup.

- Disable support for virtualizing adaptive PEBS, as KVM's implementation is
  architecturally broken and can leak host LBRs to the guest.

- Fix a bug where KVM neglects to set the enable bits for general purpose
  counters in PERF_GLOBAL_CTRL when initializing the virtual PMU.  Both Intel
  and AMD architectures require the bits to be set at RESET in order for v2
  PMUs to be backwards compatible with software that was written for v1 PMUs,
  i.e. for software that will never manually set the global enables.

- Disable LBR virtualization on CPUs that don't support LBR callstacks, as
  KVM unconditionally uses PERF_SAMPLE_BRANCH_CALL_STACK when creating the
  virtual LBR perf event, i.e. KVM will always fail to create LBR events on
  such CPUs.

- Fix a math goof in x86's hugepage logic for KVM_SET_MEMORY_ATTRIBUTES that
  results in an array overflow (detected by KASAN).

- Fix a flaw in the max_guest_memory selftest that results in it exhausting
  the supply of ucall structures when run with more than 256 vCPUs.

- Mark KVM_MEM_READONLY as supported for RISC-V in set_memory_region_test.

- Fix a bug where KVM incorrectly thinks a TDP MMU root is an indirect shadow
  root due KVM unnecessarily clobbering root_role.direct when userspace sets
  guest CPUID.

- Fix a dirty logging bug in the where KVM fails to write-protect TDP MMU
  SPTEs used for L2 if Page-Modification Logging is enabled for L1 and the L1
  hypervisor is NOT using EPT (if nEPT is enabled, KVM doesn't use the TDP MMU
  to run L2).  For simplicity, KVM always disables PML when running L2, but
  the TDP MMU wasn't accounting for root-specific conditions that force write-
  protect based dirty logging.
This commit is contained in:
Paolo Bonzini 2024-04-16 12:50:21 -04:00
commit 1c3bed8006
15 changed files with 194 additions and 89 deletions

View File

@ -1693,6 +1693,7 @@ void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
lbr->from = x86_pmu.lbr_from;
lbr->to = x86_pmu.lbr_to;
lbr->info = x86_pmu.lbr_info;
lbr->has_callstack = x86_pmu_has_lbr_callstack();
}
EXPORT_SYMBOL_GPL(x86_perf_get_lbr);

View File

@ -555,6 +555,7 @@ struct x86_pmu_lbr {
unsigned int from;
unsigned int to;
unsigned int info;
bool has_callstack;
};
extern void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap);

View File

@ -5576,9 +5576,9 @@ void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
* that problem is swept under the rug; KVM's CPUID API is horrific and
* it's all but impossible to solve it without introducing a new API.
*/
vcpu->arch.root_mmu.root_role.word = 0;
vcpu->arch.guest_mmu.root_role.word = 0;
vcpu->arch.nested_mmu.root_role.word = 0;
vcpu->arch.root_mmu.root_role.invalid = 1;
vcpu->arch.guest_mmu.root_role.invalid = 1;
vcpu->arch.nested_mmu.root_role.invalid = 1;
vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
@ -7399,7 +7399,8 @@ bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
* by the memslot, KVM can't use a hugepage due to the
* misaligned address regardless of memory attributes.
*/
if (gfn >= slot->base_gfn) {
if (gfn >= slot->base_gfn &&
gfn + nr_pages <= slot->base_gfn + slot->npages) {
if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
hugepage_clear_mixed(slot, gfn, level);
else

View File

@ -1548,17 +1548,21 @@ void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
}
}
/*
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
* If AD bits are not enabled, this will require clearing the writable bit on
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
* be flushed.
*/
static bool tdp_mmu_need_write_protect(struct kvm_mmu_page *sp)
{
/*
* All TDP MMU shadow pages share the same role as their root, aside
* from level, so it is valid to key off any shadow page to determine if
* write protection is needed for an entire tree.
*/
return kvm_mmu_page_ad_need_write_protect(sp) || !kvm_ad_enabled();
}
static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t start, gfn_t end)
{
u64 dbit = kvm_ad_enabled() ? shadow_dirty_mask : PT_WRITABLE_MASK;
const u64 dbit = tdp_mmu_need_write_protect(root) ? PT_WRITABLE_MASK :
shadow_dirty_mask;
struct tdp_iter iter;
bool spte_set = false;
@ -1573,7 +1577,7 @@ retry:
if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
continue;
KVM_MMU_WARN_ON(kvm_ad_enabled() &&
KVM_MMU_WARN_ON(dbit == shadow_dirty_mask &&
spte_ad_need_write_protect(iter.old_spte));
if (!(iter.old_spte & dbit))
@ -1590,11 +1594,9 @@ retry:
}
/*
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
* If AD bits are not enabled, this will require clearing the writable bit on
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
* be flushed.
* Clear the dirty status (D-bit or W-bit) of all the SPTEs mapping GFNs in the
* memslot. Returns true if an SPTE has been changed and the TLBs need to be
* flushed.
*/
bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
const struct kvm_memory_slot *slot)
@ -1610,18 +1612,11 @@ bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
return spte_set;
}
/*
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
* set in mask, starting at gfn. The given memslot is expected to contain all
* the GFNs represented by set bits in the mask. If AD bits are enabled,
* clearing the dirty status will involve clearing the dirty bit on each SPTE
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
*/
static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t gfn, unsigned long mask, bool wrprot)
{
u64 dbit = (wrprot || !kvm_ad_enabled()) ? PT_WRITABLE_MASK :
shadow_dirty_mask;
const u64 dbit = (wrprot || tdp_mmu_need_write_protect(root)) ? PT_WRITABLE_MASK :
shadow_dirty_mask;
struct tdp_iter iter;
lockdep_assert_held_write(&kvm->mmu_lock);
@ -1633,7 +1628,7 @@ static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
if (!mask)
break;
KVM_MMU_WARN_ON(kvm_ad_enabled() &&
KVM_MMU_WARN_ON(dbit == shadow_dirty_mask &&
spte_ad_need_write_protect(iter.old_spte));
if (iter.level > PG_LEVEL_4K ||
@ -1659,11 +1654,9 @@ static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
}
/*
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
* set in mask, starting at gfn. The given memslot is expected to contain all
* the GFNs represented by set bits in the mask. If AD bits are enabled,
* clearing the dirty status will involve clearing the dirty bit on each SPTE
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
* Clear the dirty status (D-bit or W-bit) of all the 4k SPTEs mapping GFNs for
* which a bit is set in mask, starting at gfn. The given memslot is expected to
* contain all the GFNs represented by set bits in the mask.
*/
void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,

View File

@ -775,8 +775,20 @@ void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
pmu->pebs_data_cfg_mask = ~0ull;
bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
if (vcpu->kvm->arch.enable_pmu)
static_call(kvm_x86_pmu_refresh)(vcpu);
if (!vcpu->kvm->arch.enable_pmu)
return;
static_call(kvm_x86_pmu_refresh)(vcpu);
/*
* At RESET, both Intel and AMD CPUs set all enable bits for general
* purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that
* was written for v1 PMUs don't unknowingly leave GP counters disabled
* in the global controls). Emulate that behavior when refreshing the
* PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL.
*/
if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters)
pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0);
}
void kvm_pmu_init(struct kvm_vcpu *vcpu)

View File

@ -535,7 +535,7 @@ static void intel_pmu_refresh(struct kvm_vcpu *vcpu)
perf_capabilities = vcpu_get_perf_capabilities(vcpu);
if (cpuid_model_is_consistent(vcpu) &&
(perf_capabilities & PMU_CAP_LBR_FMT))
x86_perf_get_lbr(&lbr_desc->records);
memcpy(&lbr_desc->records, &vmx_lbr_caps, sizeof(vmx_lbr_caps));
else
lbr_desc->records.nr = 0;

View File

@ -218,6 +218,8 @@ module_param(ple_window_max, uint, 0444);
int __read_mostly pt_mode = PT_MODE_SYSTEM;
module_param(pt_mode, int, S_IRUGO);
struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
static DEFINE_MUTEX(vmx_l1d_flush_mutex);
@ -7862,10 +7864,9 @@ static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
vmx_update_exception_bitmap(vcpu);
}
static u64 vmx_get_perf_capabilities(void)
static __init u64 vmx_get_perf_capabilities(void)
{
u64 perf_cap = PMU_CAP_FW_WRITES;
struct x86_pmu_lbr lbr;
u64 host_perf_cap = 0;
if (!enable_pmu)
@ -7875,15 +7876,43 @@ static u64 vmx_get_perf_capabilities(void)
rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
x86_perf_get_lbr(&lbr);
if (lbr.nr)
x86_perf_get_lbr(&vmx_lbr_caps);
/*
* KVM requires LBR callstack support, as the overhead due to
* context switching LBRs without said support is too high.
* See intel_pmu_create_guest_lbr_event() for more info.
*/
if (!vmx_lbr_caps.has_callstack)
memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
else if (vmx_lbr_caps.nr)
perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
}
if (vmx_pebs_supported()) {
perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
perf_cap &= ~PERF_CAP_PEBS_BASELINE;
/*
* Disallow adaptive PEBS as it is functionally broken, can be
* used by the guest to read *host* LBRs, and can be used to
* bypass userspace event filters. To correctly and safely
* support adaptive PEBS, KVM needs to:
*
* 1. Account for the ADAPTIVE flag when (re)programming fixed
* counters.
*
* 2. Gain support from perf (or take direct control of counter
* programming) to support events without adaptive PEBS
* enabled for the hardware counter.
*
* 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
* adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
*
* 4. Document which PMU events are effectively exposed to the
* guest via adaptive PEBS, and make adaptive PEBS mutually
* exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
*/
perf_cap &= ~PERF_CAP_PEBS_BASELINE;
}
return perf_cap;

View File

@ -15,6 +15,7 @@
#include "vmx_ops.h"
#include "../cpuid.h"
#include "run_flags.h"
#include "../mmu.h"
#define MSR_TYPE_R 1
#define MSR_TYPE_W 2
@ -109,6 +110,8 @@ struct lbr_desc {
bool msr_passthrough;
};
extern struct x86_pmu_lbr vmx_lbr_caps;
/*
* The nested_vmx structure is part of vcpu_vmx, and holds information we need
* for correct emulation of VMX (i.e., nested VMX) on this vcpu.
@ -719,7 +722,8 @@ static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
if (!enable_ept)
return true;
return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
return allow_smaller_maxphyaddr &&
cpuid_maxphyaddr(vcpu) < kvm_get_shadow_phys_bits();
}
static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)

View File

@ -22,10 +22,11 @@ static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride)
{
uint64_t gpa;
for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
*((volatile uint64_t *)gpa) = gpa;
GUEST_DONE();
for (;;) {
for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
*((volatile uint64_t *)gpa) = gpa;
GUEST_SYNC(0);
}
}
struct vcpu_info {
@ -55,7 +56,7 @@ static void rendezvous_with_boss(void)
static void run_vcpu(struct kvm_vcpu *vcpu)
{
vcpu_run(vcpu);
TEST_ASSERT_EQ(get_ucall(vcpu, NULL), UCALL_DONE);
TEST_ASSERT_EQ(get_ucall(vcpu, NULL), UCALL_SYNC);
}
static void *vcpu_worker(void *data)
@ -64,17 +65,13 @@ static void *vcpu_worker(void *data)
struct kvm_vcpu *vcpu = info->vcpu;
struct kvm_vm *vm = vcpu->vm;
struct kvm_sregs sregs;
struct kvm_regs regs;
vcpu_args_set(vcpu, 3, info->start_gpa, info->end_gpa, vm->page_size);
/* Snapshot regs before the first run. */
vcpu_regs_get(vcpu, &regs);
rendezvous_with_boss();
run_vcpu(vcpu);
rendezvous_with_boss();
vcpu_regs_set(vcpu, &regs);
vcpu_sregs_get(vcpu, &sregs);
#ifdef __x86_64__
/* Toggle CR0.WP to trigger a MMU context reset. */

View File

@ -333,7 +333,7 @@ static void test_invalid_memory_region_flags(void)
struct kvm_vm *vm;
int r, i;
#if defined __aarch64__ || defined __x86_64__
#if defined __aarch64__ || defined __riscv || defined __x86_64__
supported_flags |= KVM_MEM_READONLY;
#endif

View File

@ -416,12 +416,30 @@ static void guest_rd_wr_counters(uint32_t base_msr, uint8_t nr_possible_counters
static void guest_test_gp_counters(void)
{
uint8_t pmu_version = guest_get_pmu_version();
uint8_t nr_gp_counters = 0;
uint32_t base_msr;
if (guest_get_pmu_version())
if (pmu_version)
nr_gp_counters = this_cpu_property(X86_PROPERTY_PMU_NR_GP_COUNTERS);
/*
* For v2+ PMUs, PERF_GLOBAL_CTRL's architectural post-RESET value is
* "Sets bits n-1:0 and clears the upper bits", where 'n' is the number
* of GP counters. If there are no GP counters, require KVM to leave
* PERF_GLOBAL_CTRL '0'. This edge case isn't covered by the SDM, but
* follow the spirit of the architecture and only globally enable GP
* counters, of which there are none.
*/
if (pmu_version > 1) {
uint64_t global_ctrl = rdmsr(MSR_CORE_PERF_GLOBAL_CTRL);
if (nr_gp_counters)
GUEST_ASSERT_EQ(global_ctrl, GENMASK_ULL(nr_gp_counters - 1, 0));
else
GUEST_ASSERT_EQ(global_ctrl, 0);
}
if (this_cpu_has(X86_FEATURE_PDCM) &&
rdmsr(MSR_IA32_PERF_CAPABILITIES) & PMU_CAP_FW_WRITES)
base_msr = MSR_IA32_PMC0;

View File

@ -28,16 +28,16 @@
#define NESTED_TEST_MEM1 0xc0001000
#define NESTED_TEST_MEM2 0xc0002000
static void l2_guest_code(void)
static void l2_guest_code(u64 *a, u64 *b)
{
*(volatile uint64_t *)NESTED_TEST_MEM1;
*(volatile uint64_t *)NESTED_TEST_MEM1 = 1;
READ_ONCE(*a);
WRITE_ONCE(*a, 1);
GUEST_SYNC(true);
GUEST_SYNC(false);
*(volatile uint64_t *)NESTED_TEST_MEM2 = 1;
WRITE_ONCE(*b, 1);
GUEST_SYNC(true);
*(volatile uint64_t *)NESTED_TEST_MEM2 = 1;
WRITE_ONCE(*b, 1);
GUEST_SYNC(true);
GUEST_SYNC(false);
@ -45,17 +45,33 @@ static void l2_guest_code(void)
vmcall();
}
static void l2_guest_code_ept_enabled(void)
{
l2_guest_code((u64 *)NESTED_TEST_MEM1, (u64 *)NESTED_TEST_MEM2);
}
static void l2_guest_code_ept_disabled(void)
{
/* Access the same L1 GPAs as l2_guest_code_ept_enabled() */
l2_guest_code((u64 *)GUEST_TEST_MEM, (u64 *)GUEST_TEST_MEM);
}
void l1_guest_code(struct vmx_pages *vmx)
{
#define L2_GUEST_STACK_SIZE 64
unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
void *l2_rip;
GUEST_ASSERT(vmx->vmcs_gpa);
GUEST_ASSERT(prepare_for_vmx_operation(vmx));
GUEST_ASSERT(load_vmcs(vmx));
prepare_vmcs(vmx, l2_guest_code,
&l2_guest_stack[L2_GUEST_STACK_SIZE]);
if (vmx->eptp_gpa)
l2_rip = l2_guest_code_ept_enabled;
else
l2_rip = l2_guest_code_ept_disabled;
prepare_vmcs(vmx, l2_rip, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
GUEST_SYNC(false);
GUEST_ASSERT(!vmlaunch());
@ -64,7 +80,7 @@ void l1_guest_code(struct vmx_pages *vmx)
GUEST_DONE();
}
int main(int argc, char *argv[])
static void test_vmx_dirty_log(bool enable_ept)
{
vm_vaddr_t vmx_pages_gva = 0;
struct vmx_pages *vmx;
@ -76,8 +92,7 @@ int main(int argc, char *argv[])
struct ucall uc;
bool done = false;
TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_VMX));
TEST_REQUIRE(kvm_cpu_has_ept());
pr_info("Nested EPT: %s\n", enable_ept ? "enabled" : "disabled");
/* Create VM */
vm = vm_create_with_one_vcpu(&vcpu, l1_guest_code);
@ -103,11 +118,16 @@ int main(int argc, char *argv[])
*
* Note that prepare_eptp should be called only L1's GPA map is done,
* meaning after the last call to virt_map.
*
* When EPT is disabled, the L2 guest code will still access the same L1
* GPAs as the EPT enabled case.
*/
prepare_eptp(vmx, vm, 0);
nested_map_memslot(vmx, vm, 0);
nested_map(vmx, vm, NESTED_TEST_MEM1, GUEST_TEST_MEM, 4096);
nested_map(vmx, vm, NESTED_TEST_MEM2, GUEST_TEST_MEM, 4096);
if (enable_ept) {
prepare_eptp(vmx, vm, 0);
nested_map_memslot(vmx, vm, 0);
nested_map(vmx, vm, NESTED_TEST_MEM1, GUEST_TEST_MEM, 4096);
nested_map(vmx, vm, NESTED_TEST_MEM2, GUEST_TEST_MEM, 4096);
}
bmap = bitmap_zalloc(TEST_MEM_PAGES);
host_test_mem = addr_gpa2hva(vm, GUEST_TEST_MEM);
@ -148,3 +168,15 @@ int main(int argc, char *argv[])
}
}
}
int main(int argc, char *argv[])
{
TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_VMX));
test_vmx_dirty_log(/*enable_ept=*/false);
if (kvm_cpu_has_ept())
test_vmx_dirty_log(/*enable_ept=*/true);
return 0;
}

View File

@ -832,8 +832,7 @@ static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
* mn_active_invalidate_count (see above) instead of
* mmu_invalidate_in_progress.
*/
gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
hva_range.may_block);
gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
/*
* If one or more memslots were found and thus zapped, notify arch code

View File

@ -26,13 +26,11 @@ kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
#ifdef CONFIG_HAVE_KVM_PFNCACHE
void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm,
unsigned long start,
unsigned long end,
bool may_block);
unsigned long end);
#else
static inline void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm,
unsigned long start,
unsigned long end,
bool may_block)
unsigned long end)
{
}
#endif /* HAVE_KVM_PFNCACHE */

View File

@ -23,7 +23,7 @@
* MMU notifier 'invalidate_range_start' hook.
*/
void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm, unsigned long start,
unsigned long end, bool may_block)
unsigned long end)
{
struct gfn_to_pfn_cache *gpc;
@ -57,6 +57,19 @@ void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm, unsigned long start,
spin_unlock(&kvm->gpc_lock);
}
static bool kvm_gpc_is_valid_len(gpa_t gpa, unsigned long uhva,
unsigned long len)
{
unsigned long offset = kvm_is_error_gpa(gpa) ? offset_in_page(uhva) :
offset_in_page(gpa);
/*
* The cached access must fit within a single page. The 'len' argument
* to activate() and refresh() exists only to enforce that.
*/
return offset + len <= PAGE_SIZE;
}
bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len)
{
struct kvm_memslots *slots = kvm_memslots(gpc->kvm);
@ -74,7 +87,7 @@ bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len)
if (kvm_is_error_hva(gpc->uhva))
return false;
if (offset_in_page(gpc->uhva) + len > PAGE_SIZE)
if (!kvm_gpc_is_valid_len(gpc->gpa, gpc->uhva, len))
return false;
if (!gpc->valid)
@ -232,8 +245,7 @@ out_error:
return -EFAULT;
}
static int __kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long uhva,
unsigned long len)
static int __kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long uhva)
{
unsigned long page_offset;
bool unmap_old = false;
@ -247,15 +259,6 @@ static int __kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned l
if (WARN_ON_ONCE(kvm_is_error_gpa(gpa) == kvm_is_error_hva(uhva)))
return -EINVAL;
/*
* The cached acces must fit within a single page. The 'len' argument
* exists only to enforce that.
*/
page_offset = kvm_is_error_gpa(gpa) ? offset_in_page(uhva) :
offset_in_page(gpa);
if (page_offset + len > PAGE_SIZE)
return -EINVAL;
lockdep_assert_held(&gpc->refresh_lock);
write_lock_irq(&gpc->lock);
@ -270,6 +273,8 @@ static int __kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned l
old_uhva = PAGE_ALIGN_DOWN(gpc->uhva);
if (kvm_is_error_gpa(gpa)) {
page_offset = offset_in_page(uhva);
gpc->gpa = INVALID_GPA;
gpc->memslot = NULL;
gpc->uhva = PAGE_ALIGN_DOWN(uhva);
@ -279,6 +284,8 @@ static int __kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned l
} else {
struct kvm_memslots *slots = kvm_memslots(gpc->kvm);
page_offset = offset_in_page(gpa);
if (gpc->gpa != gpa || gpc->generation != slots->generation ||
kvm_is_error_hva(gpc->uhva)) {
gfn_t gfn = gpa_to_gfn(gpa);
@ -354,6 +361,9 @@ int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len)
guard(mutex)(&gpc->refresh_lock);
if (!kvm_gpc_is_valid_len(gpc->gpa, gpc->uhva, len))
return -EINVAL;
/*
* If the GPA is valid then ignore the HVA, as a cache can be GPA-based
* or HVA-based, not both. For GPA-based caches, the HVA will be
@ -361,7 +371,7 @@ int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len)
*/
uhva = kvm_is_error_gpa(gpc->gpa) ? gpc->uhva : KVM_HVA_ERR_BAD;
return __kvm_gpc_refresh(gpc, gpc->gpa, uhva, len);
return __kvm_gpc_refresh(gpc, gpc->gpa, uhva);
}
void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm)
@ -381,6 +391,9 @@ static int __kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned
{
struct kvm *kvm = gpc->kvm;
if (!kvm_gpc_is_valid_len(gpa, uhva, len))
return -EINVAL;
guard(mutex)(&gpc->refresh_lock);
if (!gpc->active) {
@ -400,11 +413,18 @@ static int __kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned
gpc->active = true;
write_unlock_irq(&gpc->lock);
}
return __kvm_gpc_refresh(gpc, gpa, uhva, len);
return __kvm_gpc_refresh(gpc, gpa, uhva);
}
int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len)
{
/*
* Explicitly disallow INVALID_GPA so that the magic value can be used
* by KVM to differentiate between GPA-based and HVA-based caches.
*/
if (WARN_ON_ONCE(kvm_is_error_gpa(gpa)))
return -EINVAL;
return __kvm_gpc_activate(gpc, gpa, KVM_HVA_ERR_BAD, len);
}